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Abstract

I present a cognitive model, dubbed BioSLIE, that integrates
and extends recent advances in: 1) distributed, structure-
sensitive representation; 2) neurocomputational modeling; and
3) our understanding of the neuroanatomy of inference. As a
result, BioSLIE is biologically detailed, learns different behav-
iors in different contexts, and exhibits systematic, structure-
sensitive generalization. Here, BioSLIE is applied to the Wa-
son card selection task. Its performance meets Cosmides’
(1989) challenge to mechanistically define domain-general
procedures that can use induction to produce the observed do-
main specific performance on the Wason task. As well, it
demonstrates the relevance of neural computation to under-
standing cognition, despite claims to the contrary by Fodor and
Pylyshyn (1988) and Jackendoff (2002).

Introduction
Fodor and Pylyshyn (1988), and more recently Jackendoff
(2002), have argued that understanding neural computation is
not relevant for understanding cognitive function. They have
suggested that neurally plausible architectures do not natu-
rally support structure-sensitive computation, and that such
computation is essential for explaining cognition. They argue
that this leads to the conclusion that neurons merely imple-
ment a classical system, and that characterizing the imple-
mentation itself is irrelevant for understanding the cognitive
properties of the system. In this paper, I present a large-scale,
biologically realistic model which demonstrates that this view
may be incorrect. This model is also, I believe, the first
demonstration of a structure-sensitive (i.e., language-based)
cognitive function being exhibited by a biologically detailed
model. In particular, this model captures the context sensi-
tive inference exhibited by human subjects in the Wason card
task using massively interconnected spiking single neurons.
To do so, the model learns the relevant structural transforma-
tions appropriate for a given context, and is able to general-
ize them. Given these salient properties of the model, I refer
to it as BioSLIE (BIOlogically-plausible Structure-sensitive
Learning Inference Engine).

Beyond presenting this specific model, another purpose
of this paper is to introduce a modeling methodology that
can help researchers build similar models for other cogni-
tive functions. In general, there remains a large difference
between the kinds of models offered by cognitive neurosci-
entists or psychologists on the one hand, and those offered by
systems neuroscientists on the other: the former tend to be
high-level, where components of the model are large portions
of cortex, while the latter tend to be low-level, where each

component is a single cell. This is true despite the fact that
researchers in these areas share a similar interest in brain-
based explanations of behavioral phenomena. Here I apply
the neural engineering framework (NEF) methodology de-
scribed in Eliasmith & Anderson (2003), which enables the
construction of a model that is both high-level and low-level
in this sense.

As mentioned, BioSLIE is an application of this method-
ology to the Wason card selection task (Wason, 1966). In
the Wason task, subjects are given a conditional rule of the
form “if P, then Q”. They are then shown four cards. Each
card expresses the satisfaction (or not) of condition P on one
side and the satisfaction (or not) of condition Q on the other.
The four visible card faces show representations of ‘P’, ‘Q’,
‘not-P’, and ‘not-Q’. Subjects are instructed to select all cards
which must be turned over in order to determine whether the
conditional rule is true. A vast majority of subjects (greater
than 90%) do not give the logically correct response (i.e., P
and not-Q). Instead, the most common answer is to select
the P and Q cards, or just the P card (Oaksford and Chater,
1994). However, it became apparent that performance on the
task could be greatly facilitated by changing the content of
the task to be more realistic or thematic, often by making the
rule a permissive one (Sperber, 1995). To distinguish these
two version of the task, I refer to them as the ’abstract’ and
’permissive’ versions of the task respectively. Human per-
formance on the Wason task is an ideal target for providing a
neural model of cognition because it is generally considered a
phenomena that can only be explained by invoking structure-
sensitive processing. As a result, the task allows BioSLIE to
demonstrate its ability to generalize across structures, i.e. to
be systematic – a hallmark of cognitive systems (Fodor and
Pylyshyn, 1988; Jackendoff, 2002). In addition, the context-
sensitive performance of humans has not yet been adequately
explained.

Indeed, there has been much debate over the nature of the
mechanism which causes the marked difference in perfor-
mance on the abstract and permissive versions of the task.
Cosmides (1989) suggests that completely different, uniquely
evolved modules are invoked under the two contexts. Cheng
and Holyoak (1985), in contrast, suggest that the difference
between deontic and non-deontic contexts results in the ap-
plication of different, multi-step reasoning schemas. BioSLIE
relies on a weaker claim than either of these. Specifically, in
light of data that the deontic/non-deontic distinction does not
adequately capture human performance variation (Oaksford
and Chater, 1996), it embodies the assumption that the infer-
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ence to be performed in a specific context has merely been
learned in a similar context (regardless of its status as deontic
or not). As well, it is assumed that the necessary inference
need not be spelled out as a complex, multi-step schema, but
is rather a direct mapping between the presented rule and ap-
propriate responses in that context.

Notably, Cosmides (1989) challenges any theory based
on induction, like that underlying BioSLIE, to lay out the
mechanistically defined domain-general procedures that can
take modern human experience as statistically encountered
as input, and produce the observed domain specific perfor-
mance in the selection task as output. This is a challenge that
BioSLIE meets.

Model description
BioSLIE integrates advances in structured vector representa-
tions, relevant physiological and anatomical data from frontal
cortices (Wharton & Grafman, 1998), and the NEF, to explain
human performance on the Wason task.

Since the early 1990s, there have been a series of sug-
gestions as to how to incorporate structure-sensitive process-
ing in models employing distributed representations (includ-
ing Spatter Codes (Kanerva 1994); Holographic Reduced
Representations (HRRs; Plate 1991); and Tensor Products
(Smolensky 1990)). Few of these approaches have been used
to build models of cognitive phenomena (although see Elia-
smith & Thagard 2001). However, none of these methods
have been employed in a biologically plausible computational
setting. As described in the next section, I extend the NEF to
incorporate HRRs, in order to integrate the structure sensitiv-
ity of the latter with the biologically plausibility of the former.

Of course, to use this characterization of structure-sensitive
processing in an explanatorily useful model, it is essential to
suggest which anatomical structures may be performing the
relevant functions. Only then is it possible to bring to bear
the additional constraints of (and make predictions relating
to) single cell physiology and functional imaging data. Fig-
ure 1 shows how BioSLIE is mapped to functional anatomy.
Specifically, the network consists of: a) input from ventrome-
dial prefrontal cortex (VMPFC) which provides familiarity,
or context, information that is used to select the appropriate
transformation (Adolphs et al. 1995); b) left language ar-
eas which provide representations of the rule to be examined
(Parsons, Osherson, & Martinez 1999); and c) anterior cin-
gulate cortex (ACC) which gives an error signal consisting of
either the correct answer, or an indication that the response
was correct or not (Holroyd & Coles 2002). The neural pop-
ulations that make up BioSLIE itself model right inferior
frontal cortex, where VMPFC and linguistic information is
combined to select and apply the appropriate transformation
to solve the Wason task (Parsons & Osherson 2001). It is dur-
ing the application of the transformation that learning is also
presumed to occur.

Model derivation
HHRs in spiking networks
Following Plate (1991) BioSLIE encodes structure in a dis-
tributed vector representation using circular convolution (⊗),
which implements a kind of vector binding. In order to de-
code the structure, circular correlation (⊕) is used. These
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Figure 1: Functional decomposition and anatomical mapping
of the model. The letters in bold indicate the vector signals in
the model associated with the area.

operations are defined as:

C = A⊗B and B ≈ A⊕C
cj =

∑n−1
k=0 akbj−k bj =

∑n−1
k=0 akcj+k

where subscripts are modulon. Conveniently, correlation can
be defined in terms of convolution:A⊕C = A′⊗C, where
′ indicates an approximate inverse.

To implement convolution in a spiking network using the
NEF, we must first define the encoding and decoding for a
vectorx in a populationa of neuronsai. The encoding de-
scribes the biophysical processes that result in a series of
rapid neural voltage changes (i.e., neural spikes). The de-
coding determines how much information those spikes carry
about the original signalx, by determining an estimate of that
signal,x̂:

Encoding

ai(t) =
∑N

n=1 δ(t− tin) = Gi

[
αi

〈
x · φ̃im+

〉
Jbias

i

]

Decoding

x̂ =
∑Nt,N

i=1,n=1 hi(t− tn)φx
i

whereδi(·) are theNt spikes at timestn for neuronai, gen-
erated by the spiking nonlinearityGi in the population with
N neurons. The neuron parametersαi, φ̃i, andJbias

i are the
gain, preferred direction vector in stimulus space, and bias
current respectively, which are chosen to reflect the hetero-
geneity of neuron responses observed in cortex (Eliasmith
and Anderson, 2003). For the decoding,hi(t) are the linear
decoding filters, which for reasons of biological plausibility,
are taken to be the post-synaptic currents (PSCs) generated in
the subsequent neuron’s dendrites, and the decoding vectors,
φx

i , determine the importance of that neuron’s response to the
estimate ofx. Notably, the neural nonlinearityGi can be as
complex (i.e. biologically realistic) as desired. In BioSLIE
we use a standard leaky integrate-and-fire (LIF) model.

Assuming this kind of vector representation in four pop-
ulations,a, b, c, andd, it is possible to implement circular
convolution. Using the convolution theorem, we know that
any convolution in a domainx is equivalent to multiplication
in its Fourier domain. Thus, the two vectors to be convolved
are projected through the Fourier matrix into a middle layer
(using the encoding defined earlier):
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Figure 2: The convolution over time of two sets of vectors.
The input vectors change after 0.5 seconds. a) The solid lines
indicate the decoded estimates of the signal value from the
neural spikes. The dashed lines indicate the ideal values. b)
The neural spikes generated during the same run.

ck([AFFT ,BFFT ])

= Gk

[
αkφ̃k([AFFT ,BFFT ]) + Jbias

k

]

= Gk


∑

i

ωikai +
∑

j

ωjkbj + Jbias
k




whereωik = αk
˜φk1...kN WFFT φA

i . This equation deter-
mines the connection weights froma and b to c that result
in spikes in the middle layer (c) that encode the Fourier trans-
form of vectorsA andB. Once in this space, the the element-
wise product can be extracted and the inverse Fourier matrix
applied, giving

dl(A⊗B)

= Gl

[
αl

(
φ̃lWIFFT

∑

k

ckφA.B
k

)
+ Jbias

k

]

= Gl

[∑

k

ωlkck + Jbias
l

]

whereωlk = αlφ̃lWIFFT φA.B
k . Thus, this four layer net-

work will result in the circular convolution ofAandB being
represented in the output layerd. Generally speaking, this
derivation demonstrates how spiking networks can compute
complex, nonlinear functions like convolution. The result of
convolving two 6-dimensional vectors is shown in figure 2.

Learning HRR transformations
In order to explain the results of the Wason task, it is es-
sential to transform HRRs encoding the rule being exam-
ined into the appropriate response given a context. For ex-
ample, to encode the rule “If there’s a vowel then there’s an
even number,” we can construct the following HRR vector:
R = ante⊗ vowel + rel⊗ impl + cons⊗ even. This is
similar to the structureImplies(vowel, even), in a classical
cognitive system. However, the HRR representation is sim-
ply a vectorR which is of the same dimensionality as each of
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Figure 3: The network structure for associative learning.
Here, the transformationT in a contextx is learned by chang-
ing the weights between neurons in populationsx andy based
on information in populationz.

its constituents. Essentially, the HRR constituents are blurred
upon being used to encode this structure. This is not the case
for a classical representation.

A transformation vector that provides the typical human
response to this rule isT1 = ante′+impl′⊗rel′+cons′,
which results inT1 ⊗R ≈ vowel + even. However, we
cannot build this kind of transformation into the model if we
want it to learn to behave differently given varying context
signals from VMPFC.

To model learning of different transformations in different
contexts, we need to derive a biologically plausible learning
rule that can infer these transformations. Neumann (2001)
noted that to find some unknown transformationT between
two vectorsA andB, we can solve

T = circ

(
m∑

i

Bi ⊕Bi

)−1 (
m∑

i

Bi ⊕Ai

)

wherecirc(·) is the circulant matrix andm is the number of
examples. NotingBi⊕Bi ≈ 1 this can be simplified toT =
1
m

∑m
i Bi⊕Ai. The resulting rule can be implemented using

a standard delta ruleTi+1 = wi (Ti −Bi ⊕Ai), wherewi

is an adaptive learning rate inversely proportional toi.
Of course, this rule is not useful for BioSLIE as it stands

because it does not determine how connection weights of the
individual neurons representing these vectors are to be up-
dated. So, I have derived (derivation not shown) the follow-
ing neuron-level rule in terms of the network shown in figure
3:

∆ωjl = κ
δE

δωjl

= κ


∑

k

ωjkzk −
∑

j′
ωj′jyj


 (yj > 0)xl

whereκ is the learning rate, neuronsyj carry the current pre-
diction for the transformationT, zkneurons carry the corre-
lation of the encodedA andB vectors, andxl carries the
context signal. This is a form of Hebbian learning, a class of
learning rules known to be biologically plausible.

As demonstrated in figure 4, this rule leads to successful
learning, and allows for the switching of learned transforma-
tions based on the context signal.
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Figure 4: Learning and retrieval of a 6-dimensional vector in
a spiking network. During the first two-thirds of the simula-
tion, the context signal is changed while the input fromz is
changed to associate the context with the vector represented
by z. In the last third, learning is turned off, and successful
retrieval of the vectors is displayed given a context signal.

Results on the Wason task
Performance in different contexts
BioSLIE combines these subnetworks as shown in figure 5,
resulting in a model that consists of ten interconnected neural
populations, for a total of approximately twenty thousand
neurons. The representations in this network have been scaled
up to 100 dimensions, in order to encoded the vectors needed
to perform the task.

The model is able to reproduce the typical results from the
Wason task under both the abstract and permissive contexts,
as shown in figure 6. In order to classify the results pro-
duced by the model, the resulting vectors must be ‘cleaned-
up’. That is, they are compared to all possible labeled an-
swers by taking a similarity measure (dot product) between
the resulting vector and items in the ‘clean-up’ memory (i.e.,
all labeled vectors used in any simulation presented; 19 vec-
tors). The labels on the graph indicate the similarity mea-
sures (maximum of 1). The top three responses are displayed
to demonstrate the large difference in similarity between the
provided answers and the next most similar vector. Simple
thresholding can thus be used to determine what counts as an
answer and what does not.

When the run in figure 6 begins, learning is initiated, the
context is set to ‘abstract’ (i.e. 1), and the correct result in that
context is present to the network. The network then learns to
infer (in this context) the expected (incorrect) result (i.e.,a
andb). Both the context and expected result is then changed
for the second phase, and the network learns a different trans-
formation in the new ‘permissive’ context (i.e., -1; resulting
in a andnot-b). Learning is then turned off, and the expected
result is no longer presented to the network. Only the context
signal is changed. As expected, in the abstract context the
network’s answer isa andb, and in the permissive context
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Figure 5: The complete network at the population level. The
lower case letters indicate populations of approximately 2000
neurons each. Upper case letters indicate the signals being
sent along the relevant projections. The dotted boxes indicate
how this diagram relates to figure 3, and hence the anatomical
mapping discussed earlier.

the network’s answer isa andnot-b. BioSLIE has learned to
perform different inferences in different contexts, resulting in
similar performance to human subjects on the Wason task.

Generalization within a context
To demonstrate that the network is truly learning a language-
like transformation in a context, figure 7 shows that it gener-
alizes learned, structure-sensitive transformations to new rep-
resentations. This demonstrates that the system has learned a
systematic regularity. That is, it can transform the structured
representation based solely on the syntax of that representa-
tion.

This simulation is similar to that presented previously, ex-
cept the context signal is kept constant and there are three sep-
arate rules that are presented to BioSLIE. During the learn-
ing ’on’ phase, the rulesImplies(a,b)andImplies(c,d)along
with their expected answers are presented to the network.
The learning is then turned off, and it is presented withIm-
plies(e,f). As expected, since the context is the same as the
previous examples, the same transformation is applied, and
BioSLIE infers thate and f are the expected answer. In the
last quarter of the simulation, no rule is presented and thus
no answer is produced (i.e., all similarity measures are very
low). The similarity measures of the top three most similar
vectors in the clean-up memory are displayed to demonstrate
that the top two responses are the appropriate answers in this
context.

Conclusion
I have successfully built and simulated BioSLIE, a low-level,
spiking neuron model of a high-level cognitive behavior, the
Wason task. Compared to past models of the Wason task,
this model has a number of advantages. In contrast to Cos-
mides’ explanation, I have presented a detailed computational
model that demonstrates that a domain general mechanism
can indeed account for the observed phenomena. As well, this
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model offers an advantage over pragmatic reasoning schemas,
in that the transformations used to solve the problem are not
limited to a pre-specified, discrete group of “schemas” which
are identical for all subjects. Instead, each individual can
solve the problem using her own estimation of the correct
transformation in the given context, as determined by her
idiosyncratic learning history in that context. BioSLIE is thus
not restricted to the binary “deontic” and “non-deontic” dis-
tinctions made by Cheng and Holyoak.

More generally, because BioSLIE spans what are often
considered disparate levels of description of cognitive phe-
nomena, it is also able to support predictions at those various
levels. I believe it is the first model to do so.

At the single neuron level, BioSLIE helps clarify the kinds
of properties neurons involved in these computations need
to have. For instance, in order to implement the high-
dimensional nonlinear vector transformation necessary to
capture structure-sensitive behavior, neurons in the simula-
tion need to respond to at least two dimensions at the same
time (one from each vector being convolved). However, de-
spite the size of the vectors being convolved,no morethan
two dimensions need to be represented either (suggesting that
the model will scale very well). As well, the learning rule de-
rived to implement the network has implications for neuron
connectivity. Specifically, it suggests that information car-
ried by projections from one of the associative populations
serves to direct the modification of synaptic weights between
the memory population, and the other associative population.
Thus the biophysical mechanisms (e.g. NO transport) that
can support this kind of learning should be prevalent in these
areas. Finally, examining the spike trains produced by the
model show that despite the model being deterministic, the
nonlinearities in the model serve to generate very random-
looking spike trains, like those observed in cortex. This sug-
gests that perhaps nonlinearities, not noise, are largely re-
sponsible for spike train variability in frontal areas.

At the behavioral level, the model not only meets Cos-
mides’ challenge of specifying an inductive, domain general



inference mechanism, it also makes it possible to predict be-
havioral variations on the task given a learning history. For
instance, it should be possible to predict the effects of varying
the kind of feedback that a subject receives in similar and dis-
similar contexts. As well, I have not discussed the differing
effects of explicit (i.e., the answer) versus implicit (i.e. ‘right’
or ‘wrong’) feedback on learning transformations. However,
the model includes a valence signal that can be used to ex-
amine these differences. Finally, the ability of the model to
generalize helps explain why those trained in logic do bet-
ter on the content-independent tasks (Rinella, Bringsjord, &
Yang 2001).

More theoretically, the model is at the very least an ex-
istence proof that understanding neural computation might
have important implications for understanding cognitive be-
havior,contra Fodor, Pylyshyn, and Jackendoff. This is be-
cause HRRs, unlike classical symbols, are noisy representa-
tions. Thus, there are serious limitations on memory size,
depth of structure, etc., that can be encoded by BioSLIE, just
as there are for people. Understanding how well such noisy
representations can be processed by a realistic neural system
helps pave the way to better understanding these limitations.
These same properties show how this model is also not a
‘mere’ implementation of a classical system. Classical sys-
tems are perfectly compositional and systematic. However,
BioSLIE clearly is not, since encoding essentially blurs the
represented constituents. Nevertheless, BioSLIE has enough
compositionality and systematicity to model human cogni-
tive performance. Thus, neurocomputational models, like
BioSLIE, can help us understand thedegreesof systematicity
and compositionality possessed by real cognitive systems in
ways that classical models cannot.
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