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A NEW PERSPECTIVE ON REPRESENTATIONAL 

PROBLEMS 

Abstract 

I argue that current flaws in the methodology of contemporary cognitive science, 

especially neuroscience, have adversely affected philosophical theorizing about 

the nature of representation. To highlight these flaws, I introduce a distinction 

between adopting the animal’s perspective and the observer’s perspective when 

characterizing representation. I provide a discussion of each and show how the 

former has been unduly overlooked by cognitive scientists, including 

neuroscientists and philosophers. I also provide a specific neuroscientific example 

that demonstrates how adopting the animal’s perspective can simplify the 

characterization of the representation relation. Finally, I suggest that taking this 

perspective supports a specific thesis regarding content determination: the 

statistical dependence hypothesis. 

1 Introduction 

As a cognitive scientist, there are at least two possible ways to characterize the 

contents of internal representations. One is to adopt the typical scientific, 

objective, perspective on the representational states and contents of an organism, I 

call this the ‘observer’s perspective’. Adopting this approach, we would present a 

stimulus, perhaps a target moving at 1 m/s, to an animal and then determine which 

mental states were activated by that presentation. Those activated states would 
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then be considered candidates for representations of that stimulus. Ignoring, for 

the moment, concerns about having a naïve causal theory of representation and 

about reproducing the behavior across trials, this approach essentially tells us how 

likely an observed neural state is, given a stimulus. 

Another, largely overlooked, means of characterizing the contents of 

internal representations is to adopt what I call the ‘animal’s perspective’. That is, 

we can look at the mental states of the animal and try to guess how likely it is that 

a certain stimulus (e.g., something moving at 1 m/s) is in the environment. In 

order to take this perspective, very different constraints must be placed on 

defining stimuli and analyzing behavioral responses. In other words, adopting one 

perspective over another has serious consequences – it is a difference that makes a 

difference. 

In this paper I argue that the observer’s approach is by far the most 

common amongst cognitive scientists, including philosophers such as Dretske, 

Dennett, Fodor, and Quine, and neuroscientists such as Desimone, Georgopolous, 

van Essen, and Hubel and Weisel.  More importantly, I argue that this approach is 

very seriously flawed in virtue of being incomplete. I show that rectifying this 

flaw suggests an alternative characterization of representational content.  

Although I discuss the close relation between the observer’s and animal’s 

perspectives, I begin by distinguishing them in order to highlight the limitations 

and strengths of adopting either one exclusively. In particular, I present an 

example that demonstrates how adopting the perspective of the animal can result 

in a simpler characterization of the representation relation.   I conclude by 

suggesting that the importance of the animal’s perspective is properly captured by 
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a recent proposal for characterizing mental content called the statistical 

dependence hypothesis (Eliasmith, 2000; Usher, 2001; Eliasmith 2006). 

2 Two perspectives, one problem 

When faced with scientific problems, such as the problem of characterizing 

representations, we have had great success in dealing with them from a third 

person perspective, so a methodological bias in favor of the observer’s 

perspective is only natural.  In general, this is an important perspective to adopt in 

order to construct objective solutions – solutions that we can easily share with 

others.  However, when it comes to representational problems, it is not so clear 

that this is an appropriate viewpoint to take.   

Consider the specific problem of ‘neurosemantics’, that is the problem of 

how neurobiological systems have contentful states.1  In addressing this problem, 

it is the information-processing neurobiological system that is the locus of 

concern.  This scientific question, unlike questions about quarks, molecules, or 

tectonic plates, concerns something that may have a perspective of its own.  If the 

system of interest (the animal) does have a perspective, and that perspective is 

relevant to answering the questions we are interested in asking, then we may be 

able to adopt either the usual observer’s perspective or, in these special cases, that 

of the animal under study. 

                                                 

1 This is in obvious analogy to the problem of ‘psychosemantics,’ more familiar in cognitive 
science (Fodor, 1981). 
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A ‘perspective’, as I shall use the term, is a relation between an 

information processor and a transmitter of information.  Perspective is determined 

by what information is available to an information processor from a transmitter.  

Notably, we don’t have to know what the information is about in order to 

distinguish one set of informational states from another.  This is because 

information-theoretic descriptions can be taken strictly to be descriptions of 

energy transfer, and we do have a way of tracking energy flow without reference 

to ‘aboutness’ (Fair 1979, p. 228).  So, by distinguishing ‘perspectives’ I mean to 

distinguish information-theoretic descriptions of energy flows.  This means that 

perspectives are commonplace and can be attributed to individual neurons and 

brain areas as well as to entire brains.   

To claim that there is a difference between the observer’s and the animal’s 

perspective, then, is to claim that in a given situation, an animal’s (first person) 

perspective and an observer’s (third person) perspective provide access to 

different information.  Specifically, an animal (and any of its sub-components) 

can only access information available through sensory receptors.  However, 

properly situated observers can access that same information, as well as 

information available through their own sensory receptors about the same 

situation.  So, the observer has two sources of information; the animal’s receptors, 

and their own.2 

                                                 

2  It is irrelevant to the point being made here that the observer must access the information 
available from the animal through the observer’s sensory apparatus.  The fact remains that the 
observer’s perspective includes two distinct sources of information, only one of which the 
animal’s perspective includes. 
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Most cognitive scientists concerned with representation have adopted the 

observer’s perspective.  However, there have been notable exceptions.  For 

example, Fitzhugh (1958) describes a means of determining the nature of the 

environment given the response of nerve fibers.  Just as a brain (or its parts) infer 

the state of the world from sensory signals, Fitzhugh attempts to determine what 

is in the world, once he knows a nerve fiber’s response to an unknown stimulus.  

He purposefully limits the information he works with to that available to the 

animal.  The ‘extra’ information available via the observer’s perspective is only 

used after the fact to ‘check his answers’; it is not used to determine what the 

animal is representing.  Fitzhugh’s is one of the first in a significant line of 

experimental approaches that has recently been extended in the book Spikes: 

Exploring the neural code (Rieke, Warland et al. 1997).  One of the main themes 

of this book is echoed in this chapter: our representational characterizations can 

change when we adopt the perspective of the animal.   

In his book Content and Consciousness, Daniel Dennett (1969) also 

realized that the animal’s perspective is an important one:  

Whereas we, as whole human observers, can sometimes see what 
stimulus conditions cause a particular input or afferent neuron to 
fire, and hence can determine, if we are clever, its ‘significance’ to 
the brain, the brain is ‘blind’ to the external conditions producing 
its input and must have some other way of discriminating by 
significance (p. 48).   

However, Dennett does not appear to have realized that adopting the animal’s 

perspective may have important consequences for a theory of content, because he 

assumes the standard perspective elsewhere in the same book: “[T]he 

investigators working with fibres in the optic nerves of frogs and cats are able to 
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report that particular neurons serve to report convexity, moving edges, or small, 

dark, moving objects because these neurons fire normally only if there is such a 

pattern on the retina” (p.76, my italics; see also pp. 42, 126).  In this second 

quote, and elsewhere, Dennett has assumed that the pattern, as determined from 

the observer’s perspective, is what is being represented.  However, as he noted in 

the previous quote, bits of brains don’t necessarily represent what whole human 

observers do. 

In contrast to Dennett’s ambiguous commitment to the animal’s 

perspective, work in artificial intelligence has generally embraced this 

perspective.  Researchers in this field realize that the problems that agents solve 

must be solved given only one source of information – sensory input.  For 

example, this kind of ‘first-person’ strategy is adopted by the influential tradition 

in machine vision of constructing three-dimensional scenes from basic features 

(Marr 1982).  Nevertheless, theories of representational content in organisms have 

decidedly not taken a cue from such traditions in artificial intelligence.  This is, 

perhaps, not surprising given that researchers in artificial intelligence often 

distinguish their pragmatic concern for understanding how to solve a given 

problem from concerns of how the brain actually solves such problems.  This, of 

course, doesn’t stop such research from suggesting hypotheses about how the 

brain might solve such problems (but, for a neurobiologically motivated critique 

of some such hypotheses based on Marr’s program see Churchland, 

Ramachandran et al. 1994).   

Artificial intelligence researchers, then, tend to share the conviction that 

trading the third person perspective for a first person perspective not only makes 
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sense given the kinds of problem at hand, but is also necessary for avoiding 

unwarranted assumptions about the nature of the environment.  In characterizing 

neurobiological systems, however, most neuroscientists and philosophers adopt a 

third person perspective.  In particular, neuroscientists tend to assume a set space 

of possible distal stimuli and try to determine how the system reacts to those distal 

stimuli (and philosophers tend to assume that neuroscientists have a good 

methodology).  This, however, isn’t the problem that an animal must solve in the 

real world.  Rather, the set of possible stimuli is unknown, and an animal must 

infer what is being presented given various sensory cues.  In the next three 

sections, I contrast these two ways of answering questions about the 

representation relation. 

3 One way to find some answers 

The standard methodology for approaching representational problems is the 

intuitive one.  If you were asked to determine what states or processes played a 

representational role in a given system (i.e., to solve the Problem of 

Representations (Cummins 1989)) a natural approach would be to present the 

system with various things it would have to represent and to look for the 

processes and states that are activated by the presentation of those stimuli.  This is 

precisely the current methodology in neuroscience, and one endorsed by many 

philosophers.  Let me consider this approach in these two disciplines in turn. 

3.1 The observer’s perspective in neuroscience 



8 

For instance, the large corpus of experiments performed to characterize shape-

related responses in neurons in early parts of visual cortex such as V1, V2 and V4 

adopt this methodology (Knierim and Van Essen 1992; Gallant, Braun et al. 1993; 

DeYoe, Carman et al. 1996; Callaway 1998).  First, a neuron is found with a 

recording electrode and its receptive field is determined.  The receptive field of a 

neuron is the part of the visual field that, when occupied by a stimulus, causes the 

neuron to respond (i.e., to fire above its base firing rate).  The neuron’s preference 

for color and other non-shape related features is also determined.  All the stimuli 

presented to the neuron have the non-shape related features it prefers.  Now, a set 

of predetermined stimuli, such as crosses, oriented bars, spirals, and sinusoidal 

gratings, are presented to the neuron and its responses are recorded.  The 

experimenter then proceeds to characterize the responses of the neuron over a 

series of trials in order to account for the variability of responses to the same 

stimuli.  What the experimenter is constructing, then, is the conditional 

probability function that a certain neural response, r, occurs given a stimulus, s: 

p(r|s).  So if we are told, for example, that a spiral is in some neuron’s receptive 

field, we can use the probability function we have constructed to predict how that 

neuron is likely to behave.  Presumably, if the experimenter picks enough 

different stimuli to present to a neuron, he or she will be able to get some sense of 

what the neuron is representing, that is, to what dimensions (e.g., curvature, 

length, etc.) it responds.   

This kind of experiment has been performed since Hubel and Wiesel’s 

(1962) classic experiments in which they identified cortical cells selective to the 

orientation and size of a bar in a cat’s visual field (such neurons are often 
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problematically called ‘edge detectors’).  The ‘bug detector’ experiments of 

Lettvin et al. (1988/1959), perhaps better known to philosophers, take a similar 

approach.  In the ‘bug detector’ experiments, retinal ganglion cells (i.e., ‘bug 

detectors’) were found that respond to small, black, fly-sized dots in a frog’s 

visual field.  More recently, this method has been used to find ‘face-selective 

cells’ (i.e., cells that respond strongly to faces in particular orientations) in 

monkey visual cortex (Desimone 1991).  In fact, because the Hubel and Wiesel 

studys were so influential, nearly all single electrode experiments done in cortex 

follow this basic methdology, whether in parietal cortex (Andersen, et al. 1985), 

occipital cortex (Newsome and Pare, 1988), temporal cortex (Desimone 1991), 

motor cortex (Georgopolous, et al. 1986), or frontal cortex (Boch and Goldberg, 

1989). In all of these cases, what is deemed important is recording how a neuron 

responds to known stimuli.  In other words, the observer’s perspective is adopted, 

since both the neuron’s response and the nature of the stimulus (e.g., edges, flies, 

and faces) are used to characterize the neuron’s behavior.   

This method clearly dominates neurophysiological research (Gross, 

Rocha-Miranada et al. 1972; Zeki 1980; Felleman and Van Essen 1991; 

Roelfsema, Lamme et al. 1998).  It is also the method used by neuroscientists to 

determine the relata of the representation relation (i.e., to solve the Problem of 

Representation (Cummins 1989)).  In the case of face-selective cells, the 

representation relation cam be completed as follows: {the neuron that is being 

recorded from} represents {that face x degrees from y degrees (where y degrees is 
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the preferred orientation of the cell)} with respect to {the monkey’s brain}.3  

These are presumed to be the right relata because, in order, the neuron responds to 

the stimulus, the observer knows that the stimulus is a face at x degrees from y 

degrees, and the neuron doesn’t respond that way outside of the monkey’s brain.  

Notice the central role of the observer’s perspective in determining the relata in 

the representation relation.  The precise content of a given neural firing is 

determined by the observer’s independent knowledge of the stimulus.  It is, in 

general, dangerous to have such a priori (with respect to the animal) 

commitments determine the results of an investigation.  After the next section I 

discuss how we can, at least partially, avoid this result by adopting the animal’s 

perspective. 

3.2 The observer’s perspective in philosophy 

First, however, it is important to show that philosophers have adopted related 

tactics in trying to characterize the representation relation,4 as they are the ones 

directly concerned with the theoretical foundations of cognitive science.  

Consider, for example, Fred Dretske’s (1988) approach.   

                                                 

3 I take it that characterizing the representation relation requires filling out the schema: 
{representation} represents {content} with respect to {system}. Only the first two elements of 
the relation are of interest here. And, furthermore, nothing central to this paper hangs on the 
choice of this particular schema. 

4  To be clear, I take it that both philosophers and cognitive scientists are interested in the same 
problem when it comes to the representation relation. This is why the philosophers I discuss 
here take their project to be naturalistic.  Similarly, this is why the cognitive scientists I discuss 
are not interested in the evolution of representation, or the learning of a particular represention 
per se, but in the underlying (metaphysical) relation between internal and external states. 
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Dretske argues that the problem of representation only arises for systems 

that use intrinsic indicators as representations (e.g., the ‘bug detector’ cells 

representing bugs to a frog).  To understand this kind of representational 

relationship he calls neuroscience to his aid.  He accepts ‘bug detectors’ as 

representations of edible bugs because neuroscience has shown that particular 

cells fire when given bug-like stimuli (ibid., pp. 68-9).  So the representational 

relation is the causal one between bugs and neural firings; the causal relation that 

is described by the conditional probability of the neural firings given the presence 

of bugs.  Dretske is not alone in this kind of appeal to neuroscience.  Philosophers 

have often thought that the details of cognitive function could be left to 

neuroscientists (see e.g., Dennett 1969; Millikan 1984; Churchland 1986; 

Churchland 1989; Dennett 1991). 

But, Drestke is a particularly interesting case because he seems to be 

interested in the conditional probability that there is a stimulus in the environment 

given a response (i.e., P(s|r)), not the related, but converse probability function 

which neuroscientists are constructing (i.e., p(r|s)).5  This is important because, as 

I discuss in more detail in the next two sections, I think p(s|r) has been mistakenly 

ignored.  But, if Dretske explicitly discusses P(s|r), how can I claim that it has 

been ignored?  The reason is that Dretske (1981) claims that P(s|r) has to be equal 

to one, i.e., he claims that there has to be the stimulus in the environment given a 

                                                 

5  For notational clarity, I should note the difference between P(x,y) and p(x,y).  The former is a 
particular, real-valued probability (i.e., the probability that specific events x and y occur 
together), whereas the latter is a function which describes the likelihoods for all combinations of 
the random variables X and Y (i.e., the probability function that maps the events X=x and Y=y for 
all x and y to their probabilities).  Of course, the two are closely related since 
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particular neural response6 in order for that response to carry information about 

the stimulus.  This is to say that if there is a given neural response then there is a 

given stimulus.  In effect, then, Dretske has turned the probability statement into a 

logical one by forcing the unity criteria on the probability.   

There are two problems with this result.  First, from an experimental point 

of view, this condition on neural meaning prevents Dretske’s analysis from 

having any methodological import.  It is never the case, after all, that probabilities 

of this kind, as measured experimentally, are one.  Therefore, on Dretske’s 

analysis it is never the case that a measured neural response can be said to carry 

information about a stimulus.7     

Second, and more importantly for my purposes, Dretske’s criterion can 

only be satisfied by adopting a rather extreme form of the observer’s perspective; 

the observer must be ideal.  In particular, the observer must have complete 

knowledge of channel conditions, the animal’s background knowledge, and the 

state of the stimulus in order to verify that a given response carries information 

about a stimulus.  For these reasons, Dretske’s theory does not adopt what I have 

been calling the animal’s perspective.  That is, Dretske’s theory eliminates the 

perspectival nature of P(s|r) by forcing a criterion of a unitary conditional 

                                                                                                                                     

p(xk,yk)=P(X=xk,Y=yk)=pk.  Using P(s|r) here makes little difference to my central point, but 
more accurately reflects Dretske’s discussion. 

6  More precisely, Dretske claims that P(s|r)=1 given background knowledge and certain channel 
conditions.  These two extra conditions make no difference here. 

7  Dretske may claim that his is a metaphysical reduction of the notion of representation, but he 
then must explain why all empirically characterized representation relations, none of which 
meet his criterion, are still considered representation relations.  And, even if he succeeds in 
offering such an explanation, he must tell us why the original criterion in conjunction with this 
explanation should be preferred over an account that doesn’t necessitate further explaining. 
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probability; all relevant information must be available in order to determine that 

this conditional probability is one.  Since the animal’s perspective is defined by a 

limit on information available from a transmitter, and there can be no limits on the 

information available under Dretske’s characterization, Drestke’s theory clearly 

does not adopt the animal’s perspective in the relevant sense. 

Even those philosophers who, unlike Dretske, reject neuroscience as the 

arbiter of cognitive theories have generally accepted the standard methodology –  

normally by placing psychology in neuroscience’s stead.  Quine (1960), for 

example, motivated by his behavioristic tendencies, warns that we should steer 

clear of looking “deep into the subject’s head” or at the subject’s “idiosyncratic 

neural routings” (p. 31).  In contrast, Quine describes in great detail experiments 

in which we are asked to evaluate the response of a subject given some stimuli 

(e.g., a rabbit).  In effect, Quine argues that even if the conditional probability of 

some response (e.g., the word ‘gavagai’) given some stimulus (e.g., a rabbit) is 

equal to one, we still can’t make claims about what the stimulus is being seen as 

(e.g., a rabbit, or undetached rabbit parts).  What is important for my purposes is 

that the conditional probability that behaviorists like Quine are interested in is still 

that of the response given the stimuli; it is this conditional probability that is 

constructed under the standard methodology.   

The same is true of philosophers motivated by cognitive psychology, such 

as Fodor (1975, p. 34-7).  For example, in Fodor’s discussion of concept learning, 

he takes it that a subject’s response profile is what is modeled by psychological 

theories.  What psychologists are doing, then, is recording the subjects’ responses 

to a known set of stimuli.  This allows them to achieve their goal of predicting 
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subjects’ responses knowing the presented stimuli.  In order to do this, they have 

effectively constructed the same conditional probability function as the 

behaviorists and neuroscientists: the probability of a response given a stimulus. 

These examples from the various disciplinces of cognitive science, though 

only a small sample, show a convergence on a particular methodology for 

characterizing the representational properties of cognitive systems.  They depend 

on the assumption that constructing the conditional probability function of the 

likelihood of a response given a stimulus is the best way to characterize the 

relation between representations and sensory stimuli. 

4 The strangeness of taking the familiar route 

Neuroscientific experiments such as those discussed above are intended to address 

both of Cummins’ representational problems because they help to characterize a 

physical process that is correlated with external stimuli, and they then use that 

correlation to determine the relata of the representation relation.  This 

experimental paradigm is geared towards characterizing the neural response 

objectively, that is, for a third party observer.  Because there are so many sources 

of uncertainty when applying this kind of approach to a complex system, the 

measurements of the output vary, even with well-controlled inputs (see section 5 

for a simple example).  Not surprisingly then, we construct histograms that tell us 

the probability of getting a particular output given the input.  From this third 

person perspective, the inputs are well defined and the outputs are 

probabilistically related to the inputs.  In other words, it just makes sense to 
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construct the conditional probability of the indeterminate output given the 

determinate input.  That probability function, what I have been calling p(r|s), is a 

means of describing the physical processes inside the system we are probing. 

If we take a step back for a moment and think carefully about the problem 

neuroscientists and philosophers are both trying to address, this approach begins 

to seem a little odd.  In the end, we are interested in understanding the problem of 

neurosemantics.  That is, we want to know how, and in what way, animals (or 

their information processing parts) rely on internal states to stand for things in the 

outside world.  And, we want to know what the relation is between those internal 

states and the things in the outside world.  We don’t want to know (just) how to 

cause certain internal states in an animal.  But, constructing conditional 

probabilities of the response given the stimulus tells us how to control the animal 

with known stimuli, not how the stimuli could be inferred from the responses, or, 

more importantly, what the relation is between the two. 

This response-given-stimulus conditional probability may make sense 

from our perspective, but, and this cannot be overemphasized, that conditional 

probability makes no sense from the perspective of the animal.  In the real world, 

an animal (or its information processing parts) must try to coordinate behaviors 

based on the neural firings from its sensory apparatus.  There is no sense in which 

the animal could know what stimulus is being presented prior to having some set 

of neurons activated; this far, Dennett (1969) is right.  This is important for 

characterizing the representations in neurobiological systems because, in the frog 

for example, that neural activity is used by subsequent neurons to detect and react 

to bugs; bugs aren’t somehow used to cause neural firings. 
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Another way of thinking of this difference is to realize that constructing 

the response-given-stimulus conditional, p(r|s), captures the process that 

generates neural responses.  If we present a certain stimulus to a neuron, we can 

(approximately) determine the response we expect the neuron to generate.  This is 

a different problem from inferring the stimuli in the world from the neural 

response.  In this second case, we would try to (approximately) determine what 

stimuli had caused the response we see.8  If we want to understand how an animal 

can use its neural representations, we want to understand how it can make such 

inferences, not just how neural action potentials are generated. 

Perhaps the reason neuroscientists and philosophers haven’t tried to 

understand neural function in terms of the conditional probability I am arguing for 

(i.e., p(s|r)) is a methodological one.  Perhaps, in other words, it is just easier to 

find p(r|s) than p(s|r) and that explains why we have to adopt the perspective 

supported by former instead of that supported by the latter.  But this doesn’t seem 

to be the case. 

First, we must realize that the statistical relation that we are most 

interested in capturing is the combined (or joint) probability function that 

describes the likelihood of a stimulus and a response, p(s,r).  This function 

describes the probability that the stimulus, s, and the response, r, occur together 

(or with some suitable delay).  The reason we are most interested in this joint 

probability function is because it captures all there is to know about the 

probabilistic relation between a stimulus and a response.  From the joint 

                                                 

8  This can be undertaken by an observer, and nevertheless not adopt an observer’s perspective 
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probability function we can determine the marginal probability functions (p(s) and 

p(r)) as well as either conditional probability function (p(s|r) and p(r|s)).  In other 

words, there is nothing more to know about the relation between the two variables 

r and s than what there is to be found in the joint probability function. 

There are three ways of determining (or, more realistically, 

approximating) a joint probability function.  The first is to determine it 

experimentally.  That is, we can randomly present a set of stimuli that drive a cell, 

record the firings and construct the joint histogram.  Notably, this is not the same 

as showing stimuli and constructing a histogram of the response probabilities for 

each stimulus (i.e., the standard methodology).  In the next section I discuss a 

specific example of this difference.  The second and third ways of determining the 

joint probability function are either: 1) to find it from the response-given-stimulus 

probability, p(r|s), if we know the probability of the stimulus, p(s) as in equation 

(1); or 2) to find it from the stimulus-given-response probability, p(s|r), if we 

know the probability of the response, p(r) as in equation (2). 

)()|(),( spsrprsp !=  (1) 

)()|(),( rprsprsp !=  (2) 

Given these three ways of determining the joint probability function, we 

can learn something quite interesting about the methodological assumptions of 

traditional neuroscience and philosophy.  Namely, that efforts have been focused 

on characterizing only part of the relationship between stimuli and responses.  In 

particular, p(r|s) has been characterized, but this isn’t all there is to know about 

                                                                                                                                     

about what is being represented.  I discuss this more fully in section 5. 
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the relation between a stimulus and a response.  In order to completely 

characterize the relationship, we also need to know p(s) as in (1). 

The importance of the probability of a stimulus occurring, p(s), is often 

overlooked by the standard methodology.  If we aren’t careful about p(s), then our 

choice of stimuli to present to a neuron can greatly skew our estimate of the joint 

probability function and we will mischaracterize the relationship between 

stimulus and response.  For example, if I present only one stimulus over and over, 

the probability of that stimulus will be one, and the joint probability will be equal 

to the conditional probability, p(r|s).  This, of course, isn’t because that’s what the 

joint probability really is, but rather because my choice of p(s) is a particularly 

bad one, one that is unlikely to represent the probability of naturally occurring 

stimuli.  In order to get a good estimate of the joint probability, we need to have a 

guess as to what p(s) is.  As important and difficult as generating that guess may 

be, it is not relevant for my purpose of showing that the standard methodology 

isn’t simpler.  What is important is that we must put a lot of work into 

determining p(s), or we will poorly characterize the relationship we are after. 

In the case of determining p(s|r), we seem, at first glance, to be at a 

methodological disadvantage.  We can’t, after all, force the neuron to have a 

response and then see what the stimulus that caused it was.  However, from (2), it 

is plain that we can characterize this conditional probability if we characterize the 

joint probability function first.  Furthermore, we don’t need to worry about p(r) 

here (as we needed to worry about p(s) under the traditional methodology) 

because it can be calculated directly from our estimate of p(s,r) (by marginalizing 

the joint probability function).  But, estimating the joint probability function isn’t 
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easy.  We need to present the neuron with a good selection of stimuli, and to 

record the responses of the neuron.  What do I mean by a ‘good selection’?  Well, 

the naturally occurring p(s) would be a good selection.  That, of course, is just 

what we needed to know in order to properly characterize the relationship 

between stimulus and response in the traditional methodology.  In other words, 

we need to know just as much about the probabilistic relationships (i.e., we have 

to make the same tough guesses) in determining p(s|r) from (1) via the joint 

probability function, as we need to know in order to properly characterize the 

stimulus/response relationship under the standard methodology. 

In sum, characterizing the complex relationship between the environment 

and an animal’s internal representations is no more difficult from one perspective 

than from the other.  Furthermore, there are a number of considerations in favor of 

adopting the animal’s perspective.  In particular, it’s what the animal must do, and 

that is what we are interested in understanding.  So, taking the third person 

perspective, that is, adopting the traditional methodologies of neuroscience and 

philosophy, may not be the best bet in solving the interesting representational 

problems.  The alternative is, of course, to adopt the perspective of the animal. 

5 The other way to find some answers 

Though constructing the response-given-stimulus conditional probability, p(r|s), 

is by far the most prevalent means of trying to understand representation in 

neurobiological systems, it is not the only one.  The alternative, as just discussed, 

is to construct the stimulus-given-response conditional probability, p(s|r).  
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Fitzhugh (1958) suggests embracing this latter approach, though his suggestion 

does not seem to have attracted much interest until recently (Bialek, Rieke et al. 

1991; Theunissen and Miller 1991; Abbott 1994; Mainen and Sejnowski 1995; 

Rieke, Warland et al. 1997).  In this section I discuss a specific example that 

shows the significant difference adopting one perspective over the other can 

make. 

I have already suggested a few reasons why the animal’s perspective may 

be important for characterizing representation.  But are there reasons to think the 

animal itself could or does use the stimulus-given-response conditional?  For the 

animal to do so, according to equation (1), it would need to take advantage of the 

joint probability function (or an estimate of the joint probability function) and the 

probability of a response occurring.  In other words, before anything else, the 

animal needs an internal statistical model of the environment’s relation to its 

neural responses.  The simple fact is, we have to start with a model of the stimulus 

before we can construct the probability of a stimulus given a response.  

Fortunately, there is evidence that young animals, including children, do have a 

sense of the statistical structure of their world (Soja, Carey et al. 1991; Spelke and 

Van de Walle 1993).  For example, there is evidence that children, at the tender 

age of three months, perceive object unity (Spelke and Van de Walle 1993, p. 

134).  These sorts of results suggest that animals come into the world with innate 

mechanisms that help them guess at what stimulus in the environment causes 



21 

some particular neural firings.9  Of course, these initial models can be updated on 

the basis of experience.   

Having to begin life with a statistical model of the world may seem unduly 

nativist to many.  However, such models don’t need to be very detailed (or even 

very good) to be useful (Friston, 2003).  Researchers in machine vision have 

taken advantage of this fact and applied it to object recognition.  They have turned 

from traditional ‘descriptive’ models that are learned from scratch to ‘generative’ 

models that assume an initial model and then build up better representations on 

the basis of that assumed model and experience (Frey and Jojic 1999).  Using 

these new approaches, researchers have been able to solve some traditionally 

difficult problems with computationally simple algorithms and very general 

models of the statistical structure of the world.  So, not only is it possible to 

construct stimulus-given-response conditional probabilities (as outlined in the last 

section), but doing so is both biologically reasonable and has lead to advances in 

fields solving related problems.  These are two good reasons to think this may be 

a fruitful approach. 

But, what about an actual neurobiological system solving an actual 

neurobiological problem?  Since 1988, Robert de Ruyter van Steveninck and 

William Bialek have worked to characterize the motion processing system in the 

blowfly (de Ruyter van Steveninck and Bialek 1988; Rieke, Warland et al. 1997).  

The neurons they are particularly interested in are called H1 neurons and are 

                                                 

9  This innateness claim is actually quite weak and is generally admitted by both ‘nativists’ and 
‘non-nativists’ alike (Chomsky and Katz 1975, p. 70; Fodor 1981, p. 275). 
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about 4 synapses away from the fly’s photoreceptors.  These neurons show a high 

sensitivity to the velocity of stimuli in the fly’s environment. 

By tethering a fly, and recording from an H1 neuron for an extended 

period, these researchers were able to build up a good estimate of the joint 

probability of velocity and firing rate.  With this data, they directly compared the 

difference between using the stimulus-given-response conditional probability and 

the more traditional response-given-stimulus conditional probability (see Figure 

1). 

 

Figure 1: Joint, marginal, and conditional probability functions (a, 
b, c, d, e), and the differing characterizations of the 
stimulus/response relationship (f, g, h, i) depending on the 
conditional used (from Rieke, et al. 1997). 
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Figure 1 demonstrates the important differences that can arise from taking 

the animal’s perspective instead of the observer’s perspective.  Beginning at the 

bottom of this figure, (a) and (b) show the probabilities of a stimulus (velocity) 

and of a response (number of neural spikes in a time window) respectively, for 

some H1 neuron.  These are the marginal probability functions of the joint 

probability of the variables, which is shown in (c).  From (c) we can discern that 

there is a statistical dependence between the two probabilities in (a) and (b) since 

p(n, v) ≠ p(v)⋅p(n).  This is as we would expect if the neural response is related to 

the velocity.  The next two graphs, (d) and (e) are generated using equations (1) 

and (2) of the previous section, and show the conditionals p(v|n) (i.e., p(s|r)) and 

p(n|v) (i.e., p(r|s)) respectively.  A graph of the best estimate of the velocity given 

some response is shown in (f) and (h).  As is standard practice, this best estimate 

is presumed to be the average.  These two graphs, then, characterize the problem 

from the perspective of the fly.  The best estimate of the response given some 

velocity is shown in (g) and (i).  These two graphs characterize the problem from 

the observer’s perspective.   

As can be seen by comparing graphs (h) and (i), adopting the fly’s point of 

view results in a much more linear relation between the stimulus and response 

(i.e., the function from one to the other is nearly a straight line) than does 

adopting the third person perspective.  In fact, (i) looks much like the standard 

sigmoid function used in many artificial neural networks, and determined by 

many neurobiological experiments.  This relation between stimulus and response, 

found by adopting the observer’s perspective, is extremely nonlinear.  In general, 

if we can characterize a system as linear, it will be much easier to analyze than if 
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we have to deal with the inherent complexities of nonlinear responses.  In this 

sense, our description of the problem is much simpler if we adopt the animal’s 

perspective over that of the observer.  As well, this result is encouraging because 

it suggests that particular instances of the representation relation in 

neurobiological systems may not be unduly complex (i.e., nonlinear instead of 

linear) if we adopt the appropriate perspective. 

6 The baby and the bath water 

If the animal’s perspective is advantageous, as this result suggests, should we 

abandon cognitive science as traditionally done?  The answer is no.  I have been 

intentionally overstating the case for the differences between these two 

methodologies to show the strengths of the alternative.  In fact, the two 

approaches are deeply connected.  If we look again at equations (1) and (2), we 

can see precisely what that connection is.  In particular, equating the right hand 

sides of both equations leads to: 

)()|()()|( rprspspsrp !=!  (3) 

This equation is known as Bayes’ rule.  What it tells us is that if we can 

completely characterize one of the conditional probability functions, along with 

p(s) and p(r), then we can completely characterize the other.  However, complete 

characterization of unknown probability functions through sampling is extremely 

difficult.  So, rather than discarding one methodology in favor of another, we 

should try to characterize these probability functions in as many ways as possible.  

This gives us multiple means of discovering the same underlying probability 
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function, p(s,r).  And this kind of cross-validation is an invaluable tool for any 

scientific enterprise. 

So far, however, researchers have approached the problem from mainly 

one standpoint – that of the observer (and only partially so, as p(s) is often 

ignored).  Not only would it be more ecumenical, but it would also be better 

science to use all of the tools we have available.  If our estimates of the joint 

probability function converge, then our confidence in the accuracy of the estimate 

would be significantly greater than an estimate from only one source.  

Convergence is never a bad thing. 

The tight relation between p(s|r) and p(r|s) also helps show what the real 

difference is between the two approaches.  As I argued in the last section, the 

amount of work involved in getting at either conditional is about the same.  So, 

this methodological switch wouldn’t be about saving time.  Rather, it is about 

constructing the right conditional probability in the right way, or more 

importantly, under the right assumptions.  Dretske argued for constructing the 

right probability, but his assumptions about the nature of that probability lead to 

difficulties.  We must not only construct this probability, but also do so under the 

assumption that the animal has no a priori access to the nature of the stimulus.  

The animal may have some innate statistical model, but it doesn’t have to be one 

that exactly mirrors the statistical structure of stimuli in the environment as 

Dretske’s criterion mandates. 

Another way of stating this ‘no a priori access’ assumption is: we should 

not adopt the observer’s perspective about what is being represented.  So far, I 

have been suggesting this by claiming that we must take the animal’s perspective 
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and not the observer’s perspective.  But, strictly speaking, we can’t literally adopt 

the perspective of the animal, because we aren’t literally the animal.  Rather, we 

must take an observer’s perspective because we are observers.  What I mean to 

say, then, is that we should direct our third person perspective through the animal.  

This is the real difference between the two perspectives.  The observer’s 

perspective is a third person perspective, simpliciter.  What I have been calling 

the animal’s perspective is still technically a third person perspective, but it is 

‘filtered’ through the animal; we limit our access to the animal’s information 

channel when representing the world (even though we can use our channel to help 

verify the inferences we make on the basis of the animal’s perspective).10  And, 

this is an important difference, as the blowfly example shows. 

In section 3, I mentioned that we could avoid having a priori 

commitments determine detailed content ascriptions.  In the case of the monkey 

face-selective cells, taking the standard perspective leads to a characterization of 

the representation relation as: {the neuron that is being recorded from} represents 

{that face x degrees from y degrees} with respect to {the monkey’s brain}.  So, if 

the experimenter presents a stimulus at 45 degrees from center, and there is an 

increased probability of response from a neuron, the experimenter may claim that 

the neuron represents the stimulus 45 degrees from center.  Notice, of course, that 

this content is completely determined by the choice of stimulus presented by the 

observer.  In other words, the content is {that face x degrees from y degrees}, 

                                                 

10  I should note that how the animal gets to this particular state (i.e., gets to have this 
particular information channel) is not one with which I am concerned here (presumably, this is 
the role of learning). 
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because the observer knows that the stimulus is x degrees from y degrees, having 

presented that as the stimulus.   

If, instead, we attempted to determine the representation relation from the 

animal’s point of view, we would first construct the joint probability function of, 

say, the firing rate and the orientation of the stimulus.  We would then find p(s|r) 

and, given a firing rate, we would determine the best guess as to s.  So, the 

representation relation may look much the same: {the neuron that is being 

recorded from} represents {that there is a face x degrees from y degrees} with 

respect to {the monkey’s brain}.  This minor terminological change (i.e. the 

introduction of ‘there is a’), denotes a very important difference in possible 

content.  Consider, again, the experimenter presenting a face at 45 degrees from 

center.  Adopting the animal’s perspective, the increased firing resulting from that 

stimulus is used to estimate the orientation of the face.  It could well be that, given 

various lighting effects, occlusion, etc. that the particular increased firing is more 

likely to indicate a face 50 degrees from center.  This, then, is the content of that 

representation for the animal.  And, this is clearly not the same content as 

determined by adopting the observer’s perspective.  This difference can be 

expressed by noting that in the first case, the content is identical to the stimulus, 

but in the second case, the content is a property ascription in the form of an 

hypothesis about the world.  So, the stimulus is the same in both cases, but the 

content is different.  Under the standard methodology, content is determined by a 

priori knowledge about what is being presented to the cell.  Under the alternate 

methodology, the content is determined by statistical inference from a firing rate 

to a likely stimulus.  Thus, the displacement determined by this second method 
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could be different from that of the actual stimulus.  This is not so under the 

standard methodology.  These, then, are definitely not the same characterization 

of the representation relation.   

7 The statistical dependence hypothesis 

My discussion so far has focussed on the methodological side of typical 

representational characterization. But I think there is also a more theoretical 

lesson that can be drawn from these considerations. In other words, taking the 

alternate methodology seriously provides important insights into the nature of 

representational content.  Recall two things that we have learned: 1) the joint 

probability distribution completely characterizes the relation between stimulus 

and response variables; and 2) neurons are said to represent what they have 

statistical dependencies with (under both methodologies).  I think we can put 

these claims to work for a theory of content. 

First, given that joint probabilities fully characterize the relation between 

stimuli and responses, if we had the set of all joint probabilities between any 

stimulus and the responses of some neuron, we would have a complete 

characterization of how that neuron relates to any particular stimulus.  Second, 

responses are said to represent what they have dependencies with.  Presumably 

then, it makes sense to say that the things (objects, events, properties) a neuron 

best represents are what it has its highest statistical dependency with.  

Furthermore, a neuron can be a better ‘stand-in’ for what it has the highest 

statistical dependence with than for anything else.  Since representation is  
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‘standing-in’, and content is partly what is ‘stood-in’ for, we would say that a 

neuron’s content is (at least partly) what it has this highest statistical dependence 

with. 

Putting these two claims together results in a hypothesis about the nature 

of meaning in neurobiological systems.  I call this the statistical dependence 

hypothesis (Eliasmith, 2000; Usher, 2001; Eliasmith 2006): 

The set of causes relevant to determining the content of neural 
responses is that set that has the highest statistical dependence 
with the neural responses under all stimulus conditions.11 

Notice that the hypothesis suggests that content is determined by responses, not a 

single response.  Response profiles statistically depend on sets of causes, not 

momentary responses.  It is well known that neurons have graded responses to 

stimuli.  In this sense it is misleading to call them ‘detectors’ of any kind.  

Neurons don’t ‘detect’ things (i.e., they don’t determine that there is an edge or 

there isn’t one), they respond selectively to input; the more similar the input, the 

more similar the response.  The statistical dependence hypothesis highlights this 

ubiquitous, often ignored, property of neurons. 

The statistical dependence hypothesis says that given a complete 

characterization of how a neuron (or a group of neurons) responds via the set of 

all joint probabilities (i.e., the set of joint probabilities under all stimulus 

                                                 

11 Hyvarinen (1999) notes: “The mutual information is a natural measure of the dependence 
between random variables.” (p. 107).  Average mutual information between random variables is 

defined as ! !! !
"

"#

"

"#

"

"#

"

"#
==

)(

)|(

)()(

),( log),(log),();(
x

yx

yx

yx
yxyxyxI $

$
$$

$ $$ , so the mutual 

information of two events is )(

)|(log);(
a

ba
baI

!

!
= .  Usher (2001) adopts mutual information as 

a means of understanding representation, as I have elsewhere (Eliasmith, 2000). 



30 

conditions), the causes relevant to content of that neuron’s (or group’s) response 

are those that its (their) response profile corresponds to the best.  We would 

expect content to be (at least partly) determined by the best corresponding neural 

responses because those responses carry the most information about the relevant 

causes.  Notably, this doesn’t assume that representations are ‘normally right’ – 

representations have all kinds of statistical dependencies, not just the best one.  

But, neural responses are, in a sense, about what they are the best at being about. 

The statistical dependence hypothesis is about what we should take 

neurons to mean; i.e., how we should determine their content in general.  But, 

what about active, real-world representing?  How do we know what this particular 

representation that is active right now is about?  How do we know what it has as a 

referent?  I think a more limited version of the same hypothesis helps answer 

these questions.  I’ll call this corollary the occurent representation hypothesis: 

The referent of an occurent representation is the cause that has the 
highest statistical dependency with the representation under the 
particular stimulus conditions in which it is occurent. 

This hypothesis, then, serves to tell us that, right now, this representation is about 

that thing in the world. 

A simple example should help to clarify the application of both the 

statistical dependence hypothesis and its corollary.  Consider, again, an H1 neuron 

in the blowfly.  According to the statistical dependence hypothesis, the meaning 

carried by this neuron is determined by its highest statistical dependence under all 

stimulus conditions.  Given past experiments, the response profile of this neuron 

is most highly dependent on horizontal velocity in the visual field under all 

stimulus conditions.  Now, what do we say when a particular stimulus is moving 
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in the visual field?  We say that the referent of the representation is that stimulus, 

since, under these conditions it has the highest statistical dependence with the 

neural response.  And, we say that the neural response means that there is such-

and-such a velocity in the visual field.  If, however, we flashed a number of 

stimuli in quick succession, providing the illusion that there was movement12 and 

resulting in a response from this H1 neuron, things would be different.  We would 

then say that the referent of the response was the set of stimuli events (since they 

have the highest statistical dependence with neural firings under these conditions).  

However, we would still say that the neuron means that there is such-and-such a 

velocity in the visual field (even though there isn’t) because under all stimulus 

conditions it is velocity that this neuron picks out.13  This is simply a case of 

misrepresentation. 

There are many more things that need to be said about the statistical 

dependence hypothesis. While I have discussed in greater depth elsewhere (e.g. 

Eliasmith 2006), the point in this instance is merely that an at least prima facie 

new way of understanding representational content falls directly out of the 

previous methodological considerations. In fact, one way to understand the flaw 

in adopting the observer’s perspective is that it results in a blurring of referent and 

content.  Notice that the perspective of the observer incorporates two sources of 

information when determining content; i.e., both what the observer takes the 

                                                 

12  This effect is called the phi phenomenon by psycholgists and is well exemplified by a 
marqee (see Sarris 1989). 

13  This raises the philosophical worry about how we can justify distinguishing ‘velocities’ 
from ‘nearby flashes’ as distinct sets of causes.  I consider these worries elsewhere (Eliasmith, 
2000). 
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stimulus to be and how the animal’s perceptual system responds to the stimulus 

are included.  Adopting the animal’s perspective makes it quite clear why and 

how we should keep these two sources separate.  Similarly, the statistical 

dependence hypothesis and its corollary provide a way to understand meaning 

that makes this distinction explicit. 

8 Conclusion 

There are significant shortcomings of the traditional characterization of 

representational content in cognitive science as a result of the nearly univocal 

adoption of the observer’s perspective. I have argued that there is an important 

alternative, the animal’s perspective, that, when investigated in greater detail, 

results in new theoretical insights into the nature of representation.  Furthermore, 

this distinction between perspectives highlights precisely what information is 

needed to properly characterize the representation relation. Undoubtedly the best 

means of gathering this information is to adopt both perspectives, keeping in mind 

their complimentary strengths and weaknesses. 
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