PLOS

Check for
updates

G OPEN ACCESS

Citation: Duggins P, Eliasmith C (2022)
Constructing functional models from biophysically-
detailed neurons. PLoS Comput Biol 18(9):
€1010461. https://doi.org/10.1371/journal.
pchi.1010461

Editor: Michele Migliore, National Research
Council, ITALY

Received: April 15, 2022
Accepted: July 30, 2022
Published: September 8, 2022

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles. The
editorial history of this article is available here:
https://doi.org/10.1371/journal.pcbi.1010461

Copyright: © 2022 Duggins, Eliasmith. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data and
code are available on GitHub (https://github.com/
psipeter/functional-detailed-neurons).

Funding: This work was supported by the
Canadian Foundation for Innovation (52479-10006,

RESEARCH ARTICLE

Constructing functional models from
biophysically-detailed neurons

Peter Duggins *, Chris Eliasmith

Computational Neuroscience Research Group, Department of Systems Design Engineering, University of
Waterloo, Waterloo, Canada

* psipeter@gmail.com

Abstract

Improving biological plausibility and functional capacity are two important goals for brain
models that connect low-level neural details to high-level behavioral phenomena. We
develop a method called “oracle-supervised Neural Engineering Framework” (osNEF) to
train biologically-detailed spiking neural networks that realize a variety of cognitively-rele-
vant dynamical systems. Specifically, we train networks to perform computations that are
commonly found in cognitive systems (communication, multiplication, harmonic oscillation,
and gated working memory) using four distinct neuron models (leaky-integrate-and-fire neu-
rons, Izhikevich neurons, 4-dimensional nonlinear point neurons, and 4-compartment, 6-
ion-channel layer-V pyramidal cell reconstructions) connected with various synaptic models
(current-based synapses, conductance-based synapses, and voltage-gated synapses). We
show that osNEF networks exhibit the target dynamics by accounting for nonlinearities pres-
ent within the neuron models: performance is comparable across all four systems and all
four neuron models, with variance proportional to task and neuron model complexity. We
also apply osNEF to build a model of working memory that performs a delayed response
task using a combination of pyramidal cells and inhibitory interneurons connected with
NMDA and GABA synapses. The baseline performance and forgetting rate of the model are
consistent with animal data from delayed match-to-sample tasks (DMTST): we observe a
baseline performance of 95% and exponential forgetting with time constant 7 = 8.5s, while a
recent meta-analysis of DMTST performance across species observed baseline perfor-
mances of 58 — 99% and exponential forgetting with time constants of r=2.4 - 71s. These
results demonstrate that osNEF can train functional brain models using biologically-detailed
components and open new avenues for investigating the relationship between biophysical
mechanisms and functional capabilities.

Author summary

Computational models of biologically realistic neural networks help scientists understand
and recreate a wide variety of brain processes, responsible for everything from fish loco-
motion to human cognition. To be useful, these models must both recreate features of the
brain, such as the electrical, chemical, and geometric properties of neurons, and perform

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461

September 8, 2022 1/31

https://orcid.org/0000-0002-8948-0586
https://doi.org/10.1371/journal.pcbi.1010461
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010461&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010461&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010461&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010461&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010461&domain=pdf&date_stamp=2022-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010461&domain=pdf&date_stamp=2022-09-08
https://doi.org/10.1371/journal.pcbi.1010461
https://doi.org/10.1371/journal.pcbi.1010461
https://doi.org/10.1371/journal.pcbi.1010461
http://creativecommons.org/licenses/by/4.0/
https://github.com/psipeter/functional-detailed-neurons
https://github.com/psipeter/functional-detailed-neurons

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

CE), the Ontario Innovation Trust (35768, CE), the
Natural Sciences and Engineering Research
Council of Canada (261453, CE), and the Air Force
Office of Scientific Research (FA9550-17-1-0026,
CE). The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

useful functional operations, such as storing and retrieving information from a short term
memory. Here, we develop a new method for training networks built from biologically
detailed components. We simulate networks that contain a variety of complex neurons
and synapses, then show that our method successfully trains them to perform a variety of
cognitive operations. Most notably, we train a working memory model that contains
detailed reconstructions of cortical neurons, and demonstrate that it performs a memory
task with performance that is comparable to simple animals. Researchers can use our
method to train detailed brain models and investigate how biological features (or deficits
thereof) relate to cognition, which may provide insights into the biological basis of mental
disorders such as Parkinson’s disease.

1 Introduction

Biological detail is an important concern for neural models that seek to bridge the gap between
neural and cognitive processes. The inclusion of synaptic and cellular mechanisms in cognitive
models allows researchers to investigate aspects of psychology, such as biologically-grounded
mental disorders and their pharmacological treatment, that often cannot be studied with sim-
pler models. Biological features, such as neural nonlinearities and local connectivity, have his-
torically inspired innovations in artificial intelligence, including convolutional networks and
long-short-term-memory units. Unfortunately, simulating biological detail often increases the
difficulty of building and analyzing cognitive models. To mitigate these difficulties, most mod-
els compromise on either biological realism, such as ion-channel dynamics or synaptic con-
nectivity, or cognitive capacity, defined as the ability to perform computationally-useful
operations on inputs and produce task-relevant behavioral outputs. For example, cognitive
architectures like ACT-R [1] have produced numerous models of human cognition that closely
match behavioral data, but which use production rules and activation functions that coarsely
approximate the brain’s neural substrate, limiting their ability to investigate many neurocogni-
tive phenomenon. At the opposite extreme, the Human Brain Project [2] has produced models
that recreate the anatomy and spiking behavior of entire cortical microcircuits, but these mod-
els do not perform recognizable neural computations or produce behavior, limiting their util-
ity for investigating cognitive phenomenon. Other models, such as SPAUN [3], use neural
networks to realize cognitive systems and perform tasks end-to-end, but have limited biologi-
cal realism: while they respect the anatomical connectivity between brain structures and recre-
ate their proposed functions, many of their low-level mechanisms, such as the neuron and
synapse models, are crude approximations of the brain’s biological substrate. To study the bio-
logical foundations of the human brain and design biologically-inspired cognitive algorithms,
models which unify biophysical detail and cognitive capacity are needed.

Several existing frameworks leverage biological neural networks to perform cognitive tasks.
The Neural Engineering Framework (NEF) and the Semantic Pointer Architecture [4, 5] use
large-scale, biologically-constrained spiking neural networks to study the functional aspects of
cognition. Similarly, the Leabra cognitive architecture [6] uses biologically-plausible learning
rules to capture the functionality of major cognitive systems. Other approaches emphasize
dynamics within neural networks, which, when properly controlled, can be used to perform
mathematical transformations of represented information and issue behavioral commands.
The efficient coding hypothesis [7] uses cortical connectivity to produce controlled spiking
networks, while FORCE [8] uses online learning rules in recurrent networks to implement
dynamical systems. While each of these frameworks emphasizes the role of particular

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 2/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

biological features (such as spiking neurons, learning rules, or constrained connectivity) for
cognition, little attention has been paid to the complexity of individual neurons, the funda-
mental unit in most intelligent systems. For the most part, these architectures assume simple
models for neurons, ranging from rate-mode neural assemblies to point neurons like the
leaky-integrate-and-fire model.

This raises the question: how important are the biological details of individual cells for cog-
nitive systems? It is certainly true that that some cellular features, such as cellular respiration,
have little bearing on information processing, while others, like dendritic structure and cal-
cium dynamics, play a larger role. Computational models are an essential tool when investigat-
ing the contribution of these cellular mechanisms: they allow researchers to systematically vary
the network’s biological complexity while examining changes in cognitive performance. Ata
minimum, experimentation with such models would show that specific biological features do
not affect a network’s functional capabilities: this result would justify the exclusion of these fea-
tures for future research, validating the current paradigm of simple, easy-to-simulate neuron
models. On the other hand, experimentation may reveal that existing architectures do not
function properly when cellular complexity is reintroduced, which would suggest that theoreti-
cal improvements are needed to explain how brains accommodate this complexity. Modellers
may even find that adding biological complexity increases the computational power or cogni-
tive flexibility of the network, for example through dendritic filtering or neurotransmitter-
dependent spike modulation.

In this paper, we propose a method for training and simulating networks that contain bio-
logically detailed neuron models and perform useful cognitive operations. We label this
method “oracle-supervised Neural Engineering Framework” (osNEF): it is an extension of
core NEF principles that utilizes an “oracle”, a parallel network that is used during training to
supervise the learning process. One major advantage of osNEF is that it treats the neuron
model as a “black box”, relying on learning rules that only consider the spiking inputs and out-
puts to each cell. Because it does not rely on detailed knowledge of cellular dynamics, osNEF
can be applied to a wide range of neuron models without major changes to the algorithm. To
facilitate easy adoption of osNEF, we develop an interface where modellers may plug in exist-
ing neuron models, written in Python or NEURON, to the general-purpose Nengo simulator
[9], which facilitates large-scale functional modelling. This approach lets modellers specify
detailed low-level mechanisms like conductance-based synapses, voltage-gated ion channels,
and dendritic geometry, then train the network to realize high-level dynamics or computa-
tions. Our goal is to show that osNEF can be used to construct a variety of functional neural
networks from various biologically detailed components, allowing researchers to investigate
questions that relate low-level biological details (e.g. calcium dynamics) to high-level cognitive
capacity (e.g., task performance).

To demonstrate these capabilities, we apply osNEF to produce two classes of cognitive func-
tionality. First, we highlight the broad applicability of osNEF by simulating networks of biolog-
ically detailed neurons and training them to implement specific dynamics. We assume that
some low-dimensional state space is represented by heterogeneous spiking activity within the
network, then show that synaptic transmission between groups of detailed neurons may realize
specific mathematical operations on that state space, notably addition, multiplication, oscilla-
tion, and integration. These operations were chosen because they represent computational
primitives that are widely used in cognitive systems. We simulate four different neuron mod-
els, ranging in complexity from a LIF point neuron to a spatially-extended pyramidal cell, and
show that osNEF can accommodate them all to realize the target operations. Second, to dem-
onstrate a concrete cognitive application, we construct a biologically-detailed model of work-
ing memory in PFC that performs an idealized memory task. The network is composed of

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 3/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

anatomically-detailed reconstructions of layer-V pyramidal cells and fast-spiking interneu-
rons; both neuron models contain numerous geometric compartments and ionic currents and
are connected using conductance-based NMDA and GABA synapses. We show that the mne-
monic performance of the model is consistent with empirical data from a standard test of
working memory, the delayed match-to-sample task (DMTST): both simulated and empirical
data are well-characterized by an exponential forgetting curve (y(t) = B exp(—t/7)) with base-
line performance B = 80 — 100% and forgetting time constant 7= 10 — 60s. We conclude with
a discussion of the strengths and limitations of osNEF, including its biological plausibility and
cognitive generality, and by comparing it to similar approaches.

2 Background

As in the NEF and SPA, we characterize spiking activity within populations of neurons as
encoding information in a latent state space. While spikes are the physical means of communi-
cation between neurons, cognition can be analyzed (to a large degree) as transformations of
these lower-dimensional states, permitting a more abstract, computational, or symbol-like
description of what brains do. We assume that this state space can be represented by a vector-
valued signal x(¢), and that the cognitive operations performed in the brain may be described
through the dynamics of this state space X(¢). At the sensory periphery, neurons transduce
external signals (light, sound, etc.) into spikes which represent the stimuli. This representation
is somehow transformed via connections within the brain, ultimately producing motor com-
mands that activate the body’s muscles. Because we are chiefly concerned with cognitive pro-
cesses, we will also treat sensory inputs and motor commands as state space signals, and focus
primarily on how spiking activity and neural connections represent and transform x(f) within
the brain.

Broadly speaking, our goal is to describe cognitive processing in terms of state space
dynamics, then train the connectivity within a neural network such that its spiking activity
implements those dynamics. As in the NEF, we first define encoding and decoding between
neural activity and the state space, then later describe how synaptic connections implement
state space transformations. Given a signal x(f) and a population of neurons, the signal must
drive those neurons to fire in patterns that represent the signal. Each neuron spikes most fre-
quently when presented with its particular “preferred stimulus” and responds less strongly to
increasingly dissimilar stimuli (i.e., values of x(t)). Each neuron i is accordingly assigned a pre-
ferred direction vector, or encoder, e;. At the sensory periphery, e; determines how the external
x(t) is transduced into electrical inputs to neuron i; within the network itself, e; co-determines
connection weights, which dictate how neuron i responds to spiking inputs from an upstream
population whose activities represent x(¢). Mathematically, both these processes can be sum-
marized as

Ii(t) =€ x(t>7 (1)

where (1) is the electrical current driving neuron i, and e; - x(¢) is the dot product between the
state space input and neuron 7’s encoder. This current drives the neuron model,

a,(t) = GUJ,(t) + B, (2)

where a;(t) is the spiking activity, G is the neuron model, and f; is an optional bias current.
The specifics of how inputs drive the cell, and how the cell dynamically responds, vary across
neuron models G, as discussed below. A distributed encoding extends this notion: if x(¢) is fed
into multiple neurons, each with a unique tuning curve defined by e; and other parameters,

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 4/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

then each neuron will respond with a unique spiking pattern a,(t), and the collection of all neu-
ral activities will robustly encode the signal.

For state space representation to be useful, there must be methods to recover, or decode,
the original vector from the neuron activities. We identify decoders d; that either perform this
recovery or compute arbitrary functions, f{x), of the represented vector. A functional decoding
with & allows networks of neurons to transform the signal into a new state, which is essential
for performing cognitive operations. To compute these transformations, a linear decoding is
applied to the neural activities:

Fix) =Y afo . 3)

where g; is the activity of neuron i, n is the number of neurons, and the hat notation indicates
that the computed quantity is an estimate of the target function. Neural activity a is obtained
by convolving spike trains with a smoothing filter A:

a,(t) = h(t—T)5,T) (4)

where T are the spike times, & is an impulse response function for the filter, (*) is convolution,
and J; is a Dirac delta function describing the spike train for neuron i. To maintain correspon-
dence with biology, we use these same filters h when implementing synapses within the net-
work (see Sec 3.3); we therefore typically refer to / as the “synaptic” filter.

At the motor periphery, x(¢) is retrieved using appropriate decoders, driving the model’s
behavioral output; within the network itself, & co-determines connection weights, which dic-
tate how downstream neurons respond to spikes produced by neuron i. Connection weights
between each presynaptic neuron i and each postsynaptic neuron j combine encoders and
decoders into a single value: the weight matrix w is the cross product between the encoder and
decoder matrices,

w=exd. (5)

Our primary tool for studying state space transformations is control theory, which specifies
the dynamics of x(¢) as

x(t) = Ax(t) + Bu(t), (6)

where x(t) is the derivative of the represented state, u(t) are inputs (external signals or
upstream representations), and A and B are the transformation matrices. B governs how feed-
forward inputs affect the current representation (e.g., scaled addition), while A governs how
recurrent inputs affect the representation (e.g., simple harmonic oscillation); both A and B are
implemented through weighted synaptic connections between neurons in populations repre-
senting u(f) and x(#). In this work we restrict ourselves to linear dynamical systems; while the
theory and mathematical assumptions of the NEF and osNEF do not confine these frame-
works to linear systems, demonstrating that osNEF can successfully realize the wider (and
more difficult) class of nonlinear systems is a significant extra challenge that we leave for
future work.

Given this framework, which is a direct recapitulation of the NEF [4], the challenge of
building cognitive neural systems reduces to (a) describing a cognitive algorithm as a dynam-
ical system (e.g., Eq 6), and (b) finding encoders and decoders such that neural connection
weights implement the transformations dictated by the dynamical system. In addition, learn-
ing rules based on error-driven feedback or supervision may be used to train the weights

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 5/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

through encoder and/or decoder updates, in which case the resulting cognitive algorithm may
be estimated once learning is complete. The framework is therefore consistent with either a
top-down or bottom-up approach to neural modelling, and our method combines both
approaches when learning the parameters of synaptic connections.

3 Methods

We now summarize the osNEF, which extends the core NEF by introducing new methods for
training neural networks, and describe the neuron models we tested; all code is available on
GitHub.

3.1 Tuning curves

We begin by describing a target tuning curve which relates a neuron’s input x to its spiking
activity a. This tuning curve should include a nonlinearity so that networks of neurons with
such tuning may compute interesting functions on state space inputs. Many target tuning
curves are possible: we seek one that is both easily parameterized and biologically plausible:
that is, its shape should be described by a few intuitive parameters, and it should qualitatively
match in-vivo elecrophysiology. While many choices are possible, we define our tuning curve
using a linear map (defined by encoders and biases, Eqs 1 and 2) and a rectified linear unit
(ReLU). The ReLU neuron is parameterized by an x-intercept (the value of the input current
below which a neuron stops firing) and a y-intercept (the neural activity when the input is at
its extrema).

We use ReLUs as our target tuning curves for three reasons. First, ReLUs are (arguably) the
simplest spiking neurons that still capture an essential neural nonlinearity: the transition from
aregion (in state space) where the neuron remains (mostly) inactive, to a region where activity
increases monotonically (as state inputs change). Second, networks of ReLUs are cheap to sim-
ulate but functionally powerful: deep neural networks populated with ReLUs can be trained to
perform a wide variety of complex tasks [10]. Third, ReLU parameters are intuitively aligned
with the standard NEF technique for generating tuning curve distributions. A population of
neurons representing a state space input should be sensitive to the whole range of x, otherwise
parts of the state space will have low signal-to-noise ratios and the accuracy of the computation
will suffer. We must therefore also choose a distribution of target tuning curves that adequately
covers x. Previous works have extensively studied how different distributions may effectively
represent a state space and dynamically compute functions [4, 11]. One effective distribution
is shown in Fig 1: these tuning curves have x-intercepts that vary uniformally across the state
space, meaning they are inactive for some values of x and otherwise have state-dependent
activity; and they have y-intercepts (maximum firing rates) that vary uniformally over some
range, meaning their spike rates change by different amounts per unit change in x. The combi-
nation of these constraints makes it easy to accurately decode an estimate X from the collection
of neural activities, and, with ReLU neurons, it is easy to set neural parameters to achieve these
constraints.

In contrast to these benefits, the ReLU response function is a poor fit for most electrophysi-
ological data. Notably, as inputs increase, ReLU firing rates increase linearly without bounds,
while the activity of biological neurons are constrained to some maximum value, such that fir-
ing rates will plateau as neural activity approaches this value. In Sec 4.1, we explore the degree
to which biologically implausible target tuning curves affect osNEF’s ability to train networks
of detailed neurons.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 6/31

https://github.com/psipeter/functional-detailed-neurons
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

N 40
S
S]
>
=
2
5
O
<
E
—~
=}
<
Z 0

—1 Input x

Fig 1. Target tuning curve distribution. An example of the distribution of responses for 100 ReLU neurons with x-
intercepts in -[1, 1] and y-intercepts in [20, 40].

https://doi.org/10.1371/journal.pchi.1010461.9001

3.2 Online learning rules for encoders and decoders

Given a set of target tuning curves, our first goal is to train synaptic parameters such that,
when a population of complex neuron models is simulated within a network, the observed
spike rates resemble the rates given by the target tuning curves. The network and procedure
used to train these parameters is depicted in Fig 2 and summarized in Table 1. We begin with
an input signal x(f) that is fed into two streams. The top stream of Fig 2 is the “oracle”, where
the desired transformations of x(t) are computed analytically (i.e., Eq 6) and used to generate
the target spikes (more below), while the bottom stream of Fig 2 is the neural network, where
x(1) is represented by neural spikes and the desired transformations are realized through
weighted connections between neural populations. In the oracle stream, x(#) passes through
various filters, represented as boxed hs; these operations convolve x(¢) with the filter described
in Eq 10 (below). Various state space transformations, which are represented as diamonds con-
taining fs (e.g., the identity function I = f{(x) = x), are also applied. Finally, the oracle stream
feeds this (filtered, transformed) signal into a population of neurons “tar” that realize the target
tuning curves; this generates the neural activities a'*'(¢) that osNEF will use to train the neural

network proper.

N\ — AL
X e h<D— h! I > X
e tar tar
)
oracle |—J> Lal o—ha’—>
network 3 paPe 4 5 p aP?®

(lJ'f"‘ (‘/‘ I .
2 h 6.2 7

h
i = pre Y pop A~
X o—e—J> pre :6 | wlh J’O; ;6 T hl’“l)}apol) \ldlml) 8 X
6.1 ‘

Fig 2. Network used during osNEF training. The top half of the figure is the “oracle” stream, where the desired filters
and transformations are applied analytically, and where the target activities are generated. The bottom half of the figure
is the “network” stream, where synaptic connections realize the desired filters and transformations, and where osNEF
training is applied to update the relevant synaptic parameters. Both streams are driven by an input x (we omit all time-
dependencies, such as x(¢) and J(t), for brevity). Arrows represent the signal travelling through each stream. Boxes
letters (filters h, weights w, transformations I, and decoders d) indicate mathematical operations being applied to the
signal. The resulting quantities (spikes &, synaptic currents J, synaptic conductances o, and states x) are shown above
the arrow. The pink numbers reference Table 1, which lists the operations that are applied at each step. Circled
abbreviations indicate neural populations, which receive synaptic inputs and produce spikes. Coloration indicates
ReLU neurons (gray) or detailed neurons (blue), parameters updated by osNEF’s online learning rules (orange) or
offline synaptic optimization (green), references (pink), and NEF operations (gray).

https://doi.org/10.1371/journal.pcbi.1010461.9002

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 7/31

https://doi.org/10.1371/journal.pcbi.1010461.g001
https://doi.org/10.1371/journal.pcbi.1010461.g002
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

Table 1. Summary of equations used during osNEF training, as depicted in Fig 2.

Label Reference Notes

1 Eq1 converts state space to input current via encoder

2 Eq2 G is a spiking ReLU neuron

3 Eq4 converts discrete spikes to smoothed neural activity

4 Eq9 online update of decoders, which co-determine synaptic weight
5 Eq8 online update of encoders, which co-determine synaptic weight
6.1 Eq 10 dynamics for synapse (current- or conductance-based)

6.2 Sec 3.4 dynamics for neuron model (may be coupled with synapse)

7 Sec3.3 offline update of synaptic time constants and decoders

8 Eq3 converts neural spikes to state space estimate

https://doi.org/10.1371/journal.pchi.1010461.t001

In the bottom stream of Fig 2, the input signal drives a population of preliminary neurons
“pre” as per standard NEF encoding: x(¢) is converted to an input current that drives dynamics
in the neuron model (Eqs 1 and 2). We arbitrarily chose “pre” to contain ReLU neurons, but
any neuron type compatible with standard NEF techniques (e.g., LIF) will do. Neurons in
“pre” generate spikes 6¥"° over time, which are smoothed into a real-valued neural activity sig-
nal a"*(¢) by convolution with the synaptic filter 4 according to Eq 4. These activities are then
weighted by synaptic weights w and delivered to the population of interest, “pop”, which con-
tains detailed neurons. These weights must be trained by osNEF such that the neural activies
from “pop”, aP°P(t), have the desired tuning properties, introduced in Sec 3.1. Fortunately, the
oracle stream provides neural activities a**'(f) that are guaranteed to reflect the desired tuning
properties, by virtue of standard NEF techniques [4, 12], and because the signal that drives
“tar” is analogous to the signal that drives “pop”. Therefore, if a?°P(t) closely matches a**'(t),
we can say that “pop” has the desired tuning properties.

In order to achieve this, we must train the weights w such that, as spikes from “pre” are
weighted, passed through the synapse h, and run through the neuron model G, a?°?(¢)
approaches a"
online learning. First, we decompose w into encoders and decoders; for each presynaptic neu-

(t). This is the first objective of osNEF training, and is accomplished using
ron i and postsynaptic neuron j, the corresponding entry in the weight matrix is given by

re—pop __ gpre pop
w =d" -e;". (7)

where (-) is the dot product, d7* is the D-dimensional decoder vector for neuron i, and e5-°p is
the D-dimensional vector for the (i, j) neuron pair. osNEF uses two online learning rules, one
to update encoders, and another to update decoders.

For encoders, we introduce a new learning rule:

Aef” = of sign(d]) a} (a]" — ai) (8)

where a° is the encoder learning rate, sign(d”™) is the elementwise sign of the presynaptic
decoder, and (i, j, k) are neuron indices for the presynaptic, postsynaptic, and target neuron
populations, respectively. The rule is supervised in the sense that the target activities are pro-
vided in real time as the oracle drives “tar”, and the difference between the current and target
activities drives the update. The rule also utilizes information about both presyaptic and post-
synaptic activities, making it Hebbian. Note that Eqs 7 and 8 redefine encoders as a tensor,
indexed over i, j, and D, rather than a matrix over j and D, as is standard in the NEF (Eq 2).

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 8/31

https://doi.org/10.1371/journal.pcbi.1010461.t001
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

For decoders, we use the Prescribed Error Sensitivity (PES) learning rule [13], an online,

error-driven learning rule that is frequently used to train NEF networks:
ol
Ad™ = o a (1) (2(1) — x(t)) ©)

where o9 is the decoder learning rate, N; is the number of presynaptic neurons, a?™(¢) are the
filtered activities from presynaptic neurons, x(t) is the state space target, and X(¢) is the
decoded estimate (Eq 3 with a"**(¢) and d*™). Previous work has shown that this learning
rule is capable of learning decoders to compute a wide range of functions [12]. Note that,
although Eq 7 decomposes weights into encoders and decoders, only the combined weights
are actually used to transform signals within the network: encoders and decoders are theoreti-
cal tools used to analyse the relationship between spike space and state space and to facilitate
training, but synaptic transmission between populations of detailed neurons is governed only
by weight.

3.3 Optimizing synaptic time constants

Continuing on the bottom stream of Fig 2, the spikes generated by “pre” must pass through
synapses that (a) convert 6°°(¢) to the state variables used in the neuron model, and (b) apply
the weights w that realize the target transformations. For our simpler neuron models, synapses
deliver current to the cells, which directly affects the cell’s voltage. For our complex neuron
model, synapses update the conductance parameters in the relevant sections of the cell, which
then influence transmembrane currents that govern voltage change. In both cases, we assume
that the synapse is a second-order lowpass, or double-exponential, filter, whose transfer func-
tion is

1
(Tre s+1) (T s+ 1)

h(s) = (10)
where 7, and 7y are time constants and s is in the Laplace domain. Whenever a synapse
receives a spike, it updates the postsynaptic cell’s input current (or conductance) by an amount
proportional to the synapse’s dynamical state and its weight. To ensure that our decoded esti-
mates align with the signals being transmitted in the network, we also use the double exponen-
tial filter to estimate neural activities from neuron spiking outputs (Eq 4).

This leaves the question of how to choose 7,5 and 7¢,;. When smoothing spikes for the pur-
pose of encoder learning (Eq 8) or synapsing from “pre” onto “pop”, the choice of time con-
stant makes little difference, so long as it sufficiently smooths spike noise (e.g., 7 > 10ms).
However, as we show in the Sec 4.1, the choice of time constants makes a significant difference
when (a) decoding %(¢) from “pop”, or (b) connecting one population of detailed neurons to
another. We could choose 7 values based on the effective time constants of biological neuro-
transmitters, but it is unclear whether one set of parameters would be appropriate for the
variety of neuron types and networks that we investigate. To resolve this problem, osNEF
uses a novel offline optimization procedure that finds appropriate values for these
constants given spiking data from the simulated network itself. The optimization procedure is
as follows:

1. Simulate the network with input x(#), record neural spikes 6°°F(¢), and specify the target
function f(x(1)).

2. Choose a random 7., and 7y, filter the spikes to calculate aP°P(¢), and use least-squares to
compute decoders d”°P for estimating the function.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 9/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

3. Calculate the error between this estimate and the ground truth by computing the RMSE
between f(x(1)) and f (x(t)).

4. Repeat Steps 2 and 3, using the optimization package Hyperopt [14] to search the space of
possible time constants with the objective of minimizing the error.

Returning to Fig 2, this procedure is used to train the filters and decoders for “pop”, PP
and dP°P. Filtering spikes from “pop” produces neural activities a®°?(¢), from which we can
decode an estimate X(¢) according to Eq 3. This completes the bottom stream, which shows
how a state space input may be translated into neural spikes, transformed to realize particular
mathematical operations via synaptic connections, then translated back to a state space
estimate.

3.4 Neuron models

To test whether osNEF is capable of producing functional networks that contain neuron mod-
els of varying complexity, we investigate four neuron models: the LIF neuron, the Izhikevich
neuron, the Wilson neuron, and a Layer V Pyramidal Cell reconstruction.

The LIF neuron model is a point neuron that approximates the membrane dynamics pre-
ceding and following an action potential. Although the resulting voltage traces do not quanti-
tatively align with electrophysiological recordings, the LIF neuron does capture key features of
neural behavior, namely integration of inputs, leak towards a resting potential, reset following
a spike, and a refractory period. It is also extremely cheap to simulate, as voltage dynamics are
governed by a single equation. As such, LIF neurons are widely used in simulations that seek
to balance biological realism, computational scalability, and analytical tractability (see [4]).

Although LIF neurons are fast and functional, they do not quantitatively capture the
dynamics of membrane potential. The Izhikevich neuron model [15] is another simple neuron
model that captures a wider variety of spiking behavior characteristic of biological neurons.
The model has only four free parameters and two state variables, but certain configurations of
these parameters may produce regular spiking, intrinsic bursting, fast spiking, chattering, and
many more interesting dynamics. As such, this neuron model is useful in networks where both
scallability and electrophysiological realism are important.

While the LIF and Izhikevich neurons are useful and computationally cheap neuron mod-
els, they do not simulate the action potential in detail, instead using hand-crafted reset mecha-
nisms when the cell’s voltage crosses a fixed spike threshold. For our third neuron model, we
chose an intermediate-complexity neuron developed by Wilson [16] that extends the Fitz-
Hugo-Nagumo equations [17, 18] to incorporate electrophysiological detail, including Ohm’s
Law and equilibrium potentials of four ionic currents in neocortical neurons (I, Iva, I, Iaup)-
The resulting model consists of three coupled ODEs representing voltage, conductance, and
recovery, can generate realistic action potentials, and naturally produces adaptation, bursting,
and other neocortical behaviors [16]. Due to the lower number and cubic dynamics of the
underlying equations, simulation is still relatively fast, but a smaller timestep is required to
avoid numerical errors.

When describing electrophysiology in detail, the most widely-used formalism is Hodgkin-
Huxley, which we use for our final neuron model. Reproduced from Durstewitz, Seamans, and
Sejnowski [19], this model is an anatomically-detailed reconstruction of pyramidal neurons
that includes four compartments (soma, proximal-, distal-, and basal-dendrites) and six ionic
currents (two for sodium, three for potassium, and one for calcium). The Durstewitz recon-
struction accurately reproduces electrophysiological recordings from layer-V intrinsically-
bursting pyramidal neurons in rat PFC, cells that are known to be active during the delay

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 10/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

period of working memory tasks. This neuron model is implemented in NEURON and uses
conductance-based synapses, distributed randomly on the three dendritic compartments.

4 Results

To demonstrate that osNEF is capable of training cognitively-useful neural networks built
from a variety of neuron models, we divide our results into three sections: representation,
computation, and application. First, we show that osNEF produces populations of neurons
with the desired tuning properties, and demonstrate that their spiking responses represent the
target signal. These results indicate that an input signal may be encoded and decoded effec-
tively by a single population of biologically detailed neurons using weights and filters trained
using osNEF. Next, we simulate networks containing multiple populations of biologically
detailed neurons, and show that the synaptic connections between them compute specific func-
tions and exhibit the target dynamics. These results show that osNEF combines online learning
and offline optimization to realize encoding, decoding, and dynamics in a single synaptic pro-
cess that occurs between populations of detailed neurons. Finally, we apply these techniques to
train a biologically-detailed model that performs a working memory task. These results suggest
that osNEF is a useful tool for researchers who wish to build, manipulate, and validate biologi-
cally detailed simulations of cognitive systems.

4.1 Representation

First, we show that encoding and decoding are possible with a single population of detailed
neurons. We simulated four networks using the architecture shown in Fig 2; each network had
one LIF, Izhikevich, Wilson, or Pyramidal neuron in the “pop” population, and one ReLU
neuron in the “target” population. The networks were trained using the online learning rules
described in Sec 3.2, then presented with a novel input during testing. The top and middle
panels of Fig 3 show the input signal x(¢) (smoothed, 1Hz band-limited white-noise) and neu-
ral activities over time, respectively. In response to this input, all four neurons dynamically
exhibit spiking activity that closely aligns with the spiking activity of the target ReLU neuron.
The bottom panel of Fig 3 shows the observed tuning curves calculated from these data: for
each timestep in the simulation, we found the state space value of the input signal x(#') and
recorded the smoothed neural activity a(#') at that time. We divide the state space into 21
equally-sized regions (or bins), then associate each a(#') with the appropriate bin. Finally, we
plot the mean and 95% confidence interval of neural activity for each bin.

Examining the observed tuning curves in Fig 3, we see that all four trained neurons have x-
and y-intercepts that closely align with the intercepts of the target ReLU neuron. However, the
y-intercept of the ReLU neuron is somewhat higher than the trained neurons. This result is
expected: ReLU activity will continue to ramp without bounds, while more realistic neuron
models will exhibit plateauing activity. Although this is, generally speaking, a danger of using
ReLUs (or other unrealistic neuron models) as spike space targets, it is not problematic in our
simulations for two reasons. First, for the state spaces that we simulate, and for the maximum
firing rates we target, the differences between the ReLU and trained tuning curves are minimal:
in Fig 3, ReLU activities only exceed the trained activities for extreme inputs (x > 0.8), and
these differences fall within the observed confidence intervals. Second, because osNEF training
minimizes the differences between the spiking activity of a trained neuron and a target neuron,
trained neurons will often match the “physiologically plausible” features of a target tuning
curve but fail to match any “physiologically implausible” features. This tendency can also be
observed in Fig 3: for most inputs (x < 0.8), our trained neurons qualitatively match the inac-
tive and linear segments of the target ReLU curve, but for extreme inputs (x > 0.8), our trained

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 11/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

1.0
= \/A/\//\/\/A /\/
v
30
o I

0
30
—_— LIF i T target y-intercept
——— TIzhikevich ~ { T target x-intercept
g —— Wilson
o —— NEURON
S —— ReLu
0
1.0 0.3 1.0

X

Fig 3. Encoding and tuning curves. The top panel shows the input signal and the target x-intercept, the state space
value at which our neurons should begin spiking. The middle panel shows neural activity over time and the target y-
intercept, the desired activity of our neurons when the input is at its maximum value. The bottom panel shows the
tuning curves derived from these data. All four neuron models exhibit minimal spiking activity when the input is
below the target x-intercept; neural activities also increase as the value of the input increases, up to the target y-
intercept. Shaded error regions indicate 95% confidence intervals for smoothed activity, and demonstrate that all
simulated neuron models have a natural variation in firing rate for any given state space value x. The significant
overlap between the four trained neuron models and the target (ReLU) activities shows the success of our online
learning rule.

https://doi.org/10.1371/journal.pcbi.1010461.9003

neurons begin to plateau, failing to match the target tuning curve but retaining realistic
response properties. Ultimately, any target tuning curve will respond differently than the neu-
ron model being trained. By choosing a target tuning curve that is manifestly implausible in
some respects, then showing that our trained neurons still achieved the desired response prop-
erties, we demonstrate that osNEF does not require perfect selection of target tuning curves.
More importantly, Fig 3 demonstrates that osNEF trains encoders effectively: our learning
rules produce dynamic activities that closely resemble the target tuning curves for all four neu-
ron models, despite significant differences in neural complexity and cellular dynamics.

To investigate decoding, we simulated four populations that contained 100 LIF, Izhikevich,
Wilson, or Pyramidal neurons, and used osNEF to train encoders, decoders, and readout filters

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 12/31

https://doi.org/10.1371/journal.pcbi.1010461.g003
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

default filter

1.
=
e
-1
trained filter
1
=,
s
—1
0 time (s) 10
filter impulse response
10
=
<
0
0.0 time (s) 0.3
improvements with trained filters
0.15
default
. EE trained
8
g L]
0.00 i e [[
LIF Izhikevich Wilson Pyramidal

Fig 4. Decoding and readout filters. Nonlinear dynamics within complex neuron models leads to systematic
decoding error if a default filter is used to smooth the spikes. Optimizing a filter’s time constants accounts for this
problem and reduces spike noise, leading to highly accurate estimates across all neuron models. The top two panels
show the target values and the state space estimates, which are decoded from the activities of 100 LIF, Izhikevich,
Wilson, or Pyramidal neurons in “pop”; spikes are smoothed using either the default filter (first panel) or the osNEF-
trained filter (second panel). The third panel confirms that the RMSE between state space targets and decoded
estimates (averaged across 10 simulations with unique inputs) are significantly lower when using the trained filter. The
fourth panel shows the impulse response functions.

https://doi.org/10.1371/journal.pcbi.1010461.9g004

for each population. An interesting problem arose when we used Eqs 3 and 4 to decode the
neural activity and estimate the state space representation in “pop”. When we used a default fil-
ter to smooth the spike trains (7, = 1ms and ¢ = 100ms), our decoded estimates X () were
often phase-shifted to the left of the target x(¢), leading to systemic error, as shown in Fig 4.
The phase shift is more pronounced in neurons with greater observed spike adaptation or vari-
ance in interspike intervals, most notably the Wilson neuron. To account for this phase shift
and decode a better estimate from the neural spikes, we used our synaptic optimization to find
better readout filters for each of the four networks. The optimization produced filters with lon-
ger time constants, which effectively (a) delays the signal and negates the leftward phase shift,
and (b) smooths noisy spike trains to recover a more accurate estimate of the input signal.
Panel one and two of Fig 4 show the decoded estimate when calculating X(¢) using the default

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 13/31

https://doi.org/10.1371/journal.pcbi.1010461.g004
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

filter versus the trained filter. Panel three shows the impulse responses of the trained filters,
while panel four compares the RMSE between % () and x(¢), when filtering with the default
versus trained filters, across 10 input signals. The gains in accuracy with the trailed filter are
substantial, and demonstrate that osNEF is capable of accurately decoding state space signals
from the activities of nonlinear, adaptive neurons. In the Sec 4.2, we report results from net-
works whose synaptic filters have been trained using the above methods; see S1 Appendix for a
table of the optimized time constants and a stability analysis of the Hyperopt parameter
search.

4.2 Computation

Having established that encoders, decoders, and filters may be used to translate between the
spike space and the state space in a single neural population, we now apply our method to
train neural networks that compute cognitively-useful functions using the weighted synaptic
connections between two (or more) populations of detailed neurons. The simplest network is
a communication channel, which simply computes the identity function. The network archi-
tecture is shown in Fig 5; the target function is computed between detailed neuron populations
“pop;” and “pop,”. The target function is

flu,x) = u, (11)

where u(?) is the input signal and x(¢) is the state space representation. A functioning commu-
nication channel ensures that information can be relayed between components of a cognitive
system without significant loss, or be decoded by muscle effectors to implement behavior.
Fig 6 shows that osNEF successfully trains encoders, decoders, and time constants that pre-
serve the input signal: the target signal can be reliably decoded from “pop,” with very low
error for all four neuron models. While Fig 3 showed that encoder learning leads to represen-
tative spiking activity, and Fig 4 showed that this activity may be decoded to retrieve the signal,
Fig 6 shows that encoding and decoding may be combined into a single step via neural connec-
tion weights. See S2 Appendix for an investigation of how external noise affects performance
when computing feedforward functions.

We also constructed a second network that multiplies two scalars to produce a new scalar:

f(ll, X) =u Ou, (12)

X e b= o——— <=~ f(x)

(S (S
=) e
d\\

Fig 5. Network architecture for computing feedforward functions, including the identity function and
multiplication of two input scalars. This network extends the training network in Fig 2, represented by components
with the gray background, by including an additional detailed neuron population “pop,” and the corresponding oracle
components. With this architecture, we can compute the feedforward function f{x) on the connection between “pop,”
and “pop,” by using osNEEF to train the synaptic parameters d;, e,, and ;. As before, coloration indicates ReLU neurons
(gray) or detailed neurons (blue), synaptic parameters trained by online learning (orange) or offline optimization
(green), NEF computations (gray), and finally the new components involved in the calculation of f{x) (purple).

https://doi.org/10.1371/journal.pchi.1010461.9005

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 14/31

https://doi.org/10.1371/journal.pcbi.1010461.g005
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

1
=
<4

—1

0 time (s) 10

0.1
—
e
z

LIF Izhikevich Wilson Pyramidal

Fig 6. Computing the identity function, Eq 11. Using the network architecture in Fig 5, we initialize neural
populations “pop,” and “pop,” with 100 detailed neurons, then use osNEF to train encoders, decoders, and synaptic
filters. The connection between “pop;” and “pop,” is trained to compute the identity function, such that “pop,”
represents the same information as “pop;”. The top plot shows the state space target and the decoded estimates from
“pop,”, and the bottom plot shows the mean error (RMSE) between this estimate and the target across 10 simulations
with unique input signals.

https://doi.org/10.1371/journal.pcbi.1010461.9006

where © is the element-wise product. Multiplication is a computational primitive that may be
used in a wide variety of cognitive systems to transform simpler representations into more
complex ones. For example, binding operations may be used to associate sensory representa-
tions with recalled memories or emotional reactions, producing a combined representation
that may be semantically processed by downstream systems. Although the precise mechanisms
for binding in the brain remain uncertain, many neural implementations of binding rely on
multiplying elements of the represented vectors [3]. Fig 7 shows the state estimate decoded

0.1

error

0.0

Izhikevich Wilson Pyramidal

Fig 7. Computing the product of two unique input signals, Eq 12. Using the network architecture in Fig 5, we
initialize neural populations “pop;” and “pop,” with 100 detailed neurons, then use osNEF to train encoders, decoders,
and synaptic filters. The connection between “pop,” and “pop,” is trained to multiply two scalars: “pop,” represents
the two scalars, and “pop,” should represent their product. The top plot shows the state space target and the decoded
estimates from “pop,”, and the bottom plot shows the mean error between this estimate and the target across 10
simulations with unique input signals.

https://doi.org/10.1371/journal.pcbi.1010461.g007

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 15/31

https://doi.org/10.1371/journal.pcbi.1010461.g006
https://doi.org/10.1371/journal.pcbi.1010461.g007
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

%

h <B _>@.—>®0—|7h — D f(X)
h

X »@»] ®»-—— h—d f(x)

wlh —

Fig 8. Network architecture for recurrent networks. Orange components indicate the feedforward computation of
X = Bu, and purple components indicate the recurrent computation of X = Ax; together they implement Eq 6. While
this network is used at test-time, an “unrolled” version similar to Fig 5 is used during training. As such, we remove
reference to “tar”, and to the decoders and encoders composing w, in this figure.

https://doi.org/10.1371/journal.pcbi.1010461.9008

from the final population for each of our neuron models. Errors are higher than in Fig 6, as
expected given the increased difficulty of the computation. Still, all four neuron models per-
form well overall.

Many biological systems include recurrent connections, allowing the currently represented
state to directly affect future states and permitting a wider variety of network dynamics,
including rhythmic oscillations and working memory. A network that includes feedforward
and feedback components may implement any dynamical systems described by Eq 6. The net-
work architecture we use for simulating recurrent networks is shown in Fig 8: feedforward
computation of x = Bu occurs on the connection between “pre” and “pop”, while feedback
computation of X = Ax occurs on the recurrent connection on “pop”. To train the network,
we reuse the architecture in Fig 5, but set “pop;” and “pop,” to be identical populations of
detailed neurons computing the target recurrent function x = Ax. In doing so, we effectively
“unroll” the recurrence, as is common when training recurrent neural networks with backpro-
pagation, but still use osNEF to train network parameters given a dynamic input signal.

The first recurrent system we investigate is a simple harmonic oscillator, that is, a two-
dimensional oscillator with frequency w.

X = X (13)

This oscillator is a classic example of central pattern generation: after a brief kick, the sys-
tem should maintain oscillatory dynamics without external input, which may be used to drive
rhythmic behavior in the body, or provide carrier signals that may be modulated by down-
stream cognitive systems. We arbitrarily chose w = 27 as our target frequency. Fig 9 shows the
network dynamics after a square-wave pulse (0.1s) is used to kick the system. All four neuron
types quickly settle into stable harmonic oscillation with frequency approximating the target
w, and these oscillations persist for 100 seconds. Because the networks invariably oscillate at a
frequency that differs slightly from w, a naive calculation of RMSE between x and the decoded
X is a poor metric of the system’s stability. To account for this, we report two error values: we
first fit a sinusoid of the form a sin(bt + ¢) + d to X, then report (a) the RMSE between this
sinusoid and the neural estimate, and (b) the normalized frequency error (b — w)/w.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 16/31

https://doi.org/10.1371/journal.pcbi.1010461.g008
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

0.15

RMSE

0.00
0.15

3
<

0.00

LIF Izhikevich Wilson Pyramidal

Fig 9. Implementing a simple harmonic oscillator (Eq 13) using a recurrent connection. Using the network
architecture in Fig 5, we initialize neural populations “pop;” and “pop,” with 100 detailed neurons, then use osNEF to
train encoders, decoders, and synaptic filters. The connection between “pop,” and “pop,” is trained to compute Eq 13.
The weights and synapses from this trained model are then substituted into a testing network, shown in Fig 8. The top
panel shows the state space target and the decoded estimates from “pop,”, with a break in the x-axis to show that
oscillations remain stable over 100 seconds. The bottom panel show the mean error between this estimate and a best-fit
sinuoid, as well as the frequency error between this best-fit sinusoid and the target frequency w = 27.

https://doi.org/10.1371/journal.pcbi.1010461.9g009

The second recurrent system we investigate is an integrator, a system which continually
adds a feedforward input to a remembered representation of its current value:

x=u (14)

This dynamical system requires a neural network to continuously combine feedforward
and recurrent signals, an important operation for working memory. We use the network in
Fig 10 to realize such a memory, which we refer to as a “gated difference memory” [20]. The
purpose of this network is to (a) read an input value and represent that value using neural
activities in a recurrent population, and (b) continue to represent that value once the input has
been removed. Such a network may perform working memory tasks such as the delayed
response task (DRT), in which an animal must remember the 2D location of a briefly-pre-
sented visual cue for a short period of time before recalling its location [21]. In our network,
the feedforward connection from “pre” to “pop” passes to the memory a two-dimensional
value (representing, for example, a visual cue), while the recurrent connection on “pop” main-
tains the represented cue location once the input has been removed. This is the core “memory’
component. The second component is the “difference” component, which ensures that the

]

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 17/31

https://doi.org/10.1371/journal.pcbi.1010461.g009
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

gate
et e O

l—Wh

. .
(x,y) —> owlh ->@» @» mo (%,3)

value T wih | recall

Fig 10. Network architecture for the gated difference memory. This system loads and stores a two-dimensional
value in a working memory; when the “gate” signal is on (closed), the system maintains its current value through
recurrent activity, and when the “gate” is off (open), the system replaces its current representation with the input value.
Gray circles are LIF populations while blue circles are detailed neuron populations. The green connection is trained by
osNEF to compute f(x) = x, while the purple connection is trained to compute f{x) = —x. The orange connection
directly inhibits neurons in “diff” using fixed negative weights.

https://doi.org/10.1371/journal.pcbi.1010461.g010

value represented in “pop” approaches the cue value represented in “pre”. Because the recur-
rent connection continuously computes the identity function f(x) = x, maintaining whatever
2D value is currently represented, and the feedforward connection continuously adds the 2D
value of the perceived cue to the representation in “pop”, it is possible for a naive integrator to
“overshoot” the target value if the cue is presented for an extended duration. To prevent this,
we add an intermediary population “diff” between “pre” and “pop”. This population receives
the feedforward signal from “pre” and transmits feedforward to “pop”, acting as a simple pass-
through. However, it also receives a feedback connection from “pop” that computes the nega-
tive of the identity function f(x) = —x. As a result, the value represented in “diff” is equal to the
cue’s value minus the integrator’s estimate; when this estimate becomes equal to the cue’s
value, “diff” should represent zero, and the representation in “pop” should stabilize at the tar-
get value. Finally, the “gate” allows the network to ignore the input and simply retain its cur-
rent representation. When the visual cue is removed, we treat its absence as a secondary input
to the system, which activates a population of neurons “inh” that inhibits “diff”, preventing
any further update of the representation in “pop”. To recall an estimate of the remembered
cue’s location, we simply decode the neural activities in “pop” with the identity function.

Fig 11 shows the DRT performance of our network for each neuron type. In each trial, we
present a cue to the network for 1s, then close the gate and record the decoded estimate from
“pop” over time, computing the RMSE between this value and the original input over a 10s
delay period. The cues are distributed evenly around the unit circle across our 10 trials, and we
report the RMSE averaged across the 10s delay period and the 10 trials. Once the input is
removed, the value represented in “pop” must be maintained through the recurrent connec-
tion; over time, noise inevitably causes this system to drift away from the target value, leading
to imperfect recall. However, for most of the presented cues, the network settles on an attractor
that is proximate to the target value, leading to reasonable error rates across all neuron types.

4.3 Application

We now demonstrate how osNEF may be used to build a simple cognitive model out of biolog-
ically-detailed components. As above, we use a neural integrator to model a DRT, in which an
animal must read information from an external signal, remember that information for a
period of time once the signal has been removed, then recall that information. Numerous
researchers use DRTs to investigate the neural basis for working memory [19, 21-23], and

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 18/31

https://doi.org/10.1371/journal.pcbi.1010461.g010
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

0.3
1

—

= 3
> B
€a)

1 S
—1 1 LIF Izhikevich ~ Wilson Pyramidal
Xo

Fig 11. Implementing a gated difference memory using a combination of feedfoward, recurrent, feedback, and
inhibitory connections. The left panel shows the estimate decoded from “pop” as a trajectory in (x, y) space: as the cue
is presented, the estimate travels from the origin (f = 0) to the cue’s location, which lies somewhere on the unit circle.
At t =1 the cue is removed, and the system must rely on its recurrent dynamics to maintain a stable estimate of the
cue’s location. We observe minimal drift in the decoded trajectories for most cue locations, indicating that our
memories are fairly stable over time. The right panel shows the Euclidean distance between the decoded estimate and
the cue’s true location, averaged over a 10s delay period and over 10 cue locations, for each neuron model.

https://doi.org/10.1371/journal.pcbi.1010461.9011

neural integrators have been used to model working memory in larger cognitive models that
reproduce human behavioral data [3, 24, 25].

We extend the gated working memory network described in Sec 4.2 by enforcing additional
biological constraints and adding an associative memory with winner-take-all (WTA) dynam-
ics to select actions, as shown in Fig 12. As above, we use the Pyramidal cell model proposed
by Durstewitz et al., as this cell reconstruction was explicitly designed to simulate pyramidal
neurons with delay-period activity in working memory tasks [19]. We also use Durstewitz’s (a)
cellular reconstruction of inhibitory interneurons; (b) conductance-based synapse models for
GABA and AMPA; (c) conductance-based, voltage-gated synapse model for NMDA; and (d)
biophysical simulation of Dopamine (DA). In these models, DA affects the activation thresh-
old for the persistent Na* current, the conductance of the slowly inactivating K* current and
high-voltage-activated Ca** current, and the magnitude of NMDA, AMPA, and GABA synap-
tic conductances. The parameter values were taken directly from the Durstewitz’s original
source code and were not modified to improve the performance of our model. As in Secs 4.1-
4.2, we use osNEF to train synaptic weights, resulting in dense connectivity that includes both

gate | B A
*—> : 1 R WTA
al : @ e

wh
. & N
(xy) o—n @ WL - D> FhDr Der o Wih] &)
value T Mﬁ recall

Fig 12. Architecture for the biologically-constrainted DRT neural network. This network extends Fig 10 by (a)
replacing “inh” with a population of detailed inhibitory interneurons, (b) adding a “cleanup” network that uses WTA
competition to find the cue location that best resembles the recalled location from “pop” (see [26] for a detailed
description), and (c) replacing all connections to/from detailed neurons with conductance-based AMPA, GABA, or
(voltage-gated) NMDA synapses. Grey populations contain LIF neurons, orange populations are interneurons, and
blue populations are pyramidal cells. Pink connections use AMPA synapses, orange connections GABA synapses, and
green connections use NMDA synapses.

https://doi.org/10.1371/journal.pcbi.1010461.9g012

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 19/31

https://doi.org/10.1371/journal.pcbi.1010461.g012
https://doi.org/10.1371/journal.pcbi.1010461.g011
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

excitatory and inhibitory synapses between pyramidal cells and interneurons. Unlike in Secs
4.1-4.2, we do not use the osNEF to optimize synaptic time constants, since the time constants
of AMPA, NMDA, and GABA synapses are fixed to their biological values.

Our cognitive neural network performs a two-dimensional DRT. The network is first pre-
sented with an input cue, which represents the (x, y)-location of a target point on a visual
screen, for 1s. The cue is removed, followed by a delay period, during which the network con-
tinuously reports its remembered estimate of the cue’s location. This estimate is sent to an
associative memory, which stores the possible true locations of the target; the associative mem-
ory compares the current estimate of the cue’s location to these targets and outputs the target
vector with the greatest similarity, effectively acting as a cleanup operation for the remembered
location [27]. We classify a response as “correct” if the output of the cleanup memory falls
within a certain (Euclidean) distance of the target cue, and measure the percentage of correct
responses as a function of the delay period length. To ensure robust results, we (a) train ten
unique networks, whose tuning curve distributions and training signals are seeded with differ-
ent random numbers, and (b) test each network’s recall accuracy for eight cues with (x, y) loca-
tions distributed evenly around the unit circle.

Fig 13 reports the forgetting curves for the biologically-detailed network, plotting the per-
centage of correct responses given by the model as a function of the delay length. We use Sci-
py’s curve fit function to estimate parameters for an exponential forgetting curve (y(t) =
B exp(—t/1)) that fits the simulated data from each network, then report the range, mean, and
median of these parameters across the networks. When preprocessing the data, we observed
that the maximum accuracy achieved by the network often occurred 500-2000ms after the cue
was removed, presumably as a result of the long NMDA time constants and recurrent dynam-
ics within the network. To avoid numerical errors when using curve fit, we set B equal to
this accuracy (for each network) and assumed an exponential rate of forgetting beyond this
value; we also transformed 7 into a “half-life” time constant by multiplying with In2. This
resulted in best fit parameters B ranging from 58% to 100%, with mean 89% and median 95%;
and 7y, ranging from 2.7 — 28.0s, with mean 9.6s and median 8.6s. The exponential curve is a
good fit for the simulated data, a result consistent with numerous studies showing that animal
performance on working memory tasks declines exponentially as the length of the delay inter-
val increases [28, 29].

raw simulated data best fit exponential
100
[
-+~
O
(&)
: \
3
O
X
0
0 20 0 20
Delay Length (s) Time (s)

Fig 13. Mnemonic performance of the biologically-detailed cognitive network and the best fit exponential
forgetting curve. We trained the network show in Fig 12 using osNEF to produce a gated difference memory, as
described in Sec 4.2 and Fig 10. Rather than average the error over time, as we did in the right panel of Fig 11, we
plotted error (percentage of correct responses over 8 cue locations) as a function of time. We repeated this training and
testing procedure for ten networks seeds, treating each network as an individual “participant” performing this task,
then fit an exponential function to each network’s forgetting curve. From these fitted curves, we obtained parameters
for baseline performance and performance half-life, which we compared with the empirical data shown in Fig 14.

https://doi.org/10.1371/journal.pcbi.1010461.9013

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 20/31

https://doi.org/10.1371/journal.pcbi.1010461.g013
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY

Constructing Functional models from biophysically-detailed neurons

rat . © dolphin @ o
dolphin . O capuchin D O oo
rhesus it o 0@ o rat o—= * ©eoe
model . . oo O o rhesus . o Qo .
capuchin LR C chimp . ® . .
chimpanzee - . *Qee o pigeon *eoe—uO—ewme
pigeon o o @ e o model oo oo o
50 60 70 80 90 100 10 30 60 120 300

zero-delay performance (% correct) performance half-life (seconds)

Fig 14. Estimated zero-delay performance (left) and performance half-life (right) in DMTST across species.
Performance half-life is defined as the delay for which performance drops from its zero-delay value to a value halfway
toward chance performance. Open circles are species medians. Empirical data are taken from [30]. We observe
significant differences in the rate of forgetting (performance half-life) between individual networks, a trend that we
also observe between individual animals (or experiments) within the empirical data. While the median mnemonic
performance of our networks is lower than the median performance of most species in [30], our high-performing
networks still outperform a significant number of individual monkeys, rodents, and birds, suggesting that our
cognitive networks operate in a biologically plausible WM regime.

https://doi.org/10.1371/journal.pcbi.1010461.g014

Our best-fit parameters are consistent with the forgetting parameters reported in a recent
meta-analysis of animal mnemonic performance in the delayed match-to-sample (DMTST)
task [30], a DRT that assesses numerous aspects of working memory capacity. The resulting
dataset includes behavioral data from over 90 experiments, 25 species, and multiple delay
intervals. For each species in the dataset, the authors used an exponential curve to quantify the
relationship between DMTST performance and delay intervals. Unsurprisingly, the fitted
parameters varied significantly both across species and across experiments with the same spe-
cies, as shown in Fig 14. The baseline performance B (characterized as “zero-delay perfor-
mance”) was consistently high for all species, with median estimates varying between 58%
(chickadees) and 99.5% correct (rats) with a grand median of 93% correct. The forgetting time
constant 7y,¢ (characterized as a “performance half-life”, or the delay for which performance
has fallen halfway between zero-delay performance and chance performance) differed signifi-
cantly across species, with median estimates varing between 2.4s (bees) and 71s (dogs), with a
grand median of 27s. As shown in Fig 14, the performance of our cognitive network easily falls
within these ranges, with our median baseline performance B = 95% resembling the grand
median baseline of 93%, and our median forgetting time constant 7y,,¢ = 8.6s most closely
resembling the forgetting rate of pigeons (7j,,¢ = 10s). These correspondences speak to the
cognitive plausibility of our biologically-detailed model, showing that it produces behavior-
ally-plausible results despite the numerous low-level constraints we enforce in the network.

5 Discussion

Our goal in this paper has been to develop the “oracle supervised Neural Engineering Frame-
work” (osNEF), a method for training biologically-detailed spiking neural networks to realize
various dynamical systems that are relevant to cognition. We began by defining the relation-
ship between spike space, the dynamical pattern of action potentials generated by a popula-
tions of neurons, and state space, a vector-valued representational scheme for characterizing
neural dynamics. Building off the NEF, we decomposed synaptic weights into encoders and
decoders, and found parameters for these quantities such that neurons in a population exhib-
ited diverse tuning curves, effectively constructing a function basis for the desired dynamical
systems. We then presented a novel online learning rule for training encoders and decoders to
realize these tuning curves in the context of a larger spiking neural network. We also presented
an offline optimization procedure for training the time constants of synaptic connections that

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 21/31

https://doi.org/10.1371/journal.pcbi.1010461.g014
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

helped account for nonlinear dynamics within the cell when realizing network-level dynamics.
After presenting four neuron models that ranged from the simple and computationally-inex-
pensive to the complex and biologically-detailed, we showed that osNEF could be used to train
neural networks that implement several cognitively-relevant dynamical systems. Specifically,
our networks were populated by LIF neurons, Izhikevich neurons, Wilson neurons, or 4-com-
partment, 6-ion-channel Pyramidal cell reconstructions, and we trained them to compute the
identity function, to multiply two scalars, to exhibit simple harmonic oscillation in two dimen-
sions, and to save and load information with a working memory. Finally, we applied these
methods to build a simple cognitive system that performs a DRT using biologically-detailed
components, including Pyramidal cells, inhibitory interneurons, conductance-based AMPA
and GABA synapses, and voltage-gated NMDA synapses. We tested our network’s mnemonic
performance by measuring the number of correct responses it returns as a function of delay
length, then showed that this performance is comparable to animal performance in the
DMTST [30]. In this section, we discuss our methods and results in terms of biological plau-
siblity, cognitive capacity, and usability, compare our methods to similar approaches, and pres-
ent avenues for future research.

5.1 Biological plausibility

The central motivation of this paper was to introduce more biological realism into NEF-style
networks and maintain their cognitive capabilities, allowing future researchers to investigate
questions that relate low-level biological details to high-level cognition. Because osNEF oper-
ates exclusively in the spike space of neural activity and the state space of dynamical systems,
our methods are agnostic about the internal structure of neuron and synapse models. This
allows modellers to apply osNEF to a wide variety of neuron models, ranging from point neu-
rons with a single state variable to multi-compartment models with complex state dynamics,
using features of the synapses to manage intracellular nonlinearities and achieve the desired
network-level dynamics. To demonstrate the utility of these features, we simulated neuron
models with electrophysiologically plausible internal dynamics, connected them with higher-
order synapses (including some whose dynamics couple with intracellular dynamics directly),
and showed that they can perform a variety of cognitive operations. As discussed in Sec 5.4,
these biological and functional capabilities are a significant extension of existing methods in
computational neuroscience.

Despite these biological extensions, our networks still depart from biological realism in sev-
eral respects. While our neuron and synapse models themselves conform to biology, the con-
nectivity within the network is less constrained. For instance, all neurons in our networks
connect to post-synaptic cells with both excitatory and inhibitory synapses, but Dale’s Princi-
ple suggests that biological neurons exclusively release one type of neurotransmitter [31]
(although some neuroscientists have questioned this principle, see [32]). More importantly,
the networks presented here do not attempt to reproduce the statistics of neural connectivity
between populations, to diversify neuron morphology (beyond small variations in compart-
mental geometry) or cell type (beyond Pyramidal cells and inhibitory interneurons), or to
match other network-level anatomical details. These are important biological features that
have been the focus of other projects concerned with biologically-detailed anatomical recon-
struction (notably the HBP with respect to cortical microcircuits [2]), and these features may
affect a network’s ability to compute specific functions or perform particular cognitive opera-
tions. Fortunately, osSNEF do not prohibit the inclusion of such feature; future work should
investigate whether imposing these connectivity constraints pose a problem for our methods.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 22/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

Another questionably-realistic aspect of our method is the online learning rule for updating
synaptic weights, summarized in Eqs 8 and 9. Many components of these equations involve
only local information, such as presynaptic activity, postsynaptic activity, and a state space
error signal, and so are plausibly-accessible by individual neurons for learning. Previous work
has argued for the biological plausibility of a learning rule based on these quantities [13]. How-
ever, one critical component in osNEF is the “oracle”, a population of neurons built using stan-
dard NEF tools that generates the desired activities for our neurons. While it is possible that
the brain contains “teacher” populations that supervise the weight updates within “student”
populations, we are not aware of any empirical evidence that directly support the existence of
such populations or validate Eq 8. We must therefore treat the components of osNEF that
involve spike space supervision as biologically unfounded, and thus as a theoretical tool for
constructing networks instead of a biological hypothesis.

Finally, the osNEF procedure for optimizing synaptic time constants is not intended to
mimic a biological mechanism, but simply to find synapses that realized particular network-
level dynamics given complex neuron-level dynamics. It is possible that future neuroscience
research will reveal some optimization process in the brain that effectively selects which neuro-
transmitters, receptors, or network structure are used in a given system for the purpose of con-
trolling temporal responses. Studies of highly-structured neural circuits, such as the granule-
Golgi cells in the cerebellum [33], indicate that plasticity may interact with synaptic and intrin-
sic cellular responses (such as rebound firing [34] and inhibitory inputs [35]) to alter the tem-
poral properties of the network. While the osNEF optimization via Hyperopt certainly would
not reproduce the mechanisms of such an optimization, it might reproduce the results, with
respect to the balance of time constants observed in the final network. This hypothesis is sup-
ported by S1 Appendix, which shows that the time constants discovered by osNEF often fall
within biologically plausible ranges.

5.2 Cognitive capacity

To create cognitive models out of biologically-detailed neural networks, we trained our net-
works to implement linear dynamical systems described by control theory (Eq 6). Previous
work with the NEF and SPA has shown that such an approach can be used to build extremely
large brain models capturing a wide class of cognitive operations and reproducing behavioral
data [3], justifying it as an appropriate framework for cognitive models. In this paper, we first
showed that osNEF could produce neurons whose tuning curves were an effective function
basis despite neural adaptation, spike noise, and the like. To further demonstrate this, we
trained networks to perform a variety of operations common to cognitive systems, then com-
bined several such operations together into a larger cognitive network. This network success-
fully performed a DRT, exhibiting an exponential forgetting curve that closely resembles the
forgetting curves exhibited by simple animals (pigeons) performing a DMTST [30]. These
mnemonic capacities are impressive given that (a) our network uses only hundreds of neurons
in the memory populations, which is likely orders of magnitude fewer neurons than are pres-
ent in the corresponding populations in behaving animals, and (b) our DRT task is signifi-
cantly harder than the DMTST task used in the meta-analysis: our task included eight possible
cue locations where the DMTST included only two; and our network used a cleanup memory
to transform the remembered cue location into a behavioral output, where the DMTST pre-
sented the candidate cues again during the “choice” portion of the task, effectively “externaliz-
ing” the cleanup process. In conjunction with the broader successes of the NEF and SPA, we
expect that osNEF can be used to train more sophisticated cognitive networks built from bio-
logically-detailed components.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 23/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

However, osNEF tools are limited in several respects. Networks trained using the standard
NEF methods typically have less error than the results we reported in Sec 4.2. This is due, in
large part, to the lack of biological constrains imposed by the default parameters implementing
NEF networks in Nengo: such networks use point neurons and lowpass current-based synap-
ses, leading to fewer cellular nonlinearities, and have firing rates approximately ten times
higher than our simulations. Normal NEF methods also realize tuning curve distributions that
provide a superior function basis. In standard NEF networks, neurons are biased by directly
injecting a current into the “soma”, allowing for precise control over the conditions under
which a neuron will begin firing. Before the network is simulated, Nengo optimizes these bias
currents and the encoding vectors (Eqs 1 and 2) such that neurons exhibit a wide range of x-
and y-intercepts. osSNEF does not use current injection to bias neurons: instead, it trains synap-
tic weights to achieve the target tuning curve distribution, making postsynaptic activities more
dependent on noisy presynaptic spikes. In recurrent networks where feedforward input was
selectively removed (the oscillator and the gated difference memory), we needed to introduce
and train a dedicated bias population to stabilize recurrent activity. Finally, not all target tun-
ing curves can be realized by a given neuron type: osNEF will fail if the targets have physiologi-
cally-implausible response curves or if a detailed neuron is tightly constrained by its
morphology. Because ours is a black-box approach, the only way to know whether a neuron
may be trained to reproduce a target tuning curve is through trial and error.

It is also worth noting that the dynamics realized in osNEF-trained neural networks are not
exactly equal to the target dynamics: emergent neural dynamics depend upon the training sig-
nals used, the tuning curve distributions, the saturation of firing rates in biologically detailed
neurons, and more, meaning that our networks only approximate the target systems. Some-
times, these constrains facilitated training, as when neural saturation (and resting-state activ-
ity) helped prevent explosion (decay) of amplitudes in the simple harmonic oscillator over
long timescales (see Fig 9), a danger when using Eq 13 to implement an oscillator. Other times,
these constraints complicated training, as when the noise introduced by spiking activity lead
to imperfect representations of inputs or stored values in the gated working memory (see Figs
11 and 13), causing the memory to store incorrect values and to “forget” these values over
time.

5.3 Usability

In developing osNEF, we strove to make our methods both broadly applicable and easy to
learn, with the hopes that other researchers will apply them in their own projects. We used the
Nengo ecosystem [9] because it is a scalable and flexible neuron simulator that has been used
to build and train numerous neural and cognitive models, including some of the world’s larg-
est functional brain models [20]. To support a wide range of biological mechanisms, users may
simulate neural and synaptic dynamics in either Python or NEURON. Python is appropriate
for simulating simple models: this language has intuitive syntax and can be used alongside
NumPy for efficient matrix operations [36]. NEURON is appropriate for simulating complex
neuron models: this language is designed to efficiently simulate detailed cellular and synaptic
mechanisms. Libraries of neural reconstructions written in NEURON are widely available
from online repositories like the Allen Cell Types Database [37] and the Neocortical Microcir-
cuit Collaboration Portal [38], and our interface allows researchers to connect these models
into the Nengo ecosystem for functional modelling, as we did with the Durstewitz model [19].
That said, training neural networks with osNEF requires significantly more effort and simula-
tion time than standard Nengo networks. Users must choose appropriate training signals,
build a parallel “oracle” network to generate the target activities, and simulate the network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 24/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

over time to engage online learning. The challenges posed by different neuron types and target
dynamics makes automating this process difficult, so the user must complete these steps man-

ually. However, we believe that the broad applicability of osNEF justify these challenges for the
motivated researcher.

5.4 Comparison to other methods

The Neural Engineering Framework is the theoretical core of 0sNEF: from it, we borrow (a)
the distinction between spike space and state space, (b) the decomposition of weights into
encoders and decoders, and (c) the use of control theory to specify target dynamics. We also
use a number of standard NEF tools, including (d) the PES learning rule, and the specification
of target networks via (e) least-squares optimization of decoders and (f) distribution of encod-
ers, gains, and biases. osNEF extends the NEF by (1) redefining encoders as a tensor over pre-
synapic neurons, postsynaptic neurons, and state space dimensions, (2) introducing an online
learning rule to update encoders and decoders based on state space error, spike space supervi-
sion, and Hebbian activity, and (3) optimizing the time constants of synapses to realize net-
work-level dynamics while accounting for adaptive neuron-level dynamics. Many of these
techniques bear a resemblance to other research in computational neuroscience, both in moti-
vation and in practice. A central theme of modeling paradigms ranging from FORCE learning
[8] to efficient balanced networks (EBN, [39]) is to describe cognitive algorithms in terms of
the dynamics of a latent state variable x(#) represented by neural activity, then train neural con-
nection weights such that the network behaves like a target dynamical system. However, the
techniques by which networks are constructed and trained varies significantly between these
paradigms: osNEF borrowed several of these techniques in extending the NEF.

In the full- FORCE method [40], the recurrent activities of a neural network are trained
with the aid of a parallel target-generating network that is driven by the desired output of the
system. full-FORCE target networks have random internal connectivity: when driven by the
target dynamics, such networks produce activities that include both a chaotic component
(from the random recurrent connectivity) and a desired component (from the driving input).
Such activities, the authors hypothesize, is a suitable basis for realizing non-trivial dynamics,
especially when combined with an optimized readout filter. In their paper, the authors show
that a recursive least squares optimization process, which compares the target activities with
the activities of the task-performing network, may be used to train recurrent weights in the
later and reproduce a wide variety of dynamics. Our “oracle” populations are also driven to
exhibit the target dynamics and used as a resource when learning recurrent weights. However,
our oracle does not rely on random connectivity: we use the NEF to specify weights that guar-
antee that “tar” will exhibit the target dynamics as well as the spike variability that promotes a
robust function basis for computation (through the principled distribution of encoders and
tuning curves). By specifying the oracle in this way, our approach greatly simplifies the rela-
tionship between the task-performing and target networks: they are both driven by the same
external inputs, rely solely on recurrent activity to generate the target dynamics, and should
exhibit the same activities neuron-by-neuron. This eliminates a great deal of parameter tuning
required by full-FORCE, and provides a clear conceptual pictures of how the target network
supervises the task network. Furthermore, osNEF uses a local, online, error driven learning
rule, while the RLS approach used in full-FORCE is a global, iterative update that is very
unlikely to be implemented by brains.

A recent extension of EBNs to nonlinear adaptive control theory [41] also bears many simi-
larities to osNEF. In this paper, the authors realize nonlinear dynamics in a recurrently-con-
nected population of spiking LIF neurons using a state space teacher and an online learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 25/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

rule. Many mathematical similarities exist between this approach and the NEF, especially with
regards to the PES rule (Eq 9) that we use for error-driven learning in the state space. The
authors convincingly demonstrate their ability to learn nonlinear dynamics, including a bis-
table attractor and rhymic walking motions derived from motion capture data, and their net-
works are similarly constrained to low firing rates, small numbers of neurons, and irregular
spiking. However, where their work (and EBNs in general) focuses on using fast inhibitory
connections to create an efficient, balanced coding scheme, our work focuses on implementing
all of the required components in biological detail. While the authors describe how biological
components could be used to implement their methods (AMPA/GABA-A synapses for fast
connections, NMDA/GABA-B synapses for slow connections, and nonlinear dendrites for the
basis functions), dealing with the nonlinear, non-instantaneous dynamics imposed by com-
partmental neurons and conductance-based synapses often requires significant theoretical
extensions, even when the underlying framework can already model nonlinear dynamical
systems.

Recent papers using both FORCE [42] and EBN [43] have implemented linear (and some-
times nonlinear) dynamics in neural networks populated with biologically detailed neurons.
This raises the question: if simulation of functional networks with complex neurons is already
possible with other techniques, why use osNEF? We believe there are several features that
make osNEF a novel, worthwhile contribution to this field. Broadly speaking, there are impor-
tant theoretical differences between the underlying frameworks, FORCE, EBN, and NEF. Even
if we assume that all three methods solve similar problems with similar performance, there is
significant value in developing and presenting an NEF-based method that is comparable to
FORCE- and EBN-based methods. The NEF modeling community is quite large, so validating
a method for training biologically-detailed functional models within this framework is impor-
tant, independent of similar successes with FORCE and EBN. Furthermore, given the com-
plexity of training biologically-detailed networks, we believe that the research community will
benefit from the existence of multiple methods that tackle this problem in different ways.
Future work should compare these methods, identify their relative strengths and weaknesses,
and develop new methods that build upon their successes.

There are also significant differences between these three methods with respect to biological
plausibility and computational capacity. In the FORCE paper [42], the authors simulate spik-
ing LIF, Theta, and Izhikevich neurons, showing that they can produce a number of dynamical
systems, including oscillators, chaotic systems, songbird calls, and episodic memories. These
methods use a variety of current-based synapse models (exponential, double exponential, and
alpha) and respect Dale’s principle. In the EBN paper [43], the authors simulate point neurons
that include Hodgkin-Huxley-type ionic currents, showing that they can produce several types
of one-dimensional integrators that statistically reproduce empirical patterns of neural activity.
Their methods also use double-exponential synapses, but do not respect Dale’s principle. In
our paper, we simulate three point neurons and one pyramidal cell reconstruction with four
compartments and six ionic currents. We show that our trained networks reproduce four lin-
ear dynamical systems (feedforward and recurrent networks) and perform a cognitive task at
performance levels comparable to simple animals. Our methods use both current-based dou-
ble-exponential synapses and conductance-based, voltage-gated NMDA synapses; we do not
respect Dale’s principle. We feel confident in claiming that we have (a) simulated neurons
with significantly more biological realism than the FORCE and EBN papers, except with
respect to Dale’s principle (but see below), and (b) demonstrated that our trained networks
perform a wider variety of computations than [43] and a comparable number to [42] (except-
ing nonlinear systems).

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 26/31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

Other researchers have extended the NEF with the goal of increasing the framework’s bio-
logical plausibility. Stockel has developed numerous methods for training neural networks to
realize computationally-useful dynamical systems. One such method simulates networks of
multi-compartment LIF neurons in which synaptic connections are decomposed into excit-
atory and inhibitory components, each characterized by an appropriate equilibrium potential.
By selectively placing these synapses on different compartments and optimizing excitatory and
inhibitory weights, Stockel shows that these dendrites can effectively compute functions like
four-quadrant multiplication [44]. Other work applies this E-I optimizer to a functional model
of eyeblink conditioning in the cerebellum’s granule-Golgi microcircuit, demonstrating that
anatomically-detailed spatial connectivity can be profitably incorporated into NEF models
while respecting Dale’s principle [45]. These methods nicely complement the osNEF: where
Stockel focuses on adding biological details to the connections between groups of neurons
(managing E-I balance, targeting dendrites, and reproducing spatial structure), we focus on
adding biological details to the internal dynamics of the underlying components (the neuron
model and the synapse model). Future work that combines these techniques would greatly
enhance the biological plausibility of NEF networks, which have previously been criticized for
lacking particular biological features.

The use of high-order synapses to control network-level dynamics has also been explored
using the NEF and EBN. Voelker has derived a method for computing the parameters of high-
order synapses that, when simulated in networks of simple neurons, preserves state space
dynamics in the network. These NEF-style techniques can be used to construct models that
encode rolling windows of input history, and the resulting neural activities closely resemble
the mnemonic responses of time cells in the cortex [12]. In contrast to osNEF, these analytical
techniques guarantee a solution, but rely on certain assumptions that are violated once suffi-
cient biological detail is included: specifically, if the dynamics internal to the neuron model
dominate the synaptic dynamics, or if the synaptic dynamics are coupled to the cellular
dynamics. EBN has also utilized synaptic dynamics to account for the nonlinear dynamics of
complex neurons, but relies on a significantly different optimization processes for discovering
those synaptic dynamics. In [43], the authors use a form of system identification that (a) drives
the neuron model with a specific random process, (b) analyses the resulting voltage traces
when the neuron spikes, (c) calculates the average action potential waveform, (d) takes its tem-
poral derivative, and (e) convolves it with an exponential function. In our networks, where cel-
lular adaptivity is a major force, where voltage-gated synapses depend on intracellular activity,
and where the dynamics of distinct geometric compartments are coupled, applying these types
of analytical techniques become difficult or impossible. Still, these methods demonstrate the
utility of optimizing synaptic time constants for network-level dynamics.

5.5 Future work

This paper has introduced several methods for incorporating biological detail into cognitive
neural networks. While we have demonstrated the functional capacity of osNEF and applied it
to train network that perform simple cognitive tasks, the scientific utility of developing such
techniques lies in an enhanced ability to investigate the relationship between low-level biologi-
cal features and high-level cognition. Here, our goal was to develop osNEF and show that it
could be used to build simple cognitive models; future work should use these models to form
and test specific hypotheses related to pharmacology, neurological disorders, and other phe-
nomenon where biology directly affects cognitive abilities. For example, the neurotransmitter
Dopamine (DA) plays an important role in maintaining stable delay-period activity in working
memory tasks, but there seems to be a “Goldilocks zone” for DA levels: having either too much

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 27 /31

https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

or too little neurotransmitter impairs cognitive performance [46]. The pyramidal cells in our
cognitive neural network were trained and tested at a constant level of DA; by varying these
levels, we could attempt to reproduce this phenomenon or better characterize its dynamical
origins. What’s more, we could use our model to help design pharmacological interventions
for individuals who live with chronically-low levels of DA.

6 Conclusion

Functional capacity and biological plausibility are two important criteria for neural network
models that seek to clarify the relationship between low-level mechanisms and high-level
behavior. In this paper, we developed osNEF, a method to train biologically-detailed spiking
neural networks to realize cognitively-relevant transformations and dynamics. osNEF utilizes
an online learning rule that (1) combines insights from several theoretical frameworks, (2)
includes error-driven, supervised, and Hebbian components, and (3) can be applied to a wide
variety of neuron and synapse models. We demonstrated the utility of osNEF by (a) showing
that the neural activities of a trained network form an appropriate function basis for dynamic
computation, (b) building several functional networks that perform cognitively-useful opera-
tions with high accuracy, and (c) combining these operations into a larger cognitive network
that performs a simple working memory task. This cognitive network is built from numerous
biologically-detailed components, including Pyramidal cells, inhibitory interneurons, conduc-
tance-based GABA synapses, and voltage-gated NMDA synapses, and performs a delayed
response task with mnemonic performance comparable to simple animals such as pigeons. We
concluded by discussing the biological realism of osNEF, assessing its cognitive capacity and
usability, and comparing it to similar methods in the literature. Future work should focus on
applying osNEF to other cognitive systems in the brain, with a particular focus on studying
how low-level biological features (or deficits thereof) contribute to high-level cognitive
capacity.

Supporting information

S1 Appendix. Synaptic time constants. Includes a table that reports the time constants used
for each of the networks in Sec 4, as well as a figure that reports the distribution of time con-
stants obtained when repeatedly running Hyperopt.

(PDF)

S2 Appendix. Performance versus noise. Includes an additional experiment that investigates
how the performance of osNEF-trained networks degrades as external noise is introduced into
the system.

(PDF)

Author Contributions

Conceptualization: Peter Duggins, Chris Eliasmith.
Formal analysis: Peter Duggins, Chris Eliasmith.
Investigation: Peter Duggins.

Methodology: Peter Duggins, Chris Eliasmith.
Project administration: Chris Eliasmith.

Software: Peter Duggins.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 28/31

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010461.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010461.s002
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

Supervision: Chris Eliasmith.

Validation: Peter Duggins, Chris Eliasmith.
Visualization: Peter Duggins.

Writing - original draft: Peter Duggins.

Writing - review & editing: Chris Eliasmith.

References
1. Anderson JR, Lebiere CJ. The atomic components of thought. Psychology Press; 2014.

2. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, et al. Reconstruction
and simulation of neocortical microcircuitry. Cell. 2015; 163(2):456—492. https://doi.org/10.1016/j.cell.
2015.09.029 PMID: 26451489

3. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, et al. A large-scale model of the func-
tioning brain. science. 2012; 338(6111):1202—-1205. https://doi.org/10.1126/science.1225266 PMID:
23197532

4. Eliasmith C, Anderson CH. Neural engineering: Computation, representation, and dynamics in neurobi-
ological systems. MIT press; 2004.

5. Eliasmith C. How to build a brain: A neural architecture for biological cognition. Oxford University
Press; 2013.

6. O'Reilly RC, Hazy TE, Herd SA. The leabra cognitive architecture: How to play 20 principles with nature.
The Oxford handbook of cognitive science. 2016; 91:91-116.

7. Deneve S, Latham PE, Pouget A. Efficient computation and cue integration with noisy population
codes. Nature neuroscience. 2001; 4(8):826. https://doi.org/10.1038/90541 PMID: 11477429

8. Sussillo D, Abbott LF. Generating coherent patterns of activity from chaotic neural networks. Neuron.
2009; 63(4):544-557. https://doi.org/10.1016/j.neuron.2009.07.018 PMID: 19709635

9. Bekolay T, Bergstra J, Hunsberger E, DeWolf T, Stewart TC, Rasmussen D, et al. Nengo: a Python tool
for building large-scale functional brain models. Frontiers in neuroinformatics. 2014; 7:48. https://doi.
0rg/10.3389/fninf.2013.00048 PMID: 24431999

10. Agarap AF. Deep learning using rectified linear units (relu). arXiv preprint arXiv:180308375. 2018;.

11. Voelker AR. Dynamical systems in spiking neuromorphic hardware [Ph.D. thesis]. University of Water-
loo; 2019.

12. Voelker AR. A solution to the dynamics of the prescribed error sensitivity learning rule. Waterloo: Centre
for Theoretical Neuroscience. 2015;.

13. MacNeil D, Eliasmith C. Fine-tuning and the stability of recurrent neural networks. PloS one. 2011; 6(9):
€22885. https://doi.org/10.1371/journal.pone.0022885 PMID: 21980334

14. Bergstra J, Yamins D, Cox DD. Hyperopt: A python library for optimizing the hyperparameters of
machine learning algorithms. In: Proceedings of the 12th Python in science conference. Citeseer; 2013.
p. 13-20.

15. Izhikevich EM. Simple model of spiking neurons. IEEE Transactions on neural networks. 2003; 14
(6):1569-1572. https://doi.org/10.1109/TNN.2003.820440 PMID: 18244602

16. Wilson HR. Simplified dynamics of human and mammalian neocortical neurons. Journal of theoretical
biology. 1999; 200(4):375-388. https://doi.org/10.1006/jtbi.1999.1002 PMID: 10525397

17. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical
journal. 1961; 1(6):445-466. https://doi.org/10.1016/s0006-3495(61)86902-6 PMID: 19431309

18. Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proceed-
ings of the IRE. 1962; 50(10):2061-2070. https://doi.org/10.1109/JRPROC.1962.288235

19. Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a
network model of prefrontal cortex. Journal of neurophysiology. 2000; 83(3):1733-1750. https://doi.org/
10.1152/jn.2000.83.3.1733 PMID: 10712493

20. Choo FX. Spaun 2.0: Extending the World’s Largest Functional Brain Model [Ph.D. thesis]. University of
Waterloo; 2018.

21. Sawaguchi T, Goldman-Rakic PS. The role of D1-dopamine receptor in working memory: local injec-
tions of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor
delayed-response task. Journal of neurophysiology. 1994; 71(2):515-528. https://doi.org/10.1152/jn.
1994.71.2.515 PMID: 7909839

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 29/31

https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
http://www.ncbi.nlm.nih.gov/pubmed/26451489
https://doi.org/10.1126/science.1225266
http://www.ncbi.nlm.nih.gov/pubmed/23197532
https://doi.org/10.1038/90541
http://www.ncbi.nlm.nih.gov/pubmed/11477429
https://doi.org/10.1016/j.neuron.2009.07.018
http://www.ncbi.nlm.nih.gov/pubmed/19709635
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.3389/fninf.2013.00048
http://www.ncbi.nlm.nih.gov/pubmed/24431999
https://doi.org/10.1371/journal.pone.0022885
http://www.ncbi.nlm.nih.gov/pubmed/21980334
https://doi.org/10.1109/TNN.2003.820440
http://www.ncbi.nlm.nih.gov/pubmed/18244602
https://doi.org/10.1006/jtbi.1999.1002
http://www.ncbi.nlm.nih.gov/pubmed/10525397
https://doi.org/10.1016/s0006-3495(61)86902-6
http://www.ncbi.nlm.nih.gov/pubmed/19431309
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1152/jn.2000.83.3.1733
https://doi.org/10.1152/jn.2000.83.3.1733
http://www.ncbi.nlm.nih.gov/pubmed/10712493
https://doi.org/10.1152/jn.1994.71.2.515
https://doi.org/10.1152/jn.1994.71.2.515
http://www.ncbi.nlm.nih.gov/pubmed/7909839
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

22, Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends in
cognitive sciences. 2003; 7(9):415-423. https://doi.org/10.1016/S1364-6613(03)00197-9 PMID:
12963473

23. Goldman MS, Compte A, Wang XJ. Neural integrator models. Encyclopedia of neuroscience. 2010; p.
165-178.

24. Bekolay T, Laubach M, Eliasmith C. A spiking neural integrator model of the adaptive control of action
by the medial prefrontal cortex. Journal of Neuroscience. 2014; 34(5):1892—1902. https://doi.org/10.
1523/JNEUROSCI.2421-13.2014 PMID: 24478368

25. A spiking neuron model of inferential decision making: Urgency, uncertainty, and the speed-accuracy
tradeoff. Seattle: Cognitive Science Society; 2020.

26. Kajicl, Gosmann J, Stewart TC, Wennekers T, Eliasmith C. A spiking neuron model of word associa-
tions for the remote associates test. Frontiers in psychology. 2017; 8:99. https://doi.org/10.3389/fpsyg.
2017.00099 PMID: 28210234

27. Stewart TC, Tang Y, Eliasmith C. A biologically realistic cleanup memory: Autoassociation in spiking
neurons. Cognitive Systems Research. 2011; 12(2):84—92. https://doi.org/10.1016/j.cogsys.2010.06.
006

28. Averell L, Heathcote A. The form of the forgetting curve and the fate of memories. Journal of mathemati-
cal psychology. 2011; 55(1):25-35. https://doi.org/10.1016/j.jmp.2010.08.009

29. White KG. Forgetting functions. Animal Learning & Behavior. 2001; 29(3):193-207. https://doi.org/10.
3758/BF03192887

30. LindJ, Enquist M, Ghirlanda S. Animal memory: A review of delayed matching-to-sample data. Beha-
vioural processes. 2015; 117:52-58. https://doi.org/10.1016/j.beproc.2014.11.019 PMID: 25498598

31. Eccles JC. Chemical transmission and Dale’s principle. In: Progress in brain research. vol. 68. Else-
vier; 1986. p. 3—-13.

32. Sulzer D, Rayport S. Dale’s principle and glutamate corelease from ventral midbrain dopamine neurons.
Amino acids. 2000; 19(1):45-52. https://doi.org/10.1007/s007260070032 PMID: 11026472

33. Kennedy A, Wayne G, Kaifosh P, Alvifia K, Abbott L, Sawtell NB. A temporal basis for predicting the
sensory consequences of motor commands in an electric fish. Nature neuroscience. 2014; 17(3):416—
422. https://doi.org/10.1038/nn.3650 PMID: 24531306

34. Russo MJ, Mugnaini E, Martina M. Intrinsic properties and mechanisms of spontaneous firing in mouse
cerebellar unipolar brush cells. The Journal of physiology. 2007; 581(2):709-724. https://doi.org/10.
1113/jphysiol.2007.129106 PMID: 17379636

35. Rousseau CV, Dugué GP, Dumoulin A, Mugnaini E, Dieudonné S, Diana MA. Mixed inhibitory synaptic
balance correlates with glutamatergic synaptic phenotype in cerebellar unipolar brush cells. Journal of
Neuroscience. 2012; 32(13):4632—-4644. https://doi.org/10.1523/JNEUROSCI.5122-11.2012 PMID:
22457509

36. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array program-
ming with NumPy. Nature. 2020; 585(7825):357—362. https://doi.org/10.1038/s41586-020-2649-2
PMID: 32939066

37. Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, et al. Allen Brain Atlas: an integrated
spatio-temporal portal for exploring the central nervous system. Nucleic acids research. 2012; 41(D1):
D996-D1008. https://doi.org/10.1093/nar/gks1042 PMID: 23193282

38. Ramaswamy S, Courcol JD, Abdellah M, Adaszewski SR, Antille N, Arsever S, et al. The neocortical
microcircuit collaboration portal: a resource for rat somatosensory cortex. Frontiers in neural circuits.
2015; 9:44. https://doi.org/10.3389/fncir.2015.00044 PMID: 26500503

39. Boerlin M, Machens CK, Deneve S. Predictive coding of dynamical variables in balanced spiking net-
works. PLoS computational biology. 2013; 9(11):e1003258. https://doi.org/10.1371/journal.pcbi.
1003258 PMID: 24244113

40. DePasquale B, Cueva CJ, Rajan K, Abbott L, et al. ful-FORCE: A target-based method for training
recurrent networks. PloS one. 2018; 13(2):e0191527. https://doi.org/10.1371/journal.pone.0191527
PMID: 29415041

41. Alemi A, Machens C, Deneve S, Slotine JJ. Learning arbitrary dynamics in efficient, balanced spiking
networks using local plasticity rules. arXiv preprint arXiv:170508026. 2017;.

42. Nicola W, Clopath C. Supervised learning in spiking neural networks with FORCE training. Nature com-
munications. 2017; 8(1):1-15. https://doi.org/10.1038/s41467-017-01827-3 PMID: 29263361

43. Schwemmer MA, Fairhall AL, Denéve S, Shea-Brown ET. Constructing precisely computing networks
with biophysical spiking neurons. Journal of Neuroscience. 2015; 35(28):10112—10134. https://doi.org/
10.1523/JNEUROSCI.4951-14.2015 PMID: 26180189

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 30/31

https://doi.org/10.1016/S1364-6613(03)00197-9
http://www.ncbi.nlm.nih.gov/pubmed/12963473
https://doi.org/10.1523/JNEUROSCI.2421-13.2014
https://doi.org/10.1523/JNEUROSCI.2421-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24478368
https://doi.org/10.3389/fpsyg.2017.00099
https://doi.org/10.3389/fpsyg.2017.00099
http://www.ncbi.nlm.nih.gov/pubmed/28210234
https://doi.org/10.1016/j.cogsys.2010.06.006
https://doi.org/10.1016/j.cogsys.2010.06.006
https://doi.org/10.1016/j.jmp.2010.08.009
https://doi.org/10.3758/BF03192887
https://doi.org/10.3758/BF03192887
https://doi.org/10.1016/j.beproc.2014.11.019
http://www.ncbi.nlm.nih.gov/pubmed/25498598
https://doi.org/10.1007/s007260070032
http://www.ncbi.nlm.nih.gov/pubmed/11026472
https://doi.org/10.1038/nn.3650
http://www.ncbi.nlm.nih.gov/pubmed/24531306
https://doi.org/10.1113/jphysiol.2007.129106
https://doi.org/10.1113/jphysiol.2007.129106
http://www.ncbi.nlm.nih.gov/pubmed/17379636
https://doi.org/10.1523/JNEUROSCI.5122-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22457509
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1093/nar/gks1042
http://www.ncbi.nlm.nih.gov/pubmed/23193282
https://doi.org/10.3389/fncir.2015.00044
http://www.ncbi.nlm.nih.gov/pubmed/26500503
https://doi.org/10.1371/journal.pcbi.1003258
https://doi.org/10.1371/journal.pcbi.1003258
http://www.ncbi.nlm.nih.gov/pubmed/24244113
https://doi.org/10.1371/journal.pone.0191527
http://www.ncbi.nlm.nih.gov/pubmed/29415041
https://doi.org/10.1038/s41467-017-01827-3
http://www.ncbi.nlm.nih.gov/pubmed/29263361
https://doi.org/10.1523/JNEUROSCI.4951-14.2015
https://doi.org/10.1523/JNEUROSCI.4951-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/26180189
https://doi.org/10.1371/journal.pcbi.1010461

PLOS COMPUTATIONAL BIOLOGY Constructing Functional models from biophysically-detailed neurons

44, Stockel A. Harnessing Neural Dynamics as a Computational Resource [Ph.D. thesis]. University of
Waterloo; 2022.

45. Stockel A, Stewart TC, Eliasmith C. Connecting Biological Detail With Neural Computation: Application
to the Cerebellar Granule—Golgi Microcircuit. Topics in Cognitive Science. 2021; 13(3):515-533. https://
doi.org/10.1111/tops.12536 PMID: 34146453

46. Cools R, D’Esposito M. Inverted-U—shaped dopamine actions on human working memory and cognitive
control. Biological psychiatry. 2011; 69(12):e113—e125. https://doi.org/10.1016/j.biopsych.2011.03.028
PMID: 21531388

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010461 September 8, 2022 31/31

https://doi.org/10.1111/tops.12536
https://doi.org/10.1111/tops.12536
http://www.ncbi.nlm.nih.gov/pubmed/34146453
https://doi.org/10.1016/j.biopsych.2011.03.028
http://www.ncbi.nlm.nih.gov/pubmed/21531388
https://doi.org/10.1371/journal.pcbi.1010461

