
A neural model of rule finding in Raven’s

Progressive Matrices

Daniel Rasmussen

1 Introduction

Raven’s Progressive Matrices is one of the most widely used tests of general
intelligence. It has been found to be both domain independent and highly
correlated with other measures of intellectual ability [Marshalek et al., 1983].
In the RPM subjects are presented with a 3x3 matrix, where each cell—except
for the blank cell in the bottom right—contains multiple features. The task is
to determine, given eight possibilities, which answer belongs in the blank cell.
Subjects accomplish this by finding the rules that govern the features in each
row or column. Once these rules have been found, they can be applied to the
last row/column to determine which features will complete the rule in the blank
cell. This task requires a complex array of cognitive abilities, and so represents
an interesting challenge for understanding human intelligence.

There are many theories as to how subjects go about solving these matrices.
Over the years researchers have focused on topics including the different types
of rules (Carpenter et al. [1990], DeShon et al. [1995]), error types (Babcock
[2002]), the importance of early visual processing (Meo et al. [2007]), working
memory (Kyllonen and Christal [1990]), and executive functions (Unsworth and
Engle [2005]). There are two significant tasks which stand out as necessary to
flesh out this research. The first is developing a working model that combines
these theories to recreate human performance. This is the proverbial proof in
the pudding; if our theories about how subjects solve the RPM are correct,
then we should be able to use those theories to solve the RPM. The only work
in this area has been done by Carpenter et al. [1990], who created a model
that could solve several types of Raven’s matrices. However, their model is now
several years old, and does not take into account much of the neuroimaging data
(particularly fMRI) which is now available. In addition, the focus of the model
was on recreating high-level human performance (ex. error rates) rather than
realistically describing human problem solving techniques at a neural or brain
system level.

The second gap in the RPM literature is an explanation of how subjects
create new rules. In the Carpenter et al. model the rules were preprogrammed;
the system had no ability to develop novel solutions. One possible theory is
given by Verguts et al. [2000], who suggested that rule finding was a type of

1



statistical sampling of the space of possible rules. However, it is unlikely that
problem solving is nothing more than blind sampling, relying on luck to arrive
at the correct answer. We still have no explanation of how this sampling is
guided. Indeed, the later research of Verguts and De Boeck [2002] on learning
in the RPM suggests that this sampling explanation is more suited to describing
our search over known rules, rather than how we come up with novel solutions.
What is missing is that crucial intermediate step; we have theories on how
visual information is collected in RPM situations, and given a set of rules we
have theories on how they are used to solve the matrix, but we are lacking in
theories that explain how we make that move from visual information to rule.

In this paper we hope to work towards alleviating both of these concerns. We
will provide a mechanistic, neurally plausible model that can find rules based
on matrix data and solve simple RPM-like problems. It can by no means be
said that this model can recreate human results on the RPM. What we have is
a preliminary model of a specific aspect of matrix solving. However, hopefully
this model will serve as a stepping stone to future work, and an indication that
this is not a fruitless path to explore.

2 System Description

Both behavioural (DeShon et al. [1995], Meo et al. [2007]) and neurological
(Haier et al. [1988], Prabhakaran et al. [1997]) data suggest that there are two
distinct components to RPM solving. First there is low-level visuospatial pro-
cessing that is applied directly to the matrix data. Rules resulting from these
processes operate only on the visual features of the matrix (ex. combination,
movement, or rotation of features). For more difficult problems it is necessary
to abstract from the visual data and form logical propositions. Rules resulting
from these processes operate on meta-information, such as the fact that all of
the shapes in a row are different, rather than the visual data itself (the shapes).
In our model we only address the former—low level visual processing. We would
like to grow our model to incorporate both, but for now we will leave abstract
reasoning aside.

2.1 Neural data

Even restricting ourselves to this domain, the task is so general and widespread
that it is difficult to identify specific brain areas responsible. Neuroimaging data
from subjects taking the RPM, even when we attempt to isolate visuospatial
processing, shows bilateral (although predominantly right-hemisphere) activa-
tion in all four lobes. Therefore we can make guesses as to where the processing
in this model might be occurring, but we should treat these descriptions as
predictions of the model.

Our neuroimaging data for the RPM comes from two sources: Haier et al.
[1988] and Prabhakaran et al. [1997]. Haier et al.’s study used PET, so cannot
give us detailed activation areas. Broadly speaking, what they found was that

2



visual processing activated more right hemisphere areas than left hemisphere
(the opposite was true for analytic processing), and more posterior areas than
anterior.

Our best data comes from Prabhakaran et al.’s fMRI study. When they
isolated for visuospatial processing they found primary activation in several of
the areas associated with nonverbal working memory, in particular right middle
frontal gyrus and bilateral inferior parietal regions. They also found activation
in bilateral superior parietal areas associated with the direction of visuospatial
attention. Our hypothesis is that these areas are involved in extracting and
representing the data from the matrix, which will then become input into our
model. Prabhakaran et al. also found activation in the right temporal lobe,
in particular the middle and inferior gyri. These areas have been associated
with mental rotation, and Prabhakaran et al. suggest that activation “may
reflect mental transformations involved in generating a candidate answer for
the missing pattern”. These are precisely the processes captured in our model.
These areas are also situated in the ventral stream of visual processing, which
fits with our belief that these visuospatial elements of RPM solving represent
low-level, largely automatic visual processes.

2.2 Holographic Reduced Representations

Our model employs HRRs to represent information in a structured manner.
A good discussion of HRRs can be found in Plate [2003], which we will only
describe in brief here.

HRRs encode information in vectors, and in the neural case we take these
vectors to be represented in the firing rates of neural populations (as described
in Eliasmith and Anderson [2003]). We will require three operations to create
structured representations: circular convolution, superposition, and approxi-
mate inverse. Circular convolution is defined as

C = A⊗B
where

cj =
n−1∑
k=0

akbj−k

Superposition is simply vector addition, and for the approximate inverse we will
use involution:

a−1
i = a

(−i mod n)

We can also define the transformation T between two vectors A and B, such
that A ⊗ T = B. All we need to do to find T is rearrange the equation, so
T = A−1 ⊗ B. This suffices to find a single transformation, but often we will
want to find a general transformation between two classes. Neumann [2001] has
described how we can find these T vectors given a series of example A and B

3



vectors. There are several variations, but essentially it amounts to taking the
average of the previous calculation:

T =
1
n

n∑
i=0

A−1
i ⊗Bi

The key to our model is the idea that if we encode a matrix in HRR form,
then finding the rule that governs a row is analogous to finding a vector T
that describes how the HRR description of the first cell is transformed into the
description of the second cell, and the second cell into the third cell.

2.3 Neural computations

One of the great advantages of the Neural Engineering Framework is that we can
calculate the synaptic weights for arbitrary linear transformations analytically,
rather than learning them. Eliasmith and Anderson [2003] describe how we can
do this. We will not repeat the entire derivation here, but the end result is that
if we want to calculate a transformation of the form z = C1x+C2y (C1 and C2

are any matrix), and x, y, and z are stored in the a, b, and c neural populations,
respectively, then

ck(C1x+ C2y) = Gk

∑
i

ωkiai(x) +
∑
j

ωkjbj(y) + Jbiask


where Gk is a function representing the nonlinear neuron characteristics (in our
model we use Leaky Integrate and Fire or LIF neurons). ck, ai, and bj are
the firing rates of the kth, ith, and jth neuron in their respective populations,
and Jbiask is the background current. The ω are our synaptic weights: ωki =
αk〈φ̃kC1φ

x
i 〉m and ωkj = αk〈φ̃kC2φ

y
j 〉m. If we want to do a linear transformation

on only one variable, we simply omit the b population from the above calculation.
To calculate different transformations all we need to do is modify the C matrices
in the weight calculations; therefore rather than repeating the entire formula in
the future we will simply describe the C matrix.

Our model only requires a few relatively simple processing elements, which
we will now briefly describe.

2.3.1 Element-wise product

Taking the element-wise product of two vectors requires three steps. First,
we separate each component of both the vectors into their own scalar repre-
sentations. To transform the d dimensional vector A into d 1 dimensional ai
populations, we form d populations and link the ith population to the input
population via a dx1 C matrix where C [i] = 1 and C [j 6= i] = 0. Second, we
multiply the appropriate scalar values together (i.e. the first component of A
with the first component of B, and so on). For a description of multiplication in
the NEF see Eliasmith and Anderson [2003]. Third, we combine the resulting

4



scalar values back into a single vector. To do this we form a projection from the
d 1 dimensional populations into a single d dimensional population, where each
projection has a C matrix that is equal to the transpose of the one in the first
step. In reality we can combine the first and second steps, they are separated
here only for clarity.

2.3.2 Circular convolution

Circular convolution is made easier by noting that it is equivalent to an element-
wise product in the frequency domain. Thus all we need to do is define how
to perform an FFT and IFFT, and we can combine that with our previous
description to achieve circular convolution. Since the FFT is a linear trans-
formation, all we need to do is set C to be the dxd DFT matrix W where
Wij = cos(−2π×(ij)

d ) + sin(−2π×(ij)
d )i. The inverse DFT matrix is simply the

complex conjugate of this.

2.3.3 Transformation calculation

Next we need to define how to calculate a transformation vector. Fortunately,
finding T such that A⊗T = B is as easy as calculating the circular convolution
of A−1 and B. Thus all we need to do is define how to calculate A−1, and
we can combine that with the previous description to calculate T. Recall that
we are using the approximate inverse, or involution, where a−1

i = a
(−i mod n)

.
Therefore to create the C matrix we simply rearrange the dxd identity matrix
in the same way (i.e. row i becomes row −i mod d).

2.3.4 Similarity testing

The final calculation is determining the similarity between two HRRs, defined
as the dot product of the two vectors. However, the dot product is nothing
more than the sum over the dimensions of the element-wise product, so all we
need to do is sum the output of the element-wise product component.

3 Design specification

Our work so far in this model is mainly theoretical. We have defined neural
populations and the synaptic weights connecting these populations, but the
implementation details will be a subject of further study. By experimenting with
different parameter settings and examining how they affect the performance of
the system we hope to be able to make predictions about the corresponding
neural properties in the brain. There are several properties we will be focusing
on:

• Encoding vectors: should these be randomly chosen from the unit circle, or
aimed in specific directions? Since calculating the element-wise product,
which involves several multiplications, is central to our model, it may

5



be desirable to do this very accurately. The accuracy of multiplication
can be increased by choosing our encoding vectors to equally encode each
direction (a “45 degree angle” in higher dimensions).

• Response range: we would expect that the standard response range of ±1,
corresponding to a normalized HRR vector length of 1, will be appropriate
for our system. However, circular convolution and superposition do not
preserve vector length, so vectors will tend to grow longer. We could
renormalize the vector after each computation (although normalization is
an expensive operation), or we could expand the response range of the
neurons.

• Vector dimension: One of the most interesting variables will be the dimen-
sion of the HRR vectors we use in our model. Adding more dimensions
allows greater accuracy of encoding/decoding, and thereby allows us to
have a larger vocabulary of vector words (since we can distinguish them
more accurately). In the current model, with a very simple vocabulary,
10 dimensions seems to be the minimum necessary. However, this will
certainly increase as we attempt more difficult matrices requiring more
complex descriptions.

• Population size: Vector dimension is a critical issue because it affects
the size of the population required to represent that vector. Population
size must scale approximately linearly with vector dimension in order to
maintain equivalent accuracy. This affects our model practically by de-
termining both the memory size and run time of our model. However,
it also determines our prediction of area or number of neurons required
to implement our model in the brain; if we were to find that our model
necessitated such high dimensional vectors that a significant portion of
the neurons in the temporal lobe were required to represent them, then
that would force us to rethink the plausibility of our model.

All of these factors are things we hope to examine as our model progresses and
we move into a more realistic representation in terms of spiking neurons. If
we are correct that these operations are occurring in the right middle/inferior
temporal gyri, then after determining appropriate settings for these values we
would expect to find matching data from actual brain studies in that area.

4 Implementation

Our model is implemented in Nengo, a standardized Java implementation of
the Neural Engineering Framework. Nengo provides a Python scripting inter-
face, which allows us to describe models in a high level language and then see
them implemented in a graphical interface [Stewart et al., 2009]. We chose
to implement our model in Nengo for a number of reasons. First, it saves on
both development time and error rates by utilizing code that has already been
empirically tested on a number of models. Second, the GUI provides us with

6



an intuitive, high-level description of our model, and allows us to make mod-
ifications on the fly without returning back to the code. Third, by using the
standard Java interface we make it easy to integrate our model with any other
system developed in Nengo, or to share our model with other NEF researchers;
this facilitates the development of integrated models of various brain systems.

4.1 Model description

We will begin with a high-level description of our model, and then clarify how
each component operates. The mathematical description of these components
has already been given in the system description, so here we will try to provide
a more intuitive understanding.

4.1.1 Top level

At the top level we see three main components, which we will describe from
left to right. First is calcT, which calculates an average T given a series of A
and B examples (recall that T is the vector such that A⊗T = B). sigA and sigB
are piecewise functions that present the pairs of A and B vectors to the system
for 1s each. These A and B vectors are chosen from the pairwise comparisons of
neighbouring cells in a row of the matrix (i.e. we present cell[1][1] and cell[1][2],
then cell[1][2] and cell[1][3], then cell[2][1] and cell[2][2], and so on). Eye-tracking
studies [Carpenter et al., 1990] suggest that this is in fact the method by which
people build up rules. The resulting output is the average transformation over
all these examples.

Next we take the output from calcT and convolve it with the second last
cell (cell[3][2]). cell[3][2] ⊗ T should give us cell[3][3]; this is the output from
calcLast.

At this point our system has generated a hypothesis of what the last cell
should be. We then compare this hypothesis to the 8 possible answers given
in the problem. testSimilarity calculates how similar the hypothesis is to each
of the answers, and outputs an 8 dimensional vector. The component with the

7



highest value is our model’s best guess at the correct answer. This information
then leaves our system to be processed elsewhere, such as translating it into
motor movements that will point to the correct answer.

4.1.2 calcT

We can now take a closer look at calcT. The two input signals (sigA and
sigB) go into the input populations Ainv and B, respectively. Ainv calculates
the approximate inverse of A (as described in the system description) while B
simply leaves the value unchanged.

Corr then calculates the circular convolution of the output of these two
populations (termed corr because the circular convolution of A−1 and B is
equal to the circular correlation of A and B), which is equal to the T vector
for that pair of A and B vectors. We will look closer at calculating the circular
convolution in calcLast.

Meanwhile, our previous best estimate of the transformation is being main-
tained in the population T. T is a modified integrator where the input has a
weight of τPSC and the feedback loop has a weight of 1− τPSC (see Eliasmith
and Anderson [2003] for a description of building integrators in the NEF). This
will cause the representation in T to slowly drift towards whatever value is cur-
rently coming out of corr. Since what is coming out of corr is the sequence of T
vectors for the various pairs of As and Bs, the effect of this will be to calculate
a moving average of T.

8



4.1.3 calcLast

calcLast is simply the circular convolution of its two inputs, so we will take
this opportunity to take a closer look at that operation. The A and B popu-
lations represent the two vectors we want to convolve, and the first thing we
want to do is take the FFT of each of these vectors. Taking the FFT results in
a complex number, which has both a real and imaginary component. We could
represent these in one population, but it simplifies the rest of the model if we
split them into two . This is what is occurring in the Afftr and Affti populations;
they are the real and imaginary components, respectively, of the FFT of the A
vector (and B has matching counterparts).

Now we need to take the element-wise product. Unfortunately, it is not as
simple as taking the element-wise product of the real and imaginary components,
due to the definition of multiplicaton of complex numbers. If we have two
complex numbers X = A + Bi and Y = C + Di, then X × Y = AC + ADi +
BiC + BiDi (i.e. as if we are multiplying two polynomials). This rearranges
to (AC − BD) + (AD + BC)i. Thus we have four element-wise products to
calculate: AC, BD, AD, and BC. In our model A = Afftr, B = Affti, C = Bfftr,
and D = Bffti; thus AC, BD, AD, and BC correspond to eprod 0, 1, 2, and 3.
We then need to calculate AC−BD and AD+BC to get the real and imaginary
components; this is what is happening in rprod and iprod.

Now we have successfully calculated the element-wise product of the FFT of
our two vectors, and we need to take the IFFT. We do this in the same way as
we calculated the FFT of A and B, except applying the inverse DFT matrix to
rprod and iprod. Theoretically this would give us four results again, but we can
simplify the calculation because we know that the imaginary component of our
answer will be zero. We can ignore calculations that would result in a nonzero
imaginary component, so all we need to do is multiply rprod by the real part
of the inverse W matrix (AC), and iprod by the imaginary part of the inverse
W matrix (BD). The imaginary components of iprod and the inverse W matrix
cancel to give us negative one, so then we simply subtract BD from AC to find

9



our final answer.
Note that we could be more efficient by taking advantage of the fact that

when we take the FFT of a real number the result will be symmetrical, thus
we could get away with only representing half the vector. We will implement
this improvement as we move into incorporating spiking neurons, since it will
provide us with useful computational savings and improved accuracy.

4.1.4 testSimilarity

testSimilarity looks complex, but it is actually the simplest of the compo-
nents. It is just doing the same thing 8 times—calculating the dot product of
our hypothesis (“test”) and the possible solutions. Each of the eprod networks
calculates the element-wise product of the hypothesis and one of the answers.
These products are then summed across the dimensions (giving us the dot prod-
uct) and combined into an 8 dimensional vector rather than 8 separate values.

4.2 Results

We have only tried our model on some fairly simple matrices. These matrices
are analogous to what we would find on early problems of the Raven’s Standard
Progressive Matrices, as opposed to the Advanced Progressive Matrices that are
usually administered to subjects of average or above average intelligence. How-
ever, our model does solve these matrices, using only the simple, neurologically
plausible components outlined above.

Note that all of these simulations are being run in Nengo’s direct mode;
that is, network properties are being simulated but not realistic neurons. As

10



we mentioned in the design specification section, incorporating realistic neural
properties is the next step we are pursuing.

4.2.1 Matrix 1

This matrix follows the simple rule that the shape remains constant across
the row. The question is whether the system will correctly learn the general
rule that the third cell should be the same as the previous cell, rather than that
the third cell should be a square or a triangle.

To encode this matrix we will use a very simple vocabulary. For all of these
tests our words will be made up of 10 dimensional unit vectors chosen from a
normal distribution. For this matrix we will require five of these words: shape,
square, triangle, circle and diamond. We will encode cell[1][1] as shape ⊗ square,
cell[2][1] as shape ⊗ triangle, and so on. Our possible answers are given along
the bottom, and encoded in the same manner. They are intentionally chosen to
challenge the system; if it was going to make an error then it would likely pick
triangle or square, so both those options are present. We also add in a shape
not found in the matrix, diamond, and four random vectors for comparison.

11



This figure shows the estimate of T, the transformation vector, over time.
We can see that the transformation jumps whenever a novel pair of input vectors
is presented (at 2s and 4s, since the first two and second two pairs are identical)
but progresses in a relatively constant direction overall.

This figure shows the system’s estimate of the element in the blank cell over
time. Since the vector representing the second last cell is constant, this figure
simply reflects the changes in T shown in the previous figure.

12



This figure shows the system’s estimate of which of the possible answers are
the best fit for the blank cell. As we can see, the system correctly decides that
the correct answer is number 1. We will analyze these results in more detail for
the more complicated matrix.

4.2.2 Matrix 2

This matrix is more complex, because in addition to shape we have added
the concept of number. Therefore in order to represent it we will need to add
additional words to our vocabulary. We will add the words “number”, “one”,
and “plusone”. This will allow us to represent arbirarily large numbers by
combining one and plusone; two = one ⊗ plusone, three = two ⊗ plusone ((one
⊗ plusone) ⊗ plusone), and so on. We then encode the matrix as cell[1][1] =

13



shape ⊗ square + number ⊗ one, cell[1][2] = shape ⊗ square + number ⊗ two,
etc.

Now our system needs to learn both that the shape remains constant and
that the number increases by one each time. We will only show the results
of testSimilarity, since the results of calcT and calcLast are not particularly
meaningful and look essentially the same as in the previous case.

As we can see, the system correctly determines that the correct answer is
again number one, three circles. This is despite the fact that we have chosen
the possible solutions to be intentionally confusing. The incorrect answers are
as close to the correct answer as possible, so the system’s ability to differentiate
them demonstrates its ability to accurately determine results as opposed to
guessing in a general area.

There may be some doubt as to whether the system is actually learning a
general rule, or is cheating somehow to find the correct answer. We can test
this by changing which signal we present as the second last cell (the function
input to the calcLast network). By leaving the input signal the same we ensure
that the system will learn an identical transformation, but we are now applying
that transformation to different cells to ensure that the transformation actually
represents a general rule.

14



In this test we set the secondLast signal to be one circle. Again, the model
found the correct answer of two circles (same shape, plus one) or number 7. It
only barely beat out number 6 (four circles), which may not be as confident a
result as we would like, but we could increase the accuracy by increasing the
dimension of the vectors or presenting the system with more examples to learn
from.

In this test we set the secondLast signal to be two squares. In this case
the system incorrectly reported that the correct answer was number 4, three
diamonds; however, the correct answer of 3 was only slightly behind. We then
tried a logically identical test of two triangles:

15



This time the system correctly decided that the correct answer was number
two, three triangles. We suspect that the reason the system was so emphatically
correct on this test but wrong on the previous one was the random nature of our
vocabulary words. With only 10 dimensions, there is a good chance that the
word for “square” could be very similar to the word for “diamond”, causing the
system to get confused. On the other hand, it looks like in this case the word
for triangle was very distinct, making it easy for the system to find the correct
answer. We should therefore be able to improve all of our results, and avoid
incorrect answers such as in the previous test, by increasing the dimension of
the vectors. This is something we will investigate with further testing. Overall,
we take these tests as demonstrating that our system can correctly solve simple
matrices, and that it does so by finding general rules.

5 Discussion

There are several limitations of our model:

1. It does not realistically simulate the neural properties. Since one of the
main goals of our model is neurological plausibility, this is something we
intend to address as soon as possible. However, we are confident that
this will simply be a matter of time, not requiring any significant changes
to our model. One of the advantages of the NEF is that we can easily
switch between different levels of detail; all we are doing here is modifying
the properties of the neural populations, the overall logic of the system
remains unchanged.

2. The matrices our system is solving are very simplified. We would like our
model to be able to tackle at least the intermediate problems on Raven’s
Advanced Progressive Matrices, and that will require expansion of its cur-
rent abilities. One hypothesis is that there is a “simplifying system” prior
to this one in the visual processing stream (this might be what is oc-
curring in the attention directing system in the superior parietal cortex).

16



This simplifying system would take the overall matrix and break it down
into the simple inputs which can be handled by the rule finding system
we have developed here.

3. We have not tested our system as thoroughly as we might like. Right now
creating test matrices is a somewhat laborious, manual process. We need
to streamline the testing system so that we can better examine under what
circumstances our system succeeds, and what causes it to fail.

5.1 Future directions

There are a number of enhancements we would like to make to the current
model. First, we would like to try encoding T in the synaptic weights rather
than representing it explicitly (as seen in Eliasmith [2005]). This should prove
useful as we move to higher dimensions, where explicit representation becomes
more and more difficult.

Second, we would like to expand our model to cover more of the RPM
solving process. Most importantly this would involve modelling the abstract
reasoning system (the counterpart to the visual processing system as discussed
in the system description). This would allow the system to solve the more
difficult matrices that require abstract rules, such as “every shape in a row is
different”. It would also be interesting to model other visual processes, such
as the simplification system mentioned above. This would allow our system to
handle more complex inputs, rather than requiring the preprocessing that is
currently occurring. We would like to avoid preprocessing as much as possible,
because it has a tendency to sneak the solution into the inputs. For example,
in Matrix 1 we are encoding the matrix using only shape descriptions; thus the
system does not need to determine that what is relevant is shape rather than
something like colour, which would otherwise be a tricky problem. Ideally we
would like to incorporate a perceptual system into the model so that it can
handle the raw matrix image. This is the advantage of building the system in
Nengo—if such a perceptual system is developed, it will not be hard to integrate
it into our current model.

Third, we would like to expand the system so that it can handle three-cell
rules. Under the current model we can only learn pair-wise rules (ex. “the
previous cell plus one”), but many RPM problems cannot be solved this way.
For example, a common rule is figure addition, where the figures in the first
two cells are superimposed in some way to form the third cell. We could not
learn this rule under the current system, because the relationship between the
first and second cell is not the same as the relationship between the second and
third cell. One possible way to get around this problem would be to treat the
first and second cells as a single vector, and learn the transformation from that
combined vector to the third cell. This may cause problems, because we would
only have two training examples in a matrix. We would also have to think
carefully about how to structure the representation of those first two cells. It
is unlikely that simply adding the representations of the first and second cells

17



together would give us enough structural information, we would need to clearly
distinguish which information came from cell 1 and which from cell 2.

This is related to our final future improvement, which is more complex ma-
trix representations. When representing Matrix 1 and 2 we used a very simple
structure of [attribute ⊗ value + attribute ⊗ value ...]. As we move to more
difficult problems involving more complex transformations, this will likely prove
insufficient. For example, if we want to add two figures together then we need
to know not only what shapes they contain, but where those shapes are. We
will need to come up with methods to encode more structure, while balancing
the need to keep the size of the vectors (and corresponding neural populations)
reasonable.

6 Conclusion

We have presented a mechanistic, neurally plausible model that is consistent
with the available behavioural and neurological data on Raven’s Progressive
Matrices. This model is able to solve simple RPM-like problems, and it does so
by finding general rules rather than one-off solutions.

Even with these results, we must keep in mind that this system is nowhere
close to being able to sit down and take the RPM. What we have modeled
here is one component, the rule-finding system, of the wide network of abilities
necessary to take this test.

Despite these limitations, the benefits of this model are several. First, it
serves as an initial core, from which we can expand in the future to develop a
more comprehensive system. Developing in Nengo facilitates this by employ-
ing a standard interface that can be linked with other Nengo models. Second,
developing a model forces us to examine our theories, and reveals gaps or in-
consistencies therein. In this case we found that we are lacking theories as to
how novel rules are generated, which motivated the focus of this model. And
finally, the existence of this model demonstrates that neurally based models are
a useful avenue to pursue when trying to accomplish these types of high-level
reasoning tasks. The fact that we were able to accomplish what we did, even in
this limited problem set, with such few and simple components is evidence that
neural models are interesting for not just their insight into the brain but also
their concrete results. Hopefully this will only become more clear as the model
grows and is able to tackle increasingly complex problems.

References

Renée Babcock. Analysis of age differences in types of errors on the Raven’s
Advanced Progressive Matrices. Intelligence, 30:485–503, 2002.

Patricia Carpenter, Marcel Just, and Peter Shell. What one intelligence test
measures: A theoretical account of the processing in the Raven’s Progressive
Matrices test. Psychological Review, 97:404–431, 1990.

18



Richard DeShon, David Chan, and Daniel Weissbein. Verbal overshadowing
effects on Raven’s Advanced Progressive Matrices: Evidence for multidimen-
sional performance determinants. Intelligence, 21:135–155, 1995.

Chris Eliasmith. Cognition with neurons: A large-scale, biologically realistic
model of the wason task. In Proceedings of the 27th Annual Conference of the
Cognitive Science Society, 2005.

Chris Eliasmith and Charles Anderson. Neural Engineering: Computation, rep-
resentation, and dynamics in neurobiological systems. MIT Press, 2003.

Richard Haier, Benjamin Siegel, Keith Nuechterlein, Erin Hazlett, Joseph Wu,
Joanne Paek, Heather Browning, and Monte Buchsbaum. Cortical glucose
metabolic rate correlates of abstract reasoning and attention studied with
Positron Emission Tomography. Intelligence, 12:199–217, 1988.

Patrick Kyllonen and Raymond Christal. Reasoning ability is (little more than)
working-memory capacity?! Intelligence, 14:389–433, 1990.

Brachia Marshalek, David Lohman, and Richard Snow. The complexity con-
tinuum in the radex and hierarchical models of intelligence. Intelligence, 7:
107–127, 1983.

Maria Meo, Maxwell Roberts, and Francesco Marucci. Element salience as a
predictor of item difficulty for Raven’s Progressive Matrices. Intelligence, 35:
359–368, 2007.

Jane Neumann. Holistic Processing of Hierarchical Structures in Connectionist
Networks. PhD thesis, University of Edinburgh, 2001.

Tony Plate. Holographic Reduced Representations. CLSI Publications, 2003.

Vivek Prabhakaran, Jennifer Smith, John Desmond, Gary Glover, and John
Gabrieli. Neural substrates of fluid reasoning: An fMRI study of neocorti-
cal activation during performance of the Raven’s Progressive Matrices test.
Cognitive Psychology, 33:43–63, 1997.

Terrence Stewart, Bryan Tripp, and Chris Eliasmith. Python scripting in the
nengo simulator. Frontiers in Neuroinformatics, 3, 2009.

Nash Unsworth and Randall Engle. Working memory capacity and fluid abili-
ties: Examining the correlation between Operation Span and Raven. Intelli-
gence, 33:67–81, 2005.

Tom Verguts and Paul De Boeck. The induction of solution rules in Raven’s
Progressive Matrices test. European Journal of Cognitive Psychology, 14:521–
547, 2002.

Tom Verguts, Paul De Boeck, and Eric Maris. Generation speed in Raven’s
Progressive Matrices test. Intelligence, 27:329–345, 2000.

19


