
NEF Implementation of the Visuomotor Transformation Model

Travis DeWolf
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada

tdewolf@cs.uwaterloo.ca

January 16, 2009

1 Introduction

This paper describes the NEF implementation of the Visuomotor Transformation Model presented by Blohm
& Crawford in their paper Computations for geometrically accurate visually guided reaching in 3-D space.
The implementation was done in Nengo using Python script.

The Visuomotor Transformation Model addresses the question in neuroscience of how the brain can
transform visual signals into accurate 3-D reach commands. Blohm & Crawford take the results gathered
from experiments performed on humans, described in detail in their paper, and compare against the expected
error computed from their model with various extra-retinal information withheld (i.e. the rotation of the eyes
or tilt of the head). Their findings suggest that the brain maintains accurate 3-D visuomotor transformation
geometry of the eyes-head-shoulder linkage. Accounting for the geometry of a 3-D eyes-head-shoulder linkage
involves four stages: eye related head rotation, eye related head translation, head related body rotation, and
head related shoulder translation [2].

To compute the rotations and translations in 3-D space the model uses dual quaternions, found commonly
in the fields of robotics and 3-D computer graphics. Described in more detail below, dual quaternions provide
a computationally inexpensive way to represent object movement in 3-d space. It is also possible to describe
3-D reach commands using dual quaternions and perform transformations on the commands. The Visuomotor
Transformation Model takes as input the current hand and target positions in 3-D space, generates a reach
command in these eye-centered coordinates, and outputs shoulder-centered 3-D reach commands. In the
context of a system modeling motor control, these commands could then be used to guide the initial muscle
movement in the arm before feedback is available.

1.1 Quaternions

Quaternions are a mathematical device that can be used to represent rotations in three-dimensional space.
Originally described as an ordered 4-tuple consisting of one real number and three mutually orthonogal
imaginary units with real coefficients, they are an extension of complex numbers. While complex numbers
are of the form

c = w + xi

and can be represented as a two-dimensional coordinate on a complex plane, quaternions are of the form

q = w + xi+ yj + zk

1

and can be represented as a coordinate plotted in 4-D space.

The numbers i, j, and k relate to the real numbers and each other in the following way:

i2 = j2 = k2 = ijk = −1
ij = k

ji = −k.

The set of quaternions, H, is equal to R4; a 4-D vector space over the real numbers. The set H is a
non-commutative division ring. For our purposes the most prominent characteristic of this set is that it is
non-commutative. This means that when multiplying two quaternions q1, q2, in general

q1q2 6= q2q1.

1.1.1 Basic Operations

A quaternion q = w + xi+ yj + zk will often be denoted

q = [w, x, y, z]

or
q = [w, v]

where v = [x, y, z]. Using this notation we define the addition and subtraction of two quaternions as the
operation performed on the corresponding terms (i.e. q1 + q2 = (w1 + w2, x1 + x2, y1 + y2, z1 + z2) =
(w1 + w2, v1 + v2)).

Multiplication is defined as follows:

q1q2 = [w1w2 − v1 · v2, w1v2 + w2v1 + v1 × v2]

where · is vector dot product and × is cross multiplication. The expanded version of this is

q1q2 =(w1w2 − x1x2 − y1y2 − z1z2)
+ i(w1x2 + x1w2 + y1z2 − z1y2)
+ j(w1y2 − x1z2 + y1w2 + z1x2)
+ k(w1z2 + x1y2 − y1x2 + z1w1).

The norm of a quaternion is denoted

N(q) = (w2 + x2 + y2 + z2)1/2.

The norm is a function that returns a single real number value for a quaternion and can be thought of as its
”length”.

The conjugate of a quaternion is denoted q and defined

q = (w,−v) = (w,−x,−y,−z).

The inverse of a quaternion is defined

q−1 =
q

N(q)2
,

so for quaternions where the norm N(q) = 1 we can see that

q−1 = q.

2

1.1.2 Representing and Applying Rotations

To represent a rotation a rotation θ around the axis ~r we create the quaternion

q = [cos(
θ

2
), ~r · sin(

θ

2
)].

It’s important to note that N(q) = 1. We now have the quaternion q representing the rotation we wish to
apply.

To rotate the vector representing our point in space ~s and achieve the rotated point ~s′ we perform the
following operation:

~s′ = ~r(~s · ~r) + (~s− ~r(~s · ~r)cos(θ) + (~s× ~r)sin(θ).

Written using our quaternion q we have:

[0, ~s′] = q · (0, ~s) · q.

1.2 Dual Quaternion

Only being able to represent rotation is not enough, however. We also have to be able to represent translation
along an axis as well. This is what dual quaternions are used for. A dual quaternion is written

Q = [q, εq0]

where q is a quaternion and ε is a duality operator where ε2 = 0. Where quaternions where 4-tuple, a dual
quaternion is 8-tuple.

1.2.1 Basic Operations

Addition and subtraction of dual quaternions are the same as for regular quaternions, corresponding terms
operate on each other. Dual quaternion multiplication, however, operates in the following way:

AB = (a+ εa0)(b+ εb0)
= ab+ ε(a0b+ ab0).

The conjugate of a dual quaternion Q = [q, εq0] is again denoted Q and defined:

Q = [(w1,−v1), ε(−w2, v2)].

1.2.2 Representing and Applying Transformations

To represent a rotation θ around the axis ~r applied in ~a and a translation d along ~r we create the dual
quaternion Q = [q, εq0] where

q = [cos(
θ

2
), ~r · sin(

θ

2
)]

q0 = [−d/2 · sin(
θ

2
), d/2 · ~rcos(θ

2
) + (~r × ~a) · sin(

θ

2
)].

3

Now that we can represent rotation and translation we can capture the reach command with a dual
quaternion, Q. To transform this into another reference frame we can create a dual quaternion (or series
of dual quaternions) D with the appropriate rotations and translations encoded. We then carry out the
following calculation

Q′ = DQD

where Q′ is the reach command transformed into the new reference frame.

Since one might also wish to check our values after transformations, we describe a set of equation that
allows us to retrieve and examine the current value of our input variables. As we gave two points in 3-D
space that were turned into a translation reach command, we will retrieve the translation d and the axis
that the translation is applied in ~r that make up the initial reach command. To find these values we must
also retrieve the current angle of rotation θ from the current dual quaternion Q = [(w1, ~v1), (w2, ~v2)]. We do
this with the equation

θ = 2 arccos(w1).

Now that we have θ we can retrieve d and ~r from Q with

d = 2w2/ sin(
θ

2
)

~r = ~v1/ sin(
θ

2
)

as long as sin(θ2) 6= 0. This will give us the specifics of our reach command in the current frame of reference,
which is determined by the stage that the VTM is in when Q is examined.

2 System Description

Gaze-centered representations are the positions of objects in space relative to their location on the retina.
There has been much work done suggesting that these representations are stored in the posterior parietal
cortex (PPC) [1] [4]. To calculate a reach command it is also necessary to have the position of the effector,
the subjects hand in this case, in a comparable reference frame. It has been shown that the PPC stores
the hand position in gaze-centered coordinates. This information has lead to the idea that the hand-target
comparison is carried out in gaze-centered coordinates in the PPC.

The Visuomotor Transformation Model (VTM) simulates conversion of the reach command from gaze-
centered coordinates to shoulder-centered coordinates. As the gaze-centered representations of the motor
plan are thought to be encoded in the PPC, there is also evidence suggesting that the shoulder-centered
representation is encoded in the premotor (PM) cortex. Blohm & Crawford suggest this in their paper,
extrapolating from findings that show wrist movement directions in space are represented in the PM inde-
pendent of wrist orientation [5] [6].

2.1 Transformations of the VTM

In their paper, Blohm & Crawford detail four different levels and five transformations for an accurate
reference frame conversion from gaze-centered to shoulder-centered. The four levels are eye related head
rotation, eye related head translation, head related body rotation, and head related shoulder translation. By
leaving out different levels in the model it is possible to estimate the expected reach error one would see in
human subjects if the brain doesn’t take that information into account when generating reach commands.

The transformations in the model are the following: QL, QOCR, QEYET , QD, and QHT . We will now
examine these five dual quaternions. They are presented in the order they need be applied to the reach
command, as quaternions are not commutative.

4

Figure 1: The visuomotor transformation model by Blohm & Crawford

The eye related head rotation level contains QL and QOCR. QL counters the rotation of the eyes, so that
the reach command is now centered on the rotation of the head. It does this by using Listing’s law, which
describes the 3-D orientation of the eye and its axis of rotation, and a quaternion describing the primary
position of the eyes in their orbit.

However this does not center them perfectly, according to the static vestibulo-ocular reflex (VOR) which
states that when the head rotates toward the shoulder there is a slight counter roll that takes place in the
eyes and when the head rotates along the ear-to-ear axis a tilt occurs in the normal vector of Listing’s plane.
The dual quaternion QOCR accounts for the ocular counter roll described by VOR.

QEYET is on the eye related head translation level and simply translates the reach command to the
center of rotation in the head. Blohm & Crawford used standard measurements for the translation, 15 cm
vertically and 17 cm backwards.

The dual quaternion QD is on the head related body rotation level of the model. This quaternion
accounts for Donder’s law, which describes the effect that head movement has on the final gaze position
depends on the axis of rotation [3] [7].

QHT is the head related shoulder translation dual quaternion. Blohm & Crawford use for measurements
a shoulder length of 20 cm and a neck length of 10 cm.

Applying these five dual quaternions to a dual quaternion containing a gaze-centered reach command
will transform it into shoulder-centered coordinates.

5

2.2 Representation of Variables

The VTM accepts as input four variables: ~t which is the target location in 3-D space, and ~h which is the
extraretinal hand position signal. The reach command is then generated in gaze-centered coordinates and
converted into dual quaternion form from this input which is implemented as function inputs not subject to
noise.

The dual quaternions used in the system all have an NEFEnsemble for each of their components. Each of
these 8 networks is composed of NEFEnsembles which are sets of LIF neurons with a firing rate of 300−700,
a range of −1 to 1, taurc = .02, and tauref = .001.

The measurements mentioned in the previous section (neck length 10 cm, shoulder length 20 cm, etc)
are assumed to be hard-coded extra-information stored in the brain and are not subject to noise. This also
includes the pitch and roll of the head. In this system they are taken as function input.

In the VTM the position of the eyes is taken as three separate spacial directions (left-right, backwards-
forwards, down-up) and each are subject to a noise level that scales with the square root of the eye position
angle and an additional constant Gaussian background noise level added. In this implementation however
the noise detailed by Blohm & Crawford was left out. The necessary hand transformation calculation then
is done inside NEFEnsembles of 200 nodes with the same properties as the ones described above.

2.3 Model Details

Mathematically, the five dual quaternions described are defined as follows:

QL = [QL′QPP , 0]T

QL′ =
√
−[0, ~g]TQLP

QPP =
√
Q−1
LP [0 0 1 0]T

where ~g is the direction of the gaze in space, and QLP is a quaternion that accounts for the gravity tilt of
Listing’s plane. It is defined:

QLP = [0 0 cos(α) −sin(α)]T

α = α0 + cPβP

where α0 = 5 degrees is the tilt angle of Listing’s plane for the head-upright position degrees, βP is the pitch
angle and cP = .05 is the gain for the gravity modulation.

QOCR = [cos(β) 0 sin(β) 0]T

β = −cOCRβR

where βR is the head-roll angle, and cOCR = .05 is the gain for the counter roll of βR.

QEYET = 1 + ε(7.5j + 8.5k)

The values in QEYET are found by dividing the desired translation (15 and 17 cm) in half.

QD =
[
QD′

0

]
QD′ = y+[(1− y · y) 0 0 0]1/2

6

where the dot represents vector dot product again, and

y =

0

γV x1

γTx1x3

γHx3

where

x =

√
−
[

0
~g

]
[0 0 1 0]T

and γH , γT , and γV represent the horizontal, torsional, and vertical gain of the head contribution, respec-
tively. The VTM uses predefined values, set to:

(γV , γT , γV) = (0.7,−0.1, 0.3).

Finally, the last dual quaternion is again a translation, defined:

QHT = 1 + ε(10i+ 5j).

2.4 Overall System Architecture

The calculations that take place once the reach command is generated in the VTM can be mathematically
described as follows using the dual quaternions described in the previous section:

R′ = QRQ

where R is the reach command in gaze-centered coordinates, and

Q = QHTQDQEYETQOCRQL

Q = QLQOCRQEYET QD QHT .

The system itself is organized into three main networks of dual quaternions. The first network converts
the input (~t, ~h) into a dual quaternion that captures the reach command in gaze-centered coordinates.
The second implements the first two levels of the VTM (QL, QOCR, and QEYET), transforming the reach
command from gaze-centered coordinates to head-centered coordinates. The second network implements the
third and fourth levels of the VTM (QD, and QHT) and completes the transformation to shoulder-centered
coordinates. This modularity was an obvious choice and leads to a system easily extended to include further
transformation to elbow or wrist-centered frames of reference.

The system is set up so that in the first network the input dual quaternion is surrounded by QL and its
conjugate QL and the calculations are carried out. Then it is passed along and placed between QOCR and
QOCR and so on. This is opposed to placing it at the end of a series of quaternions in the first network and
before their conjugates in the second, and allows for better modularization.

Rewriting Q1RQ1 as Q1(R) the system divided into the two networks Q1 and Q2 which transform gaze-
centered coordinates into head-centered and then head-centered to shoulder-centered, respectively, can be
written:

R′ = Q2(Q1(R))

where

Q1(R) = QEYETQOCRQL R QLQOCRQEYET

Q2(R) = QHTQD R QDQHT .

7

3 Design Specification

Mentioned in the previous section and expanded upon here, the addition, subtraction, sin, cos, and sqrt
components of the dual quaternions are each represented by a NEFEnsemble with a firing rate 300− 700, a
range 0 to 1, tauRC = .02, and tauref = .001 with radii length 1. For most of these ensembles the number of
neurons in them is directly related to the number of dimensions they represent, as a rule for this model there
are 100 neurons for each dimension and ensemble handles. The multiplication performing ensembles are
groups of 350 neurons operating over a range of 0.05 to 1 with radii length

√
2, with the other variables the

same as specified above. The reason for choosing them to operate from 0.05 to 1 instead of 0 to 1 is to reduce
noise interference on zero multiplication. Blohm & Crawford note in their paper that when generating the
reach command from the target position and the position of the hand in 3-D space the model most closely
matched the data when operating under the assumption that the hand position was not subject to noise.
Aside from extraretinal hand position information the VTM also uses eye and head position signals in its
calculations.

Blohm & Crawford specify the eye and head position signals as both being subject to a constant Gaussian
noise level, and the eye position signal subject to an additional angle dependent scaled noise level that affects
each direction independently.

The authors also state explicitly they do not think it likely that the brain implements dual quaternions
when performing the mathematical transformations from gaze-centered coordinates to a shoulder-centered
frame of reference. They do, however, mention that the brain must perform the computations underlying
the VTM to arrive at the same shoulder-centered frame of reference. To this end, they cite the paper by
Salinas & Abbot entitled Coordinate transformations in the visual system: How to generate gain fields and
what to compute with them, and suggest that these ’gain fields’ could adjust the relative contribution of
separate units until the gaze-centered reach command encoded in the PPC populations is transformed into
a shoulder-centered reference frame in the PM population.

4 Implementation

In this section we will describe the decoding rules necessary for implementing the specified transformations,
and look at the results of the simulations carried out in Nengo.

4.1 Decoding Rules

Dual quaternion mathematics can all be broken down to addition, subtraction, and multiplication. The VTM
then additionally employs the square root, cosine, and sine functions. Since the addition and subtraction
functions are well understood we won’t examine them in this section, we will instead look at the latter four
functions.

The most complicated multiplication performed in the VTM is of 3 variables; it is described here. The
transformation can be written formally as w = x · y · z. We define the representations of the right side

8

variables as:

ai (x) = Gi

[
αiφ̃ix+ Jbiasi

]
x̂ =

∑
i

ai (x)φxi

bj (y) = Gj

[
αj φ̃jy + Jbiasj

]
ŷ =

∑
j

bj (y)φyj

ck (z) = Gk

[
αkφ̃kz + Jbiask

]
ẑ =

∑
k

ck (z)φzk,

Where G [·] is the response function of the neuron determined by its intrinsic properties, φ̃ is the preferred
direction of the neurons, Jbias represents the background noise in the system, and φ is the set of decoders
used to find the input estimate. We can now write the firing rate for w as

dl (x · y · z) = Gk

[
αlφ̃l (x · y · z) + Jbiasl

]
= Gl

αl
φ̃l∑

i

ai(x)φxi ·
∑
j

bj(y)φyj ·
∑
k

ck(z)φkz

+ Jbiasl

= Gl

∑
i,j,k

ωlijkai(x) bj(y) ck(z) + Jbiask

 ,
where ωlijk = αlφ̃lφ

x
i φ

y
jφ

z
k. To write the output of the a, b, and c populations as spikes we have

ai(x)bj(y)ck(z) =
∑
n,m,p

hi(t− tin)hj(t− tjm)hk(t− tkp) .

For the sine, cosine, and square root transformations we have to find the appropriate decoders φfi of each
one. This is done by writing out our estimate of the result

f̂ (x) =
∑
i

ai(x)φfi

where ai (x) is the neural representation of x as described above, and then minimizing the error

Ef =
〈[
f (x)− f̂ (x)

]2〉
x

where the 〈·〉x indicates the integral over x and we take the function f be defined as sin, cos, and sqrt as
appropriate.

Once the decoders have been determined we can find the transformation weights through the following
calculations:

hr (f (x)) = Gr

[
αr

(
φ̃rf (x)

)
+ Jbiasr

]
= Gr

[
αr

(
φ̃r
∑
i

ai(x)φfi

)
+ Jbiasr

]

= Gr

[∑
i

ωriai(x) + Jbiasr

]

where ωri = αrφ̃rφ
f
i .

9

Figure 2: Preliminary Network in Nengo

4.2 In Nengo

Using the user interface to the Neural Engineering Framework (NEF) that Nengo provides, all of the oper-
ations here can be efficiently implemented and the system as a whole put together in an visually intuitive
manner. Here we show the various layers and networks of our implementation. In describing the details of
this section we assume a basic knowledge of the NEF and Nengo.

4.2.1 Preliminary Network

The preliminary network performs the task of converting current hand position and target hand position
into a gaze-centered quaternion that describes the desired translation. It consists of 3 relay neural groups
(ensembles), and 3 addition/subtraction ensembles. The relay nodes operate are comprised of a single
neuron and operate in direct mode, their sole purpose is to facilitate easy set up of the network. The 3
addition/subtraction ensembles are made up of 200 neurons with x intercepts 0 to 1, and subtract the target
position from the current hand position to get the desired translation.

4.2.2 Quaternions

The quaternion network is composed of 8 input relay ensembles, 16 multiplication ensembles, 4 addi-
tion/subtraction ensembles and performs the multiplication operation between two quaternions, as seen
in Figure 3. Instead of having 4 inputs for each quaternion element, there is a single exposed input node for
each element which the relay node then directs to the proper multiplication ensembles. All other ensembles
operate in default simulation mode. The 16 multiplication ensembles perform the multiplication operations
that occur during quaternion multiplication, to achieve the required accuracy additional classes were added
to the Nengo source code which allows python scripts to create neural ensembles with optimal encoding
vectors for 2-dimensional multiplication. They are sets of 350 neurons with radii length

√
2 that operate

with the parameters described above. The 4 addition/subtraction ensembles then perform the addition and
subtraction between the multiplication ensemble results appropriately to arrive at the final four elements of
the resulting quaternion.

10

Figure 3: Quaternion Multiplication in Nengo

4.2.3 Dual Quaternions

The dual quaternion network is a set of 3 quaternion networks that perform the dual quaternion multiplication
described in the introduction. Again there are input relay nodes, 16 for dual quaternions, that direct input
appropriately. In addition there is an ensemble that performs adds corresponding elements between the the
two quaternion networks that determine the second quaternion of the resulting dual quaternion. The relay
nodes and addition ensembles operate with the same details as the ones described in the quaternion network.
The arrangement in Nengo can be seen in Figure 4.

4.2.4 Eye-Head Transformation

The eye-head transformation network, labeled QHead, uses 6 dual quaternion networks, 3 gaze-direction
relay nodes (one for each of the 3D space directions x, y, and z), a quaternion network and 7 function
input nodes to implement the reference frame shift from eye-centered to head-centered coordinates, seen in
Figure 5. The 6 dual quaternion networks are used to perform the transformations of Qeye, Qocr, Ql and
their conjugates Qeye, Qocr, and Ql. The function inputs and quaternion network are used to set up the
appropriate values for the transformations, as described in model details section.

4.2.5 Head-Shoulder Transformation

The head-shoulder transformation network, labeled QShoulder, uses 4 dual quaternion networks, 4 ensembles,
and 7 function inputs to implement the reference coordinate shift from head-centered to shoulder-centered,
seen in Figure 6. The 4 dual quaternion networks are used to perform the transformations of Qht, Qd, and
their conjugates Qht and Qd. Again, the function inputs and ensembles are used to set up the appropriate
values to feed to the dual quaternion networks so the transformations can be carried out as described above.

11

Figure 4: Dual Quaternion Multiplication in Nengo

Figure 5: Eye-Head Transformation Network in Nengo

12

Figure 6: Head-Shoulder Transformation Network in Nengo

Figure 7: Main Network in Nengo

4.2.6 Main Network

The main networks is the highest level of abstraction in this implementation of the VTM. At this stage the
coordinates of the target hand position are entered into the first three inputs of the preliminary network as
elements of a 3D vector [x, y, z] (named f(~t,~h)) and the current hand position is entered into the last three
input of f(~t,~h) in the same way. The translation is calculated here and passed as input to the eye-head trans-
formation network with function input filling in the remaining values appropriately to create a translation
quaternion describing the desired reach command. After the first series of transformations have been ap-
plied in the eye-head network and the quaternion has been converted to a head-centered reference frame, it is
passed into the head-shoulder reference frame where a result in shoulder-centered coordinates is given as out-
put, Figure 7. It is easy to see how well this model can potentially scales, adding in further transformations
to other reference frames, such as the wrist, once the transformation is detailed mathematically.

4.3 Results

The simulation is run in Nengo in both direct mode first to confirm that the model has been correctly
implemented, and then default mode to simulate neural execution. The results are examined here, where
we build up from a quaternion implementation to the simulation of the entire model. Due to hardware
memory restrictions it was not possible to simulate a fully realized model of the VTM, so parts of the full
model are forced to remain in direct mode where calculations do not involve neural simulation. Lacking a
proper input/output data set for comparison, the gaze vector g = (1, 1, 1), betap, betar = 1, ~h = (0, 0, 0),

13

Figure 8: Quaternion network simulated in Nengo. The black line represents ideal output from direct mode,
and the colored lines represent output gathered from default mode, where neural activity is simulated.
Default mode results filtered at .05.

and ~t = (.01, .01, .01) during the simulations, where h is the 3D vector representing current hand location
and t is the 3D vector representing target location. To test the quaternions and dual quaternions the input
A = (.5, 0, 0, 0), B = (.3, 0, 0, .3) and A = (.5, 0, 0, 0, .5, .5, .5, 0), B = (.3, 0, 0, .3, .3, 0, 0, .3), with expected
output C = (.15, 0, 0, .15) and C = (.15, 0, 0, .15, .3, .3, 0, .3), respectively.

4.3.1 Quaternion Simulation

The results of direct and default mode simulation of a quaternion are shown in Figure 8.

4.3.2 Dual Quaternion Simulation

The results of direct and default mode simulation of a dual quaternion are shown in Figure 9.

4.3.3 QInput Simulation

The results of the QInput direct and default mode simulation are displayed in Figure 10. During simulation,
.01 was used as the target value for all three target dimensions, and the hand position was (0, 0, 0).

14

Figure 9: Dual quaternion network simulated in Nengo. The black line represents the ideal output from
direct mode, and the colored lines represent the output gathered from default mode, where neural activity
is simulated. Default mode results filtered at .05.

4.3.4 QHead Simulation

The results of direct and default mode simulation of a dual quaternion are shown in Figure 11 and Figure
12, respectively. For the simulation the gaze direction ~g = (1, 1, 1), betap = 1, and betar = 1.

4.3.5 QShoulder Simulation

The QShoulder simulation results represent the output of the VTM network as a whole, since it is the final
stage of the model. The results of direct and default mode simulation of a dual quaternion are shown in Figure
13 and Figure 14, respectively. Due to the size of the model it was not possible to fully realize the entire
simulation all at once, so for the default mode execution of the QShoulder network the default mode results
of the QHead network were manually input, which accounts for the lack of a time delay when comparing
network results. Values used for input in default mode were (0, 0, 0, 0,−.0021, .0001,−.0002, .0016) as taken
from QHead default mode output. Again for the QShoulder network the gaze direction was ~g = (1, 1, 1).

15

Figure 10: The QInput network simulated in Nengo. The black line represents the ideal output from
direct mode, and the coloured lines represent the output from default mode, where neuronal performance is
simulated. Default mode results filtered at .05.

Figure 11: The QHead network simulated in Nengo in direct mode.

16

Figure 12: The QHead network simulated in Nengo in default mode, where neuronal performance is simu-
lated. Default mode results filtered at .5.

Figure 13: The QShoulder network simulated in Nengo in direct mode.

17

Figure 14: The QShoulder network simulated in Nengo in default mode, where neuronal performance is
simulated. Default mode results filtered at .05.

5 Discussion

As is apparent, the switch from direct mode to default mode resulted in some undesirable changes in output
for both the QHead and QShoulder networks. It is possible that this is due to the use of the absolute value
function when calculating the square root of a variable, as the absolute value function implemented in neurons
resulted in answers fairly skewed with noise. In addition to this, all the values being manipulated by the VTM
are quite small, especially when scaled to 1 as required for multiplication in Nengo. Considering this, creating
ensembles capable of performing operations on these values accurate enough would require populations much
larger than the ones used here. Due to hardware restrictions the larger population simulation was not possible
here.

At each step there of the model there was a great deal of accuracy lost, and it would seem then like a
good idea to perform all of the calculations through less dual quaternions, since it is mathematically possible
to combine many into one. Indeed, it would be possible to calculate the mathematics of the dual quaternions
such that instead of implementing 12 dual quaternions (each stage and their complex conjugate) there could
be as few as 1 dual quaternions and its complex conjugates performing all of the necessary transformations
if not for prioperceptive input specified during runtime for each dual quaternion. In addition to this, the
model was not implemented in this manner because it seems likely that the reference frame transformation
to an end-point of an effector would happen in stages, and not all at once. Many intuitive ideas about the
brain’s operation however are completely false though so it is possible that this is folly as well. Blohm &
Crawford do not delve into the fashion in which their model layers the calculations in their paper detailing
the VTM.

This implementation of the VTM leads to the prediction of a large number of neurons tuned to 45,
135, 225, and 315 degrees in clusters, which are the ideal tunings for 2 dimensional neurons performing
multiplication on 2 variables. In this simulation there were 16 clusters of multiplication ensembles in every
quaternion, 3 quaternions in every dual quaternions, and 12 dual quaternions. At 350 nodes for each
multiplication ensemble this leads to a grand total of 201600 neurons tuned to these preferred directions in
this model. If reference frame transformation takes place in this fashion in the brain there are likely many

18

times as many of these neurons performing these operations, as the end result here provided errors not seen
in human movement [2].

6 Conclusions

In this paper we have examined the details of the Visuomotor Transformation Model (VTM), looking at
implementing dual quaternion multiplication in neural ensembles with an end result of reference frame trans-
lation for motor commands. The goal of the VTM is to accurately transform motor commands represented
by 8 dimensional vectors (dual quaternions) from eye-centered coordinates to shoulder-centered coordinates.
Using the details provided in Blohm & Crawford’s paper Computations for geometrically accurate visually
guided reaching in 3-D space the VTM was recreated in Nengo and simulations were run. The end result
of these simulations led to inaccurate transformation, most likely due to the infinitesimal size of the vari-
ables being passed around inside the noisy network. This suggests that reference frame translation is not
implemented in this manner in the brain, or perhaps if it is that a much larger number of neurons are being
employed by the networks. So while reference frame translation using the VTM by Blohm & Crawford can
work for systems that don’t operate under noisy conditions, the work done here further supports the idea
that it is not performed this way in the brain.

7 Future Work

There are several possible avenues of future work for this model. The modularity of this network allows
for an easy extension of the reference frame translation to continue down the arm, with the mathematics
detailed it would be simple to add to the VTM model to get output in wrist-centered coordinates for hand
movement. As it is, however, the VTM model is already too large to be fully loaded into memory on a
computer with 8GB of RAM, so a fully realized default mode simulation of the VTM with wrist-centered
reference frame motor command output might be a ways from plausibility. Another feature to be included
in this model can be noise on the prioperceptive. As it is, there is none of the additional noise related to eye
position detailed in the paper by Blohm & Crawford, another lane of future work could be to include this in
the model. Seeing as though the best use of the VTM is in noise free environemnts this would most likely
not be an profitable use of time.

The work on this project however did bring out a number of issues in Nengo, the majority of which have
been resolved. However there are still a few outstanding problems. During the implementation there were
additional classes added to Nengo so that the encoding vectors of neural ensembles could be specified. Used in
this model the classes were only used to specify the optimal encoding vectors for 2-dimensional multiplication
ensembles, a good extension of this project and Nengo would be a more general implementation of these
classes where instead of manually encoding the vectors in Java code, a python script was simply able to specify
the number of dimensions required by the ensemble and the optimal encoding vectors for multiplication would
be generated. Another addition to Nengo that would be nice would be automatic scaling of variables so that
it wouldn’t be necessesary to operate on a range between 0 and 1.

Relating back again to future work in the area of visuomotor transformation, as mentioned by Blohm &
Crawford in their paper, Salinas & Abbot have done research using gain fields depicting a more biologically
plausible method of coordinate frame transformation using gain fields. It would be interesting to attempt
an implementation of the model described in their paper Coordinate transformations in the visual system:
How to generate gain fields and what to compute with them and explore the differences between the two
implementations and the predictions each make about the brain.

19

References

[1] B.-C. S. L. Batista, A.P. and R. Andersen. Reach plans in eye-centered coordinates. Science, 285:257–260,
1999.

[2] G. Blohm and J. Crawford. Computations for geometrically accurate visually guided reaching in 3-d
space. Journal of Vision, 7(5):1–22, 2007.

[3] M.-T. J. Crawford, J.D. and E. Klier. Neural control of three-dimensional eye and head movements.
Current Opinion in Neurobiology, 13:655–662, 2003.

[4] M.-W. Crawford, J.D. and J. Marotta. Spatial transformations for eye-hand coordination. Journal of
Neurophysiology, 92:10–19, 2004.

[5] H.-D. Kakei, S. and P. Strick. Direction of action is represented in the ventral premotor cortex. Nature
Neuroscience, 4:1–10, 2001.

[6] S. Scott. Vision to action: New insights from a flip of the wrist. Nature Neuroscience, 4:487–507, 2001.

[7] D. Tweed. Three-dimensional model of the human eye-head saccadic system. Journal of Neurophysiology,
77:654–666, 1997.

20

