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Abstract—We explore and evaluate biologically-inspired rep-
resentations for an adaptive controller using Spatial Semantic
Pointers (SSPs). Specifically, we show our method for place-cell-
like SSP representations outperforms past methods. Using this
representation, we efficiently learn the dynamics of a given plant
over its state space. We implement this adaptive controller in
a spiking neural network along with a classical sliding mode
controller and prove the stability of the overall system despite
non-linear plant dynamics. We then simulate the controller on a
3-link arm and demonstrate that the proposed representational
method gives a simpler and more systematic way of designing the
neural representation of the state space. Compared to previous
methods, we show an increase of 1.23-1.25x in tracking accuracy.

I. INTRODUCTION

Control systems are essential for regulating and steering the
behaviour of dynamic systems and are relevant to numerous
application areas, such as robotics and automation. At its
core, controller design concerns formulating a control law that
defines the relationship between the system inputs and desired
outputs to achieve some performance objective regarding
stability, accuracy, and efficiency. Among classical control
design techniques, sliding mode control is widely studied due
to its robustness towards disturbances and strong performance
in non-linear applications. A sliding mode controller applies a
feedback-control loop to continuously sample a plant’s state
to generate a control signal to achieve desired dynamics (1).
A sliding variable is introduced in the state space, defining
a sliding manifold on which the plant exhibits the desired
behaviour. The controller moves the state onto this manifold by
controlling the sliding variable to enforce stable plant dynamics.
To effectively design this controller, it is assumed that the plant
dynamics are known so that the controller can negate their
influence. However, given unknown or time-varying dynamics,
the controller must adapt. Therefore, an adaptive component
can be introduced in parallel to the basic controller as a
form of forward control (2). Whereas classically, the adaptive
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component is structured to estimate the parameters of known
dynamics (2), it is also possible to learn an approximation of
the unknown dynamics.

Artificial neural networks (ANNSs), as universal function
approximators (3), provide a convenient parametrization for the
approximation of such dynamics. Such structures have become
ubiquitous tools in the reinforcement learning paradigm (4),
where optimization most often involves back-propagation of
error to learn all the parameters of the network simultaneously.
However, the best performance is achieved in offline settings
(that is, gradient updates are computed from a batch of
samples (5)). These optimization approaches are incompatible
with the adaptive control problem, where the network must
update in real-time. An alternative approach involves structuring
the adaptive component so that it can learn an approximation
of the dynamics over a fixed set of basis functions with
an online learning rule (6). In these schemes, the functional
approximation of the network is limited to the parametrization
of the output weights over fixed basis functions. As such,
the choice in the set of basis functions used is critical to the
performance of online learning of the dynamics, as the functions
that can be learned may be limited by the basis functions
selected. However, a well-chosen set of basis functions will
allow for effective learning of arbitrary nonlinear dynamics.

Real brains must deal with a wide array of adaptive control
problems in order to support behaviour that allows animals
and humans to survive and thrive in changing environments.
Unsurprisingly, neuromorphic adaptive control is a highly-
active area of research, striving for efficient online learning
that can update its model of the system in real-time using event-
based processing. DeWolf et al, demonstrated adaptive control
of an arm with a simulated network of spiking neurons (6),
which was later implemented on neuromorphic hardware (7).
In these models, the basis functions for learning are defined by
the tuning curves of neurons in the neural network. The input
weights, or encoders, of these neurons, are typically drawn
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from a uniform distribution defined over the domain of the
state space (8). A careful selection of encoders that structures
the basis functions to improve learning was considered in (9)
such that the state space was projected to a higher dimensional
hyper-sphere. A key finding was that to learn effectively over
space, the encoders must be chosen to sparsely represent the
state space. Sparseness — the property of a network that only
a small number of neurons are active for a given input -
is observed in many biological systems. Hippocampal place
cells (10), entorhinal grid cells (11), and Kenyon cells of the
insect mushroom body (12) all display significant sparseness.

Spatial Semantic Pointers (SSPs) are a high-dimensional vec-
tor representation of lower-dimensional continuous spaces (13;
14; 15), developed within the framework of the Semantic
Pointer Architecture (16), a method for building models of
biological cognition. SSP feature spaces have been exploited
to engineer hidden units with activity patterns that resemble
those observed in real brains, such as place cells (17), grid
cells (14), (18), and Kenyon cells (19). In a separate line
of research, an approach for engineering hidden units that
behave like grid cells over a 2D space, in that they exhibit a
hexagonally-tiled activity patterns, was developed using Fourier
basis functions spaced 120deg apart (20), (21), resulting in a
7-dimensional representation. In previous work, these grid-cell
like features were used as an input layer to a deep Q-network,
and found to improve sample efficiency on a continuous
control problem in a reinforcement learning setting (22).
However, to our knowledge, the efficacy of biologically-
grounded representations in an adaptive controller has yet
to be explored.

Here we introduce a novel, biologically-inspired method for
implementing adaptive control that leverages Spatial Semantic
Pointers (SSPs)(23) to form a basis representation for learning
state based dynamics. By merging this dynamic, brain-inspired
adaptive component with a classical sliding mode controller, we
build upon past work in neuromorphic control (6) and propose
a new biologically inspired method to design the adaptive basis
using Spatial Semantic Pointers (SSP). Specifically, we use
SSPs to generate place-cell-like, Kenyon-cell-like, and grid-
cell-like representations over the state space. Our approach
offers a systematic and simpler design process of the state space
representation by using spiking neural networks to represent
system states in a high-dimensional, sparse manner as an
adaptive basis for robust controllers, resulting in several key
contributions:

1) We propose the use of SSPs as basis function represen-

tations over state space for adaptive control.

2) We implement these SSP representations and a learning
rule at the neural level using the Neural Engineering
Framework (NEF) (8) to construct a neuromorphic
controller that leverages the learning capabilities and
power efficiency of spiking neural networks.

3) We prove both the guarantee of stability using SSP
representations in a controller, and the convergence of
the network’s learning process to the desired outcome.

4) Tracking performance is evaluated in a simulation of a

3-link arm and bench-marked against two previously-
proposed neuromorphic controllers.

5) We evaluate different methods for representing the online
learned model and show that SSPs structured as place
cells provide a 1.23 — 1.25x performance improvement
over past methods.

In the remainder of the paper, we begin by covering the
theoretical background and prerequisites in Section II and
present the sliding mode dynamics and SSP structure in Section
III. We then prove the stability of the dynamics in the context
of spiking neurons and introduce the controller structure. In
Section IV we present the results of hyper-parameter tuning
and compare the performance of our new approach to past
work in simulation.

II. THEORETICAL PREREQUISITES
A. Function approximation

In this work, we are concerned with approximating arbitrary
dynamics of a system online with a neural network. For real-
world systems, it is reasonable to assume that the mathematical
model representing the system’s dynamics is not perfectly
known and, in some cases, may be completely unknown.
Additionally, such systems are often exposed to external
disruptions that affect their performance. These uncertainties
can be categorized into two types: parametric uncertainties,
which are typically state-dependent (vanishing), and exogenous
disturbances, which are slow/fast time-varying (persistent). For
the context of this work, we assume all disturbances are state-
based so the switching component of a traditional sliding mode
controller can be neglected. However, the inclusion of such a
component would be straightforward given a bound on time-
based disturbances.

Lemma 1. Let F(x(t)) be a smooth function whose inputs
x(t) belong to the compact set §). There exists a neural network
(NN) satisfying

Fla(t) = wo(@(t) +¢ o

where ¢(x(t)) € RP represents a suitable set of basis functions
spanned by the network, w € R? the weight vector of the neural
network of p dimension and ¢ denotes the approximation error.
Let the optimal weight w*

w* = arg n{l;n{”}"(m) - wT¢(a:)||2} 2)
weE

where it’s upper-bounded by ||w*|| < @, |l(-)|| < ¢ and

le| < & with @, ¢, and £ are constants € R™T.

B. Sliding Manifold
The objective is to reach and remain into the manifold s

which is written as

d d—1

5= (5 + N 3)

where d is the order of the controlled dynamics and a chosen
parameter A, a positive constant that shapes the convergence
speed of the error. To this end, two phases are distinguished:
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Figure 1: a Architecture of the neural network providing the
adaptive component of the controller, depicting the input z,
SSP projection ¢(x/\), encoders e and weights w. Note that in
this work only w are learned. b-f: Examples of receptive fields
of neurons in the hidden layer serving as the basis functions for
the adaptive component. Shown are those for the two baselines,
Random Encoders (b) and the Selected Basis (9) (c), as well
as the three biologically-inspired basis functions evaluated in
this work: Kenyon cells (d), place cells (e), and grid cells (f).

-1 [

(1) reaching phase, where the state trajectories are driven
towards the manifold s, and the sliding phase where the state
trajectories are confined within this manifold by rendering the
manifold invariant, i.e.

$5=0 “)

III. METHODS
A. Neural Network Architecture

The architecture of the spiking neural network that realizes
adaptive control is shown in Fig.1. The input to the network
is the state of the system, x(t), which is projected to a fixed,
high-dimensional feature space of Spatial Semantic Pointers
or SSPs, denoted by ¢(x). These SSPs are then provided as

inputs to a single hidden layer of neurons. While this network
has two sets of weights, we depart from the widely used
method involving backpropagation of error to learn both the
input and output weights simultaneously. Instead, we select
and fix the input weights, which leaves only the output weights
to be learned. This scheme avoids many of the non-convex
objective issues that arise in a deep neural network, and
enables selecting the input weights to mimic the activity
patterns observed in real neurons in the brain. We follow
the convention of the Neural Engineering Framework and
refer to the input weights as the encoders, and as the feature
space spanned by their activities enables decoding arbitrary
functions of the input, we refer to the output weights as the
decoders. In what follows, we describe the SSP-embedding in
detail, and present three encoder selection schemes to generate
biologically-inspired basis functions. As baselines, we also
implement two previously-characterized adaptive controller
networks that do not use the SSP embedding (9).

1) Spatial Semantic Pointers: We develop our model using
a locally-smooth embedding of continuous data explored in
the Vector Symbolic Algebras (VSAs) literature for cognitive
modeling applications (17). VSAs are a family of algebras that
bridge connectionist (neural network) and symbolic theories
of cognition by suggesting that concepts are represented as
high-dimensional vectors that can be manipulated through a
set of semantically-meaningful algebraic operations.

The Holographic Reduced Representation (HRR; (24))
VSA is distinguished from most VSAs for its support for
representing data defined over continuous feature spaces. In
the HRR literature, the method for representing continuous-
valued data developed by Plate (25) is referred to as fractional
binding (23) or fractional power encoding (26). We follow
the convention of Komer et al. (17) and refer to the high-
dimensional vectors resulting from these embeddings as Spatial
Semantic Pointers (SSPs).

Briefly, input data X from a continuous domain of any dimen-
sionality m is projected into a vector space of dimensionality
d via mapping ¢:

dx(ATIX) = F1 {ei@xlx} 7 (5)
where F~! denotes the inverse Fourier transform. The matrix
A is a diagonal, non-negative matrix whose entries (A1, ..., Am,)
are user-specified parameters defining the length scales of the
representation for each feature, such that prescaling data by A
ensures that points separated by less than )\ along one feature
in the domain will have high similarity under the dot product.
We refer to © as the phase matrix. It is a d X m matrix,
constructed of a set of column vectors ¢, each comprising a
collection of frequencies. We impose conjugate symmetry on
6;s to ensure that the inverse Fourier transform is real-valued.
Beyond these constraints, the elements of © can be selected
in many different ways. In this paper, we use two different
constructions to define two embeddings of the state space and
use the terms Rand SSPs and Hex SSPs (18) when referring
to the hypervectors that reside in these two latent spaces.
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One way to select the elements of © is randomly, such
that its elements correspond to frequencies sampled from some
power spectral density function. In this work, we draw elements
0;;, where 1 =1, ..., %, from a uniform distribution over the
range [—m,m| with 6y ; = 1. Due to the randomness inherent
in this method for constructing ©, observations embedded in
this fashion are referred to as Random SSPs (RandSSPs). The
projection is mathematically similar to that associated with
Random Fourier Features (RFFs) (27) in kernel methods. The
dot product between RandSSPs approximates a normalized
sinc function (28):

k(z,2') = ¢(x) - p(a')

__ sin(rr|z — ')

(6
@)

(e — ')

The phase matrix © may also be constructed deterministi-
cally. grid cell-like features may be constructed from a set of
three mutually-orthogonal Fourier basis functions (21), (20). A
simplex V, which is a (d+1) X d matrix, is chosen to minimize
mutual dot products among its rows: Zf“ Z;liil 2 Vi Vi,
where v; and v; are rows ¢ and j from V/, and are unit vectors,
and d is the dimensionality of the data. To ensure that the
inverse Fourier transform is real-valued, a conjugate-symmetric
matrix, V is then derived from V/, by placing its components
in complex-conjugate pairs in Fourier space. For d = 2 (2-
dimensional space), each pair of conjugate components in
V € C7 defines a plane wave with a corresponding wave
vector u, such that the similarity between two points z, 2’ € R¢
follows an oscillatory pattern k(x,z’) = e (=) The plane
waves are oriented 120° apart, so the superposition of all three
generates a hexagonally-tiled interference pattern.

This hexagonally-tiled interference pattern closely resembles
the firing patterns of grid cells in the mammalian medial
entorhinal cortex (MEC). However, these cells exhibit spatial
tuning with varying orientations and resolutions (11). In this
work, we employ HexSSPs (18) proposed by Dumont and
Eliasmith (18), which extend this framework to leverage this
diversity for improved spatial encoding. Briefly, this approach
applies linear transformations (scaling and rotations) to the
simplex matrix V, yielding a set of transformed matrices
V., = sRV,s € SR € R, where scaling matrix s and
rotation matrix R control the spatial resolution and orientation,
respectively. The full phase matrix is constructed by stacking
these transformed matrices:

O = stack ({V,} = {sRV }) (8)
For 2-dimensional data, the resulting phase matrix © defines a
high-dimensional mapping ¢ : R? — RSN +1 where, N is the
number of simplex transformations. The inner product between
vectors in the transformed space induces a superposition of
plane wave kernels, providing an accurate basis for spatial
encoding (18).

2) Engineered Encoders: The SSP embedding together with
the encoders play a crucial role in shaping the activity patterns

in the hidden layer. The activity of the n'" neuron associated
with observation of system state x is determined by:

Qp = LIF(O‘nQSX()‘_lx) c€p — Sn))v )

where LIF denotes the activation function of a leaky integrate
and fire neuron, e,, is the neuron encoder or the preferred
direction vector, «, is the gain, and &, is the intercept of the
nt" neuron.

Place Cells: If the encoders e,, are selected to be RandSSPs
(that is, the preferred direction vectors of the neurons lie within
the manifold of the embedding) the controller will learn using
a basis of approximate rectified sinc functions. To generate
such encoders, we draw samples from a uniform distribution
over some bounded region of the state space X, and turn these
samples into RandSSPs (i.e., SSPs with a constant randomly
chosen phase matrix). For simplicity, we set o, = 1 and apply
a common &, = £ across the population. We can select £ to
control the level of expected sparsity in the population. As
shown in Figure 1b, these neurons are most active when the
state is within a small, localized region within the bounds of
the domain. In this paper, we refer to these neurons as place
cells, due to the similarity of their receptive fields with neurons
of the same name found in the mammalian hippocampus (10).

Kenyon Cells: The place cell representation constrains the
region of the state space over which the dynamics can be
learned, due to the sampling bounds. Building an effective
controller therefore requires knowledge about the regions of the
state space the system is likely to visit. To avoid needing such
knowledge, another possibility is to sample preferred directions
from the surface of the hypersphere: e,, ~ U(SP~1). As shown
in Fig.1d, this has the effect of reducing the extent to which an
individual neuron’s receptive field is localized to any particular
area, while producing a population of neurons with apparently
de-correlated receptive fields. The basis functions resulting
from this choice were analyzed by Stewart et al (19). Briefly,
these basis functions can be understood by decomposing e,
into a sum of B vectors that are non-orthogonal with the
manifold ¢(x; ) and a sum of C' vectors that are pseudo-
orthogonal to the manifold ¢(z. 1), with respective scaling
factors o and . e, = Ele apd(xp,)) + 25:1 Qch(xe,1)-
A third class of vectors are exactly orthogonal, which are
omitted from consideration. Due to the high-dimensional
vector representation, the contribution of pseudo-orthogonal
components is negligible, and the neural response approximates
the sum of contributions of vectors aligned with the manifold:

B
an LIF(¢<a:/A> S () - s) (10)
b=1
The dot product between vectors in this latent space induces a
sum of approximate sinc kernels in the domain. As the sinc
kernel is defined over an infinite domain, so to is a sum of
sinc kernels, yielding a necessarily unbounded representation.
Figure 1c shows the effect of this random projection on the
activity patterns of neurons over different regions of the state
space. The unstructured projection and resulting receptive fields
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bears some resemblance to early characterizations of Kenyon
Cells in the insect mushroom body (29), and we thus name
these cells accordingly.

Grid Cells: The hexagonally-tiled interference pattern of
grid-cell-like features introduces a structured oscillatory basis
that spans the entire state space. Like Kenyon Cells, these
basis functions do not constrain the region over which the
system can generalize. To produce a neuron with a grid-cell-
like firing pattern in a 2-dimensional space while using the
HexSSP representation described above, the components of ©
corresponding to a single hexagonal interference pattern must
be isolated (18). To achieve this, each neuron is randomly
assigned to one of N simplex transformations, s; and is also
assigned a random spatial location, x;, to introduce a unique
phase shift. The encoder vector e; defining the receptive field
of the i neuron is then computed as

(11

where F~! denotes the inverse discrete Fourier transform, and
r; is given by:

€i = Fﬁl{ri}v

1, 7=0
e®llai e gt
i =3 o (12)
e’ i keld
0, otherwise

Here, J* and J— collectively define the indices of the Fourier
components in the HexSSP phase matrix © associated with
the selected simplex s;.

B. Controller Design

Adapting the techniques derived in (2) which was further
applied to spiking neural networks (6), let us consider the
second-order dynamics of a n-link manipulator robot in the
following form:

G=f(q,9) +9(q,q)uy, (13)

where ¢ € R" stands for the n-link manipulator angular
positions, and u, stands for the control input. The additive
uncertainty in the dynamics is defined as f(q,q), which
encompasses both coriolis/centripetal effects and gravitational
acceleration. We also define g(g,q) € R™*™ as the control
effectiveness matrix for a given manipulator. For the sake of
simplicity of the subsequent stability analysis, we assume
that f(q,q) is unknown and ¢(q,q) is known. Since the
control objective is to render the trajectories of the state
vector g towards a desired equilibrium point defined by
Gre; = (Qres rep)” s let us propose the sliding surface:

s(g,q) = e+ Xe. (14)

with s € R™ where e and é are the proportional and velocity
error of the state with respect to the reference signal vector
q,.s- Specifically, we define e =g,y —q and € =q,.; — q.
We substitute (13) into (14) after taking the derivative with

respect to time, finding that the dynamics of the sliding surface
$ can be expanded into:

s:qref _f(quq) _g(q7q)u+)‘e (15)

We desire that the control ensures the error state dynamics
reach the sliding manifold. This implies § = 0, which leads to
convergence of e and é. Therefore, we choose a control signal
u in the form:

u=g(q,q) " (—f(@4) + dey + Ne+ kq),

where k£ > 0 is some controller gain, and f(q,(j) is an
approximation of the dynamics f(q, ¢). With the control signal
16 we can describe the dynamics of 15 by:

(16)

Using the property introduced in (30), and leveraged for spiking
neural networks in (6), we can approximate the non-linear
dynamics f(q, q) by letting f (g, q) be a linear combination of
N basis functions ¢(q, ¢) and corresponding weights w € RY,
such that

)

fla.d) =w"¢(q,q). (18)

We now assume that there exists an optimal set of weights
w* € RY such that

fla,q) =wTd(q,q) +e,

with € € R™ standing for the approximation error and holding
le]| < &, where & is some converged approximation error upper
bound. We then define a weight error term, w, thus allowing
17 to be reformulated into

5(q,q) = @ ¢(q,q) — ks(q,q) + €. (19)

C. Stability Analysis

In this work, we consider novel representations for adaptive
control. However, to our knowledge, stability analysis for these
specific bases have yet to be conducted in the literature, and it is
therefore unclear if such representations can provide a suitable
basis for learning a stable control law. The following proof of
stability follows the convention of traditional control theory
work, such that we are able to guarantee stability with the given
controller. Additionally, for the application of machine learning,
we show both that the usage of SSP as encoder representations
provides a stable architecture, and that with the given control
law we can guarantee convergence.

We now show that both the sliding variable s(z,4) and
the approximation weight error term w are stable using the
Lyapunov method. We apply the general structure of 13 in
joint space g™ € R™ with the goal of controlling the dynamics
of the end-effector of the n-link manipulator in operational
space T = [z, ...,xm|T € R™, where & = [i1, ..., &) . We
introduce reference dynamics x,.; and the Jacobian mapping
between operational and joint space:

o i
q1 qn
Oz, o
oq1 9qn
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for a joint state vector of length n and an operational state
vector of length m. As a result, 20 allows for the following
mapping:

and the inverse of J;(q) provides the reverse relationship.

Additionally, we can use the Jacobian to map between the
dynamics # and ¢ by taking the time derivative of 21:

4 (re(@)a)
= Jw(q)q + Ja:(x)q

Therefore, using (13), we can relate the control dependent
dynamics in operational and joint spaces by:

:-I.::

(22)

g(x, 2)ue = J2(q)9(q, ¢)uq. (23)

Let us consider the sliding surface s, = é, + e € R™ with
e; = T,cr—x and é; = &,.5—& representing the translational
position and velocity errors, respectively. Now, using (13) and
(23) in the corresponding sliding-surface dynamics yields

s = iref - (f:z: + Jz(q)g(qa Q)Uq) + )‘erv (24)

where f, is a lumped state-dependent uncertainty written as
.f:]; = Jm(q)q + Jx.f(qaq.)

Noting that the control signal must be in joint space to apply
a torque to q, we choose the control signal as:

(25)

ug = 9(q,4) " Jo(@)T (—Fp + ks +drep +Ae),  (26)

which we can substitute into 24 and simplify the resulting
expression into the form defined in 19 with respect to an
operational space state variable x, giving:

s(x,z) = 0T p(x, &) — ks(x, ) + e, (27

where &7 ¢(x,4) accounts for the mismatch between f,
and f,. Let us propose a candidate Lyapunov function
V(s,@) to verify the stability of the states s € R™ and

@ = (&1,...,0,)T" with Wy eRA
V(s,@) = terer Lars (28)
) - 2 2’7 )
where

V(s,®) >0,Vs € R, & € R™.
We take the derivative of 28 to give:

To. (29)

@

2

Since w* is constant and w* = 0, we can simplify 29 to:
. 1
V(s,@)=sTs+-a"d. (30)
Y
Then by substituting in 27, we can write 30 as:

. 1
Vs, @) =sTaTo(x, &)+ -0 —ksTs+sTe  (31)
gl

Additionally, regarding the crossed term, let us employ Young’s
inequality to rewrite (31) as:

. 1 1
V(s,@) <@ sp(x,a)+ - & —ksTs+ gsTs + 2—€T€,
Y K
(32)
where p is a constant greater than zero. By using the rule in
the form:

w = —ysé(x, k). (33)
We can see substituting 33 into 32 simplifies to:
Vis,@) < —(k—4)sTs+ %}isTs,
= —(k=5)lsl*+ 5;lel?, (34)
< —(k=B)lsl® + 5,27

We assume that the controller gain k is chosen to be larger
than the arbitrarily small 4. Moreover, the presence of the
approximation error € prevents asymptotical stability. Instead,
the states are confined within a ball
52
2u(k — %)

Hence, the s and & states are driven into this ball, whose
radius can be adjusted using k£ and p.

Therefore, with the chosen control signal « and adaptive
law w, the state variables s and @ are proven stable. Thus the
unknown dynamics f(x, &) can be negated while driving the
tracking error to zero.

We now consider a spiking neuron implementation of
the adaptive component by leveraging the NEF to let our
basis functions ¢(x, ) be the neuron activity profiles a(x, &)
defined in Section III-A1l. To be consistent with NEF notation
we relabel our weights w, as decoders, d. We then can also use
the biologically plausible Prescribed Error Sensitivity (PES)
rule (31) for spiking neural networks as the learning rule to
update the decoders:

B{seRm:s| < (35)

Ad; = —kva;(x, @), (36)

where x is our learning rate and equal to v, v is the learning
signal s, and a;(x, %) is the activity of the 7*" neuron. The
PES rule (36) has the same structure as the continuous time
gradient descent learning rule 33, where the basis function
¢(x, o) is now the activity of the neurons a(x, &).

D. Controller Variations

Having demonstrated the stability of the controller, we now
turn to our main purpose, which is to determine the effect
of choosing different neural basis functions for a;(x,&). To
begin, let us consider the controller to be structured as the sum
of two parallel control signals:

U = Usm + Uadapt s
where the us,, is the sliding mode controller defined as:

Usm = g(q)_l‘]q(a:)T(ks + féref + /\é)a
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Figure 2: Block diagram of the control feedback loop. The
circuit is structured like a standard controller, with the addition
of a neural population that gets the state,  and &, as the input
and uses the sliding mode output as an error signal to update
the decoding weights online.

in equation 26. Additionally, from 26 we define the adaptive
control component Uggqp: aS:

Uadapt = g(q)—qu(m)T(_f(m’ j:))

The dynamics estimate, fl is updated online using 36 and is
equal to the decoded neural activity:

fo=> ai(@,&)d

We visualize this structure as in the block diagram presented
in Figure 2. We consider five formulations of the adaptive
controller, alongside an adaptive-free controller as a baseline,
which consists of only the sliding-mode controller. Two of
the adaptive controllers were introduced by (6) in past work.
One of these which we call 'Random’, randomly selects
encoders uniformly over the D-dimensional hypershere. Neuron
intercepts and maximum firing rates are sampled from a
uniform distribution over the input space radius and 100-
200Hz, respectively. The other past controller (9) improves
upon the random adaptive controller by using encoders from
the D + 1 dimensional hyper-sphere. By using encoders in the
D + 1 dimensional hypersphere, the responsive regions in a
D-dimensional space of individual neurons can be carefully
chosen to be local and uniformly represent state space. We refer
to this controller as the Selected basis. We have introduced the
remaining bases in Section III-A1 that are reminiscent of place,
Kenyon, and grid cells. We refer to these as their respective
cell SSP controllers.

IV. EXPERIMENTS

We employ a simulation of a 3-link arm in 2-dimensional
space using the general dynamics defined in 13. We simulated
the controller and spiking neurons using Nengo (32) interfaced
with a Python model of the plant. For each controller we
consider the free hyper-parameters for tuning to be the sliding
controller gains k£ and )\, and the adaptive learning rate ~.
We let the individual neuron properties, such as the gain «
and intercepts £, be determined by choosing their intercept,
and max firing rate from uniform distributions as described
previously.

Table I: Optimization parameters and results over controllers

k A ¥ Error
Non-adaptive 239.3024 1.1319 - 0.0082
Random 198.6770 1.1315 8.50 + 10~ | 0.0083
Selected 196.6269 1.0981 7.98 + 10~ | 0.0083
Place SSP 201.7676 1.0478 9.98 + 105 | 0.0082
Kenyon SSP  195.2043 1.1268 4.70 + 1076 | 0.0083
Grid SSP 200.5518 1.1188 8.20*10—6 |0.0083

A. Hyperparameter search

We first conduct a hyper-parameter optimization to tune
each controller for the specific task of tracking the reference
trajectory. We selected a sinusoidal reference trajectory in
the form of 37 such that the end effector tracks a circle in
operational space:

Zref(t) To + 7 cos (%ﬂt)
A Yres®) | _ | yo+rsin (3Ft)
Krey(t) = Trep(t) | —r%” sin g%t) ’ (37
Yref(T) 2% cos (25 t)

where r is the radius, 7T is the period, and zo and y, are
constant biases. For the present experiments, we choose values
of 0.1, 5, and 0.1 for the radius, period, and biases, respectively.
We evaluate the performance of each simulation using a mean-
square error term between the state and reference trajectory 37
in the following form:

B= [0X(0) - X,oslt)at. (38)
We evaluated the argmin of 38 with respect to the space
of tuneable hyper-parameters for each controller over 200
simulation trials. We summarize the optimal hyper-parameters
found using this method in Table I.

B. Results

We evaluate the controller’s performance for adaptation by
using the optimal parameters in Table I. We then apply a
periodic state-based disturbance d(z, &) such that the adaptive
component f (z, &) must account for the resulting dynamics.
We chose 37 as a task with a disturbance over a simulation
time of 60 seconds to allow the adaptive component to learn.
We switch on the disturbance after one complete period and
apply it directly to the arm dynamics in the form of f(x, %) in
Equation 13. We consider two disturbances for testing. The first
is a downward force applied to the end-effector to simulate an
additional mass being added, and the second is an operational
space positional cosine field on the end effector:

Faist = [cos(x), cos(y)]”. (39)
We consider both disturbances on all controllers and evaluate
the root mean square error (RMSE) over 5 trials as summarized
in Table II with standard deviations included.
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Table II: RMSE results of different controllers

0.30
RMSE
Additional Mass Forcing Cosine Forcing Function 0.25 4
Non-Adaptive 2.568 * 10~2 £ 0 5.679 % 10-2 £ 0
Random 2.084 %1072 £4.09%107*  4.290 %1072 £1.28% 1073 59 |
Selected 1.896%1072 £1.92%107*  3.684 %1072+ 0.26x1073
Place Cells  1.539 % 1072 £7.26%107% 2.939x10°2 +£0.87+10° & 5 |
Grid Cells ~ 1.932% 1072 £1.02% 1010~ 3.745 %1072 £0.36 % 1072 'y
Kenyon Cells 2.358 + 1072 +£2.24x10"*  4.818+10°24+0.85%107% ®© . |
& 0.
We observe in Table: II that in all cases the place SSP adap- 0.05 4
tive controller performs the best, with statistical significance.
As expected, the Selected controller has good performance as 0.007
well, however, the place SSP controller has an improvement 0 10 20 30 40 50 60 70 80
between 1.23 — 1.25x. In Figure 3 we show the place SSP state Time [s]
trajectory alongside the Non-adaptive controller. We use the (a) No Adaptive
downward force disturbance in this trial, switching it on at 20s 0.30 A
as denoted by the vertical dashed line. For both controllers, we 025 |
plot the state and reference trajectories over 80s. We observe '
that the place SSP controller clearly performs better at tracking ~  0.201
the reference trajectory with a disturbance. We also note the 5
. . . . © 0.15+
singularities observed in the place SSP trial and suspect that >
these are the results of singularities that exist in the robots 1 0.10
range of motion. @
0.05
V. DISCUSSION
. . . - 0.00
In this work, we propose a biologically inspired method for

choosing neuron tuning curves in the context of an adaptive
controller using spiking neurons in parallel to a classical sliding
mode controller. We demonstrate that place cell inspired SSP
bases outperform past methods that rely on random encoders in
either D or D+1 dimensions. Our proposed controller provides
the best performance in Table II with place cells, showing an
improvement of 1.23 — 1.25x over the Selected controller and
1.67 — 1.93x over the non-adaptive controller. Noticeably, grid
cells perform on-par with the Selected controller, and Kenyon
cells perform the worst of the adaptive controllers. We attribute
this performance increase towards the ability of place cell SSPs
to represent spaces both sparsely and uniformly. Additionally,
since SSPs are structured as high-dimensional vectors, the
use of place cell SSPs provides a nearly orthogonal set of
basis functions while tiling the space in a spatially localized
manner. This property allows state-based disturbances to be
accurately captured. The high-dimensionality of SSP represen-
tations suggests that the observed performance improvements
should generalize to problems with higher-dimensional state
spaces. Notably, Radial basis function networks (RBFNs),
first proposed by Broomhead and Lowe (33), are a classical
approach to adaptive control. The place-cell representation that
we use here achieves a finite approximation of a rectified Sinc
kernel using Fourier basis functions. As such, this approach
provides a link between the classical and spiking neural network
approaches to adaptive control. Future work should assess
the effect of this approximation on the learned dynamics, by
making an explicit comparison between RBFN and the place-
cell adaptive controller we propose here.

An important limitation of the place cell representation
is that the region of the state space over which the system

0 10 20 30 40 50 60 70 80
Time [s]
(b) SSP Adaptive

Figure 3: Simulation results of mass-based disturbance of a no-
adaptive and b place cell SSP adaptive controller. The dashed
line denotes the time at which the disturbance is switched on.

can generalize is necessarily limited. That is, if a disturbance
were to occur that pushed the system outside of the bounds
over which the place cells were defined, the system would
be severely limited in its ability to adapt. In such cases, the
alternative representations considered here that underperformed
on the selected tasks - such as grid cells and Kenyon cells -
might have an advantage due to their unbounded representation.

Our method not only outperforms past approaches, but also
provides a more systematic approach to the design of an
adaptive controller compared to the Selected controller. In
contrast to the selected controller, in which encoders must be
manually chosen over the D+1 hypersphere, SSP-controllers
sample from a higher-dimensional space by simply generating
SSPs across the state space. The usage of SSPs as a basis
to represent state space in an adaptive controller is a novel
approach that could also be integrated into existing SSP
architecture (34; 35) for robotic applications. We also suggest
that an SSP representation may also allow for the inclusion
of dynamic constraints into the control formulation. We leave
this exploration, as well as the implementation of the proposed
controller on fully neuromorphic hardware, as future work.
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