
Chapter 6

Biological cognition – memory and
learning

6.1 Extending cognition through time
A unlike in a traditional computer architecture, memory and learning are tightly
coupled to computation in biological brains. For many, this marks one of the most
fundamental differences between neural computation and standard digital com-
puter computation. Consequently, any neural architecture would be incomplete
without a consideration of memory and learning.

I have grouped memory and learning together because both allow biological
systems to extend their cognition through time. That is, memory of recent or long
past events can be very important for determining an appropriate behaviour in the
present. Similarly, learning can often be thought of as the tuning of behaviour
based on past experience, again resulting in current behaviour being sensitive to
events that occurred in the past.

Conceptually speaking, memory and learning are very difficult to distinguish.
Traditionally, in the neural network literature, when researchers speak of “learn-
ing”, they are referring to changing the connection weights between neurons in
the network. The ubiquitous “learning rules” proposed by these researchers are a
means of specifying how to change connection weights given the activity of neu-
rons in the network. However, notice that the example of learning that we have
seen earlier in the book (section ref?) looks like a standard case of learning, but
depends only on a memory system. That is, no connection weights are changed in
the network even though the system learns a general rule that allows past experi-
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ence to change what behaviors are chosen in the present.
Similarly, the traditional contrast between short-term (or ‘working’) memory1

(which is often taken to be activity in a recurrent network; refs?), and long-term
memory (which is taken to be connection weight changes; refs?), is difficult to
sustain in the face of neural evidence. For example, there is good evidence that
in the hippocampus there are very rapid weight changes (refs?). Consequently,
some ‘short-term’ memories might be stored in the system in virtue of connection
weight changes. In sum, the brain adapts to different timescales in many different
ways, some are more closely related to neural activity, others are more closely
related to connection weight changes.

Undoubtedly, the neural systems important for long-term memory, short-term
memory, working memory, etc. are tightly integrated in the brain. And, fur-
thermore, they exploit activity-based, and connection weight-based mechanisms
in sophisticated and poorly understood ways. All of this is to say that I am not
going to provide a general description of memory and learning, but rather con-
siderations of how activity based and connection weight-based mechanisms for
adaptation can be integrated into the semantic pointer architecture.

Specifically, this chapter is going to address two challenges, one related to
activity-based explanations of working memory, and the other related to learning
connection weight changes. There are many neurally plausible models of work-
ing memory that rely on recurrently connected networks (ref?). These models are
able to explain the sustained firing rate found in many parts of cortex during the
delay period of memory experiments. Some are even able to explain more subtle
dynamics, such as ramping up and down of single cell activity seen during these
periods (ref?). However, none of these models address complex working memory
tasks that are essential for cognition, such as serial working memory (i.e. remem-
bering an ordered list of items). This is largely because methods for controlling
the loading of memories, clearing the network of past memories, and constructing
sophisticated representations, have not been devised. In the next two sections, I
describe a model that addresses many of these limitations. As well, the tutorial at
the end of this chapter demonstrates how to build a simple working memory.

The second challenge, of introducing a biologically plausible mechanism for

1Sometimes these terms are distinguished and sometimes they are not (refs?). These addi-
tional distinctions do not challenge the point being made here, which is a consequence of the
fact that kinds of memory are typically behaviourally defined, and the timescales of different neu-
ral mechanisms (some activity-based, some connection-based) overlap. Consequently, there are
medium-time-scale behaviors that are activity-based, and others that are connection-based (and no
doubt others that are a combination of the two).



CHAPTER 6. BIOLOGICAL COGNITION – MEMORY AND LEARNING162

connection weight adaptation, is dealt with in the last two sections. There, I de-
scribe a biologically realistic learning rule that is able to learn linear and non-
linear transformations of the representations used in the SPA. I demonstrate the
rule by showing that it can be used to perform action selection in the model of the
basal ganglia (section 5.2), that it can be used to learn reasoning strategies in dif-
ferent contexts to solve language processing tasks, and also that it can be used to
learn the binding operation employed in the SPA (i.e., circular convolution). The
tutorial at the end of the next chapter demonstrates how to use this rule in Nengo.

6.2 Working memory
Working memory is typically characterized as an actively engaged system used to
store information that is relevant to the current behavioral situation. Typical tests
of working memory in monkeys consist of having a monkey fixate at a central
location, and presenting a target stimulus somewhere in the periphery of the mon-
keys visual field. The stimulus is removed, a delay of about 3 to 6 seconds long
is then initiated, and finally the fixation target changes to indicate to the monkey
that it should respond by saccading or pointing to the remembered location of the
stimulus. Many experiments like these have been used to characterize the activ-
ity of single cells during working memory tasks (refs?). And, many models have
been built that explain a wide variety of the properties of single cell tuning curves
observed during such tasks (refs?).

However, a very common feature of working memory tasks encountered by
humans, and also probably many other animals, is that they require not only the
memory of a single object, but of several objects at the same time. In addition,
often the order in which the information is presented is relevant to using it appro-
priately (e.g. a telephone number). The ability to store and recall items in order
is called serial working memory.

Serial working memory has been studied since the 1960s, and two fundamen-
tal regularities in this behavior have been observed: primacy, and recency. Both
primacy and recency can be understood by looking at an example of a serial recall
task, like the one shown in figure 6.1. Primacy is identified by the observation
that items appearing earlier in the list have a greater chance of being recalled
accurately, regardless of the length of the list. Recency is identified by the obser-
vation that the items most recently presented to subjects have an increased chance
of being recalled as well. Together, primacy and recency account for the typical
U-shaped response probability curve seen in serial working memory tasks.
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Figure 6.1: primacy and recency human data, xuan

Figure 6.2: updated version of xuan’s 4.9 figure

Interestingly, this same U-shape is seen in free recall tasks (where order in-
formation is irrelevant) as well (see figure 6.6). So it seems likely that the same
mechanisms are involved in both free recall and serial recall. In fact, as I discuss
in more detail in the next section, it seems likely that all working memory behav-
ior can be accounted for by a system that has serial working memory. In contrast,
simple models of working memory that can account for the behavior observed on
the monkey tasks previously described, cannot account for serial working memory
behavior.

Consequently, serial working memory is of more fundamental importance
when considering human cognition. The first model of serial working memory
implemented in a spiking neural network that I am aware of was constructed by
Xuan (pronounced ‘Shawn’) Choo in my lab. Based on a consideration of several
models from mathematical psychology (refs?), and cognitive psychology (refs?),
Xuan has proposed the ordinal serial encoding (OSE) model of working memory
(ref?). In the next section, I present several examples of how this model can ac-
count for human psychological data on serial and free recall tasks. First however,
let me describe the component parts, and basic function of the model.

The encoding and decoding of items to be remembered is described by figure
6.2. As can be seen here, the OSE model consists of two main components, an
input buffer and an episodic buffer. These are taken to map onto cortical and
hippocampal memory systems respectively. Both buffers are currently modeled
as neural integrators (section ref?), although a more sophisticated hippocampal
model (e.g. ref? becker, etc.) would improve the plausibility of the system,
while generating a similar behavior. Modeling these buffers as neural integrators
amounts to including past simple models of working memory as a component of
this model.

The input to the model consists of a semantic pointer representing the item,
and another semantic pointer representing its position in a list. These two repre-
sentations are bound, using a convolution network (section ref?), and fed into the
two buffers. Simultaneously, the item vector alone is fed into the two buffers to
help enforce the item’s semantics. Each buffer adds the new representation to the
list that is currently in memory, and the overall representation of the sequence is
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the sum of the output of the two buffers. Generation of this result completes the
process of encoding new information into a memory trace.

Decoding of such a memory trace consists of subtracting already recalled
items from the memory trace, convolving the memory trace with the inverse of the
position vector, and passing the result through a cleanup memory (section ref?).
In short, the decoding consists of unbinding the desired position from the total
memory trace, and cleaning up the results. Concurrently, items which have al-
ready been generated are subtracted so as to not be generated again. In the case of
free recall (where position information is not considered relevant), the unbinding
step is simply skipped. The equations describing both the encoding and decoding
processes can be found in appendix ref?.

As can be seen from figure 6.2, this model has two free parameters, α and γ .
The first of these captures the effect of rehearsing items early in the list during the
encoding process. The value of this parameter was set by fitting an experiment
conducted by Rundus (1971) ref? in which the average number of rehearsals was
found as a function of the item number in a serial list tasks. The second parameter,
γ , captures the natural fading of the representation from cortical working memory
over time. The value of this parameter was set by reproducing the simple working
memory experiment described in Reitman (1974) ref? and choosing the value for
which the accuracy of the model matches that of humans. Reitman’s experiment
showed that human subjects could recall on average 65% of the items that they re-
called immediately after list presentation after a 15 second delay (when rehearsal
was not permitted).

It is important to note that the two free parameters of this model were set
by considering experiments which are not being used to claim that the model is
a good model of serial recall. That is, they were set independently of the test
experiments considered in the next section. Consequently, the good performance
of the model on these other tasks in no way depends on tuning free parameters to
those tasks.

Also note that the preceding description of this model is compact. This is
because we have seen the implementation of many of the underlying components,
the necessary representations, and the basic transformations before. So, in many
ways this working memory system is not a new addition to the semantic pointer
architecture, but rather a recombination of functions already identified as central
to the architecture (i.e., integration, binding, and cleanup). This is encouraging
because it means our basic architecture does not need to get more complicated in
order to explain additional, even reasonably sophisticated, functions.
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Figure 6.3: Model recency & primacy: note that the model always has 95% con-
fidence intervals, human data is only averages, because that is all that is available

Figure 6.4: Transposition gradients figure

6.3 Example: Serial list memory
Figure 6.3 shows the OSE model capturing the basic recency and primacy effects
observed in the human data, shown earlier in figure 6.1. This demonstrates not
only that the model captures basic features of serial memory, but that setting the
parameters of the model using different experiments did not limit the system’s
ability to explain this behavior.

As is clear from the fact that the model, and the subjects, do not have perfect
recall accuracy, mistakes are made in recalling serial lists. These mistakes have
been analyzed in several experiments (refs?). Figure 6.4 shows a comparison of
the transposition gradients found in the model with those measured from human
subjects. The transposition gradient measures the probability of recalling an item
outside of its correct position in a list. Both the model and the human data show
that errors are most likely to occur in positions near the original item position, as
might be expected.

As you might also expect, the similarity between items in a list can affect
how well items can be recalled. Henson et al. (1996) refs? designed an ex-
periment in which they presented subjects with lists containing confusable and
non-confusable letters. Because the stimuli were heard, confusable letters were
those which rhymed (e.g. “B”, “D”, and “G”), while non-confusable letters did
not (e.g., “H”, “K”, and “M”). The experimenters presented four different kinds of
lists to the subjects: lists containing all confusable items, those containing confus-
able items at odd positions, those containing confusable items at even positions,
and those containing no confusable items. The probability of successful recall
and the transposition gradients for these lists for both the human subjects and the
model are shown in figure 6.5.

Again, this example shows that the model does a good job of capturing behav-
ioral data, both the likelihood of successful recall and the pattern of errors that are
observed in humans. The same model has also been tested on several other serial

Figure 6.5: Confusable lists data, 3 figures combined
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Figure 6.6: Free recall figure, also demonstrating primacy and recency with the
U-shape

Figure 6.7: a) no normalization and b) Ideal normalization

list tasks, including delayed recall tasks, backwards recall tasks, and combinations
of these (ref?).

More important for present purposes, however, the same model can also ex-
plain the results of free recall experiments. As shown in figure 6.6, the accuracy
of recall for the model is very similar to that of humans for a wide variety of
list lengths. In these tasks, there is no constraint on the order in which items are
recalled from memory. Nevertheless, both the model and human data show the
typical U-shaped response probability curves.

Taken together, these examples of good model performance on a variety of
tasks (none of which were used to tune the model) can make us reasonably confi-
dent that some of the principles behind human working memory are captured by
the model. Because it uses the same kinds of representations as the rest of the
SPA, we can be confident that it will integrate easily into larger scale models.

Before leaving consideration of this model, I want to highlight what I think
is perhaps its most theoretically interesting feature: namely, that this model only
works if it is implemented in neurons. As demonstrated by figure 6.7a, if we
directly simulate the equations that describe this model (see appendix ref?), it is
unable to accurately reproduce the recency and primacy effects observed in the
human data.

Initially, it seemed that this failure might have been caused by the semantic
pointer vectors in the system becoming arbitrarily long as additional items were
added to the memory trace. Consequently, we also implemented the model using
standard vector normalization, which guarantees that the vectors always have a
constant length. But again, as seen in figure 6.7b, the model is unable to capture
the human data.

Consequently, we realized that one of the main reasons that this model is able
to capture the human data as it does, is that the individual neurons themselves
saturate when participating in the representation of large vectors. This satura-
tion serves as a kind of “soft” normalization, which is neither ideal mathematical
normalization, nor a complete lack of normalization. Instead, it is a much more
subtle kind of constraint placed on the representation of vectors in virtue of neuron
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response properties. And, crucially, this constraint is directly evident in the behav-
ioral data. This is theoretically interesting, because it provides an unambiguous
example of the importance that constructing a neural implementation can have
on explaining high-level psychological behavior. Without constructing the neural
model, we would have considered the mathematical characterization a failure, and
moved on to other, likely more complex, models. However, it is now clear that we
would have been doing so unnecessarily. And unnecessary complexity, of course,
is the bane of intelligible explanations.

6.4 Biological learning
• mostly general considerations: the NEF is learning independent for good

reasons, but obviously learning happens too... how to connect (note that in
the paper with Dave MacNeil, we show you need to get ’near’ the optimal
in order to learn well, we also show learning is better than the ’optimal’
weights).

• reinforcement learning (the three kinds of learning, and my ’new’ one???)

It is difficult to specify what counts as a ‘biologically plausible’ learning rule,
as there are many mechanisms of synaptic modification (i.e., connection weight
change) in the brain (Feldman, 2009; Caporale and Dan, 2008). However, the vast
majority of characterizations of synpatic plasticity still adhere to Donald Hebb’s
original suggestion that: “When an axon of cell A is near enough to excite cell
B and repeatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased” (Hebb, 1949, p. 62). Or, more pithily: “Neu-
rons that fire together wire together.” Most importantly, this means that any mod-
ification of synaptic connection weights must be based on information directly
available to the cell whose weight is changed (i.e., pre-synaptic and post-synaptic
activity).

Recently, there has become increasingly strong evidence that this modification
can be highly dependent on the timing of the pre- and post-synaptic spikes (refs?).
Such spike driven learning has become known as STDP (spike-timing dependent
plasticity). STDP refers to the observation that, under certain circumstances, if a
presynaptic spike occurs before a postsynaptic spike, there is an increase in the
likelihood of the next presynaptic spike causing a postsynaptic spike. However, if
the postsynaptic spike precedes the presynaptic spike, then there is a decrease in
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the likelihood of the next presynaptic spike causing a postsynaptic spike (refs?).
Or, more succinctly, a presynaptic spike followed closely in time by a postsynaptic
spike will potentiate a synapse, and the reverse timing depresses it: fire together,
wire together.

• ???STDP figures??? explaining the mechanism

The learning rules proposed to explain STDP computationally, focus, as the orig-
inal experiments did, on comparing two spikes at a time. However, in order to
explain more recent plasticity experiments, it has become necessary to consider
triplets of spikes (Pfister and Gerstner, ref?). Specifically, Pfister and Gerstner
show that by adding an additional depression with a pre-post-pre triplet, and addi-
tional potentiation with post-pre-post triplets, a better fit to the experimental data
is achieved.

Even more recently, Trevor Bekolay, a member of my lab, has devised a
method for using triplet-based STDP rules to learn high dimensional vector trans-
formations. The mathematical details of this rule can be found in appendix ref?.
This rule simultaneously addresses the limitations of both standard learning rules,
and STDP. In particular, unlike most standard rules this rule is able to take into ac-
count precise spike times, and unlike most STDP rules, it is able to relate synaptic
plasticity directly to values represented by an ensemble of neurons. Thus, the rule
can be usefully employed in a network that can be characterized as representing a
value in spiking neurons – precisely the kinds of networks we find in the SPA (a
tutorial demonstration of this method is in section 7.4).

Better yet, this rule can incorporate error information coming from other parts
of the system, to affect the interaction between spikes in a synapse. There is direct
evidence for this kind of interaction in parts of the brain stem (ref? mcneil), and it
also captures a broadly accepted view of a role for the neurotransmitter dopamine
(refs). There is strong evidence that dopamine neurons increase their firing rate
both when rewards that are not predicted occur, and when predicted rewards do
not occur (ref?). Consequently, it has been suggested that dopamine can act as a
modulatory input to cortex and parts of the basal ganglia (i.e., striatum), helping to
determine when connections should be changed in order to account for unexpected
information in the environment.

Figure 6.8 shows a simple example of applying this rule to a scalar represen-
tation, with feedback error information. The left-hand side of the figure shows the
structure of a simple circuit that generates an error signal, and the right hand side
shows an example run during which the improvement in the receiving population’s
ability to represent the input signal is evident.
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Figure 6.8: stdp network structure and sample run

Figure 6.9: figure and caption from trevor’s tech report

Figure 6.9 shows the statistics of the effectiveness of the rule over many ex-
ample runs. This figure also demonstrates that the spike-based rule is as effective
as a less neurally plausible, rate-based rule. These simple examples of learning
show the basic functionality of the learning rule. That is, it demonstrates that
a biologically realistic STDP rule can be used to learn connection weights that
compute the identity function between a scalar represented in one population and
a scalar represented in another population. However, given the general characteri-
zation of computation and representation provided by the NEF, we can generalize
this rule to learn (nearly) arbitrary transformations over high-dimensional vector
representations.

A particularly important transformation over high-dimensional vectors for the
SPA is circular convolution: recall that it is used for binding, unbinding, and
content sensitive control. Given the central role of convolution in the architecture
it is natural to be concerned that it might be a highly specialized, hand-picked,
and possibly unlearnable transformation. If this was the case, that would make
the entire architecture seem much less plausible. After all, if binding cannot be
learned, we would have to tell a difficult-to-verify evolutionary story about its
origins. Fortunately, binding can be learned, and it can be learned with this same
learning rule.

Figure 6.10 shows the results of this STDP rule being applied to a network
which is given examples of binding of six-dimensional vectors. These simula-
tions demonstrate that the binding operation we have chosen is, at least in prin-
ciple, learnable using a biologically realistic learning rule. However, it would be
premature to claim that we therefore know how cognitive systems learn binding.
This is because there are questions to answer regarding how the target representa-
tions would be generated, how the appropriate error signals can be targeted to the
appropriate systems that perform binding, and so on. In fact, it should not be sur-
prising that telling a story about how binding is learned might be difficult: many
of the highly cognitive behaviors that require binding are not evident in people
until about age 3 (e.g., analogy, A not-B processing, two-place relations in lan-
guage, etc. (refs?)). Nevertheless, this demonstration should allay concerns that
there is something especially implausible about choosing convolution as a binding
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Figure 6.10: stdp learning binding figure, showing nonlinear high-d function
learning, and making SPA more palatable

operation.

6.5 Example: Learning new long-term strategies
• including control strategies? actions? rules? two examples, one ’low

level’ habitual action learning (reinforcement), the other ’high-level’ syn-
tax/context manipulation (wason)

• raven’s example is consistent with the idea that there is some way to start
’fixing’ the strategies learned during one session (though people are notori-
ously unstable in their performance on different sessions... talk to dan about
exact learning effects?).

6.5.1 Learning new control strategies
• intro on central role of BG in reinforcement learning...

• a seciton on reinforcement learning to add new elements to the M and M_t
matrices in the bg model!

• There is strong evidence for dopamine being used to mediate the learning
between striatal neurons and cortical neurons Calabresi et al. (2007).

6.5.2 Learning new syntactic manipulations
• and cortical example of structural long-term learning (wason task)

While Neumann considered learning syntactic transformations, here I consider
the slightly more complicated task of learning a transformation T that is context-
dependent (i.e., one that might change in different contexts). Essentially this de-
mands an associative memory that associates contexts to transformations, and that
also learns what an appropriate transformation is in a context. As shown in ap-
pendix B.2, we can use the NEF to determine the following rule that implements
this associative transformation learning:
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•
putInWhat ′sDerived

where k is the learning rate, cl are neurons representing the context signal,
and tj are neurons representing the transformation vector. The connection
weights wil are learned by this rule and the wij are learned by a similar rule
that performs simple representation matching (see appendix C).

This rule is ‘Hebbian’ because only information locally available to a particular
neuron is needed to update the relevant connection weight, and, as the coincidental
activity of the pre- and post-synpatic neurons increases, so does their connection
weight.

The application of this learning rule in a neurobiological simulation is illus-
trated in figure 6.11. This associative memory makes it possible to learn how to
represent an unknown transformation space, and then associate transformations in
that space to different contexts. This means that we can learn, instead of hand-
crafting, syntactic transformations. This simulation does not explicitly demon-
strate that the learned vectors are syntactic transformations. That demonstration
is left for section 6.5.2, in which this learning is incorporated into a more complete
SPA model.

4. Modeling the Wason selection task In sections 3.1 and 3.2, we demonstrated
structured symbolic representation, manipulation, and learning via neurally plau-
sible mechanisms for low-dimensional vectors. This work provides theoretical
foundations for our proposed biologically plausible cognitive architecture, but it
must be scaled up and functionally organized to perform a concrete task. As an
example, we have chosen to generate a neural cognitive model of the Wason selec-
tion task {{2683 Wason,P.C. 1966; }}. This task is challenging because it requires
symbolic reasoning and strategy changes across contexts. In the Wason task, par-
ticipants are given a conditional rule of the form “if P, then Q”. They are then
presented with four cards, each of which has either P or not-P on one side, and
either Q or not-Q on the other. The visible sides of each card show P, not-P, Q, and
not-Q. The task is for the participant to indicate all of the cards that would have
to be flipped over to determine whether the conditional rule is true (i.e., is being
obeyed). The logically correct answer is to select the cards showing P and not-Q.
Figure 7: The Wason selection task. Four cards are presented to the participant,
each with a piece of information on both sides. A rule is stated, and the participant
must select the cards that must be flipped over to confirm whether the rule is being
followed. The most commonly selected cards are indicated with a circle.
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Figure 6.11: Associative learning using the derived rule in a spiking network for
two 6D vectors. Part A shows vector estimates decoded from the neural spikes
in part B. A) The thick black line indicates the context signal. There are three
contexts, +1, -1, and 0. The thin lines each indicate the represented value of one
element of the 6D vector. The dotted lines indicate the ideal answers. During
the first half of the simulation, two random vectors are being learned under two
different contexts. During the second half of the simulation, only the context
signal is applied to the population, which then responds with the vector encoded
in that context. The network successfully associates the context signal with a
close approximation to the vector. B) The spike trains (action potential times) of
the neurons in the associative memory population (for the first half of the run, and
every tenth neuron, for legibility). There are 1000 neurons in this population. The
synaptic weights are initialized to random values.
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If the task is given in an abstract form, such as “if a card has a vowel on one
side, then it has an even number on the other”, the majority of participants choose
P (the vowel) and Q (the even number) {{1858 Oaksford,M. 1994;396 Cheng,P.W.
1985; }}. However, if the task is presented using familiar content, such as “if a
person is drinking beer, then they must be over 21 years old”, the majority choose
P (drinking beer) and not-Q (under 21) {{2823 Cox,J.R. 1982; }}. In other words,
structurally identical tasks with different contents lead to differing performance.
Explaining this “content effect” in a neural model requires changing symbolic
manipulation strategies based on the content of the task, a challenging control
problem that ultimately demonstrates that the proposed architecture can perform
sophisticated transformations as well as represent complex structure – a feature
of past architectures that we criticized as largely absent (section 2). 4.1 Theoreti-
cal characterizations of the Wason task Initial explanations of Wason task perfor-
mance were based on the familiarity of the contexts. However, later evidence fo-
cused on the distinction between deontic and non-deontic domains. In deontic sit-
uations the rule expresses a social or contractual obligation, and here human per-
formance matches logical explanations, regardless of familiarity or abstractness
{{2398 Sperber,D. 1995/pfor references see /f, p. 34;}}. To explain this, Cheng
and Holyoak {{396 Cheng,P.W. 1985/a;}} proposed that people reason using nei-
ther context-independent rules of inference nor memory of specific experiences,
but rather abstract context-sensitive knowledge structures induced from ordinary
life experiences, such as permissions, obligations, and causations. These struc-
tures, or pragmatic reasoning schemas (PRS) are general strategies that activate
based on the current situation. In particular, a “permission” schema might contain
the simple rule that “if the precondition (P) is not satisfied then the action must
not be taken (not-Q)”. When this schema is triggered, this rule is directly avail-
able, allowing the not-Q card to be selected without recourse to indirect logical
derivation via reductio ad absurdum. Importantly, PRS differs from propositional
logic in that it is context sensitive and does not require long chains of reasoning.
Alternatively, Cosmides {{519 Cosmides,L. 1989/a;}} developed social contract
theory (SCT), an explanation based on evolutionary psychology. SCT proposes
that natural selection has produced special-purpose, domain specific mental algo-
rithms for solving important recurring adaptive problems. When triggered by the
specific content of a problem, these algorithms call forth procedural knowledge
which leads to appropriate inferences and responses in the given domain. The
domain of “social exchange” (adaptive cooperation between two individuals for
mutual benefit) is theorized to activate a domain specific “cheater detection” al-
gorithm, which operates in terms of benefits and costs. This mechanism draws



CHAPTER 6. BIOLOGICAL COGNITION – MEMORY AND LEARNING174

attention to any individual who has either “taken the benefit” (P) or “not paid the
cost” (not-Q) in the social exchange domain in order to detect potential cheaters.
This leads to a logically correct response in selection tasks that trigger the cheater
detection mechanism. PRS and SCT both agree that people lack an inherent “men-
tal logic,” in that people do not use a domain general propositional calculus. They
also agree that people reason using different rules of inference for different con-
tent domains. Both theories use this context sensitivity to explain why different
formulations of the selection task elicit different responses. The theories differ
in the source of these rules: PRS schemas are induced through experience while
SCT algorithms are genetically endowed. Indeed, Cosmides {{519 Cosmides,L.
1989/a;}} has challenged any theory based on induction to lay out the mechanisti-
cally defined domain-general procedures that can take modern human experience
as statistically encountered input, and produce observed domain specific perfor-
mance in the selection task as output. Responses to this challenge have been made
{{2398 Sperber,D. 1995; 1858 Oaksford,M. 1994;}}, but none present a neural
mechanism. To develop our model, we suppose that there is a content-sensitive
domain general inference mechanism that learns to map linguistic structures to
appropriate responses in a context. This hypothesis makes no assumptions about
how contexts are partitioned (i.e. as deontic or not) and is consistent with PRS, al-
though PRS is silent on possible implementations, specific mechanisms, or neural
plausibility in general. Our goal is not to unequivocally establish a new theoretical
characterization of the task, but to show how a high-level characterization such as
the one we have proposed can be tested for plausibility by implementing it in a bi-
ologically constrained simulation. Doing so, we suggest, meets the challenge that
Cosmides (1989) has offered to domain general hypotheses. 4.2 Anatomical and
physiological constraints The PET and fMRI studies on symbolic reasoning do not
unambiguously determine a single brain area dedicated to such tasks {{2828 Goel,
V. 2005; }}. However, there is some indication that right brain areas are prefer-
entially activated during the processing of deductive reasoning tasks, including
the middle temporal lobe and inferior frontal cortex {{1894 Parsons,L. 2001; }}.
Since the middle temporal lobe has been indicated to be more closely related to
language processing than actual deduction {{2828 Goel, V. 2005; }}, our model
centers on the right inferior frontal cortex. Three other brain areas provide in-
puts to this system in accordance with their functions (described below; see figure
8): the left language areas, ventromedial prefrontal cortex (VMPFC), and anterior
cingulate cortex (ACC). The Wason task rule is presumed to be encoded by the
left language areas {{2884 Heimer, L. 1994/pi.e., the Perisylvian language zone,
;}}. This is consistent with Parsons’ {{1895 Parsons,L. 1999/a;}} suggestion that
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rules are provided to the deductive mechanism by left language areas and the gen-
eral characterization of language processing involving left frontal cortices {{205
Binder,J.R. 1997; }}. VMPFC provides context information, used in the model to
select the appropriate reasoning strategy through an associative memory. Context
is determined based on the rule stored in the left language areas and transmitted
via hippocampal and limbic projections to VMPFC {{2885 Kalisch,R. 2006; }}
(modeled here as a direct projection for simplicity). There are direct anatomical
connections between VMPFC and right inferior frontal cortex, and VMPFC has
been implicated in carrying context information {{26 Adolphs,R. 1995; }}. Fi-
nally, a feedback mechanism is needed to induce the correct responses in different
contexts based on experience. Holroyd and Coles {{1182 Holroyd,C. 2002/a;}}
propose that a high-level error-processing system in the anterior cingulate cortex
(ACC) sends an error signal to frontal cortex via the mesencephalic dopamine sys-
tem, facilitating the development of adaptive behaviors. Our model thus receives
an error signal from ACC, which we take to be a representation of the correct
responses to give in a particular context. This is used by our model to tune the
context-sensitive mapping from rule to response. It is difficult to determine appro-
priate neurophysiological constraints on these networks because there is little data
on the physiological properties of neurons in the implicated areas of cortex in hu-
mans. As a result, we have based our general modeling assumptions on data from
monkey frontal areas {{2156 Romo,R. 1999; }}, with a slight increase in maxi-
mum firing rates to reduce computational overhead. 4.3 A biological model of the
selection task The basic functioning of the model is that VMPFC takes the task
rule (R), and calculates a context (C). This context is used by the associative mem-
ory to determine a transformation (T) that will extract the appropriate responses
in this context from the rule. In some contexts (such as the drinking/age version
of the Wason task), this would be the transformation from “if P then Q” to “P and
not-Q”, while in other contexts (such as the abstract vowel/even version) the ap-
propriate transformation is from “if P then Q” to “P and Q”. This transformation
is then applied to the particular rule (R) to produce a response (A). This would be
“alcohol and under 21” and “vowel and even”, respectively. To support learning
through experience, the input from ACC is used to provide a “correct” response
(A’). This can be combined with R to determine T’, the correct transformation
to apply. T’ is then used to train the associative memory. In more computational
terms, the model loads an appropriate transformation (or reasoning method) based
on a context signal and then uses that transformation to determine a response in
this context. When the provided response is incorrect, the context transformation
association is updated to make it more likely that subsequent responses will be
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correct.
Figure 8: High-level description of the Wason model.
Given this high-level characterization, we need to describe precisely how each

of these mechanisms operates neurally. To do this, we combine the elements
of the cognitive architecture described in section 3, resulting in the mechanism
shown in figure 9. The two transformations (combining R and T to produce A,
and combining R and A’ to produce T’) are implemented as convolutions (A=R⊗T
and T’=R-1⊗A’), using the techniques described in section 3.1.2. The associative
memory uses the learning mechanism described in section 3.2.

Figure 9: Neural diagram for the Wason model. Circles indicate neural pop-
ulations (N is the number of neurons, D is the dimensionality of the value repre-
sented by the neurons). Arrows indicate neural connections.

To encode sufficiently complex rules for this task, we use 100-dimensional
vectors, rather than the 6-dimensional ones used in section 3. Rules are structured
as in section 2.3, so “if a card has a vowel on one side, then it has an even number
on the other” would be implies(vowel,even), encoded as relation⊗implies+antecedent⊗vowel+consequent⊗even.
Similarly “if a person is drinking beer, then they must be over 21 years old” would
be implies(alcohol, over21), encoded as relation⊗implies+antecedent⊗alcohol+consequent⊗over21
The term over21 is built from over and 21 (over21=over⊗21), demonstrating the
use of embedded structure. The expected responses for these rules are even+vowel
and alcohol+not⊗over21, respectively. Each atomic symbol is a random 100-
dimensional vector with each element chosen from independent Gaussian distri-
butions with zero mean and variance 1/100. All populations are composed of
spiking leaky-integrate-and-fire (LIF) neurons, with absolute refractory periods
of 1 ms, membrane time constants of 10 ms, and synaptic time constants of 5
ms, corresponding to typical AMPA-type receptors. The biophysical properties
of each neuron are uniformly distributed to produce a range of peak and back-
ground firing rates that is similar to that found in frontal cortices of apes. Postsy-
naptic currents are characterized using a standard decaying exponential model,
h(t)=e-t/t, where t is the synaptic time constant. As per the NEF, each neu-
ron has a preferred direction vector (the direction in concept space for which it
is most active). For the majority of neural populations, we choose these to be
distributed along the dimensional axes (i.e. standard unit basis vectors) . How-
ever, the two populations performing circular convolution (d and h in figure 9)
use vectors evenly distributed along the diagonals of the high dimensional space
(between the axes of any two elements which are multiplied) to allow the non-
linear circular convolution to be computed. All simulations described below use
this exact same model, simulated at a time resolution of 0.5 milliseconds. The
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only adjustment across simulations is varying the input, as described below. 4.4.
Simulations Two simulations demonstrate the capabilities of this model. First,
we show that it can learn the basic task: to perform different symbolic transfor-
mations based on the context. Second, we show that these transformations are
general, in that they can be applied to new rules for which the system was not
initially trained. 4.4.1. Simulating the Wason task across contexts The basic
Wason task is modeled by considering two different rules and their appropriate
responses: relation⊗implies+antecedent⊗vowel+consequent⊗even vowel+even
relation⊗implies+antecedent⊗alcohol+consequent⊗over21 alcohol+not⊗over21
In the first context, the system must extract the consequent and the antecedent,
while in the second the antecedent must be further modified by binding it with
not. To perform this task, the model must learn the appropriate transformation for
the two contexts. We incorporate a training period during which the model is pre-
sented with a rule (via LLA) and the appropriate response (via ACC). The context
signal is derived from the rule by VMPFC . Afterwards, we test the model by pre-
senting just the rule and recording its output. The process covers six seconds of
simulated time, with 1.5 seconds each for training and 1.5 seconds each for testing.
The output from the system (i.e. the structure representing the chosen response) is
the spiking pattern in Figure 10. These spikes encode the 100-dimensional vector
representing the chosen actions. To interpret this, we compare the neural repre-
sentation (from the Decoding equation of section 3.1.1) of the vector to each of
the possible symbols (vowel, relation, over21, not⊗over21, etc.) via a dot prod-
uct. The results of this simulation are provided in Figure 11. Figure 10: Spikes of
every 30th neuron in the e population over 200ms of simulation time. This is the
raw spike data that is decoded to estimate the elements of the response vector.

Figure 11: Model results for learning and applying inferences across the two
contexts. The time-varying solid lines indicate the similarity of the model’s de-
coded spiking output (population e) to all possible responses. The darker lines
trace the expected answers on the two versions of the Wason task. The vector
names and numerical similarity values of the top two results (over the last 100ms
of that part of the task) are shown above. After learning, the system reliably
performs the correct context-dependent transformation, producing the appropriate
response.

For the abstract case, the expected response is vowel and even. This ‘log-
ically incorrect’ answer may be learned as a result of past experiences where
bi-conditional interpretation of the implication {{2830 Feeney, A. 2000; }} cou-
pled with a preference for positive information or matching strategies {{2078 Re-
ich,S.S. 1982;2831 Manktelow, K.I. 1979; }} have been used and reinforced. In
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the content specific task, the expected response is the ‘logically correct’ answer
alcohol and not⊗over21, which is assumed to be learned through experiences
where the content specific cues have been relevant and indicate this specific trans-
formation is most appropriate (i.e., situations where one is reasoning about legal
drinking). During these first three seconds, the appropriate transformations to
produce these expected results are learned in the weights between the context sig-
nal and associative memory as described in section 3.2. We have compressed the
learning history by having a high learning rate (k in the learning rule equation).
During the last three seconds, feedback of the correct solution from ACC is re-
moved, and the model then performs the correct transformation for each context
based only on the context signal. This performance is 95% reliable (N=20) over
independent simulations. The variability is due to the fact that the 25 different
symbol vectors are randomly chosen at the beginning of each run. As the num-
ber of symbols increases, the model reliability is reduced (70% correct (N=20)
with 35 symbols). This is expected, as we have implemented a relatively low
dimensional VSA. However, as described earlier, capacity (and hence accuracy)
increases exponentially with the number of dimensions.

4.4.2. Syntactic generalization within contexts The preceding results are po-
tentially uninteresting insofar as they could be generated by a neural network
model that simply memorizes an answer in a given context. For the model to
demonstrate truly cognitive capacities, it is essential to show that the transforma-
tions being learned generalize to novel rules in the same context. And, further-
more, that this generalization be content insensitive – that is, driven by the syntac-
tic structure of the examples. It is important to note that it is precisely this kind of
generalization that has been thought to distinguish cognitive from non-cognitive
systems {{799 Fodor,Jerry 1988; 1241 Jackendoff,R. 2002; 2792 Hummel, John
E Holyoak,Keith J. 2003; }}. As a result, it is crucial to show this kind of syntactic
systemmaticity is achievable by models employing our cognitive architecture. To
demonstrate this, we train the model on two rules in the same context, and then test
it on a third rule, again in the same context. All other aspects of the simulation are
identical to the previous one. relation⊗implies+antecedent⊗vote+consequent⊗over18
vote+not⊗over18 relation⊗implies+antecedent⊗alcohol+consequent⊗over21 alcohol+not⊗over21
relation⊗implies+antecedent⊗drive+consequent⊗over16 drive+not⊗over16 As be-
fore, the model learns the correct response in this context for the first two rules.
Next, learning is turned off and the model is shown the third rule, which is syntac-
tically similar but not previously seen. Since the rule produces the same context
signal (via VMPFC), the same transformation is applied, producing the correct
response (drive+not⊗over16).
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Figure 12: Simulation results demonstrating syntactic generalization within a
context. The format is the same as described in Figure 11. In the first half of the
simulation, two different deontic rules are presented, and the relevant transforma-
tion is learned. In the third quarter, a novel deontic rule is shown and the model
correctly infers the appropriate response. This demonstrates that the model can
infer based solely on the syntactic structure of the training examples.

Figure 12 demonstrates that the system is capable of applying its learned syn-
tactic transformations to novel contextually similar situations, which have dif-
ferent content. As a result, we have implemented a specific, domain general
cognitive mechanism that is able to reproduce the basic Wason task and the re-
lated content effects. More generally, these simulations together indicate that we
have successfully met our goal of implementing a truly cognitive architecture in
a biologically plausible network. 4.5 Discussion of Wason task simulations In
the context of the Wason task, the model meets Cosmides’ {{519 Cosmides,L.
1989/a;}} original challenge to provide a plausible domain general mechanism
able to explain task performance while being inductive. In particular, Cosmides
suggests that the inductive evidence during the normal course of human devel-
opment cannot serve to explain the superior performance on the content facili-
tated task because the relative amount of evidence would not favor the correct
response. However, the inductive mechanism provided here does not rely on the
relative amount of evidence available in different contexts. Instead, it relies on
a minimum threshold of available evidence (i.e., enough for the learning rule to
induce the relevant transformation) within a given context. It should also be clear
that the reasoning mechanism itself does not change as the context does. In-
stead, an externally generated signal determines how the mechanism is employed
(i.e. which transformation is applied). That is, the model suggests that the cen-
tral difference between the abstract and content facilitated versions of the Wason
task is the context signal being provided from the VMPFC. This, we take it, is
very different from suggesting that evolutionarily distinct reasoning mechanisms
are necessary to account for performance differences on these two versions of
the task. Experiments performed after we first presented an early version of this
model {{692 Eliasmith,C. 2004; }} have highlighted the VMPFC as the locus of
major cognitive processing differences on these two versions of the task {{2832
Canessa,N. 2005; }}, supporting this suggestion. However, our explicit and heavy
reliance on learning in this model is unique in the theoretical approaches to the
Wason task. Specifically, pragmatic reasoning schemas have been heavily criti-
cized as leaving ‘learning’ or ‘induction’ unspecified and overly powerful {{519
Cosmides,L. 1989; }}. In contrast, we have provided a detailed, neurally plau-
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sible mechanism in our model. Further, our implementation offers an advantage
over PRS, in that the transformations used to solve the problem are not limited
to a theoretically pre-determined group of “schemas” which are identical for all
subjects (e.g., the ‘permission’ schema). Instead, each individual will solve the
problem using his or her own estimation of the correct transformation in the given
context, as determined by his or her personal experience and learning history in
that context. The model is thus not restricted to a clear-cut deontic/non-deontic
distinction, but rather the similarity of context signals will determine which trans-
formations are applied. As a result, the similarity space provided by context sig-
nals will be mapped onto a transformation space. This mapping is discovered by
the model based on past examples. This is consistent with findings that successful
performance of the task does not align neatly with intuitive theoretical distinctions
{{1859 Oaksford,M. 1996; }}{{2827 Almor, A. 1996; }}, and can vary with past
experience {{2126 Rinella,K. 2001;}}. We do not suggest that our model is com-
pletely satisfactory. A number of improvements to the model will be the focus
of future development. A first improvement will be to extend the work of Singh
{{2811 Singh,R. 2005/a;}} on biologically plausible cleanup memory. This mod-
els how the noisy output from such a system can be used to identify the symbols
that are most strongly represented (the top lines in figures 11 and 12). Second,
it is crucial to explicitly explore the scalability of the model. In theory, the ac-
curacy and symbol capacity scales exponentially with the number of dimensions,
but this remains to be tested. This is especially important given the interaction of
this scalabilty with the amount of neural noise in the system. Third, there are a
number of learning-related improvements that could be made to the model. For
instance, it should be possible to extend the learning rule to permit learning based
only on a valence signal (i.e., reinforcement learning) without specific informa-
tion regarding the correct answer. This likely better reflects learning in everyday
circumstances. Relatedly, it would be useful to have the learning consist of a large
number of distinct examples of reasoning across similar contexts. This would
likely improve the semantic generalization results in figure 12, since the learned
transformation would be an average over a large number of syntactically similar
and semantically dissimilar examples (effectively removing semantic effects). Fi-
nally, it would be useful to investigate the number of distinct contexts that can be
effectively stored in the associative memory. It would then be possible to predict
and test how specific associative memory limitations would be expected to affect
performance.

• other syntactic generalization discussion, not wason specific.



CHAPTER 6. BIOLOGICAL COGNITION – MEMORY AND LEARNING181

Syntactic generalization is well-demonstrated by considering simple examples
of deductive reasoning. In such circumstances, it is the syntactic structure, not
the content, that is expected to drive behaviour. While content effects are well-
documented in human deductive reasoning (Wason, 1966; Cheng & Holyoak,
1985), syntactic generalization must still be accounted for. The model we present
here incorporates both.

Syntactic generalization requires the integration of the transformation and
learning functions. Learning is used to determine what the relevant transformation
is in a given circumstance, and that transformation is then applied by a transfor-
mation subnetwork. Because not all input/output pairs are taken by the system
to be examples of the same transformation, we have introduced a context signal
into the learning component of the model to allow it to employ different reasoning
strategies in difference circumstances. Since we allow the content of a processed
sentence to determine the context, we can naturally capture content effects.

PET and fMRI studies on symbolic reasoning do not unambiguously deter-
mine a single brain area dedicated to such tasks (Goel, 2005). However, there
is some indication that right brain areas are preferentially activated during the
processing of deductive reasoning tasks, including the middle temporal lobe and
inferior frontal cortex (Parsons & Osherson, 2001). Since the middle temporal
lobe has been indicated to be more closely related to language processing than ac-
tual deduction (Goel, 2005), our model centers on the right inferior frontal cortex.
Deductive rules are presumed to be encoded by the left language areas (i.e., the
Perisylvian language zone, Heimer, 1994). This is consistent with Parsons (1999)
suggestion that rules are provided to the deductive mechanism by left language
areas and consistent with the general characterization of language processing as
involving left frontal cortices (Binder et al., 1997).

We assume that context is determined based on the rule contents and trans-
mitted to VMPFC (Kalisch et al., 2006). There are direct anatomical connections
between VMPFC and right inferior frontal cortex, and VMPFC has been impli-
cated in carrying context information (Adolphs et al., 1995).

Finally, a feedback mechanism is needed to induce the correct responses in
different contexts based on experience. Holroyd and Coles (2002) propose that
a high-level error-processing system in the anterior cingulate cortex (ACC) sends
an error signal to frontal cortex via the mesencephalic dopamine system, facili-
tating the development of adaptive behaviors. Our model thus receives an error
signal from ACC, which we take to be a representation of the correct responses
in a particular context. This is used by our model to learn the context-sensitive
mapping from rule to response. Figure 11 summarizes the model and its mapping
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to the neuroanatomy.
[Warning: Image not found]
Figure 11: Neural diagram for the syntactic generalization model. Circles

indicate neural populations (N is the number of neurons, D is the dimensionality
of the value represented by the neurons). Arrows indicate neural connections.

The specific tasks we simulate are based on simple ‘if-then’ deductive reason-
ing, and patterned after the Wason task (Wason, 1966): e.g. “If A then B”. In
this task, a subject is shown four cards with the positive and negative cases of the
elements displayed (i.e., A, not-A, B, not-B), and told that on the back of each
card is another case. The task is to determine which cards must have their back
value checked to determine if they violate the provided rule.

In our simulations all if-then rules are encoded as:
R = relation[F056?]implication + antecedent [F056?]A + conse-

quent [F056?]B
If the rule is taken as a material conditional, the violating cases are A and not-

B (encoded as not[F056?]B). In some contexts human subjects correctly make
this judgement (Cheng & Holyoak, 1985). However, in others, where subjects
may be mistaking the conditional as a bi-conditional (Feeney & Handley, 2000),
the most common response is A and B. This is a straightforward example of a
content effect, where the same sentential structure is reasoned about differently
based on the content.

Figure 12 demonstrates the performance of the model in these two different
contexts. Here we have used two rules, an abstract rule “If vowel, then even
number,” and a facillitated rule “If drinking alcohol, then over 21.” The former is
treated as a bi-conditional, the latter as a material conditional. In the first half of
the simulation, the model learns different transformations in these two contexts.
In the second half, it applies these transformations across those same contexts.
It is evident here that the system is able to learn and apply deductive reasoning
strategies in a content/context sensitive manner.

[Warning: Image not found]
Figure 12: Model results for learning and applying inferences across the two con-
texts. The time-varying solid lines indicate the similarity of the model’s decoded
spiking output (population e) to all possible responses. The darker lines trace the
expected answers on the two versions of the Wason task. The vector names and
numerical similarity values of the top two results (over the last 100ms of that part
of the task) are shown above. After learning, the system reliably performs the
correct context-dependent transformation, producing the appropriate response.
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This performance is 95% reliable (N=20) over independent simulations. The
variability is due to the fact that the 25 different symbol vectors are randomly cho-
sen at the beginning of each run. As the number of symbols increases, the model
reliability is reduced (70% correct (N=20) with 35 symbols). This is expected, as
we have implemented a relatively low dimensional VSA. However, as described
earlier, capacity (and hence accuracy) increases exponentially with the number of
dimensions.

Because the simulation is run in spiking neurons, we are also able to look at the
detailed spiking patterns produced during the task. Figure 13 provides an example
of the spike patterns produced during the application of the learned transformation
to a rule.

[Warning: Image not found]
Figure 13: Spikes of every 30th neuron in the e population over 200ms of simu-
lation time. This is the raw spike data that is decoded to estimate the elements of
the response vector.

More importantly, this same model can be shown to learn syntactic general-
izations within a given context. Figure 14 shows results from a simulation where
the context is held fixed (i.e. all are treated as material conditionals), and different
rules are provided. This figure demonstrates that when a novel rule is provided in
the second half of the simulation, the syntactic reasoning strategy learned in the
first half is applied successfully.

[Warning: Image not found]
Figure 14: Simulation results demonstrating syntactic generalization within a

context. The format is the same as described in Figure 11. In the first half of the
simulation, two different deontic rules are presented, and the relevant transforma-
tion is learned. In the third quarter, a novel deontic rule is shown and the model
correctly infers the appropriate response. This demonstrates that the model can
infer based solely on the syntactic structure of the training examples.

We can employ the model to attempt to gain some insight into how we would
expect humans to perform given various examples of novel syntactic transforma-
tion. The generally expected improvement is consistent with evidence of practice
effects in reasoning tasks (Rinella et al., 2001). However, we can more specifi-
cally predict performance as a function of the number of examples. In Table 3 we
show that generalization improves rapidly with the first three examples, and then
improves less quickly. We predict that this would translate behaviorally as more
rapid and more consistent responses after four examples compared to two, for
these simple cases of syntactic generalization. However, the difference between 3
and 4 examples, while positive, is much less pronounced.
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Table 3: Improvement in generalization with learning history. Accuracy is
the difference between the VSA representations of the correct answers and the
largest incorrect answer, scaled by the largest incorrect answer. A number below
0 indicates that the wrong answer is produced, and larger numbers indicate the
separation between the correct and incorrect answers.

# of examples shown Generalization accuracy
1 -0.10
2 0.05
3 0.23
4 0.26

In summary, these simulations together demonstrate that the same system is
able to switch reasoning strategies (transformations) in different contexts, as well
as apply the same syntactically-based reasoning strategy to novel structures within
a context. In all cases, these strategies are learned based on (few) examples.

6.6 Nengo: Neural dynamics
• Theoretical point: Bringing representation, dynamics, and transformations

together in one example.

• Do Controlled integrator (and/or maybe the subtracting integrator for bet-
ter loading), in Nengo; appendix with code, or appendix with derivation,
slight extension to simplest kind of working memory models (i.e. with a
bit of control)... marc H might have evidence that it takes 100ms to load a
memory?

6.6.1 ***from comp neuro paper*** Neural integrator
The line attractor, or ‘neural integrator’, has recently been implicated in decision
making ??, but is most extensively explored in the context of oculomotor control
???. It is interesting to note that the terms ‘line attractor’ and ‘neural integrator’
actually describe different aspects of the network. In particular, the network is
called an ‘integrator’ because the low-dimensional variable (e.g., horizontal eye
position) x(t) describing the network’s output reflects the integration of the input
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bk(t) aj(t)

Figure 6.12: Line attractor network architecture. The underline denotes variables
that are part of the neuron-level description. The remaining variables are part of
the higher-level description. (taken from eliasmith, 2005)

signal (e.g., eye movement velocity) u(t) to the system. In contrast, the network is
called a ‘line attractor’ because in the high-dimensional activity space of the net-
work (where the dimension is equal to the number of neurons in the network), the
organization of the system collapses network activity to lie on a one-dimensional
subspace (i.e. a line). As a result, only input that moves the network along this
line changes the network’s output.

In a sense, then, these two terms reflect a difference between what can be
called ‘higher-level’ and ‘neuron-level’ descriptions of the system (see figure
6.12). As modelers of the system, we need a method that allows us to integrate
these two descriptions. Adopting the principles outlined earlier does precisely
this. Notably, the resulting derivation is extremely simple, and is similar to that
already presented in Eliasmith and Anderson (2003). However, all of the steps
needed to generate the far more complex circuits discussed later are described
here, so it is a useful introduction (and refered to for some of the subsequent
derivations).

We can begin by describing the higher-level behavior as integration, which has
the state equation

ẋ = Ax(t)+Bu(t) (6.1)

x(s) =
1
s
[Ax(s)+Bu(s)] , (6.2)

where A = 0 and B = 1. Given principle 3, I can determine A′ and B′, which are
needed to implement this behavior in a system with neural dynamics defined by



CHAPTER 6. BIOLOGICAL COGNITION – MEMORY AND LEARNING186

h′(t) (see (??)). The result is

B′ = τ

A′ = 1,

where τ is the time constant of the PSC of neurons in the population representing
x(t).

To use this description in a neural model, we must define the representation
of the state variable of the system, i.e., x(t). Given principle 1, let us define this
representation using the following encoding and decoding:

a j(t) = G j

[
α j
〈
x(t)φ̃ j

〉
+ Jbias

j

]
(6.3)

and
x̂(t) = ∑

j
a j(t)φ x

j . (6.4)

Note that the encoding weight φ̃ j plays the same role as the encoding vector in
(A.2), but is simply±1 (for ‘on’ and ‘off’ neurons) in the scalar case. Figure 6.13
shows a population of neurons with this kind of encoding. Let us also assume an
analogous representation for u(t).

Working in the time domain, we can take our description of the dynamics,

x(t) = h′(t)∗
[
A′x(t)+B′u(t)

]
and substitute it into (6.3), to give

a j(t) = G j

[
α j
〈
φ̃ jh′(t)∗

[
A′x(t)+B′u(t)

]〉
+ Jbias

j

]
. (6.5)

Substituting our decoding (6.4) into (6.5) for both populations gives

a j(t) = G j

[
α j

〈
h′(t)∗ φ̃ j

[
A′∑

i
ai(t)φ x

i +B′∑
k

bk(t)φ u
k

]〉
+ Jbias

j

]
(6.6)

= G j

[
h′(t)∗

[
∑

i
ω jiai(t)+∑

k
ω jkbk(t)

]
+ Jbias

j

]
(6.7)

where ω ji = α jA′φ x
i φ̃ j andω jk = α jB′φ u

k φ̃ j are the recurrent and input connection
weights respectively. Note that i is used to index population activity at the previous
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Figure 6.13: Sample tuning curves for a population of neurons used to imple-
ment the line attractor. These are the equivalent steady state tuning curves of the
spiking neurons used in this example. They are found by solving the differential
equations for the LIF neuron assuming a constant input current, and are described
by: a j(x) = 1

τ
re f
j −τRC

j ln
(

1− Jthreshold
α jx+Jbias

) . (taken from eliasmith 2005)
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Figure 6.14: A) The decoded input u(t), B) the decoded integration x(t) of a
spiking line attractor with 200 neurons under 10% noise, and C) spike rasters of a
third of the neurons in the population. (taken from eliasmith 2005)

‘time step’2 and Gi is a spiking nonlinearity. It is important to keep in mind that
the temporal filtering is only done once, despite this notation. That is, h′(t) is the
same filter as that defining the decoding of both x(t) and u(t). More precisely, this
equation should be written as

∑
n

δ j(t− tn) = G j

[
∑
i,n

ω jih′i(t)∗δi(t− tn)+ ... (6.8)

∑
k,n

ω jkh′k(t)∗δk(t− tn)+ Jbias
j

]
. (6.9)

The dynamics of this system when h′i(t) = h′k(t) are as written in (6.5), which
is the case of most interest as it best approximates a true integrator. Neverthless,
they do not have to be equal and model a broader class of dynamics when this is
included in the higher-level analysis.

2 In fact, there are no discrete time steps since this is a continuous system.

However, the PSC effectively acts as a time step, as it determines the length of

time that previous information is available.
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For completeness, we can write the sub-threshold dynamical equations for an
individual LIF neuron voltage Vj(t) in this population as follows:

dVj

dt
= − 1

τRC
j

(
Vj−R j

[
∑
i,n

ω jih′i(t)∗δi(t− tn)+ ... (6.10)

∑
k,n

ω jkh′k(t)∗δk(t− tn)+ Jbias
j

])
(6.11)

where τRC
j = R jC j, R jis the membrane resistance and C j the membrane ca-

pacitance. As usual, the spikes are determined by choosing a threshold voltage
for the LIF neuron (Vth) and placing a spike when Vj > Vth. In our models, we
also include a refractory time constant τ

re f
j , which captures the absolute refrac-

tory period observed in real neurons. Figure 6.14 shows a brief sample run for
this network.

To gain insight into the network’s function, both as an attractor and an integra-
tor, it is important to derive measures of the networks behavior. This has already
been done to some extent for line attractors, so I will not discuss such measures
here ??. What these analyses make clear, however, is how higher-level proper-
ties, such as the effective time constant of the network, are related to neuron-level
properties, such as membrane and synaptic time constants. Because the previ-
ous derivation is part of a general method for building more complex attractor
networks (as I discuss next), it becomes evident how these same analyses can ap-
ply in the more complex cases. This is a significant benefit of generating models
with a set of unified principles. More importantly from a practical standpoint,
constructing this network by employing control theory makes it evident how to
control some of the high-level properties, such as the effective network time con-
stant (see section ??). It is this kind of control that begins to make clear how
important such simple networks are for understanding neural signal processing.

****control**** As described in section ??, a line attractor is implemented in
the neural integrator in virtue of the dynamics matrix A′ being set to 1. While the
particular output value of the attractor depends on the input, the dynamics of the
attractor are controlled by A′. Hence, it is natural to inquire as to what happens
as A′ varies over time. Since A′ is unity feedback, it is fairly obvious what the
answer to this question is: as A′ goes over 1, the resulting positive feedback will
cause the circuit to saturate; as A′ becomes less than one, the circuit begins to act
as a low-pass filter, with the cutoff frequency determined by the precise value of
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A′. Thus, I can build a tunable filter by using the same circuit and allowing direct
control over A′.

To do so, we can introduce another population of neurons dl that encode the
value of A′(t). Because A′ is no longer static, the product A′x must be constantly
recomputed. This means that our network must support multiplication at the
higher level. The two most obvious architectures for building this computation
into the network are shown in figure 6.15. Both architectures are implementations
of the same high-level dynamics equation

x(t) = h′(t)∗
(
A′(t)x(t)+ τu(t)

)
(6.12)

which is no longer LTI, as it is clearly a time-varying system. Notably, while
both architectures demand multiplication at the higher level, this does not mean
that there needs to be multiplication between activities at the neural level. This
is because, as mentioned in section ?? and demonstrated in section ??, nonlinear
functions can be determined using only linear decoding weights.

As described in ?, the first architecture can be implemented by constructing
an intermediate representation of the vectorc = [A′,x] from which the product is
extracted using linear decoding. The result is then used as the recurrent input to
the ai population representing x. This circuit is successful, but performance is
improved by adopting the second architecture.

In the second architecture, the representation in ai population is taken to be a
2D representation of x in which the first element is the integrated input and the
second element is A′. The product is extracted directly from this representation
using linear decoding and then used as feedback. This has the advantage over the
first architecture of not introducing extra delays and noise.

Specifically, let x = [x1,x2] (where x1 = x and x2 = A′ in 6.12). So, a more
accurate description of the higher-level dynamics equation for this system is

ẋ = h′(t)∗
(
A′x+B′u

)
˙[

x1
x2

]
= h′(t)∗

([
x2 0
0 0

][
x1
x2

]
+
[

τ 0
0 τ

][
u
A′

])
(6.13)

which makes the nonlinear nature of this implementation explicit. Notably, here
the desired A′ is provided as input from a preceding population, as is the signal to
be integrated, u. To implement this system, we need to compute the transformation

p̂(t) = ∑
i

ai(t)φ
p
i ,



CHAPTER 6. BIOLOGICAL COGNITION – MEMORY AND LEARNING191

where p(t) is the product of the elements of x. Substituting this transformation
into (6.6) gives

a j = G j

[
α j

〈
h′ ∗ φ̃ j

[
∑

i
ai(t)φ

p
i +B′∑

k
bkφ

u
k

]〉
+ Jbias

j

]

= G j

[
∑

i
ωi jai(t)+∑

k
ωk jbk(t)+ Jbias

j

]
(6.14)

where ωi j = α jφ̃ jφ
p
i , ωk j = α jφ̃ jB′φ u

k and

ai(t) = h′ ∗Gi

[
αi
〈
x(t)φ̃ i

〉
+ Jbias

i

]
.

The results of simulating this nonlinear control system are shown in figure
6.16. This run demonstrates a number of features of the network. In the first tenth
of a second, the control signal 1−A′ is non-zero, helping to eliminate any drift
in the network for zero input. The control signal then goes to zero, turning the
network into a standard integrator over the next two-tenths of a second when a
step input is provided to the network. The control signal is then increased to .3,
rapidly forcing the integrated signal to zero. The next step input is then filtered by
a low pass filter, since the control signal is again non-zero. The third step input
is also integrated, as the control signal is zero. Like the first input, this input is
forced to zero by increasing the control signal, but this time the decay is much
slower because the control signal is lower (.1). These behaviors show how the
control signal can be used as a reset signal (by simply making it non-zero), or as
a means of determining the properties of a tunable low-pass filter.

So, the introduction of control into the system gave us a means of radically
altering the attractive properties of the system. It is only while A′ = 1 that we
have an approximate line attractor. For positive values less than one, the system no
longer acts as a line attractor, but rather as a point attractor, whose basin properties
(e.g., steepness) vary as the control signal.

As can be seen in (6.14), there is no multiplication of neural activities. There
is, of course, significant debate about whether, and to what extent, dendritic non-
linearities might be able to support multiplication of neural activity (see, e.g.,
?????). As a result, it is useful to demonstrate that it is possible to generate
circuits without multiplication of neural activities that support network level non-
linearities. If dendritic nonlinearities are discovered in the relevant systems, these
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Figure 6.15: Two possible network architectures for implementing the control-
lable filter. The B variables modify the inputs to the populations representing their
subscripted variable. The A variables modify the relevant recurrent connections.
The architecture in A) is considered in ?, the more efficient architecture in B) is
considered here. (taken from eliasmith 2005)

networks would become much simpler (essentially we would not need to construct
the intermediate c population).

• Relate to working memory model and rat path integration, etc.
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Figure 6.16: The results of simulating the second architecture for a controllable
filter in a spiking network of 2000 neurons under 10% noise. A) The input signals
to the network. B) The high-level decoded response of the spiking neural network.
The network encodes both the integrated result and the control signal directly, to
efficiently support the necessary nonlinearity. See text for a description of the
behavior. (taken from eliasmith, 2005)




