
Chapter 3

Biological cognition – semantics

In reading what follows, it is important to keep in mind that the ideas captured
here represent the beginning, not the end, of a research program. For this reason,
it is perhaps worth stating what the following architecture – the semantic pointer
architecture (SPA) – is not. First, it is not testable by a single, or small set, of
experiments. Being the foundations of a research program, the SPA gains some
amount of credibility when it gives rise to successful models. Failures of such
models lead to a reconsideration of those specific models and, when systematic, a
reconsideration of the program itself.

Second, the SPA is not a completed theory of mental function: we have not
yet actually built a fully cognitive brain (you will not be surprised to learn). In
what follows I describe models of perception, action, and cognition. And, I de-
scribe these in a way that combining them is trivial. Nevertheless, there are many
behaviors involving each of these aspects of a cognitive system that I will not
discuss.

Third, even theoretically speaking, the coverage of the SPA is uneven. Some
aspects of cognition are more directly addressed than others – the SPA is undeni-
ably a work in progress.

These qualifications aside, there are still compelling reasons to pursue the
SPA. First, while it is not a completed, unified theory of mental function, it is
an attempt to move towards such a theory. Such attempts can be useful in both
their successes and failures: either way, we learn about constructing a theory of
this kind. As discussed earlier, some have suggested that such a theory does not
exist (section 1.2). But the behavioral sciences are far too young to think we have
done anything other than scratch the surface of possible cognitive theories.

A second reason to pursue the SPA is its close connection to biological consid-

79



CHAPTER 3. BIOLOGICAL COGNITION – SEMANTICS 80

erations. A main goal of this work is to show how we can begin to take biological
detail seriously, even when considering sophisticated, cognitive behavior. Even
if it is obvious that we should use as much available empirical data as possible
to constrain our theories in general, actually doing do so requires well-specified
methods for doing so. In what follows, the application of the SPA provides several
specific instances in which we can address questions, and draw on empirical data,
in new and interesting ways (see e.g., sections 3.4, 4.6, 5.7, 6.2, etc.).

A third reason to pursue the SPA is its generality. I have attempted to demon-
strate the generality of the approach by choosing a broad set of relevant examples
which demonstrate, but do not exhaust, the principles at work. Of course, one
book is not enough to adequately address even a small portion of cognitive behav-
ior. In short, the intent is to provide a method and an architecture that opens the
way for a much wider variety of work than can possibly be captured in a single
book, or for that matter, done in a single lab.

I leave a detailed discussion regarding the consequences of the architecture for
chapter 10. Nevertheless, keeping in mind the main motivations behind the SPA
should help situate the following introduction to it.

3.1 The semantic pointer hypothesis

Underlying the semantic pointer architecture is the semantic pointer hypoth-
esis. Its purpose is to bridge the gap between the neural engineering framework
(NEF) – a theory that tells us how a wide variety of functions may be implemented
in neural structures – and the domain of cognition – which is in need of ideas about
how such neural structures give rise to complex behavior. In the next four chap-
ters, I describe and demonstrate five central aspects of the architecture: semantics,
syntax, control, memory and learning. In the subsequent chapter, I provide a high-
level integration of these discussions in a characterization of the semantic pointer
architecture (SPA) for biological cognition. In the remainder of the book I explic-
itly compare the SPA to past suggestions for cognitive architectures, and discuss
important practical and conceptual differences.

Let me begin with a simple statement of the semantic pointer hypothesis:
Higher-level cognitive functions in biological systems are made pos-
sible by semantic pointers. Semantic pointers are neural representa-
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tions that carry partial semantic content and are composable into the
complex representational structures necessary to support cognition.

There are two aspects of this hypothesis that must be expanded in detail. First, I
must indicate how semantic information, even if partial, will be captured by the
representations that we choose to identify as semantic pointers. Second, I must
give a characterization of how to construct complex structures given those same
representations. Given the characterization of neural representation in the previ-
ous chapter, it is natural to begin with the assumption that semantic pointers are
vectors in a high-dimensional state space. Consequently, I will address these two
aspects in that context. I will address the semantics (both perceptual and motor) of
these representations in the present chapter. The construction of representational
structures (i.e. syntax) is addressed in the next chapter.

There have been a wide variety of proposals regarding the role that seman-
tics and syntax should play in our theories of cognition. Traditionally, a cognitive
system was thought to be largely a symbol processing system that relied on syn-
tax to respect the semantics of the symbols and combination of symbols found
in the system. However it did not depend on the semantics of the symbols for
determining how they were processed. Essentially, semantics came along for the
ride.

It has been suggested for some time, that a high-dimensional vector space
is a natural way to represent semantic relationships between representations in a
cognitive system. It is difficult to visualize high-dimensional spaces, but we can
get a sense of what this claim amounts to by thinking of concepts in a 3D state
space, as shown in figure 3.1. I refer to such a visualization as a conceptual golf
ball. The surface of the ball represents the conceptual space, and the dimples in
the surface represent concepts. Concepts that are semantically similar should lie
in close proximity. Of course, things will get crowded quickly in 3 dimensions.
The important contribution of high-dimensionality is that the amount of surface
area available to put concepts increases exponentially ???verify, as shown in figure
3.2.

An obvious drawback with such spaces is that it is not immediately clear how
complex representational structures can be placed in such a space (since the space
has no obvious structure to it): I return to this issue in the next chapter. However,
even without worrying about representational structure per se, the semantics of
even simple human concepts seems to be extraordinarily rich, extending beyond a
simple mapping to a single, even very high-dimensional, vector space (Barsalou,
2009, 1999). The richness of human conceptual behavior suggests that it is un-
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Figure 3.1: A conceptual golf ball depicting a 3D state space. Dimples in the ball
represent concepts and 3D vectors from the center of the ball to its surface are
used to track the dimples. The proximity of the dimples to each other reflects the
similarity of the concepts they represent.
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Figure 3.2: The scaling of the available conceptual space on the surface of a hy-
persphere with dimensionality. The figure shows the number of unit vectors that
can be placed into a disk and ball under the constraint that there must be a min-
imum angle of ten degrees between any two vectors. The rightmost plot extends
the result from intuitive two and three dimensional shapes to higher dimensional
spheres.
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likely that all of the aspects of a concept are actively represented at the same time.
In earlier work, I have made a distinction between ‘occurrent’ and ‘conceptual’
representation (Eliasmith, 2000). Conceptual representations are representations
that address the traditional questions about concepts that have preoccupied cog-
nitive scientists and their predecessors for centuries. I believe there are theories
of concepts consistent with what I say here (see section 10.3.3). However, my
focus is on occurent representations. These are identifiable with the NEF-style
representations described in the previous chapters: they are neural activities.

With this distinction in hand, acknowledging the richness of conceptual be-
havior leads to the realization that it is a mistake to assume that there are occurent
representations in the brain that carry the full semantic content of any given con-
cept. There is simply too much information related to any particular conceptual
representation to be able to actively represent and manipulate it all. This is why
the semantic pointer architecture employs ‘pointers’.

A pointer, in computer science, is a set of numbers that indicate the address
of a piece of information stored somewhere in memory. What is interesting about
pointers, is that manipulations of pointers themselves can be performed which
result in a use of the information identified by the pointer, despite the fact that
that information itself is never explicitly addressed. Most such manipulations are
quite simple. For instance, if I am creating a list of data that needs to be grouped,
I can store each piece of data with a pointer to the next data item in the list. Such
a ‘linked list’ provides a flexible method for traversing, removing, and adding
items to a collection of data. Similarly, if I need to pass a data structure to a
function which may use it, I can simply pass the pointer, which is typically much
smaller than the data structure itself. As a result, much less information needs to
be moved around within the system, while still making the relevant data available
for subsequent use.

One notable feature of pointers in computer science, is that a pointer itself and
the information contained at its address are arbitrarily related. As a result, hav-
ing the pointer itself often indicates nothing about what sort of information will
be found when the address to which it points is accessed. Since decisions about
how to use information often depend on what the content of that information is,
pointers are often ‘dereferenced’ during program execution. Dereferencing occurs
when the data at the address specified by the pointer is accessed. In a computer,
this is a relatively cheap operation because memory is highly structured, and the
pointer is easy to interpret as an address. Given these features, pointers are rem-
iniscent of symbols. Symbols, after all, are supposed to gain their computational
utility from the arbitrary relationship they hold with their contents (Fodor, 1998).
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And symbols are often thought to act like labels for more sophisticated data struc-
tures (such as schemas, scripts, etc.) just as pointers act as labels for whatever
happens to be at their address.

The SPA suggests that neural representations, especially those implicated in
cognitive processing, share central features with this traditional notion of a pointer.
In short, the SPA suggests that the brain manipulates compact, address-like rep-
resentations to take advantage of the significant efficiency and flexibility afforded
by such representations. Relatedly, such neural representations may be able to act
like symbols in the brain.

However, the arbitrary relationship between a pointer and its contents seems
problematic for biological systems, because relationships between neural repre-
sentations are most often learned. In contrast, the relationships between symbols
in a digital computer are determined by human design decisions. It is precisely
the failure of such decisions to adequately capture semantics that raises what has
become known as the ‘symbol grounding problem’ (Harnad, 1990). This, in short,
is the problem of defining how symbols get their semantics – a difficult problem
indeed, and one over which much ink has been spilled. As a result, it would be
too hasty to simply import the notion of a pointer directly from computer science
into our understanding of biological cognition.

Consequently, the hypothesis I am suggesting here is an extension of the stan-
dard notion of a pointer. In particular, the ‘semantic’ in ‘semantic pointers’ refers
to the fact that the representations that play the role of a pointer contain semantic
information themselves. That is, the relationship between a semantic pointer and
the memory to which it points is not arbitrary. In section 3.4, I provide a detailed
example in the visual system of how semantic pointers relate to the memories to
which they point. For now, it is useful to think of the semantic information that is
contained in a semantic pointer as a compressed version of the information con-
tained in a more conceptual memory. With this rough characterization in hand,
we are in a position to consider recent research on semantics and examine de-
tailed examples of how motor and perceptual semantic pointers can function in a
neural architecture.

3.2 Semantics: An overview
When constructing a cognitive architecture, there has been an historical tendancy
to start with syntactic considerations and build on them by introducing more and
more sophisticated semantics. However, psychologists and linguists have more
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recently argued that much syntactic processing can be best explained by sophisti-
cated semantic processing.1 In contrast to traditional approaches, this put seman-
tics in the driver’s seat. As a result, much recent empirical work on semantics has
focused on understanding what kind of semantic processing is needed to perform
various cognitive tasks. In short, the question of interest has become: for which
behaviors do we need ‘deep’ semantic processing, and which can be effectively
accounted for by ‘shallow’ semantic processing?

The distinction between deep and shallow processing can be traced back to
Allan Paivio’s (1986; 1971) Dual-Coding Theory. This theory suggests that per-
ceptual and verbal information are processed in distinct channels. In Paivio’s
theory, linguistic processing is done using a symbolic code, and perceptual pro-
cessing is done using an analog code, which retains the perceptual features of a
stimulus. Paivio (1986) provides a lengthy account of the many sources of em-
pirical evidence in support of this theory, which has been influential in much of
cognitive psychology including work in working memory, reading, and human
computer interface design.

More recently, this theory has been slightly modified to include the observa-
tion that both channels are not always necessary for explaining human perfor-
mance on certain tasks (Simmons et al., 2008; Glaser, 1992). Specifically, simple
lexical decision tasks do not seem to engage the perceptual pathway. Two re-
cent experiments help demonstrate this conclusion. First, Solomon and Barsalou
(2004) behaviorally demonstrated that careful pairings of target words and prop-
erties can result in significant differences in response times to determining if a
property belongs to a target word. For instance, when subjects were asked to
determine if the second word in a pair was a property of the first word, false pair-
ings that were lexically associated took longer to process. For example, a pair
like ‘cherry-card’ resulted in 100ms quicker responses than a pair like ‘banana-
monkey’. Second, Kan et al. (2003) observed that fMRI activation in perceptual
systems was only present in the difficult cases for such tasks. Together, this work
suggests that deep processing is not needed when a simple word association strat-
egy is sufficient to complete the task.

Nevertheless, much of the semantic processing we perform on a daily basis
seems to be of the ‘deep’ type. Typical deep semantic processing occurs when
we understand language in a way that would allow us to paraphrase its meaning,
or answer probing questions about its content. It has been shown, for instance,

1Research in the field of ‘cognitive linguistics’ largely adopts this stance (George Lakoff,
Ronald Langacker, Charles Fillmore, ). ref??? johnson-laird mental models),
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that when professional athletes, such as hockey players, read stories about their
sport, the portions of their brain that are involved in generating the motor ac-
tions associated with that sport are often active (Barsalou, 2009). This suggests
that deep semantic processing may engage a kind of ‘simulation’ of the circum-
stances described by the linguistic information. Similarly, when people are asked
to think and reason about objects (such as a watermelon), they do not merely ac-
tivate words that are associated with watermelons, but seem to implicitly activate
representations that are typical of watermelon backgrounds, bring up emotional
associations with watermelons, and activate tactile, auditory, and visual represen-
tations of watermelons (Barsalou, 2009).

Consider the Simmons et al. (2008) experiment which was aimed at demon-
strating both the timing and relative functions of deep and shallow processing. In
this experiment participants were each scanned in an fMRI machine twice. In one
session, the experimenters were interested in determining the parts of the brain
used during shallow semantic tasks, and during deep semantic tasks. As a re-
sult, participants were asked two questions: first, “For the following word, what
other words come to mind immediately?”; and second, “For the following word,
imagine a situation that contains what the word means and then describe it?” The
experimenters found that in response to the first question, language areas (such
as Broca’s area) are most active. In contrast, in response to the second question
participants engaged brain areas that are active during mental imagery, episodic
memory, and situational context tasks (Kosslyn et al., 2000; Buckner and Wheeler,
2001; Barr, 2004). In other words, from this session it was evident that simple lex-
ical association activated language areas, whereas complex meaning processing
activated perceptual areas, as would be expected from the Dual-Coding Theory.

During the other scanning session, participants were asked to list, in their
heads, answers to the question “what characteristics are typically true of X?”,
where X was randomly chosen from the same set of target words. When the two
different scanning sessions were compared, the experimenters were able to deduce
the timing of the activation of these two different areas. They found that the first
half of the ‘typically true of X’ task was dominated by activation in language ar-
eas, whereas the second half of the task was dominated by activation in perceptual
areas. Consistent with the earlier behavioural experiments, this work shows that
shallow processing is much more rapid, so it is not surprising that highly statisti-
cally related properties are listed first. Deep processing takes longer, but provides
for a richer characterization of the meaning of the concept.

This experiment, and many others emphasizing the importance and nature of
deep semantic processing, have been carried out in Larry Barsalou’s lab at Emory
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University. For the last two decades, he has suggested that his notion of ‘percep-
tual symbols’ best characterizes the representational substrate of human cognition.
He has suggested that the semantics of such symbols are captured by what he calls
‘simulations’. Indeed, the notion of a ‘simulation’ has often been linked to ideas
of deep semantic processing (e.g., Allport, 1985; Damasio, 1989; Pulvermüller,
1999; Martin, 2007). Consequently, they would no doubt agree with Barsalou’s
claim that deep semantic processing occurs when “the brain simulates the per-
ceptual, motor, and mental states active during actual interactions with the word’s
referents” (Simmons et al., 2008, p. 107). Indeed, his data and arguments are
compelling.

However, the important missing component of his theory is how such symbols
and simulations can be implemented and manipulated by the brain. In a discussion
of his work in 1999, one recurring critique was that his notion of ‘perceptual
symbols’ is highly under-defined. For instance, Dennett & Viger pointedly note
“If ever a theory cried out for a computational model, it is here” (1999, p. 613).
More to the point, they conclude their discussion in the following manner:

We want to stress, finally, that we think Barsalou offers some very
promising sketchy ideas about how the new embodied cognition ap-
proach might begin to address the “classical” problems of proposi-
tions and concepts. In particular, he found some novel ways of expos-
ing the tension between a neural structure’s carrying specific informa-
tion about the environment and its playing the sorts of functional roles
that symbols play in a representational system. Resolving that tension
in a working model, however, remains a job for another day.

Indeed, in the conclusion to a recent review of his own and others’ work on the
issue of semantic processing, Barsalou states (Barsalou, 2009, p. 1287):

Perhaps the most pressing issue surrounding this area of work is the
lack of well-specified computational accounts. Our understanding of
simulators, simulations, situated conceptualizations and pattern com-
pletion inference would be much deeper if computational accounts
specified the underlying mechanisms. Increasingly, grounding such
accounts in neural mechanisms is obviously important.

This, of course, is the purpose of the semantic pointer architecture: to provide a
neurally grounded account of the computational processes underwriting cognitive
function.
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Given the important distinction between deep and shallow processing, and the
evidence that these are processed in different ways in the brain, a central question
for the SPA is: how can we incorporate both deep and shallow processing? The
central hypothesis of the SPA outlines the answer I will pursue in the next three
sections: that semantic pointers carry partial semantic information. The crucial
steps to take now are to: 1) describe exactly how the partial semantic informa-
tion carried by semantic pointers is generated (and how they capture shallow se-
mantics); and 2) describe how semantic pointers can be used to access the deep
semantics to which they are related (i.e., how to dereference the pointers).

3.3 Shallow semantics
In essence, the shallow semantics captured by a semantic pointer can be thought
of as a kind of ‘compressed’ representation of complex relations that underly deep
semantics. Compression comes in two forms: ‘lossless’ like the well known .zip
methods used to compress computer files; and ‘lossy’ which loses some of the
information in the object that was compressed. I take semantic pointers to be
lossy compressions of the information they are generated from. To demonstrate
the utility of lossy compression, and its relevance to cognition, let us consider
a recently proposed class of lexical semantic representations. These representa-
tions have been developed by researchers who build algorthims to do automatic
text processing. These same representations have been shown to capture may of
the word-similarity effects that have been extensively studied by psychologists
(Deerwester et al., 1990; Landauer and Dumais, 1997).

These representations are constructed by having a computer process a very
large corpus of example texts. During this processing, the computer constructs
what is called a term-document frequency matrix (see figure 3.3). The columns of
this matrix index specific documents in the corpus. The rows in the matrix index
words that appear in those documents. When the computer reads a particular
document, it counts the number of times any word occurs in the document, and
adds that value to the appropriate cell of the matrix. This way, if we look down
the columns of the matrix we can determine how many times each word appears
in a given document. If we look across the rows of the matrix, we can determine
how many times each word appears in each document.

Practically speaking, there are a number of important subtleties to consider
when constructing these kinds of representations to do actual textual processing.
For instance, such matrices tend to get very large, since many standard corpora
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Moby Dick Hamlet Alice in
Wonderland

Sense and
Sensibility

boat 330 0 0 0
enemy 5 0 0 1
mad 36 17 14 0

manners 1 1 1 34
today 1 0 1 9

tomorrow 1 0 1 15

Figure 3.3: Term-document frequency matrix. Each row of the matrix shows
the number of occurrences of a specific word, written in the first column, in the
four selected texts specified by the other columns. An extremely crude classifica-
tion system based on this matrix might categorize Moby Dick, Hamlet, and Alice
in Wonderland together based on their themes of madness, while distinguishing
Moby Dick based on its abnormally frequent references to boats. The row vectors
of the words ’today’ and ’tomorrow’ are also noteworthy for being quite similar,
suggesting some level of semantic similarity between the words.

have over 20,000 documents and 100,000 unique words (Fishbein, 2008). Conse-
quently, methods for reducing the size of the matrix are often employed. These
methods are chosen to ensure that the most important statistical relationships cap-
tured by the original matrix are emphasized as much as possible. For present
purposes, we can simply consider the raw matrix shown in figure 3.3.

The reason such a matrix can capture semantic information, is because we ex-
pect semantically similar words to occur in the same documents. This is because
most of the considered documents are short, and on one or a few basic themes –
like the books and stories encountered in early childhood. So, if we compare the
row-vectors of semantically similar words, we expect them to have similar vectors,
because those words will appear in many of the same contexts. Semantically un-
related words will have vectors that are not very similar. Notice that like semantic
pointers, these representations of words are first and foremost high-dimensional
vectors.

Importantly, with this matrix in hand, we are in a position to construct a repre-
sentation of a document that has never been seen before. The simplest way to do
this is to add up all of the row-vectors of the words that appear in the document,
each time they appear. This document representation can then be compared to
other documents we have seen before, and grouped with those that have the most
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similar document vectors. While simple, this method is surprisingly effective at
categorizing documents. Using a wide variety of text corpora, well above 90% of
new documents can be correctly classified with this representation (Yang and Liu,
1999).

More importantly, this same representation has been used by researchers to
capture psychological properties of language. For example, Paaßet al. (2004)
demonstrate how prototypes2 can be extracted using such a method. The resulting
representations capture standard typicality effects.3 As well, this kind of rep-
resentation has been used to write the Test of English as a Foreign Language
(TOEFL). The computer program employing these representations scored 64.4%,
which compares favorably to foreign applicants to American universities, who
scored 64.5% on average (Landauer and Dumais, 1997).

In sum, semantic representations which capture basic statistics of word use can
effectively support certain kinds of linguistic processing observed in human sub-
jects. As mentioned earlier, these representations are high-dimensional vectors,
just like semantic pointers. That is, they capture precisely kind of semantics that
semantic pointers, in themselves, are proposed to capture in the SPA. In short, the
SPA suggests that shallow semantic processing can be performed without using
the pointer as a pointer: i.e., by relying solely on the semantic content captured
by the pointer representation itself. There are many other methods for generating
the semantics of high-dimensional vectors. Some have been shown to help cap-
ture many developmental, old-age related, and reasoning phenomena (Rogers and
McClelland, 2004).

However, consideration of the kinds of experiments discussed in the last sec-
tion suggests that there is an important and distinct role for deep semantic process-
ing. This role is clearly not captured by the kinds of simple lexical associations
used to generate these shallow representations for automatic text categorization.
And, these shallow semantics are, in general, not sufficient to address the symbol
grounding problem identified in section 3.1. After all, the word representations
generated in this manner bear no relation to the actual objects that they pick out:
instead, they model the statistics of the text. To address both deep semantics and

2Prototypes of categories are often used to explain the nature of concepts (Smith, 1989). It has
been a matter of some debate how such prototypes can be generated.

3Typicality effects are used to explain why subjects rate some concept instances as being more
typical than others. These effects are often explained by the number of typical features that such
instances have (the more typical features an instance has, the more typical it will be). Typical
instances are both categorized more quickly and produced more readily by subjects. The prototype
theory of concepts has been successful at capturing many of these effects.
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symbol grounding, in the next section I turn to a very different method of gener-
ating semantic pointers, one connected more directly to biological mechanisms.

3.4 Deep semantics for perception
It should be clear from the preceding discussion that there are two questions of
interest when considering the semantic pointer architecture. First, how are the
shallow semantics of the pointers themselves generated? Second, how can the
pointers be used to engage the deep semantic processing system when appropri-
ate? The discussion in the previous section addresses only the first question. This
is useful for demonstrating the relevance of shallow semantics to characterizing
central aspects of language processing, a task that is undeniable cognitive.

In this section, I will pursue another method for generating shallow semantics
that demonstrates how the resulting representation remains linked to deep seman-
tics in a neural architecture. However, the task I will consider is more perceptual.
In section 4.7, I consider how these different aspects of semantic processing can
be integrated.

Let us begin with object recognition in vision. Many of the most impressive
results in machine vision employ statistical modeling methods. It is important
to note that the word ‘model’ in statistics – and in the next few paragraphs –
is not used in the same way as it is throughout most of this book, and in most of
cognitive science. In statistics, the term ‘model’ refers to an equation that captures
relationships: there is no expectation that the elements of the equation pick out
objects in the world. In contrast, ‘model’ in non-statistical usages typically refers
to abstractions whose parts are expected to map onto objects in the world. The
neural models I describe throughout take their abstract parts (neurons, brain areas,
etc.) to map onto real parts of the brain. These latter models are sometimes called
‘mechanistic’ models, to distinguish them from statistical models.

In general, statistical modeling methods are centrally concerned with char-
acterizing the (unreliably) measured state of the world, and identifying impor-
tant patterns in those often noisy, measured states. In short, these methods have
been developed to describe complex relationships given real-world data. This
may sound familiar: the lexical representations described in the previous section
are a kind of statistical model, attempting to describe the relationships between
words in real-world text data (and there are many spelling errors, non-words, etc.).
Considered generally, describing complex real-world relationships with uncertain
information is exactly the problem faced by biological systems.
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For objection recognition, we can begin to formalize this problem by suppos-
ing there is some visual data, y, which is generated by the external visual world
and drives neural activity. If we suppose that the purpose of perceptual systems
is to construct and use a statistical model of this data, the system must figure out
some function p(y) that describes how likely each state y is, so it can use that in-
formation to disambiguate future data. For instance, if I am in North America and
a medium-sized brown animal is coming in my direction, I can assign probabili-
ties to the various kinds of animal it might be (e.g. groundhog, dog, and rabbit are
high, capybara and wallaby are low). Assigning those probabilities is an example
of using the model, p(y), that I have constructed based on past data.

Since the real world is extremely complex, the ideal statistical model will also
be enormously complex (as it is the probability of all possible data at all times).
As a result, the brain probably approximates this distribution by constructing what
is called a parameterized model. Such a model identifies a small number of pa-
rameters that capture the overall shape of the ideal model. For example, if all of
the data y lie in the famous Bell curve (or Gaussian distribution), we can model
the data with an equation like:

p(y) =
1

σ
√

2π
e−(y−ȳ)2/2σ2

Then, to ‘capture’ all past data using our model, we only need to remember two
parameters, ȳ (the mean) and σ (the standard deviation), and the equation describ-
ing their relationship. This is much more efficient than remembering each value
of p(y) for each value of y explicitly.

To build such a model, the system needs to estimate the parameters. Of course,
to do any such estimating, the system needs data. As a result, a kind of bootstrap-
ping process is necessary to construct this kind of model: we must use data to
estimate the parameters; then we use our best estimate of the parameters to in-
terpret any new data. Despite this seeming circularity, extremely powerful and
general algorithms have been designed for estimating exactly these kinds of mod-
els (Dempster et al., 1977). Such models have also been extensively employed in
building connectionist-type models, and have been suggested to map to biological
neural networks.4

Note, however, that the methods for model inference do not specify the struc-
ture of the model itself (i.e. the relationships between the parameters). In the

4A good place to start for state-of-the-art applications of these methods is Geoff Hinton’s web
page at http://www.cs.toronto.edu/~hinton/. For discussion of biological mappings of
these methods see Friston (2003).
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artificial neural network application of these methods, this structure is often ‘bio-
logically inspired’. One notable feature of brain structure that has proven a very
useful starting point is its hierarchical nature. The best known example of this
structure in neuroscience is the visual hierarchy. For object recognition, this hi-
erarchy begins with the retina, and proceeds through thalamus to visual areas V1
(primary visual cortex), V2 (secondary visual cortex), V4, and IT (inferotemporal
cortex) (Felleman and Essen, 1991).

In a hierarchical model, each higher level in the hierarchy attempts to build a
statistical model of the level below it. Taken together, the levels define a model of
the original input data (see figure 3.4). This kind of hierarchical structure naturally
allows the progressive generation of more complex features at higher levels, and
progressively captures higher-order correlations in the data. Furthermore, these
kinds of model lead to relations between hierarchical levels that are reminiscent
of the variety of neural connectivity observed in cortex: feedforward, feedback,
and recurrent (interlayer) connections are all essential.

The power of these methods for generating effective statistical models is im-
pressive (Beal, 1998). They have been applied to solve a number of standard
pattern recognition problems, improving on other state-of-the-art methods (Hin-
ton and Salakhutdinov, 2006). Furthermore, they have been shown to generate
neuron tuning curves that look like those seen in visual cortex (Lee et al., 2007),
when constructing models of natural images. In fact, many of the most actively
researched models of vision are naturally interpreted as constructing exactly these
kinds of statistical models.

To get a clearer picture of what this approach to perceptual modeling offers,
and how it can be used to generate semantic pointers, let us turn to an example
of such a model that was built in my lab by Charlie Tang. The purpose of this
system is to construct representations which support recognition of a wide variety
of handwritten digits presented as visual input. The input is taken from the com-
monly used MNIST database. Examples of the input are shown in figure 3.5. The
model is structured as shown in figure 3.4, and is shown 60,000 examples out of
this data set, and told how those examples should be categorized. Based on this
experience, the model tunes its parameters to be able to deal with another 10,000
unseen, though similar, visual inputs in the data set.

To maintain biological relevance, the first layer of the model is trained on
natural images, in order to construct an input representation that looks like that
found in primary visual cortex. As shown in figure 3.6, the tuning curves capture
many of the properties of V1 tuning, including a variety of spatial frequencies (i.e.
narrowness of the banding), positions, orientations of the bands, and the edge-
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Figure 3.4: A hierarchical statistical model. An original image consisting of 784
pixels is compressed into a 50-dimensional compressed representation through
a hierarchical series of statistical summaries. Note that the number of nodes at
each level is given in terms of state space; that’s the number of dimensions, not
neurons!

Figure 3.5: Input images from the NMIST database.
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Figure 3.6: Tuning curves of neurons in the model. These learned representations
look much like the tuning curves found in primary visual cortex (V1).

detector-like shape.5 These tuning curves are used to represent the input digits,
and then the remaining layers of the network are trained to capture the statistics of
that input. By the time we get to the highest level of the hierarchy, we have a much
smaller (i.e., compressed) representation summarizing what has been presented to
the retina. This compressed representation is a semantic pointer.

Notably, the highest layer of this network has 50 nodes, which, because these
are not neurons, means that the state space is 50-dimensional. It is this 50D space
that contains the semantic pointers whose contents tell us about the presented
digits. Clearly, this representation does not contain all of the information available
in early visual areas. Instead, it is a summary that usefully supports this object
recognition task. This network, like most in machine vision, can score less than
2% error on the 10,000 test digits which have not been used to train the network
(i.e., they classify about 200 wrong). In fact, these models outperform humans on
this and other similar tasks (Chaaban and Scheessele, 2007).

So, these compressed representations (i.e., semantic pointers), like the lexical
ones discussed previously, can capture important information that can be used to
classify the input. In both cases, it is shallow comparisons between the semantic

5Training such networks on natural images has often been shown to result in V1-like tuning
(Olshausen and Field, 1996).
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pointers that result in the classificiation. So, in both cases, the semantic pointers
themselves carry shallow semantic information. However, there are two important
differences between these semantic pointers and the lexical ones. First, these
were generated based on raw images. This, of course, is a more biologically
relevant input stream than text: we do not have organs for directly detecting text.
Consequently, the 50D pointers are grounded in a visual input. If we have a way
of treating these pointers like symbols, then we have found a natural solution to
the symbol grounding problem.

Second, and more importantly, these 50D pointers can be used to drive deep
semantics. That is, we can, in a sense, run the model ‘backwards’ to decode, or
unpack, the meaning of a 50D representation. In other words, we can clamp the
semantic pointer representation at the top level of the network and then generate
an input image at the lowest level.6 Several examples of this process are shown in
figure 3.7.

This figure demonstrates that a lot of the detail of an input is in fact captured
by the semantic pointer representation. Subtleties of the way particular letters are
drawn, such as whether an ‘8’ is slanted or not, can be reconstructed from the
pointer that such a figure generates. It is these subtleties that caputre the deep
semantics of this representation. However, it is obviously not always the case that
we have a precisely drawn ‘8’ in mind when we talk about the number ‘8’. That
is, we might want to have access to the deep visual semantics of a pointer, when
it is generated by an auditory input. In such a case, we can still use a semantic
pointer, and the natural choice is the ‘average’ of the pointers associated with a
category (see figure 3.7c). This can be thought of as a prototype of the category.7

If other instances of the category need to be generated, small random movements
around this prototype will result in a variety of examples.

Because semantic pointers can be unpacked to provide detailed perceptual in-
formation, it should be clear why I have chosen to call them ‘pointers’. How-
ever, the dereferencing procedure depends on having the full perceptual hierarchy

6This does not suggest that the brain somehow recreates retinal images (there are no neurons
that project from cortex to retina). Instead, figure 3.7 shows the retinal images that are consistent
with the unpacked cortical representations. The deep semantic information at these non-retinal
levels is accessible to the rest of cortex. In the brain, the unpacking would stop sooner, but could
still be carried out to as low a level as necessary for the task at hand. This is one reason why seeing
an image is not the same as imagining one, no matter how detailed the imagining.

7Note that the ‘2’ prototype is a combination of twos with straight bottoms and twos with
loopy bottoms. This may suggest simply taking the mean is a mistake, and that there are two
subcategories here. Dealing with these interesting, but additional complexities is beyond the scope
of the present discussion.
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a)

b)

c)

Figure 3.7: Unpacking semantic pointers. a) The original input of several ran-
domly chosen images. These are compressed into a 50D representation at the
highest level of the model. b) The resulting images from unpacking the semantic
pointers. The same 50D representations generated by the network are clamped
at the highest-level, and the rest of the network is used to generate a guess as to
what input would produce that semantic pointer. c) The unpacked mean semantic
pointer for each category.



CHAPTER 3. BIOLOGICAL COGNITION – SEMANTICS 98

available. This maps well onto the fact that during deep semantic processing, per-
cepetual areas are active in human subjects, as discussed earlier. It is, of course, a
top-down procedure that allows these deep, grounded semantics to be regenerated.

In addition, I have not said how the pointers themselves can be used in symbol-
like structured representations (this is the purpose of the next chapter). But, if that
story is plausible, then the overall shape of the SPA should be clear. Semantic
pointers, generated by grounded perceptual processing, can be ‘stripped-off’ of
that processing and used to both carry shallow semantics and be treated like a
symbol. If deep semantics are needed, the semantic pointer can be used to clamp
the top layer of the perceptual network that gave rise to it, and the network can
re-generate the deep semantics.

In the terminology of the NEF, this story is one at the level of the state space.
That is, these pointers and processing are defined in vector spaces that are repre-
sented by neurons. We can apply the NEF principles to construct such a model
in spiking neurons, to ensure that it will function on a biological substrate, and to
allow more direct comparison of our model with neuroscientific data.

• put in spiking version of the model here???, look at some sample tuning
curves (compare to V1 tuning curve from before)

• show the shallow/deep distinction by comparing the above fig, with one
that plots their relative location in 2D space... (clustering that gets shallow
semantics)???

• this model, like cortex has fewer neurons active at higher layers... (get cita-
tions from bruce), fewer in IT than earlier for same repn.

• other bio considerations consistent?

While models like the ones presented here present specific examples of how se-
mantic pointers may be generated, it is important to keep in mind the limitations
of such models. For instance, there is probably much more of relevance regarding
biological structure that should inform how we construct our statistical models
that has not yet been taken into account. While these models mimic the basic hi-
erarchical structure of perceptual systems, and can approximately be mapped onto
observed anatomical connections, most such models do not have connections that
skip layers of the hierarchy, as observed in cortex. In addition, many other pro-
cesses important for recognition, such as attention, tend to be excluded from cur-
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rent state-of-the-art models.8 Finally, there remain many questions regarding how
all aspects of such models could be implemented by biological networks: Can
spiking networks compute the integrals necessary to learn these models? Can the
learning of these models be done by biologically plausible learning rules? Does
each neuron in the brain represent a different variable in the statistical model? The
NEF model presented above does not address learning (although see section ???).
Nevertheless, the crucial features of such models that I am suggesting are relevant
for understanding deep semantics are: 1) the construction of representations of the
perceptual input that capture important statistical relationships; and 2) that such
representations are ‘compressed’ (i.e., lower dimensional) representations of the
input.

3.5 Deep semantics for action
In fact, we can find these same features in biological representations used to drive
motor states. Of course, the task for motor systems seems much different than
that for perceptual systems. The motor system does not need to classify presented
stimuli, but rather to direct a highly nonlinear system towards a desired state. So,
perceptual systems need to go from a high-dimensional, ambiguous state (e.g.,
images generated by highly nonlinear environmental processes) to a much smaller
set of states (e.g., object categories). Motor systems need to go from a small set
of states (e.g., desired pointing targets) to a high-dimensional, ambiguous state
(e.g., any one of the possible configurations of muscle tensions over the body that
results in pointing to a target). These tasks seem to be almost exact opposites.

However, there is a lot of shared by these opposites: both need to map low-
to high-dimensional states; both need to deal with complexity and nonlinearity in
doing so; both need to deal with uncertainty and ambiguity in doing so; and both
need to share information between past and future in doing so. In mathematical
terms, problems which share their structure in this kind of way are called ‘dual
problems’. It is useful to identify duality between problems because if one kind
of problem can be solved, then so can the other.

As a simple example, consider the relationship that exists between a cube and
an octahedron (see figure 3.8). Notice that there are the same number of sides in a
cube as vertices in an octahedron and vice versa. As well, both have twelve edges,
connecting the relevant vertices/faces in a structurally analogous manner. These

8Though we and others have been considering the inclusion of attention-like processes (Tang
and Eliasmith, 2010).
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Figure 3.8: Dual problems. a) The cube and the octahedron provide a simple
example. Both figures share a similar geometric framework, but the number of
vertices and faces of the two shapes are reversed. b) The perceptual and motor
systems are much more complicated, but can also be treated as duals. The percep-
tual system encodes high-dimensional, non-linear information using a hierarchical
framework to establish a compressed representation with a lower dimensionality
than the original information. The motor control system reverses this to determine
high-dimensional control signals from a compressed, low-dimensional signal.

two solids are thus duals. If we pose a problem for one of these solids – What
is the volume of the smallest sphere that intersects all vertices (faces)? – then a
solution for one of the solids provides a solution for the other. This is true as long
as we swap the relevant structural elements (i.e., faces and vertices).

Why does this matter for understanding perception and motor control? Be-
cause precisely this dual relationship has been shown to exist between statistical
models of perceptual processes and optimal control models of motor processes
Todorov (2007, 2009). Figure 3.8 suggests a mapping between perceptual and
motor systems that takes advantage of this duality. From an architecture point of
view, this duality is very useful because it means that there is nothing different in
kind about perceptual and motor systems. From the perspective the SPA in partic-
ular, this means that semantic pointers can play the same role in both perception
and action. Much of the remaining discussion in this section describes why and
how these mappings can be made.

To begin, like the perceptual system, the motor system is commonly taken
to be hierarchical (see figure 3.9). Typically, we think of information as flowing
down rather than up the motor hierarchy. For instance, suppose you would like
to move your hand towards a given target object. Once the desired goal state has
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been generated, it is provided to the cortical motor system. The first level of this
system may then determine which direction the arm must move in order to reach
that goal state.9 Once the direction of movement has been determined, it can be
used as a control signal for a controller that is lower in the hierarchy. Of course,
specification of the direction of movement does not determine how torques need
to be applied at the joints of the arm in order to realize that movement. This,
then, would be the function of the next lower level in the control hierarchy. Once
the specific forces needed to move the arm are determined, the specific tensions
that need to be produced in the muscles in order to realize those forces must be
generated by the activity of motor neurons. In short, as the motor command be-
comes more and more specific to the particular circumstance (e.g., including the
particular part of the body that is being moved, the current orientation of the body,
the medium through which the body is moving, etc.), lower levels of controllers
are recruited to determine the appropriate control signal for the next lower level.
Ultimately, this results in activity in motor neurons that cause muscles to contract
and our bodies move.

Notably, just as it is inaccurate to think of information as flowing only ‘up’
the perceptual hierarchy, so is it a mistake to think of this picture of motor control
as being in one direction. As well, in both systems, there are many connections
that skip hierarchical levels, so the flow of information is extremely complex.
Nevertheless, the main problems to be tackled are very similar. So, just as we
can begin our characterization of perception as thinking of higher levels in the
perceptual hierarchy as constructing models of the levels below them, so we can
think of higher levels in the motor hierarchy as having models of the lower levels.
Higher levels can then use such models to determine an appropriate control signal
to affect the behavior of that lower level.

There is good evidence for this kind of control structure in the brain Wolpert
and Kawato (1998); Kawato (1995); Oztop et al. (2006). That is, a control struc-
ture in which higher levels of the hierarchy have explicit models of the behavior
of lower levels. When we attempt to specify these models, a simplification in our
characterization of perception becomes problematic: we assumed that the models
were static. In motor control, there is no such thing as non-temporal processing.
Time is unavoidable. Embracing this observation actually renders the connec-
tion between perceptual and motor hierarchies even deeper: higher levels in both

9This description is highly simplified, and proposes representations and movement decompo-
sitions that probably do not occur in the motor system. Identifying more realistic representations
would require a much lengthier discussion, but would not add to the main point of this section.
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hierarchies must model the statistics and the dynamics of the levels below them.
In the previous perceptual model, the statistics at higher-levels capture the

regularities at lower levels. In the neural model, these were evident as neural
tuning curves that were used to represent the perceptual space. In motor control,
these same kinds of regularities are often called ‘synergies’ Bernstein (1967); Lee
(1984). Synergies are useful organizations of sets of movements that are often
ellicited together. As before, we would expect the tuning curves of neural models
to reflect these synergies for the representation of the space of motor actions.
These representations need to be learned based on the statistics of the space they
are representing, as in the perceptual model above.

• Evidence/arg that higher levels are lower-dimensional

What is not addressed by that simple perceptual model is dynamics.10 The partic-
ular dynamics of the system are likely to affect which synergies are most useful
for controlling action. So, the representational and dynamical aspects of the sys-
tem are tightly coupled. In fact, it is natural to describe this connection in a way
captured by the third principle of the NEF: the dynamical models are defined over
the representational state space. That is, the dynamical models of a given level
of the hierarchy are defined using the synergies of that level.11 The resulting dy-
namics then drive lower levels, and feedback from lower levels can inform these
higher-level models. So, despite the added complexity of dynamics, the general
structure of the motor system is hierarchical.

Consequently, like the simpler perceptual model, there are two main features
of the motor system: those (dynamical) representations capture important statisti-
cal relationships; and higher-level representations are compressed. I suspect, but
will not consider the details here, that the dynamical motor hierarchy is a better
model for perceptual processing (including object recognition) than the kinds of
static models considered above. Nevertheless, that main conceptual points rele-

10For effective control, dynamical models are typically broken into two components: a forward
model and an inverse model. A forward model is one which predicts the next state of the system
given the current state and the control signal. An inverse model performs the opposite task, pro-
viding a control signal that can move between two given states of the system. For simplicity, I
discuss both using the term ‘dynamical model’, as this level of detail is beyond the current scope.

11There is some issue here about drawing boundaries to determine the input and output of these
models. Essentially, a control (error) signal can be thought of as generated at a given hierarchical
level and then mapped to a lower (higher) level, or the mapping and generation may be considered
concurrent in which case the dynamical model maps synergies at different levels. It is possible
that both happen in the nervous system, but I believe the former is easier to conceptualize.
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vant to the SPA remain. Let us now consider in more detail, how the SPA relates
to motor control.

While working in my lab, Travis Dewolf (2010) recently proposed a frame-
work that integrates known neuroanatomy with a hierarchical control characteri-
zation of the function of the motor system. This framework is called the Neural
Optimal Control Hierarchy (NOCH), and a simplified version is shown in figure
3.9, which has been tailored to arm control. Models based on NOCH are able to
explain the effects of various motor system perturbations including Huntington’s
disease, Parkinson’s disease, and cerebellar damage. The task I consider here is
reaching in a plane towards a target (see figure ???).

Figure ??? demonstrates the functioning of the model.

• ???emphasize that he goes from lower to higher dimensional and uses mul-
tiple hierarchical layers

• just travis’... downloadable nengo model? uses non-learned synergies

As can be seen from figure 3.9, the architecture is not a pure hierarchy as in
the perceptual case. Nevertheless, low-dimensional, high-level representations in
premotor cortex (PM) can be used to drive the high-dimensional, low-level spinal
cord to affect movement. While simple, this motor control example can be used
to give a sense of how semantic pointers capture the distinction between deep and
shallow semantic processing in the motor system. As in the perceptual case, the
low-dimensional space can be ‘dereferenced’ by the remainder of the system into
a movement. In figure 3.11 similar high-level representations are shown to result
in similar movements, suggesting that they define a semantic space. Indeed, the
work of Georgopoulos can be seen as an attempt to map this space (see section
2.5, especially figure 2.11).

In cases that demand deep semantic processing (e.g., that require estimating
the precise configuration of joints, etc.) those high-level semantic pointers can be
used to ‘run’ the models in the motor system in order to internally generate more
information about the nature of reaching movements. Recall that in the previous
section we identified two important features of semantic pointers: they capture
higher-order relationships; and they are compressed representations. It should
now be clear how these features are realized by the semantic pointers generated
by the motor system. First, the semantic pointers capture higher-order relation-
ships between states of the body because they can be ‘dereferenced’ in order to
coordinate those states for successful motor action. And second, the representa-
tions at the highest level of the motor hierarchy are lower dimensional than those
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Figure 3.9: Neural optimal control hierarchy (NOCH). This framework maps neu-
roantomy onto optimal control in a manner which allows the controller to interact
with semantic pointers. Abbreviations: PM - premotor area; SMA - supplemen-
tary motor area; BG - basal ganglia; M1 - primary motor area; CB - cerebellum;
S1 - primary somatosensory area; S2 - secondary somatosensory area. This dia-
gram is a simplified version of NOCH presented in Dewolf (2010).

Figure 3.10: A simple reaching model. ...???show several reaches, and the high
and low level control signals? (to emphasize high and low dimensionality)
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Figure 3.11: A semantic motor space. This figure shows how similar high-level
semantic pointers can generate similar low-level movements.

at the lowest level. As a result, they are usefully considered as compressed repre-
sentations.

This simple example suggests that semantic pointers can be found playing
similar roles in both the perceptual and motor systems. There are, of course,
important differences between the perceptual and motor models I have presented
above. Most obviously, the perceptual model does not include dynamics, and the
motor model does not learn the lower-level representations (i.e., synergies). There
is ongoing research that attempts to address both of these challenges,12 including
work in my own lab. Given that the theoretical characterization of the problem is
clear, however, it seems reasonable to suggest that subsequent developments will
preserve the role of semantic pointers in the preceding characterization.

3.6 Meaningful conclusions
My discussion of the SPA in the context of perception and action has adopted
the usual approach of considering these aspects of behaviour somewhat indepen-
dently. However, it is hopefully clear from the above discussion that action and
perception are not only tightly conceptually linked, but also mutually serve to cap-
ture deep semantics in the SPA. The parallel stories provided above for action and
perception are intended to lay the groundwork for more cognitive consideration
of semantics. I leave that task until the end of the next chapter (section 4.7), after
considering how semantic pointers can be used in a symbol-like manner. First, I
would like to consider the relationship between action and perception in the SPA.

Notice that both characterizations depend on the hierarchy being used in both
directions. In the forward direction (up the hierarchy), the perceptual hierarchy
allows classification of visual stimuli, in the reverse direction it allows the gener-
ation of deep semantics. For the motor hiearchy, the forward direction (down the
hierarchy) allows for the control of a sophisticated body using simple commands.
The reverse direction allows for the generation of synergies that allow the simple
commands to be effective. So it is clear that in both cases, the semantic pointers

12For instance, Rod Grupen, Rolf Pfiefer, Dana Kulic, and other roboticists have been working
on these issues from a motor control and reinforcement learning perspective. Geoff Hinton, Yann
LeCun, Karl Friston and others have been adopting a more statistical modelling oriented approach.
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operating at the top of the hierarchy are always ‘pointing to a memory’, and can be
used in the hierarchy to allow the memory to be ellicited. Of course, this use of the
term ‘memory’ is, unlike a in a computer, necessarily constructive. We can make
movements we have never made before, and we can imagine handwriting we have
never seen before. This observation supports the notion that perceptual and motor
systems are well-characterized as constructing statistical models of their past.

In the above examples, I have discussed a number of different ways of con-
structing these models – of producing semantic pointers. It is worth reiterating
that these suggestions are not an essential part of the SPA itself. What is central
to the architecture is that there are low-dimensional summaries of these high-
dimensional statistical models generated by the system. This central feature also
highlights another defeasible assumption of the above examples: that the percep-
tual and motor models are generated independently.

As has been argued forcefully in much of the recent literature13 it is a mistake
to think of biological systems as processing perceptual information and then pro-
cessing motor information. Rather, both are processed concurrently, and inform
one another ‘all the way up’ the hierarchies. Consequently, it is more appropriate
to think of the semantics of items at the top of both hierarchies as having concur-
rent perceptual and motor semantics.

• (for this to be true and included here, need an integrated example later that
does this – see GUM) In fact, if the motor and perceptual models are appro-
priate constructed, the same semantic pointer can be used to drive both the
motor and percpetual systems. Thus, the accessed semantics of the pointer
depends on the model that s used to dereference it.

This is a natural, but precise, way to specify the kinds of interaction between per-
ception and action that have often been argued for. It may remind some of the
notion of an ‘affordance’, introduced by psychologist James Gibson (1977). Af-
fordances are action possibilities that are determined by the relationships between
an organism and its environment. Gibson suggested that affordances are automat-
ically picked up by animals in their natural environments, and provide a better
characterization of perception (as linked to action), than traditional views.

Several robotics researchers have embraced these ideas, and found them use-
ful starting points for building interactive perception/action systems (Scheier and

13I can by no means give comprehensive coverage of the many researchers who have made these
sorts of arguments, which can be found in robotics, philosophy, neuroscience, and psycholgoy.
Some useful starting points include Brooks (1991); Churchland et al. (1994); Port and van Gelder
(1995); Regan and Noë (2001).
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Pfeifer, 1995; Ballard, 1991). Similarly, the notion, while imprecise, seems to
relate to the information captured by a semantic pointer when embedded in the
SPA. Notably, these pointers can be used as direct links between action and per-
ception that depend on the motor and perceptual experiences, of the organism.
Consequently, their semantics is directly tied to both the environment and body
in which they are generated. There are, undoubtedly, many differences as well
(e.g., semantic pointers do not seem to be ‘directly perceived’ in the sense cham-
pioned by Gibson for affordances). Nevertheless, the similarities may help relate
semantic pointers to concepts familiar in psychology.

As well, affordances highlight the important interplay between perception and
action. Motor control, after all, is only as good as the information it gathers from
the environment. As a result, it is somewhat awkward to attempt to describe a
motor controller without discussing perceptual input. It is much more appropriate
to conceive of the entire perception/action system as being a series of nested con-
trollers, rather than a feed-in and feed-out hierarchy. As depicted in figure 3.12,
nested controllers can be generated by inter-leaving the hierarchies of the kind
described above.14 What should be immediately evident from this new structure,
is that the process of perceiving and controlling becomes much more dynamic, in-
teracting at many levels of what was previously conceived of as a hierarchy. This,
of course, makes the system much more complicated, which is why it was more
convenient to describe it as two hierarchies. And, indeed, the real system is more
complicated still, with connections that skip levels of the hierarchy, and multiple
perceptual paths interacting with a single level of the controller hierarchy. The
question of relevance is: does identifying this more sophisticated structure change
our story about semantic pointers?

Given the suggested genesis and use of semantic pointers, I believe the answer
is no. Recall that the way the highest level representations in the motor and per-
ceptual hierarchies were generated, was by characterizing statistical models that
identify the relationships between the data of interest. Whether these models are
influenced solely by perceptual or motor processes, or whether they are influenced
by perceptual and motor processes, may change the nature of those relationships,
but will not change the effective methods for characterizing those relationships. It
will, then, still be the case that dereferencing a perceptual representation for deep
semantic processing results in identifying finer perceptual details not available in

14The observation that perceptual and motor cortex are both hierarchically structured and mutu-
ally interacting is hardly a new new one (Fuster, 2000), what is new, I believe, is the computational
specification, the biological implementation of the computations, and the integration into a cogni-
tive hierarchy.
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Figure 3.12: SPA as nested controllers. A controller is a component of a dynamic
system that reacts to an input to produce a certain output which will influence the
larger system. Feedback from the resulting change is then added to the input to
the controller, allowing it to dynamically adjust its output. Representing the SPA
as nested controllers implies that at every level of the semantic hierarchy there
will be such a component influencing the behaviour of that level of the hierarchy
based on the dynamics of the local representation of the system.

the higher-level (semantic pointer) representation. It may also turn out that the
semantic information includes information about relevant motor activities. This,
in fact, has been observed in the psychological data (Barsalou, 2009). So, se-
mantic pointers will still be compressed and capture higher-order relationships,
it just may be that their contents are neither strictly perceptual nor strictly mo-
tor. Instead, the perceptual/motor divide is one that is occasionally convenient for
theorizing, but not built into the semantics of our conceptual system.

We should also be careful, however, not to overstate the closeness of the re-
lationship between perception and action. Dissociation between impairment to
visually guided motor control and object identification has been well-established
(Goodale and Milner, 1992). Some patients, with damage to the dorsal visual
pathways, can identify objects but not reach appropriately for them. Others, with
damage to the ventral visual pathways, can reach appropriately, but not classify
objects. This suggests two things: 1) that motor action and visual perception
can come apart; and 2) that the object classification model presented earlier only
models part of the visual system (the ventral stream), at best. Again, the relevant
point here is not about the completeness of the models, but that the subtle, com-
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plex character of action and perception in biological systems is consistent with
the assumptions of the SPA. Capturing the appropriate degree of integration and
distinctness of action and perception is a task independent of generating semantic
pointers, so long as there are high-level representations with their assumed prop-
erties.

So, semantic pointers are compressed representations of motor/perceptual in-
formation found within a nested control structure. The story I have told so far is
intended to characterize semantics, both deep and shallow, as related to seman-
tic pointers. What remains to be described in order to make semantic pointers
cognitively relevant, is how they can actually be used to encode complex syntac-
tic structures. That is, how are these perceptual/motor vectors used to generate
the kinds of language-like representations that underlie high-level cognition? An-
swering this question is the purpose of the next chapter.

3.7 Nengo: Neural computations
The previous tutorial on neural representation is a useful first step to understand-
ing biological cognition but, in order to result in interesting behavior, neural rep-
resentations must be transformed in various ways. In fact, such transformations,
especially when they are non-linear, often result in new and interesting represen-
tations.

In this tutorial, we examine how principle 2 from section 2.3.2 can be exploited
in Nengo to compute transformations. This discussion builds on the previous
tutorial on neural representation (section 2.5), so it may be helpful to review that
material. The following discussion is broken into two sections, the first on linear
transformations and the second on nonlinear transformations. The tutorial focuses
on scalar transformations, but the methods generalize readily to any level of the
representational hierarchy (see section 2.4), as is briefly discussed.

Linear transformations
As formulated, principle 2 makes it clear that transformation is an extension of
representation. In particular, transformations rely on the same encoding, but ex-
ploit a different weighting during decoding than is used when representing a vari-
able. In fact, there is one transformation that comes ‘for free’ – that is, as a basic
property of single neurons – and that is addition.

• do addition with scalars
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• do multiplication with scalars

• mention how to do arbitrariy linear transformations for sure (refer back to
this in later sections... using the matrix ’M’ for the transformation).

Nonlinear transformations
• can point ahead to discussion of dendritic nonlienarities in chp 4?

• start with nonlinear fcns of one scalar.

• ?show that multiplication works well with about 100 neurons in each popu-
lation.

• goto nonlienar fucns of a vector, which allows mutliplicaiton of scalars, and
note how these are actually the same thing.




