
Part I

How to build a brain
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Chapter 2

An introduction to brain building

Before turning to my main purpose of answer the four questions regarding seman-
tics, syntax, control, and memory and learning, I need to provide an introduction
to the main method I will be relying in providing answers to these questions. As I
argued in the last chapter, we need to provided biologically-based answers to these
questions, and we need to provide answers that will let us build such systems. In
the sections that follow, I provide an overview of the relevant biology, and intro-
duce the Neural Engineering Framework (NEF), which provides basic methods
for constructing large-scale neurally realistic models of the brain. Perhaps this
discussion will be valuable in its own right. But, in fact, its purpose is to lay a
foundation for what is to come: a neural architecture for biological cognition.

2.1 Brain parts

• more pictures?

• references to Jove?

Brains are absolutely fantastic devices. They are relatively small compared to the
size of our bodies. A typical brain weighs between 1 and 2 kg and comprises only
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2% of our body weight. Nevertheless, brains contain about 25% of the energy
used by the body. This is especially surprising when you consider the serious en-
ergy demands of muscles, which must do actual physical work. Presumably, since
the brain is such a power hog, it is doing something important for our survival or it
would not have been preserved by evolution. Presumably, that “something impor-
tant“ is somewhat obvious: brains control the four Fs (feeding, fleeing, fighting,
and reproduction); brains provide animals with behavioral flexibility that is un-
matched by our most sophisticated machines; and brains are constantly adapting
to be uncertain, noisy, and rapidly changing world in which they find themselves
embedded. Perhaps most surprising of all is that brains do all of these things while
consuming only about 20 W of power – the equivalent of a compact fluorescent
lightbulb. To put this power efficiency in some perspective, the world’s most pow-
erful supercomputer “roadrunner“ at Los Alamos labs in the United States, which,
as far as we know, is unable to match the computational power of the mammalian
brain, consumes 2.35 MW (about 100,000 times more).

We often think of this incredibly efficient device is something like a soft pillow
crammed inside our skulls. While the texture of brains has often been compared
to that of a thick pudding, it is more accurate to think of the brain as being a large
sheet, equivalent in size to about four sheets of writing paper, and about 3 mm
thick. In almost all animals, the sheet has six distinct layers which are composed
mostly of the cell bodies of neurons, very long thin processes used for commu-
nication, and glial cells, which are a very prevalent but poorly understood com-
panion to neurons. In each square millimeter of human cortex there are crammed
about 100,000 neurons.1 So, there are about 25 billion neurons in human cortex.
Overall, however, there are approximately 100 billion neurons in the human brain.
The additional neurons come from “subcortical” areas, which include cerebellum,
basal ganglia, thalamus, and the brainstem, among others. To get a perspective on
the special nature of our brains, it is worth noting that monkey brains are approx-
imately the size of one sheet of paper, and rats have brains the size of a Post-it
note.

In general, it is believed that what provides brains with their impressive com-
putational abilities is the organization of the connections among individual neu-
rons. These connections allow cells to collect, process, and transmit information.
In fact, neurons are specialized precisely for communication. In most respects,
neurons are exactly like other cells in our bodies, they have a cell membrane, a

1These and many other brain facts can be found at:
http://faculty.washington.edu/chudler/facts.html
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nucleus, and they have similar metabolic processes. What makes neurons stand
out under a microscope, are the many branching processes which project outwards
from the somewhat bulbous, main cell body (figure???). These processes are there
to enable short and long distance communication with other neural cells. This is
a hint: if we want to understand how brains work, we need to have some sense of
how neurons communicate in order to compute.

Figure 2.1 outlines the main components and activities of the mechanisms
underlying cellular communication. The cellular processes that carry information
to the cell body are called dendrites. The dendrites carry signals, in the form of
an ionic current to the main cell body. If sufficient current enters the cell body
at a given point in time, a series of nonlinear events will be triggered that result
in an action potential, or “spike,” that will proceed down the output process of
the neuron, which is call and axon. Neural spikes are very brief events, lasting
for only a few milliseconds, which travel in a wave-like fashion down the axon
until they reach the end of the axon, called the bouton, where they cause the
release of tiny packets of chemicals called neurotransmitters. Axons end near the
dendrites of subsequent neurons. Hence, neurotransmitters are released into the
small space between axons and dendrites, which is called the synaptic cleft. The
neurotransmitters very quickly cross the cleft and bind to special proteins in the
cell membrane of the next neuron. This binding causes small gates, or channels,
in the dendrite of the next neuron to open, which allows charged ions to flow into
the dendrite. These ions result in a current signal in the receiving dendrite, which
flows to the cell body of a subsequent neurons and so the process continues.

A slightly simpler description of this process, but one which retains the central
relevant features, is as follows:

1. Signals flow down the dendrites of a neuron into its cell body.

2. If the overall input to the cell body from the dendrites crosses a threshold,
the neuron generates a stereotypical spike that travels down the axon.

3. When the spike gets to the end of the axon, it causes chemicals to be released
that travel to the connected dendrite and, like a key into a lock, cause the
opening of channels that produce a current in the receiving dendrite.

4. This current is the signal in step 1., that then flows to the cell body of the
next neuron.

As ‘clean’ as this story sounds, it is made much more complex in real brains by
a number of factors. First, neurons are not all the same. There are hundreds of
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Figure 2.1: Cellular communication. This figure diagrams the main components
and kinds of activities of a majority of neural cells during communication. The
flow of information begins at the left side of the image with postsynaptic cur-
rents travelling along dendrites towards the cell body of the neuron. At the axon
hillock, these currents are added together and a spike is generated if the sum is
above the neuron’s threshold. The spikes travel along the axon and cause the re-
lease of neurotransmitters at the end of the axon. These neurotransmitter bind
to matching receptors on the dendrites of nearby neurons causing ion channels
to open; it is significant that receptors must match the specific neurotransmitters
present, otherwise the ion channel remains closed. Following the opening of ion
channels, postsynaptic currents are induced in the receptor neuron and the process
continues.
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different kinds of neurons that have been identified in mammalian brains. The
neurons can range in size from 10^-4 to 5 m in length. The number of inputs
to a cell can range from about 500 or fewer, to well over 200,000. The number
of outputs, that is, branches of a single axon, cover a similar range. Given all
of these connections, it is not surprising to learn that there are approximately 72
km of fiber in the human brain. Finally, there are hundreds of different kinds of
neurotransmitters and many different kinds of receptors. Different combinations
of neural transmitters and receptors, can cause different kinds of currents to flow in
the dendrite. As a result, a single spike transmitted down an axon can be received
by many different neurons, and can have different kinds of effect on each neuron
depending on the mediating neurotransmitter and receptors.

The variability found in real biological networks makes for an extremely com-
plex system, one which, at first glance, seems designed to frustrate our analysis.
Typically, in mathematics, homogeneous systems (those that look similar no mat-
ter where you are in the system) are much easier to understand. ???Paul Smolen-
sky, a leader in the field of artificial neural networks explicitly says connectionism
should be homogeneous (1988: p. 1)??? The brain, in contrast, is clearly highly
heterogeneous: there are hundreds of kinds of neurons, many with different kinds
of intrinsic dynamical properties; even neurons of the same kind often respond
differently, i.e., generate different patterns of spikes, to exactly the same current
injected into their soma; and even neurons that shared response properties and
type, can still differ in the number and kinds of channels in their dendrites, mean-
ing that the same spikes coming from preceding neurons will generate different
responses.

Experimental neuroscientists who record the activity of single neurons in re-
sponse to perceptual stimuli shown to an animal, will tell you that no two neurons
seem to respond in the same manner. This kind of variability is captured in terms
of a neurons ‘tuning curve.’ An example tuning curve from a cell in primary visual
cortex is shown in figure 2.2. In general, I tuning curve is a graph that shows the
frequency of spiking of a neuron in response to a given input stimuli. In this figure,
we can see that as the orientation of a presented bar changes, the neuron responds
more or less strongly. Its peak response happens at about ??? degrees. Never-
theless, there is some information about the orientation of the stimulus available
from this activity whenever the neuron responds. This tuning curve, while typical
of cells in primary visual cortex, includes an additional implicit assumption. That
is, this is not the response of the cell to any oriented bar at any position in the vi-
sual field. Rather, it is a response to an oriented bar in what is called the ‘receptive
field’ of the cell. Since this is a visual cell, the receptive field indicates which part
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Figure 2.2: A tuning curve from a cell in primary visual cortex (V1). The x-axis
indicates the angle of rotation of a bar, and the y-axis indicates the firing rate
of the neuron when shown that stimulus. The graph is a result of many trials at
each rotation, and hence has error bars that indicate the standard deviation of the
response (reproduced with permission??? from Eliasmith & Anderson, 2003).

of possible visual input space the neuron seems to care about. So, to completely
capture the ‘tuning’ of the cell to visual stimuli, we ideally want to combine the
traditionally distinguished receptive field and tuning curve. In the remainder of
this book, I will use the notion of tuning curve in this more general sense. That is,
what I subsequently defined as a tuning curve often includes information about the
receptive field of the cell in question. Returning to the issue of heterogeneity, the
reason that experimental neuroscientists would suggest that no two cells are the
same, is precisely because their tuning curves (coupled with their receptive fields)
seem to never perfectly overlap. As a result, while neurons near those shown in
figure 2.2 may share similar tuning properties, the peak, width, and rolloff of the
graph will be somewhat different.

We can begin to get a handle on the heterogeneity observed in neural systems
by noticing that there seemed to be to sources for the variability: intrinsic; and
extrinsic. Intrinsic heterogeneity, such as different responses to the same injected
current, will have to be captured by variability in the models of individual cells.
Extrinsic heterogeneity, such as the variability and tuning curves, can be under-
stood more as a consequence of where a particular cell sits in the network. That is,
the reason neighboring cells have different tuning curves is not merely because of
intrinsic heterogeneity, but also because they are receiving slightly different inputs
than their neighbors. So, even if all of the cells were intrinsically homogeneous,
their tuning curves might look very different depending on the processing of the
cells before them, to which they are connected. This difference between extrinsic
and intrinsic heterogeneity will prove important in understanding the sources of
different kinds of dynamics observed in real neural networks.

Of course, this distinction does not in any way mitigate the fact of heterogene-
ity itself. We must still overcome the observed diversity of neural systems, which
has traditionally been seen as a barrier to theoretical analysis. In the next sections
we will see that despite this complexity, it is possible to suggest and quantify un-
derlying principles which do a good job of describing the functional properties
of neural networks that display broad heterogeneity. In fact, we can come to un-
derstand why this massive heterogeneity that we observe might provide for more
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robust computations than those of a system whose individual components were
identical (see section 2.3.1).

• any qualifications to this simple picture and how many of the methods dis-
cussed subsequently take those into account: e.g. additional neural dy-
namics (bursting, adaptation), nonlinear dendritic effects, Dale’s principle,
many of the other ’heterogeneities’ that exist in natural neural systems (ci-
tations to papers that deal with each of these... & perhaps short descriptions
here in brackets). I don’t go into those it too much detail here for reasons of
brevity. I will introduce them to the extent they matter to specific example
models described later on....perhaps?

2.2 Theoretical neuroscience
In recent years, most of the behavioral sciences have seen a heavy influx of in-
fluence from the neurosciences. Most obviously, the psychology of a mere two
decades ago was almost bereft of brain-related talk. Now, however, one of the
fastest growing areas of psychology is cognitive neuroscience, whose practition-
ers regularly talk of neuroanatomical features, neurotransmitters, and employ var-
ious brain imaging and measurement techniques, like fMRI and EEG. However,
the same trend is beginning to appear in linguistics, economics (as behavioral
economics), and even philosophy (as experimental philosophy, aka ‘X-phi’).

Despite this tendency of neuroscience to become ubiquitous, it would be a
mistake to think that neuroscience is in any sense monolithic. Quite the contrary:
the tens of thousands of posters and presentations at the Society for Neuroscience
meeting held every year are divided in to many sections, such as molecular neu-
roscience, cellular neuroscience, systems neuroscience, neuroanatomy, develop-
mental neuroscience, behavioral neuroscience, and cognitive neuroscience among
others. Often, the researchers in one area are not able to understand or communi-
cate effectively with those from another, despite the fact that ultimately, everyone
in the building wants to understand how the brain works.

This, of course, is not a problem unique to neuroscience. Many other areas of
biology suffer the same difficulties, as do other sciences such as geology, chem-
istry, and even physics. However, one main advantage that, for example, physics
has in mitigating these challenges is a widely shared technical vocabulary for de-
scribing both problems and solutions in the field. The development and applica-
tion of these quantitative tools have helped physics develop rapidly, leading us to
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exciting new discoveries, as well as deep, challenging problems. The subfield of
physics most centrally concerned with the development of such tools is theoretical
physics.

Interestingly, an analogous subfield has been developing in neuroscience over
the last few decades as well, and it is often appropriately called ‘theoretical neu-
roscience’ (though perhaps equally as often called ‘computational neuroscience’).
In fact, the analogy between theoretical neuroscience and theoretical physics is
both strong, and useful for understanding its importance to neuroscience. For in-
stance, both are centrally interested in quantifying the phenomena under study.
This does not mean merely statistically quantifying the data generated by the phe-
nomena, but rather coming up with quantitative descriptions of the deterministic
regularities and mechanisms giving rise to that data. Take, for instance, one of the
greatest advances in theoretical physics, the development of Newton’s three laws
of motion. The second, perhaps most famous, law is that “The alteration of motion
is ever proportional to the motive force impressed; and is made in the direction
of the right line in which that force is impressed” Newton (1729, p. 19). In short
form: F = ma. The purpose of this statement is to make a clear, straightforward
hypothesis about motion. I describe similar principles in the sections 2.3.1-2.3.3
for neural representation, computation, and dynamics.

A second analogy between these two subfields is that both are interested in
summarizing an enormous amount of data. Newton’s second law is intended to
apply to all forms of motion, be it rectilinear, circular, or what have you. Mea-
suring all such forms of motion, and describing the results statistically would not
be nearly as concised. Similarly, theoretical neuroscientists are attempting to un-
derstand the basic principles behind neural function. Often, they would like their
mathematical descriptions to be as general as possible, although there is some de-
bate regarding whether or not the kind of unification being strived for in physics
should be a goal for theoretical neuroscience.

A third crucial analogy between theoretical physics and theoretical neuro-
science is that the disciplines are speculative. Most such quantitative descriptions
of general mechanisms go beyond the available data. As such, they almost al-
ways suggest more structure than the data warrants, and hence more experiments
to perform. Looking again to Newton’s second law, he intended it to be true for
all velocities. However, special relativity has subsequently demonstrated that the
law is measurably violated for large velocities. With speculation comes risk. Es-
pecially for a young field like theoretical neuroscience, the risk of being wrong is
high. But, the risk of becoming lost in the complexity of the data without such
speculation is much higher.
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Of course, there are crucial disanalogies between these fields as well. Perhaps,
physics can be succinctly described as being interested in questions of what there
is, while neuroscience is interested in who we are. As well, neuroscience is a much
younger discipline than physics, and so the methods for making measurements of
the systems of interest are still rapidly developing.

Nevertheless, the similarities can help us understand why theoretical neu-
roscience is important for the development of neuroscience. Like theoretical
physics, theoretical neuroscience can help in at least two crucial ways. Specif-
ically, it should:

1. Quantify, and hence make more precise and testable, hypotheses about the
functioning of neural systems

2. Summarize large amounts of experimental data, and hence serve to unify the
many sources of data from different ‘neuro’ and behavioral subdisciplines

The first of these stem from the commitment to using mathematics to describe
principles of neural function. The second is crucial for trying to deal with the
unavoidable complexities of neural systems. This is a challenge not faced to the
same degree by many physicists.2 Characterizing a system of billions of parts as if
each is identical, and as if the connections between all of them are approximately
the same can lead to very accurate characterizations of physical systems (e.g. the
ideal gas law). The same is not true of neural systems. Large neural systems
where all of the parts are the same, and interact in similar ways simply do not
exist.

Thus, the links between the ‘lowest’ and ‘highest’ levels of characterizing the
system are complex and unavoidable. It is perhaps in this kind of circumstance
that quantification of neural systems plays its most crucial role. If we can state our
quantitative hypotheses about neural function at a ‘high’ level, and quantify the
relationship between levels, then our high-level hypothesis will connect to low-
level details. In fact, ideally, a hypothesis at any level should contact data at all
other levels. It is precisely this kind of unification of experimental data that is
desperately needed in the behavioral sciences to support cross-(sub)disciplinary
communication.

This ideal role for theoretical neuroscience has not yet been realized. I believe
this is because there has been a focus on ‘low’ levels of neural systems (i.e. single

2This observation should make it obvious that I am in no way suggesting the behavioral sci-
ences should become physics, a mistake which has been made in the past Carnap (1931).
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cells or small networks). I also think this is perfectly understandable in light of
the complexity of the system being tackled. Nevertheless, I also think we are now
in a position to begin to move past this state of affairs.

So, in the context of this book, I’m adopting methods from theoretical neuro-
science because of their benefits, and at the same time prodding theoretical neuro-
science to expand the viable areas of application to all of the behavioral sciences.
To do so, in the next section I begin by introducing a series of theoretical princi-
ples developed in the context of traditional theoretical neuroscience. In the next
chapter I suggest a way of applying these same principles to large-scale, cognitive
modeling. This should help to not only test, but also to refine such principles,
and it should make our cognitive models subject to data from all the various sub-
disciplines of the behavioral sciences.

2.3 A framework for building a brain

In 2003, Charles H. Anderson and I wrote a book called Neural Engineering.
In it, we presented and demonstrated a mathematical theory of how biological
neural systems could implement a wide variety of dynamic functions. As with
most work in theoretical neuroscience, we focussed on ‘low-level’ systems, in-
cluding parts of the brainstem involved in controlling stable eye position, parts of
the inner ear and brainstem for controlling a vestibulo-ocular reflex (VOR), and
spinal circuits in the lamprey for controlling swimming.

In more recent work, these methods have been used by us and others to pro-
pose novel models of a wider variety of neural systems, including the barn owl
auditory system (Fischer, 2005; Fischer et al., 2007), parts of the rodent navi-
gation system (Conklin and Eliasmith, 2005), escape and swimming control in
zebrafish (Kuo and Eliasmith, 2005), tactile working memory in monkeys (Singh
and Eliasmith, 2006), and simple decision making in humans (Litt et al., 2008) and
rats (ref Laubach???), among others. We have also used these methods to better
understand more general issues about neural function, such as how neural systems
might perform time derivatives (Tripp and Eliasmith, 2010), how the variability
of neural spike trains and the timing of individual spikes relates to information
that can be extracted from spike patterns (Tripp and Eliasmith, 2007), how we can
ensure that biological constraints such as Dale’s Principle – the principle that a
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given neuron typically has either excitatory or inhibitory effects but not both – are
respected by neural models (Parisien et al., 2008). ???Also new learning paper
ref???.

One reason the NEF has such broad application is because it does not make as-
sumptions about what the brain actually does. Rather, it is a set of three principles
that can help determine how the brain performs a given function. For this reason,
John Miller once suggested that the NEF is a kind of ‘neural compiler’. If you
have a guess about the high-level function of the system you are interested in, and
you know (or assume) some information about how individual neurons respond
to relevant input, the NEF provides a way of connecting populations of neurons
together to realized that function. This, of course, is exactly what a compiler does
in computer science. The programmer specifies a program in a high-level lan-
guage like Java. The Java compiler knows something about the low-level machine
language implemented in a given chip, and it translates that high-level description
into an appropriate low-level one.

Of course, things are not so clean in neurobiology. We do not have a perfect
description of the machine language, and our high-level language may be able
to define functions that we cannot actually implement in neurons. Consequently,
building models with the NEF can be an iterative or bootstrapping process: first
you gather data from the neural system and have a hypothesis about what it does;
then you build a model and see if it behaves like the real system; then, if it does
not behave consistently with the data, you alter your hypothesis or perform exper-
iments to figure out why the two are different. Often, such models will behave in
ways that there is no data speak to. In these lucky cases, you can make a predic-
tion and perform an experiment. Of course this process is not unique to the NEF.
Instead, it will be familiar to any modeller. What the NEF offers is a systematic
method of performing these steps.

It is worth emphasizing that, also like a compiler, the NEF does not specify
what the system does. This specification is brought to the characterization of the
system by the modeler (or programmer). In short, the NEF is about how brains
compute, not what they compute. The bulk of this book is about the ‘what,’ but
those considerations do not begin until chapter 3.

In the remainder of this section, I provide an outline of the three principles of
the NEF. There are, of course, many more details (at least a book’s worth!). So, a
few points are in order. First, the methods here are by no means the sole invention
of our group. We have drawn heavily on other work in theoretical neuroscience.
To keep this description as brief as possible, I refer the reader to other descrip-
tions of the methods that better place the NEF in its historical context (Eliasmith
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and Anderson, 2003; Eliasmith, 2005; Tripp and Eliasmith, 2007). Second, the
original Neural Engineering book is a useful source for far more mathematical
detail than I provide here. However, the framework has been extended recently,
so that book should be taken as a starting point. Finally, some mathematics can
be useful for interested readers, but I have placed most of it in the appendices to
emphasize a more intuitive grasp of the principles. This is at least partially be-
cause the Nengo neural simulator has been designed to handle the mathematical
detail, allowing the modeller to focus effort on capturing the neural data, and the
hypothesis she or he wishes to test.

The following three principles describe the NEF:3

1. Neural representations are defined by the combination of nonlinear encod-
ing (exemplified by neuron tuning curves, and neural spiking) and weighted
linear decoding (over populations of neurons and over time).

2. Transformations of neural representations are functions of the variables rep-
resented by neural populations. Transformations are determined using an
alternately weighted linear decoding.

3. Neural dynamics are characterized by considering neural representations as
state variables of dynamic systems. Thus, the dynamics of neurobiological
systems can be analyzed using control (or dynamics systems) theory.

In addition to these main principles, the following addendum is taken to be im-
portant for analyzing neural systems:

• Neural systems are subject to significant amounts of noise. Therefore, any
analysis of such systems must account for the effects of noise.

The ubiquity of noise in neural systems is well documented, be it from synaptic
unreliability (Stevens and Wang, 1994; Zucker, 1973), variability in the amount of
neurotransmitter in each vesicle (Burger et al., 1989), or jitter introduced by axons
into the timing of neural spikes (Lass and Abeles, 1975). Consequently, there are
limits on how much information can be passed by neurons: it seems that neurons
tend to encode approximately 2-7 bits of information per spike (Bialek and Rieke,
1992; Rieke et al., 1997). Here I do not consider this addendum separately, though
it is included in the formulation of each of the subsequent principles, and their
implementation in Nengo.

3For a quantitative statement of the three principles, see Eliasmith and Anderson (2003, pp.
230-231).
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Let me now consider each of the three principles in turn. To make the applica-
tion of these principles concrete, I adopt the example of a ‘controlled integrator’.
This neural circuit can be thought of as a simple memory circuit which can be
loaded with a memory, hold the memory over time, and then erase the memory
(see figure 2.5).

2.3.1 Representation

A central tenet of the NEF is that we can adapt the information theoretic ac-
count of codes to understanding representation in neural systems. Codes, in en-
gineering, are defined in terms of a complimentary encoding and decoding proce-
dure between two alphabets. Morse code, for example, is defined by the one-to-
one relation between letters of the Roman alphabet, and the alphabet composed of
a standard set of dashes and dots. The encoding procedure is the mapping from
the Roman alphabet to the Morse code alphabet and the decoding procedure is its
inverse.

In order to characterize representation in a neural system, we can identify
each of these procedures and their relevant alphabets. The encoding procedure
is straightforward to identify: it is the mapping of stimuli into a series of neural
spikes. Indeed, encoding is what neuroscientists typically talk about, and what I
have covered in section 2.1. When we show a brain a stimulus, some neurons or
other ‘fire’ (see the spike rasters in figure 2.4 for a simple example). The precise
nature of this encoding has been explored in-depth via quantitative models (see
Appendix A.1.1).

Unfortunately, neuroscientists often stop here in their characterization of rep-
resentation, but this is insufficient. We also need to identify a decoding procedure,
otherwise there is no way to determine the relevance of the encoding for the sys-
tem. If no information about the stimulus can be extracted from the spiking neu-
rons, then it makes no sense to say that it represents the stimulus. Representations,
at a minimum, must potentially be able to ‘stand-in’ for the things they represent.

Quite surprisingly, despite typically nonlinear encoding (i.e., mapping a con-
tinuously varying parameter like stimulus intensity into a bunch of discontinuous
spikes), a good linear decoding can be found.4 And, there are several established

4As demonstrated by F. Rieke, D. Warland, R. de Ruyter van Steveninick, and W. Bialek
Spikes: Exploring the Neural Code (Cambridge: MIT Press, 1997), pp. 76-87.
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Figure 2.3: Encoding and decoding of an input signal by two neurons. The neu-
rons fire at rates specified by their tuning curves, shown here to be symmetric.
With a sinusoidally varying input, these tuning curves cause the neurons to fire as
shown in the spike raster. The PSCs are them summed in a receiving neuron to
give an estimate, plotted in black, of the original input signal, plotted in gray. The
estimate is poor, but can be made much better with additional neurons (see figure
2.4).

methods for determining linear decoders given the the neural populations that re-
spond to certain stimuli (see Appendix A.1.2 for one). Notably, these decoders
must decode time-varying signals over a population of partially redundant neu-
rons. Thus they are determined by both temporal and ‘population’ aspects of the
encoding.

The temporal aspects are determined by the biophysics of cellular communi-
cation. In short, the post-synaptic current (PSC) discussed in section 2.1, is used
to convert spikes into an estimate of the input signal (see figure 2.3).

The population aspects are determined by weighting each neural response,
depending on how good it is for representing the input signal. That is, each neuron
is ‘weighted’ by how useful it is for carrying information about the stimulus in the
context of the whole population. If it’s very useful, it has a high weight, if not
it has a low weight. Finding decoders in the NEF is accomplished by optimally
weighting neurons (see Appendix A.1.2). Thus, many neurons can ‘cooperate’ to
give very good representations of time-varying input signals (see figure 2.4).

Having specified the encoding and decoding procedures, we still need to spec-
ify the relevant alphabets. While the specific cases will diverge greatly, we can de-
scribe the alphabets generally: neural responses (encoded alphabet) code physical
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Figure 2.4: Encoding and decoding of an input signal by 30 neurons. As above
in 2.3, the tuning curves of the neurons characterize their general response to
input, the spike raster depicts the response to a specific input signal, and the final
encoding sums PSCs to estimate the input signal. The temporal decoders are PSCs
and the population decoders are optimal weights.

properties (decoded alphabet). Slightly more specifically, the encoded alphabet is
the set of temporally patterned neural spikes over populations of neurons. This is
reasonably uncontroversial.

However, it is much more difficult to be specific about the nature of the al-
phabet of physical properties. We can begin by looking to the physical sciences
for categories of physical properties that might be encoded by nervous systems.
Indeed, we find that many of the properties that physicists traditionally use to de-
scribe the physical world do seem to be represented in nervous systems: there
are neurons sensitive to displacement, velocity, acceleration, wavelength, tem-
perature, pressure, mass, etc. But, there are many physical properties not dis-
cussed by physicists that also seem to be encoded in nervous systems: such as
red, hot, square, dangerous, edible, object, conspecific, etc.5 It is reasonable to
begin with the hypothesis that these ‘higher-level’ properties are inferred on the
basis of representations of properties more like those that physicists talk about.6

5I am allowing any property reducible to or abstractable from physical properties to count as
physical. My suspicion is that this captures all properties, but that is a conversation for another
book. Notice, however, that many typical physical properties, like temperature, are both abstracted
from lower-level properties and ar part of physics. So, abstracting from physical properties does
not make properties non-physical. In philosophical terms, this is the claim that properties ‘super-
vening’ on physical properties are physical.

6Clearly, this hypothesis can be wrong. It may turn out that no standard physical properties are
directly encoded by neurons, but in the end this probably does not matter. We can still describe
what they encode in terms of those properties, without being inaccurate (though our terminology
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Figure 2.5: The architecture of a controlled integrator. This network can act like
a loadable and erasable memory. Both the control input and the memory input
are connected to the recurrent layer of neurons and the feedback to the recurrent
layer is the product of both inputs. The NEF allows the neural connection weights
in this network of spiking neurons to be determined, once we have defined the
desired representations, computations, and dynamics of the system.

In other words, encodings of ‘edible’ depend, in some complex way, on encodings
of ‘lower-level’ physical properties like wavelength, velocity, etc. The NEF itself
does not determine precisely what is involved in such complex relations, although
I do suggest that it provides the necessary tools for describing such relations. I
return to these issues – related to the meaning (or ‘semantics’) of representations
– throughout much of the book, starting in chapter 3.

For now, we can be content with the claim that whatever is represented, it
can be described as some kind of structure with units. A precise way to describe
structure is to use mathematics. Hence, this is equivalent to saying that the de-
coded alphabet consists in mathematical objects with units. The first principle of
the NEF, then, provides a general characterization of the encoding and decoding
relationship between mathematical objects with units and patterns of spikes in
populations of neurons.

To make this characterization more concrete, let us turn to considering the
example of the controlled integrator (see figure 2.5).

Perhaps the simplest such mathematical object is a scalar value. We can char-

may be slightly cumbersome; i.e. we may speak of ‘derivatives-of-light-intensity’, and so on). In
short, it makes sense to begin to describing the properties encoded by animals in terms of familiar
physical properties, because so much of our science is characterized in terms of those properties,
we are familiar with how to manipulate those properties, and in the end we need a description that
works (not necessarily the only, or even best possible, description).
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acterize the horizontal position of an object in the environment as a scalar value,
whose units are degrees from midline. There are neurons in a part of the mon-
key’s brain called the lateral intraparietal (LIP) cortex, that are sensitive to this
scalar value (Andersen et al., 1985). Indeed, these parts of the brain seem to act
as a kind of memory for object location, as they are active even after the object
has disappeared. I should be clear that I do not think a simple controlled integra-
tor that remembers only a scalar value maps well to these specific neurons, but a
similar architecture with a more complex representation has been used to model
many properties of LIP activity (Eliasmith and Anderson, 2003). What is relevant
for this example is that, as a population, neurons in this area encode an object’s
position over time.

To summarize, the representation of object position can be understood as a
scalar variable, whose units are degrees from midline (decoded alphabet), that is
encoded into a series of neural spikes across a population (encoded alphabet). Us-
ing the quantitative tools mentioned earlier, we can determine the relevant decoder
(see appendix A.1.2). Once we have such a decoder, we can then estimate what
the actual position of the object is given the neural spiking in this population,
as in figure 2.4. Thus we can determine precisely how well, or what aspect of,
the original property (in this case the actual position) is represented by the neural
population. We can then use this characterization to understand the role that the
representation plays in the system as a whole.

One crucial aspect of this principle of representation, is that it can be used
to characterize arbitrarily complex representations. The example I have described
here is the representation of a scalar variable. However, this same principle applies
to representations of vectors (such as movement or motion vectors found in motor
cortex, brainstem, cerebellum, and many other areas), representations of functions
(such as stimulus intensity across a spatial contiuum as found in auditory systems,
and many working memory systems), representations of vector fields (such as the
representation of a vector of intensity, color, depth, etc. at each spatial location
in the visual field as found in visual cortex), and representations of composable
symbol-like objects (as argued for throughout this book). Suggesting that one of
these kinds of representation can be found in a particular brain area, crucially,
does not rule out the characterization of the same areas in terms of other kinds of
representations. This is because we can quantitatively define a ‘representational
hierarchy’ that relates such representations to one another. I return to this issue in
section 2.4.

A second crucial aspect of this principle is that it distinguishes the mathemati-
cal object being represented from the neurons that are representing it. I refer to the
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former as the ‘state space’, and the latter as the ‘neuron space’. There are many
reasons it is advantageous to distinguish the neuron space from the state space.
Most such advantages should come clear in subsequent chapters, but perhaps most
obviously, distinguishing these spaces naturally accounts for the well-known re-
dundancy found in neural systems. Familiarity with Cartesian plots makes us
think of axes in a space as being perpendicular. However, the common redun-
dancy found in neural systems suggests that their ‘natural’ axes are in fact not
perpendicular, but rather slanted towards one another (this is sometimes called
an ‘overcomplete’ representation). Distinguishing the state space, where the axes
typically are perpendicular, from the neuron space, where they are not, captures
this feature of neurobiological representation.

The tutorial at the end of this chapter demonstrates how to build and interact
with simulations of scalar and vector representations in Nengo. Both of these cen-
tral features of the principle are further highlighted there with concrete examples.

• ???some comments on the importance of heterogeneity for improving the
robustness of the system, and for being nearly optimal in representational
capacity, etc. (out of book)??? (If not take out earlier reference to this
section).

2.3.2 Transformation

A representational characterization is not be useful if it does not help us un-
derstand how the system functions. Conveniently, this characterization of neural
representation paves the way for a general characterization of how these represen-
tations can be transformed. This is because, like representations, transformations
(or computations) can be characterized using decoding. But, rather than using the
‘representational decoder’ discussed above, we can use a ‘transformational de-
coder’. We can think of the transformational decoder as defining a kind of biased
decoding. That is, in determining a transformation, we extract information other
than what the population is taken to represent. The bias, then, is away from a
‘pure’, or representational, decoding of the encoded information.

For example, if we think that the quantity x is encoded in some neural popula-
tion, when defining the representation we determine the representational decoders
that estimate x. However, when defining a computation we identify transforma-
tional decoders that estimate some function, f (x), of the represented quantity. In
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Figure 2.6: A nonlinear function of the input computed over time. The graph
overlays the input signal in gray and the decoded output signal from a population
of 50 neurons in black. As can be seen, a constantly ramping input from 0 to 1
is transformed to a quadratic function over the same range. This network is thus
computing x2.

other words, we find decoders that, rather than extracting the signal represented
by a population, extract some transformed version of that signal. The same tech-
niques used to find representational decoders are applicable in this case, and result
in decoders that can support both linear and nonlinear transformations (see Ap-
pendix A.2). Figure 2.6 demonstrates how a simple nonlinear function can be
computed in this manner.

Importantly, this understanding of neural computation applies at all levels of
the representational hierarchy, and accounts for complex transformations. For ex-
ample, it can be used to define inference relations, be they statistical (Eliasmith
and Anderson, 2003, chp. 9), or more linguistic (see section 4.3). So, although
linear decoding is simple, it can support the kinds of complex transformations
needed to articulate descriptions of cognitive behavior. A main purpose of this
book is to present one such description through the discussion and models pre-
sented in later chapters.

For present purposes, let us again consider the simple, specific example of a
controlled integrator. The reason this integrator is ‘controlled’ is because, unlike
a standard integrator, we can change the dynamics of the system by changing the
input. Comparison of an ideal controlled, and non-controlled integrator are shown
in figure 2.7. It is evident here that the dynamics of the system in the controlled
integrator is a function of its input. Most directly, the ‘control variable’ is able to
make the integrator act as a standard integrator, or exponentially forget its current
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Figure 2.7: Comparison of a controlled and uncontrolled integrator. A) A standard
integrator continuously adds its input to its current state. These dynamics do not
change regardless of the input signal. B) A controlled integrator acts like a stan-
dard integrator if the control variable is equal to zero. Values less than zero cause
the integrator to exponentially forget its current state. The speed of forgetting is
proportional to the control variable.

state.
In order to build such a system, it is necessary to compute the product of

the current state (i.e., the memory) and the control variable. Consequently, to
implement such a system in a neural network, it is necessary to transform the
represented state space of the recurrent layer (see figure 2.5) in such a way that
it estimates this nonlinear function. To do so, it is important note that the state
space of the recurrent layer represents both the memory and the control inputs.
Hence, it contains a 2D vector representation x = [x1, x2]. To compute the neces-
sary transformation of this state space, we can find transformational decoders to
estimate the function f (x) = x1x2, just as we earlier found the decoders to esti-
mate the function f (x) = x2 for a 1D scalar (see figure 2.6). The tutorial in section
3.7 demonstrates how to construct a network that performs scalar multiplication
in this manner.

Before moving on to a consideration of dynamics, it is important to realize
that this way of characterizing representation and computation does not demand
that there are ‘little decoders’ inside the head. That is, this view does not en-
tail that the system itself needs to decode the representations it employs. In fact,
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according to this account, there are no directly observable counterparts to the rep-
resentational or transformational decoders. Rather, as discussed in section 2.3.4,
they are embedded in the synaptic weights between connected neurons. That is,
coupling weights of connected neurons indirectly reflect a particular population
decoder, but they are not identical to the population decoder. This is because con-
nection weights are best characterized as determined by both the decoding of the
incoming signal and the encoding of the outgoing signal. Practically speaking, this
means that changing a connection weight both changes the transformation being
performed and the tuning curve of the receiving neuron. As is well known from
both connectionism and theoretical neuroscience, this is exactly what happens in
such networks. In essence, the encoding/decoding distinction is not one that neu-
robiological systems need to respect in order to perform their functions, but it is
extremely useful in trying to understand such systems and how they do, in fact,
manage to perform those functions. Consequently, decoders – both transforma-
tional and representational – are theoretical constructs. The only place something
like decoding actually happens is at the final outputs of the nervous system, such
as at the motor periphery.

2.3.3 Dynamics

In the history of cognitive science, computation and representation have al-
ways been central players in our cognitive theories, but dynamics is a relative
newcomer. And, while it may be understandable that dynamics were initially ig-
nored by those studying cognitive systems as purely computational systems, it
would be strange indeed to leave dynamics out of the study of minds as physi-
cal, neurobiological systems. Even the simplest nervous systems performing the
simplest functions demand temporal characterizations: consider moving, eating,
and sensing in a constantly changing world. It is not surprising, then, that single
neural cells have almost always been modeled by neuroscientists as essentially
dynamic systems. In contemporary neuroscience, researchers often analyze neu-
ral responses in terms of ‘onsets’, ‘latencies’, ‘stimulus intervals’, ‘steady states’,
‘decays’, etc. – these are all terms describing temporal aspects of a neurobiolog-
ical response. The fact is, the systems under study in neurobiology are dynamic
systems and as such they make it very difficult to ignore time.

Notably, modern control theory was developed precisely because understand-
ing complex dynamics is essential for building something that works in the real
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world. Modern control theory permits both the analysis and synthesis of elabo-
rate dynamic systems. Because of its general formulation, modern control theory
applies to chemical, mechanical, electrical, digital, or analog systems. As well, it
can be used to characterize non-linear, time-varying, probabilistic, or noisy sys-
tems. As a result of this generality, modern control theory is applied to a huge
variety of control problems, including autopilot design, spacecraft control, design
of manufacturing facilities, robotics, chemical process control, electrical systems
design, design of environmental regulators, and so on. It should not be surpris-
ing, then, that it also proves useful for characterzing the dynamics of complex
neurobiological systems.

Central to employing modern control theory for understanding the dynamics
of a system is the identification of the ‘system state variable’ (x(t) in figure 2.8).
It is not a coincidence that the terminology introduced earlier has us calling the
represented mathematical objects the ‘state space’. This is because the third prin-
ciple of the NEF is the suggestion that the representations of neural populations
can be characterized as the state variables of a dynamical system using control
theory.

However, things are not quite so simple. Because neurons have intrinsic dy-
namics dictated by their particular physical characteristics, we must adapt stan-
dard control theory to neurobiological systems (see figure 2.8). Fortunately, this
can be done without loss of generality for linear and nonlinear dynamic systems
(see Appendix A.3). Notably, all of the computations needed to implement such
systems can be implemented using transformations as defined earlier in principle
2. As a result, we can directly apply the myriad techniques for analyzing complex
dynamic systems that have been developed using modern control (and dynamic
systems) theory to this quantitative characterization of neurobiological systems.

To get a sense of how representation and dynamics can be integrated, let us re-
visit the simple controlled integrator. As shown in figure 2.7, a standard integrator
constantly sums its input. If we call the input u(t) and the state of the controlled
x(t), we can write this relation as

ẋ(t) = Ax(t)+Bu(t) (2.1)

which is the scalar version of the system shown in figure 2.8a. This equation
says that the change in x(t) (written ẋ(t)) at the next moment in time is equal to
its current value plus the input u(t) (times some number B). For the rest of the
discussion, we can let B = 1.

If we also let A = 0, then we get a standard integrator: the value of the state
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Figure 2.8: A control theoretic description of neurobiological systems. a) The
canonical diagram for any linear system in control theory. A determines what as-
pects of the current state affect the future state. B maps the input to the system
into its state space. The transfer function is perfect integration. b) The equiva-
lent description for a neurobiological system. The matrices A′ and B′ take into
account the effects of the transfer function, hsyn(t), which captures the dynamics
of neurons.

x(t) at the next moment in time will be equal to itself plus the change ẋ(t). That
change is just equal to the input u(t) (since 0x(t) = 0), so the value of x(t) will
result from constantly be summing the input, just as in a standard integrator. In
short,

x(t) =
∫

u(t)dt.

In many ways, this simple integrator is like a memory. After all, if there is no
input (i.e., u(t) = 0) then the state of the memory will not change. This captures
the essence of an ideal memory – its state stays constant over time with no input.
The problem is that this simple integrator always just adds new input to the current
state. If you can only remember one thing, and I ask you to remember the word
‘cat’, and then later ask you to remember the word ‘dog’, we would not expect you
to report some kind of ‘sum’ of ‘cat’ and ‘dog’ as the contents of your memory
when queried later. Instead, we would expect you to replace your memory of
‘cat’ with ‘dog’. In short, there must be a way to empty the integrator before a
new memory is remembered.

This is why we need to control the value of A in the above system. Consider
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for a moment effect of changing the value of A in equation 2.1 to lie anywhere
between -1 and 1. Let us suppose that the current value of x(t) is not 0, and there
is no input. If A is positive, then all future values of x(t) will move increasingly
far away from 0. This is because the change in x(t) will always be positive for
positive x(t) and negative for negative x(t). In fact, this movement away from
zero will be exponential because the next change is always a constant fraction of
the current state (which keeps getting bigger) – adding (or subtracting) a fraction
of something to itself over and over results in an exponential curve. Now suppose
that A is negative. In this case, the opposite happens. The current state will move
exponentially towards 0. This is because the next state will be equal to itself minus
some fraction of the current state.

To build a controlled integrator that acts as an erasable memory, we can thus
implement the dynamical system in equation , with an additional input that con-
trols A. We can use principle 3 to determine how to map this equation into one that
accounts for neural dynamics. We then need to employ principle 2 to compute the
product of A and x(t) to implement this equation. And, we need to employ prin-
ciple 1 to represent the state variable, the input variable, and the control variable
in spiking neurons. The result of employing all three principles is shown in figure
2.9.

It is perhaps worth emphasizing that while the controlled integrator is simple
– it computes only products and sums, it represents only scalars and a 2D vector,
and it has nearly linear time-invariant dynamics – it employs each of the princi-
ples of the NEF. Furthermore, there is nothing about these ‘simplicities’ that are a
consequence of the principles employed. NEF models can compute complex non-
linear functions, have sophisticated high-dimensional representations, and display
interesting nonlinear dynamics. In fact it is this generality, I believe, that puts the
NEF in a unique position to help develop and test novel hypotheses about biolog-
ical cognition. Developing and testing one such hypothesis is the purpose of the
remainder of this book, beginning with the next chapter.

2.3.4 The three principles

Hopefully it is clear that this presentation of the NEF is somewhat superficial.
It is not intended to satisfy those deeply familiar with theoretical neuroscience.
I have side-stepped issues related to optimal decoding, nonlinear versus linear
decoding, information transfer characteristics, nonlinear dendritic function, rate
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Figure 2.9: A recurrent spiking network implementing a controlled integrator. In-
put and control signals are connected to a neural ensemble which has connections
to its own feedback terminal. The neural ensemble contains representations of
both the control signal and the controlled integral of the input signal. These rep-
resentations are shown in the rightmost graph: the solid black line is the decoded
representation of the integral, the solid gray line is the representation of the control
signal, and dotted lines depict the ideal values of the integral and the control. The
tutorial at the end of chapter 5 demonstrates how to build this controlled integrator
in Nengo.
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versus timing code considerations, and so on. While I believe the NEF satisfac-
torily addresses issues, my purpose here is to give the necessary background to
make the methods plausible, usable, and not unnecessarily complex.

In that spirit, it is perhaps useful to summarize the principles diagramatically,
to both clarify how they relate to neurobiology and to demonstrate what they con-
tribute to an analysis of neural systems. Figure 2.10 shows what I have called
a ‘generic neural subsystem’. The purpose of identifying such a subsystem is
to note that such ‘blocks’ can be strung together indefinitely to describe neural
function. This subsystem is generic because it has input spikes, which generate
post-synaptic currents (PSCs) that are then weighted and passed through a neu-
ral non-linearity which generates outputs spikes. This characterization is generic
across almost all areas of the mammalian brain.7

In addition, the subsystem in figure 2.10 captures the contributions of the
principles. Together, the principles determine the synaptic weights. That deter-
mination depends on the contributions of each of the principles independently:
the representation principle identifies encoders and representational decoders; the
transformation principle identifies transformational decoders; and the dynamics
principle identifies the dynamics matrices (i.e. the matrices identified in figure
2.8). The synaptic weights themselves are the product of these elements.

Crucially, while this theoretical characterization of the subsystem is generic,
its application is not. To determine decoders, the tuning curves of neurons play
a role. To determine dynamics, the kinds of neurotransmitters found in a given
circuit are crucial. To determine what kind of spiking occurs, the choice of a
single cell model is crucial. To determine encoders, both the single cell model
and the tuning curves need to be known. To determine transformational decoders
and dynamics, a high-level hypothesis about the system function is needed. All
of these considerations can vary widely depending on which brain areas are being
considered.

I mentioned several examples of the broad application of the NEF at the begin-
ning of section 2.3. As noted, these applications have focussed on detailed neural
models. A benefit of this focus has been that the NEF has successfully accounted
for changes in single cell tuning curves under different circumstances (Conklin
and Eliasmith, 2005), has been able to better account for the variety of single cell

7Some notable exceptions are retinal processing, some dendro-dendtric interactions, and gap
junctions. An extension to the generic neural subsystem as drawn here can capture such inter-
actions by incorporating optional elements that include these other potential sources of dendritic
current. This added complexity obscures the simplicity and broad generality of the subsystem,
however.
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Figure 2.10: A generic neural subsystem. A synthesis of the preceding character-
izations of representation (encoding/decoding), computation (biased decoding),
and dynamics (captured by hsyn(t) and the dynamics matrices). Dotted lines dis-
tinguish neural and state space (i.e., mathematical objects with units) descriptions.
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dynamics during working memory tasks than other models (Singh and Eliasmith,
2006), and has provided a model of eye position control that proposes a novel
synaptic learning rule for adapting individual synapses that is able to account for
recovery from ablation of single cells, the effects of systematic inputperturbation,
and normal functioning in a more biologically plausible manner than past models
(ref macneill???). In short, the credentials of the NEF as a method for generating
models with close connections to detailed neural data are good.

As well, these applications make it clear that the NEF bears little resemblance
to traditional connectionism: NEF neurons spike, they are highly heterogeneous,
they have a variety of different dynamics, they are differentially affected by differ-
ent neurotransmitters – they are not ‘units’ or ‘nodes’, but neurons. In addition,
the NEF does not rely on learning to design models (although learning is often
included if appropriate to the system of interest), consequently it can be used
to construct arbitrarily ‘deep’ (i.e. with any number of layers), and arbitrarily
connected models. This is because the networks can be designed both top-down
(given a functional hypothesis, how might neurons be organized), and bottom-up
(given a network structure and a learning rule, what functions can be realized).

However, the drawback of these focussed applications is that the kinds of func-
tions addressed are simple, making less than obvious how the NEF might be rel-
evant for understanding complex behavior. It has been suggested that a detailed
understanding of neural implementation is completely irrelevant for understand-
ing cognition (Fodor and Pylyshyn, 1988). I won’t argue that point here.8 Never-
theless, it is not obvious what the relation is between these simple neural systems
and cognition: presumably we want to understand the cognitive forest as well as
the neural trees.

Before confronting the task of applying the NEF to cognitive systems in the
next chapter, I believe it is conceptually important to clarify a notion I will be
using throughout the remainder of the book. A notion I have been using somewhat
loosely to this point: the notion of ‘levels’.

2.4 Levels
At one point in the development of science, it was widely thought that the sciences
could be identified with the level of nature which they characterized. Physics was
the most fundamental, followed closely by chemistry, and subsequently biology,
psychology, sociology and so on (ref??? read bechtel?). The suggestion was that
lower-level sciences could reductively describe the higher-level sciences. Soci-

8Though I have elsewhere (???cite BBS paper).
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eties, after all, are composed of people, who are made up of biological parts, which
are largely driven by chemical processes, which can be understood as interactions
between the fundamental parts of nature. This idyllic view has not withstood the
test of time. However, the notion that there are ‘levels’ of some kind has proven
too useful to discard with this view. Instead it has become a perennial problem to
determine what, exactly, the relation between the sciences is.

Jerry Fodor has famously suggested that, since the reduction of one science to
another has failed, the sciences must be independent (ref fodor). Consequently,
he has been argued that to understand cognitive systems, which lie in the domain
of psychology, appeal to lower-level sciences is useless. The only thing such dis-
ciplines, including neuroscience, can do is to provide an implementational story
that bears out whatever psychological theory has been independently developed.
There are many difficulties with such a view (refs???), but the one that stands out
in the context of developing cognitive theories is that cleaving neuroscience from
psychology arbitrarily throws out an enormous amount of empirical data about the
system we are attempting to develop our theory about. If we were already certain
that we had a perfect psychological-level description of the system, this strategy
might be defensible. However, we are in no such position.

There are many possible relations that may exist between levels other than
the extremes of their being reducible to one another, or their being independent.
In fact, there are many different things we might mean by ‘levels’ in the first
place. And, different notions of ‘levels’ may require different characterization of
the relations between them. I suspect that the reason both the reducibility and the
independence views seem implausible is because they share a very strong inter-
pretation of the term ‘level’ in nature. Specifically, both assume that such levels
are ontological (Oppenheim and Putnam, 1958). That is, that the levels them-
selves are intrinsic divisions in the structure of the natural world. The reason we
might assume we can reduce people to particles, is because people are ultimately
best described as a bunch of particles stuck together in some (perhaps very com-
plex) way. The reason we might assume theories about people are independent of
theories about particles, is because reduction does not work, but both are equally
real and so both kinds of theories are equally scientific.

If, instead, we think of levels as different descriptions of a single underly-
ing system, neither of these views seem plausible. Sometimes we may describe
a system as a person without much consideration of their relationship to indi-
vidual particles. Other times we may be concerned about the decomposition a
biological person, or that person’s parts, which may ultimately lead in the direc-
tion of a reductive description. The reasons for preferring one such description
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over another can be largely practical: in one case we need to predict the overall
behavior of the whole system; in another we need to explain how changes in a
component influence complex interactions. In either case, we need not take these
different perspectives on the underlying system as something we need reify (i.e.,
make real). Rather, we can understand levels to be descriptions that are chosen
for purposes.

Crucially, this does not mean that levels are in any problematic sense ‘made
up’: they can still be right and wrong (depending on whether they agree with
empirical evidence), and they can still be about real things (i.e., things whose ex-
istence does not depend on our existence). Instead, they are flexible in a manner
that acknowledges our limited intellectual capacities, or maybe simply our limited
knowledge. Like any tool, theories must be useable. Consequently, it is sometimes
important to make assumptions or simplifications in order to make predictions. In
psychology, we may talk about people as if they were unchanging sets of parti-
cles because most of our predictions are sufficiently accurate regardless of that
assumption.

I have painted a picture of levels as pragmatically driven descriptions of un-
derlying phenomena. Perhaps it is useful to call this position ‘descriptive pragma-
tism’ for short. This view will no doubt be unappealing to those wanting ontologi-
cal levels for science, but descriptive pragmatism does a better job of capturing the
many competing ideas at work in talk of ‘levels’ in scientific practice.9 Specif-
ically, it explains why levels are related to complexity: more complex systems
require more resources to characterize.10 Consequently, a simpler high-level de-
scriptions of such a system requires more assumptions than a more complete, but
lower-level description. Nevertheless, such assumptions are warranted if they do
not prevent us from adequately explaining or predicting the system of interest.

Descriptive pragmatism also help us understand why levels, spatial scale, and
complexity are inter-related: it is often the case that if we have two objects of
a given size, they take up about twice the space of one such object, and they
interact only with each other. As we increase the number of objects, we need to
increase the amount of space necessary to encapsulate the system, and the number
of possible interactions goes up exponentially (???or faster) as well. So, typically,
larger spatial scales allow for more complexity and concurrently demand higher

9See Bechtel (???ref) for a discussion of several failed past attempts to adequately describe an
ontological notion of levels.

10By many definitions, this is precisely what complexity is (Kolmogorov, 1968; Cun and
Denker, 1992)???also cite J. M. Carlson, J. Doyle, Proc. Natl. Acad. Sci. U.S.A. 99, 2538
(2002).???
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level descriptions.
Finally, this view of levels is consistent with intuitions that part/whole rela-

tions, especially in mechanisms, often coincide with levels. Most systems com-
posed of parts have parts that interact. If the parts of a system are organized
in such a way that their interaction results in some regular phenomena, they are
called ‘mechanisms’ Machamer et al. (2000). Mechanisms are often analyzed by
decomposing them into their simpler parts, which may also be mechanisms. So,
within a given mechanism, we again see a natural correspondence between spatial
scale, complexity and levels. Note, however, that even if two distinct mechanisms
can be decomposed into lower level mechanisms, this does not suggest that the
levels within each mechanism can be mapped across mechanisms. This, again,
suggests that descriptive pragmatism better captures scientific practice than more
traditional ontological views ???ref bechtel’s new book???.

Descriptive pragmatism about levels may initially seem to be a more arbitrary
characterization of levels because the levels are not set by nature. However, we
can still demand systemmatic identification and quantification of the relation be-
tween levels. The descriptions we employ can still be mathematical, after all. In
fact, mathematical descriptions, being abstract, can help clarify the assumptions
made when identifying levels. We should suspect that precisely where the de-
scription is abstracted from empirical evidence is where practical considerations
are at work. We might talk in terms of mathematical objects that represent con-
cepts instead of a mathematical description of individual neuron function because
successful explanation or prediction of certain behavior can proceed in terms of
concepts without detailed consideration of individual neuron function. The nature
of ‘without detailed consideration’ is specified by assumptions that underly our
mathematical theory concept representation.

With this background in mind let me return to specific consideration of the
NEF. As described in section 2.3.1 on the principle of representation, the principle
applies to the representation of all mathematical objects. Since such objects can
be ordered by their complexity, we have a natural and well-defined meaning of a
representational hierarchy. Table 2.1 provides the first levels of such a hierarchy.

This hierarchy maps well to notions of levels as spatial scale, complexity, or
part/whole relations. If we hold the precision of the representation constant, then
the higher levels in the hierarchy will require more neurons, and hence typically
be ascribed larger areas of cortex (relative few cells are needed to encode light
intensity at a single spatial position, compared to encoding light intensity over the
visual field). Relatedly, these higher-level representations will be able to under-
write more complex behaviors (object recognition will often require detailed in-
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Table 2.1: A representational hierarchy. Each row has the same type of encod-
ing/decoding relations with neurons. Higher rows can be constructed out of linear
combinations of the previous row.

Mathematical Object Dimension Example
Scalar (x) 1 Light intensity at x,y
Vector (x) N Light intensity, depth, color, etc. at x,y
Function (x(ν)) ∞ Light intensity at all spatial positions
Vector Field (x(r,ν)) N×∞ Light intensity, depth, color, etc. at all spatial positions
...

...
...

tensity information across large portions of the visual field, whereas orienting does
not). Finally, the hierarchy clearly defines how the higher-levels are built up out of
the lower levels. Hence mechanisms trafficking in one level of representation will
often be decomposable into mechanisms trafficking in lower-level representations.

Given the tight relationship between principles 1 and 2 (the latter is a simple
variation of the former), it should not be surprising that what goes for representa-
tions also goes for transformations. High-level computations will be carried out
over larger spatial scales, can be more complex, and relate to high-level mecha-
nisms. Furthermore, because principles 1 and 2 are used to implement principle
3 (dynamics are defined by transformations of representations), the same can be
said for dynamics.

Notice also that all of the levels of this hierarchy are described using the the
same encoding/decoding relationship with individual neurons. For this reason, I
will often talk of neuron-level descriptions as being lower-level than these repre-
sentational descriptions. In other words, the neuron space/state space distinction
is also a distinction between levels of description. The representational hiearchy
itself lies within the state space half of this distinction. The relation between the
neuron and state space levels is different than that between levels within the rep-
resentational hierarchy. But, both are quantitatively defined, and the increase of
levels with spatial scale, complexity, and part/whole relations still obtains. Con-
sequently, it still makes sense to talk of all of these as levels of the same system.

The fact that all of these levels can be described quantitatively and in a stan-
dard form suggests that this characterization provides a unified way of under-
standing neurobiological systems. In addition, it makes clear how we can ‘move
between’ levels, and precisely how these levels are not independent. They are not
independent because empirical data that constrains one description is about the
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same system described at a different leve. So, when we move between levels, we
must either explicitly assume away the relevance of lower (or higher) level data,
or we rely on the hypothesized relationship between the levels to relate that data
to the new level. Either way, the data influences our characterization of the new
level (since allowable assumptions are part and parcel of identifying a level).

Before leaving this consideration of levels, one final subtlety of levels in my
subsequent description of neural systems is worth discussing. That is, different
descriptions of neural function can ‘move’ the complexity of the systems into dif-
ferent parts of the description. That is, in general, what we may naturally call
high-level neural representations (e.g., the representation of phonemes), may be
relatively simple mathematical objects (i.e., a scalar carrying only one of forty
possible values). On the face of it, this characterization of phonemes as sim-
ple mathematical objects seems to contradict my earlier claim that, in general,
higher-level representations are more complex mathematical objects. However,
that concern misses the fact that the complexity of this representation has been
moved to the units of that object. That is, phonemes themselves are very compli-
cated objects that require many sophisticated computations to extract (they depend
not only on complex interactions of frequencies, but auditory and motor contexts).
So the the fact that the unit of the object is ‘phoneme’ captures enormous amounts
of complexity. Consequently, the representational hierarchy applies in cases when
the units of the component representations stay constant (as in the examples pro-
vided in table 2.1). If we change units, we may still proceed ‘up’ levels even
though the mathematical objects get simpler. Of course, the relationship between
units at different levels must also be specified to properly characterized the rela-
tionship between these levels. This relationship is most often a transformational
one, and hence not one that the NEF specifies in general (recall from section 2.3
that the NEF is about how, not what, neural systems compute).

So, the NEF provides a consistent, precise way to talk about levels in the be-
havioral sciences. Some, but not all of the inter-level relations are defined by the
principles of the framework. This seems appropriate given the current state of
ignorance about how best to decompose the highest-level neural systems. Nev-
ertheless, the NEF still provides systemmatic and quantitive tools for carefully
exploring such decompositions.
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2.5 Nengo: Neural representation
In this tutorial, we examine two simple examples of neural representation. These
examples highlight two aspects of how principle 1 in section 2.3.1 characterizes
neural representation. First, the examples make evident how the activity of neural
populations can be thought of as representing a mathematical variable. Second,
we examine a simple case of moving up the representational hierarchy to see how
the principle generalizes from simple to more complex cases.

Representing a scalar
We begin with a network that represents the simplest mathematical object, a scalar
value. As in the last tutorial, we will use the interactive mode to examin the
behavior of the running model. Let us begin.

• In an empty Nengo world, right-click anywhere on the background and
choose New Network. Set the Name of the network to ‘Scalar Represen-
tation’ and click OK.

• Right-click inside the network, select Create new->NEFEnsemble

Here the basic features of the ensemble can be configured.

• Set Name to ‘x’, Number of nodes to 100, Dimensions to 1, Node factory to
‘LIF Neuron’, and Radius to 1.

The name is a way of referening to the population of neurons you are creating.
The number of nodes is the number of neurons you would like to have in the
popuation. The dimension is the number of different elements in the vector you
would like the population to represent (a 1 dimensional vector is a scalar). The
node factory is the kind of single cell model you would like to use. The default is
a simple leaky integrate-and-fire (LIF) neuron. Finally, the radius determines size
of the n-dimensional hypersphere that the neurons will be good at representing. A
1-dimensional hypersphere with a radius of 1 is the range from -1 to 1 on the real
number line. A 2-dimensional hypersphere with the same radius is a unit circle.

• Click the Set button. In the panel that appears, you can leave the defaults
(tauRC is 0.02, tauRef is 0.001, Max rate low is 200 high is 400, Intercept
is low -1.0 and high is 1.0).
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Clicking on Set allows the parameters for generating neurons in the population to
be configured. Briefly, tauRC is the RC time constant for the neuron membrane,
usually 20ms, tauRef is the absolute refractory period (the period during which a
neuron cannot spike after having spiked), Max rate has a high and low value, in
Hertz, which determines the range of firing rates neurons will have at the extent of
the radius (the maximum firing rate for a specific neuron is chosen randomly from
a uniform distribution between low and high), Intercept is the range of possible
values along the represented axis where a neuron ‘turns off’ (for a given neuron its
intercept is chosen randomly from a uniform distribution between low and high).

• Click OK. Click OK again, and the neurons will be created.

If you double-click on the population of neurons, each of the individual cells will
be displayed.

• Right-click on the population of neurons, select Plot->Constant Rate Re-
sponses.

The ‘activities’ graph which is now displayed shows the ‘tuning curve’ of all the
neurons in the population. This shows that there are both ‘on’ and ‘off’ neurons
in the population, that they have different maximum firing rates at x = ±1, and
that there is a range of interecepts between [−1,1]. These are the heterogeneous
properties of the neurons that will be used to represent a scalar value.

• Right-click on the population of neurons, select Plot->Plot distortion: X.

This plot is an overlay of two different plots. The first, in red and blue compares
the ideal representation over the range of x (red) to the representation by the pop-
ulation of neurons (blue). If you look closely, you can see that blue does not lie
exactly on top of red, though it is close. To emphasize the difference between the
two plots, the green plot is the distortion (i.e. the difference between the ideal and
the neural representation). Essentially the green plot is the error in the neural rep-
resentation, blown up to see its finer structure. At the top of this graph, in the title
bar, the error is summarized by the MSE (mean squared error) over the range of
x. Importantly, MSE decreases as the square of the number of neurons (so RMSE
is proportional to 1/N), so more neurons will represent x better.

• Right-click on the population and select Configure. Any of these properties
can be changed for the population.
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There are too many properties here to discuss them all. But, for example, if you
click on the arrow beside i neurons, double-click the current value. You can now
set it to a different number and the population will be regenerated with the new
number of neurons.

Let us now examine the population running in real time.

• Right-click inside the Scalar Representation network and select Create new-
>Function input.

• Set Name to ’input’, make sure Output Dimensions is 1 and click Set Func-
tions.

• Select Constant Function from the drop down menu click Set and set Value
to 0. Click OK three times.

The function input will appear. We will now connect the function input to the
neural population as in the tutorial in section 1.5. This essentially means that the
output from the function will be injected into the soma of each of the neurons in
the population, driving its activity.

• Right-click the ‘x’ population and select Add decoded termination. Set
Name to ‘input’, Weights Input Dim to 1, and tauPSC to 0.02. Click Set
Weights, double-click the value and set it to 1. Click OK twice.

• Click and drag the ‘origin’ on the input function you created to the ‘input’
on the ‘x’ population.

• Right-click in the Scalar Representation network and select Interactive Plots.

This plot should be familiar from the previous tutorial. It allows us to interactively
change the input, and watch various output signals generated by the neurons.

• Right-click ‘x’ and select value. Right-click ‘x’ and select spike raster.
Right-click ‘input’ and select value. Right-click ‘input’ and select control.

Change the layout to something you prefer by dragging items around. If you
would like the layout to be remembered in case you close and re-open these plots,
click the small triangle in the middle of the bottom of the window (this expands
the view), then click the disk icon under layout.

• Click the play button. Grab the control and move it up and down. You will
see changes in the neural firing pattern, and the value graphs of the input
and the population.
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• Note that the value graph of the ‘x’ population is the linearly decoded esti-
mate of the input, as per the first principle of the NEF.

• Note also that the spike raster graph is displaying the encoding of the input
signal into spikes.

The spiking of only 10% of the neurons are shown by default. To increase this
proportion:

• Right-click on the spike raster graph and select a larger percentage of neu-
rons to show.

The population of neurons does a reasonably good (if slightly noisy) job of rep-
resenting the input. However, neurons can not represent arbitrary values well. To
demonstrat this do the following.

• Right-click the control and select increase range. Do this again. The range
should now be ±4.

• Centre the controller on zero. The population should represent zero. Slowly
move move the controller up, and watch the value graph from the ‘x’ popu-
lation.

Between 0 and 1, the graph will track the controller motions well. Notice that
many of the neurons are firing very quickly at this point. As you move the con-
troller past 1, the neural representation will no longer linearly follow your move-
ment. All the neurons will become ‘saturated,’ that is, firing at their maximum
possible value. As you move the controller past 2 and 3, the decoded value will
almost stop moving altogether.

• Move the controller back to zero. Notice that changes around zero cause
relatively large changes in the neural activity compared to changes outside
of the radius (which is 1).

These effects make it clear why the neurons do a much better job of represent-
ing information within the defined radius: changes in the neural activity outside
the radius no longer accurately reflect the changes of the input. This becomes
especially true under noisy conditions, where small changes are easily masked by
noise.

Notice that this population, representing a scalar value, does not in any way
store that value. Instead, the activity of the cells act as a momentary representation
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of the current value of the incoming signal. That is, the population acts together
like a variable, which can take on many values over a certain range. The particular
value it takes on is represented by its activity, which is constantly changing over
time. This conception of neural representation is very different from that found
in many traditional connectionist networks which assume that the activation of a
neuron or a population of neurons represents the activation of a specific ‘concept’.
Here, the same population of neurons, differently activated, can represent different
‘concepts’.11 I return to this issue in sections 9.3 and 10.3.1.

Representing a vector
A single scalar value is the simplest neural representation, and hence at the bottom
of the representational hierarchy. Combining two or more scalars into a represen-
tation, and moving up one level in the hierarchy, results in a vector representation.
In this tutorial, I consider the case of two-dimensional vector representation, but
the ideas naturally generalize to any dimension. Many parts of cortex are best
characterized as using vector representations. Most famously, Apostolos Geor-
gopoulos and his colleagues have demonstrated vector representation in motor
cortex (Georgopoulos et al., 1984, 1986, 1993).

In these experiments, a monkey moves its arm in a given direction while the
activity of a neuron is recorded in motor cortex. The response of a single neuron
to forty different movements is shown in figure 2.11. As can be seen from this
figure, the neuron is most active for movements in a particular direction. This
direction is called the ‘preferred direction vector’ for the neuron. Georgopoulos’
work has shown that over the population of motor neurons, these preferred di-
rection vectors are evenly distributed around the unit circle in the plane of move-
ment(Georgopoulos et al., 1993).

So to construct a model of this kind of representation, we can do exactly the
same steps as for the scalar representation, but with a two-dimensional represen-
tation.

• In an empty Nengo world, right-click anywhere on the background and
choose New Network. Set the Name of the network to ‘Vector Represen-
tation’ and click OK.

11This is true even if we carve the populations of neurons up differently. That is, there is clearly
a range of values (perhaps not the whole range in this example) over which exactly the same
neurons are active, but different values are represented.
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Figure 2.11: The response of a single neuron in motor cortex to different directions
of movement. M indicates the time of movement onset. T indicates the time that
the target appears. This data shows five trials in each direction for this neuron.
The neuron is most active when the target is between 135 and 180 degrees. The
direction of the peak of this response is called the neuron’s ‘preferred direction
vector’. (Reproduced from Georgopoulos et al. (1986), no permission yet???)
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• Right-click inside the network, select Create new->NEFEnsemble

• Set Name to ‘x’, Number of nodes to 100, Dimensions to 2, Node factory to
‘LIF Neuron’, and Radius to 1.

• Click the Set button. In the panel that appears, you can leave the defaults
(tauRC is 0.02, tauRef is 0.001, Max rate low is 200 high is 400, Intercept
is low -1.0 and high is 1.0).

The only interpretational difference for vector representations of these parameters
is that the Max rate and Intercept are defined along the preferred direction vector
(which is always one-dimensional). You can think of the scalar representation
as having only two possible ‘preferred directions’, positive and negative. The
preferred direction vector generalizes that notion to higher-dimensional spaces.

• Click OK. Click Advanced. This expands the window. Ensure that the En-
coding Distribution slider is all the way to the left (over 0.0 - Evenly Dis-
tributed).

The previous step gives a motor cortex-like distribution of preferred direction vec-
tors.

• Click OK, and the neurons will be created.

Given the default settings, preferred direction vectors will be randomly chosen
from an even distribution around the unit n-dimensional hypersphere (i.e. the unit
circle in two dimensions). If you plot the constant rate responses, the neuron
responses will be plotted along the preferred direction vector of the cell. Conse-
quently, the plot is generated as if all neurons had the same preferred direction
vector.

You can now create an input function, and run the network.

• Right-click inside the Vector Representation network and select Create new-
>Function input.

• Set Name to ’input’, make sure Output Dimensions is 2 and click Set Func-
tions.

• Select Constant Function from the drop down menu, click Set and set Value
to 0 for both functions. Click OK three times.
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• Right-click the ‘x’ population and select Add decoded termination. Set
Name to ‘input’, Weights Input Dim to 2, and tauPSC to 0.02. Click Set
Weights, double-click the top-right value and set it to 1, do the same to the
bottom-left value. Click OK twice.

Notice that you have a matrix of weights to set. This is because the input functions
can be projected to either of the dimensions represented by the neural population.
For simplicity, we have told the first function to go only to the first dimension and
the second function only to the second dimension.

• Click and drag the ‘origin’ on the input function you created to the ‘input’
on the ‘x’ population.

• Right-click in the Vector Representation network and select Interactive Plots.

We can begin by looking at the analogous displays to the scalar representation.

• Right-click ‘x’ and select value. Right-click ‘x’ and select spike raster.
Right-click ‘input’ and select value. Right-click ‘input’ and select control.

• Press play to start the simulation. Move the controls to see the effects on
the spike raster.

You can attempt to find a neuron’s preferred direction vector, but it will be difficult
because you have to visualize where in the 2D space you are because the value
plot is over time.

• Right-click the ‘input’ value plot and select hide.

• Right-click ‘input’ and select XY plot. Attempt to determine a neuron’s
preferred direction vector.

This should be easier because you can now see the position of the input vector
in 2D space. There is a trail to the plot to indicate where it has recently been.
The easiest way to estimate a neuron’s preferred direction vector is to essentially
replicate the Georgopolous experiments.

• Move the input so both dimensions are zero. The move one input to it’s
maximum and minimum values. If a neuron does not respond (or responds
minimally), that is not it’s preferred direction.

• Repeat the process of moving the input to a point in the unit circle, and then
to the opposite point (flipping both signs) on the circle.
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The preferred direction will be the direction which has the greatest difference
between these two inputs. Keep in mind that different neurons have different
gains, meaning they may ‘ramp’ up and down at different rates even with the
same preferred direction.

• Right-click the ‘x’ population and select preferred directions to show the
neuron activity plotted along their preferred directions in the 2D space.

• Put one input at an extreme value, and slowly move the other input between
extremes.

It should be clear that something like the average activity of the population of
neurons moves with the input. If you take the mean of the input (a straight line
through the middle of the blob of activity), it will give you an estimate of the input
value. That estimate is like the linear decoding defined in the first principle, but
for a vector space.

• Right-click the ‘x’ population and select XY plot. This shows the actual
decoded value in 2D space.

Another view of the activity of the neurons can be given by looking the neurons
plotted in a pseudo-cortical sheet.

• Right-click the ‘x’ population and select voltage grid.

This graph shows the subthreshold voltage to the neurons in the population in
grey. Yellow boxes indicate that a spike is fired.

• Right-click on the voltage grid and select improve layout to organize the
neurons so that ones with similar preferred direction vectors will be near
each other, as in motor cortex.

• Move the sliders and observe the change in firing pattern.

Using the same kind of exploration of inputs as before, it is reasonably evident
in this view which parts of the grid have which preferred direction vectors. This
summarizes approximately how motor cortex is thought to encode a movement to
a target by Georgopolous et al.

Recent work has challenged the idea that there is such a clean mapping be-
tween neural activity and target location in general (ref shenoy lab???). Never-
theless, this provides a useful introduction to vector representation in cortex.12 It

12Indeed, this same characterization of vector representation can be used to better understand
these exact challenges (ref???).
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is important to keep in mind that some aspects of this tutorial on vector repre-
sentation are specific to this motor cortical example. For instance, the assump-
tion of an even distribution of preferred direction vectors, and that the vectors are
two-dimensional. However, many aspects are more general, including the identi-
fication of preferred direction vectors and the use of a linear decoding to get an
estimate of the population representation.

It is worth highlighting briefly that the represented vectors in this characteri-
zation of neural function are not the same as the activity vectors commonly dis-
cussed in artificial neural networks. Activity vectors are typically a set of neuron
firing rates. If we have three neurons in our population, and they are active at 50,
100, and 20 Hz respectively, the 3D activity vector would be [50, 100, 20], and it
defines a point in a space where each axis is associated with a specific neuron. In
the example above, the activity vector would be in a 100D space because there are
100 neurons in the population. In contrast, the 2D space represented above has
axes determined by an externally measured variable.13

Recall from section 2.3.1 that we can call the 2D space in this example the
‘state space’, where as the 100D space is the ‘neuron space’. Consequently, the
2D state space, we can think of as a standard Cartesian space, where two values
uniquely specify a single object as compactly as possible. In contrast, the 100D
space, while specifying the same object, takes many more resources (i.e. values)
to do so. Of course, if there is no uncertainty in any of these values this seems like
a simple waste of resources. However, in the much more realistic situation where
there is uncertainty (due to noise of receptors, or noise in the channels sending
the signals, etc.) this redundancy can make specifying that object much more
reliable. And, interestingly, it can make the system much more flexible in how
well it represents different parts of that space. For example, we could use 10 of
those neurons to represent the first dimension, or we could use 50 neurons to do
so. The second option would give a much more accurate representation of that
dimension than the first. Being able to redistribute these resources to respond to
task demands is one of the foundations of learning (see section ???).

More extensive tutorials on neural representation are available on the CRNG
website at http://compneuro.uwaterloo.ca/cnrglab/?q=node/2.

13These axes do not need to be externally measurable, as well shall see. However, they are in
many of the simplest cases of neural representation.




