
Evaluation of Binarization Algorithms
Bruce A. Bobier

Department of Systems Design Engineering,
University of Waterloo, Waterloo, ON, N2L 3G1

Email: bbobier@engmail.uwaterloo.ca

Michael Wirth
Department of Computing and Information Science,

University of Guelph, Guelph, ON, N1G 2W1
Email: mwirth@uoguelph.ca

Abstract—Twenty-one algorithms from five algorithmic fami-
lies were evaluated for their accuracy at binarizing line drawings.
The data set contains binary line drawings (templates) that
are converted to gray scale with backgrounds added from
scanned elevation drawings. Using normalized cross-correlation
to measure similarity between the binarized images and binary
templates, clustering and histogram shape based algorithms were
found to provide the most accurate results, while histogram
shape based algorithms were significantly faster than all other
algorithmic families. No single algorithm was observed to produce
significantly more accurate results across the entire data set than
all other algorithms.

Index Terms—Binarization, Line Drawings, Performance Eval-
uation

I. INTRODUCTION

Binarization is the process of labeling each pixel in a gray
scale image as object data or background, and is a com-
mon preprocessing step in many image analysis systems [1].
Numerous binarization algorithms have been presented and
currently there are no known comparative evaluations of the
algorithms’ accuracy at binarizing line drawings, although
several survey papers have considered the problem in the
context of document image analysis and optical character
recognition (OCR) [1–5].

OCR problems are similar in principle to the recognition of
lines, arcs and shapes in line drawings, although the unique
properties and subsequent processing requirements of each
document class suggests that techniques that are successful
at binarizing textual documents are not necessarily optimal
for preprocessing line drawings. As there are no known
comparative studies of algorithms for binarizing line drawings,
currently users must select an algorithm based on results
from related studies, prior knowledge, trial and error, or
arbitrary selection. This experiment attempts to quantify the
accuracy of several prominent binarization algorithms in the
context of preprocessing architectural elevation drawings for
vectorization.

An architectural elevation drawing is a representation of a
building’s geometrical exterior as perceived from a horizontal
viewpoint without dimensional perspective. The drawings are
often manually created with pen and paper and digitized as
8-bit gray scale images using a scanner or overhead camera.
An immense number of these drawings are contained in digital
and analog archives worldwide, and in order for their contents
to be fully realized for archival, retrieval and analytical tasks,

a method of representing their semantic information in a non-
visual format may be provided by preprocessing, vectorizing
and classifying the drawings.

II. METHODS

In this article, 21 algorithms [6–24] are compared for their
accuracy at binarizing line drawings. The central hypothesis
to be tested is that a statistically significant difference will be
observed between all algorithms that will allow a full ordering
to be established. The second hypothesis to be tested is that
a single algorithm will perform better than all others across
the entire data set. One difficulty involved in evaluating the
algorithms’ accuracy at binarizing line drawings is that the
ground truth, or optimal binary solution, is unknown. This has
been overcome through the use of a data set of synthesized
line drawings that characterize elevation drawings, and for
which an optimal template is available. The diverse size and
complexity of the data set images used in this experiment
seeks to provide a wide spread of results that can be used
to verify if a significant difference between algorithms can
be observed and quantified. The evaluated algorithms can be
categorized into algorithmic families which allows us to test if
some algorithmic families are better suited for binarizing line
drawings than others.

A. Data Set

The data set used for this experiment consists of 60 gray
scale images and their corresponding 60 template images, and
is divided into three subsets of 20 images with images in each
subset having sizes of 256×256, 512×512 or 800×600 pixels
(Fig. 1). The input image Ij , template Tj and output images
Îj are non-interlaced, bitmapped and non-compressed .png
files, with file sizes of the templates ranging from 1 to 4 Kb,
while the test images range from 10 to 264 Kb, depending on
the complexity of the background or degradation.

Each image is first created in Adobe Photoshop as a binary
.png image composed of lines, arcs and simple shapes,
and constitutes a template Tj . Next a copy of the template
is created, converted to 8-bit gray scale, and subjected to
several forms of degradation or alteration to more accurately
characterize an elevation drawing.

To degrade the foreground data, Gaussian white noise (15-
45%) is added to some images to mimic the dirt, aging
and scanning artifacts that appear in elevation drawings. Fre-
quently, digitized elevation drawings exhibit a small amount of



Fig. 1. Sample input images (top row) and their templates (bottom row)

blurring along the lines due to ink bleed and scanning artifacts,
and this is simulated by applying a 2 pixel Gaussian blur to the
lines in some test images. To create images with more realistic
backgrounds, synthetic textures or image backgrounds (i.e.
blank paper) are copied from elevation drawings in the Historic
American Building Survey (HABS) [25] and placed beneath
the template’s foreground data, which remains untouched.

B. Algorithms

The 21 binarization algorithms tested in this experiment
were written by Michael Wirth for the Microscopy and Imag-
ing Toolbox [26], and can be categorized into six groups, as
outlined by Sezgin and Sankur [5]:

1) Object attribute-based methods (AttribT), which search
for a similarity measure between the gray level and bina-
rized images (using for example, fuzzy shape similarity,
edge coincidence, etc.);

2) Clustering-based methods (ClusterT), which cluster the
gray level samples into two groups of foreground or
background data, or by modeling the image as a mixture
of two Gaussian distributions;

3) Entropy-based methods (EntropyT), which use the dif-
ference of entropy between the foreground and back-
ground data or the cross-entropy between the original
and binarized image;

4) Local methods (LocalT), which calculate an adaptive
threshold value for each pixel based on the local image
characteristics; and

5) Histogram shape-based (ShapeT), which analyze the
characteristics of the image’s smoothed histogram, view-
ing it as a mixture of two Gaussian distributions at-
tributed to foreground and background data.

The twenty-one algorithms used in this experiment are
listed in Table I, and further algorithmic details can be
found in [26] and the associated references. Two of the
algorithms, AttribT Ramesh and AttribT Yager, can be ex-
ecuted in variant forms, the former using either the sum of
square errors (AttribT Ramesh1) or the sum of two vari-

ances(AttribT Ramesh2), and the latter using either the Ham-
ming (AttribT Yager1) or Euclidean (AttribT Yager2) dis-
tance for computing threshold values. Note that for evaluative
and analytical purposes, each variant is treated as a separate
algorithm. Only two other algorithms (LocalT Niblack and
LocalT Bernsen) accept additional arguments beyond the im-
age to be binarized. For Niblack’s local algorithm, a 15× 15
neighbourhood and adjustment parameter of k = −0.2 is
selected for the experiment, following from [1, 26], while
for Bernsen’s local algorithm, values of 90, 16 and 1 are
selected for the local contrast threshold, window size and high
homogenous areas parameters respectively.

Algorithms

AttribT

BaradezMSA [6]
Huang [10]
moments [19]
Ramesh [16]
Yager [20]

ClusterT

Brink [8]
Otsu [15]
Ridler [22]
Yanni [21]

EntropyT

Brink [9]
Kapur [11]
Li [13]
LiL [12]
Shanbhag [18]
Yen [24]

LocalT
Bernsen [7]
mAve [23]
Niblack [14]

ShapeT unimodal [17]

TABLE I
BINARIZATION ALGORITHMS USED FOR EVALUATION.

C. Performance Evaluation

To evaluate each algorithm, each image Ij{j ∈ n|n =
1 . . . 60} is binarized by the algorithm to produce a binary
image Îj . Here, the accuracy of an algorithm is defined as
the degree to which image Îj resembles the corresponding
template Tj , which is computed as the normalized cross-
correlation between Îj and Tj . Normalized cross-correlation
(NCC) is a statistical approach often used in template matching
and pattern recognition problems, and computes the probabil-
ity that Îj is an instance of Tj [27]. Formally, the normalized
cross correlation of Îj and Tj is calculated by:

γ(u, v) =P
x,y [Î(x, y)− Iu,v ][T (x− u, y − v)− T ]

{
P

x,y [Î(x, y)− Iu,v ]
2 P

x,y [T (x− u, y − v)− T ]
2}

0.5

where Ij is the mean of Î and Iu,v is the mean of
Îj(x, y) in the region of the template, and is calculated using
the normxcorr2(Î , T) function in the Image Processing
Toolbox for Matlab. If Îj matches Tj exactly, then γ will
equal 1, whereas γ = 0 if Îj and T are entirely dissimilar.



Algorithm Mean Median StdDev Min Max
attribT BaradezMSA 0.569 0.531 0.203 0.203 0.997
attribT Huang 0.687 0.932 0.380 0.003 0.997
attribT moments 0.898 0.918 0.068 0.730 0.991
attribT Ramesh1 0.770 0.789 0.222 0.006 0.978
attribT Ramesh2 0.251 0.000 0.393 0.000 0.994
attribT Yager1 0.684 0.931 0.378 0.003 0.997
attribT Yager2 0.684 0.931 0.378 0.003 0.997
clusterT Brink 0.936 0.946 0.053 0.762 0.997
clusterT Otsu 0.936 0.946 0.053 0.762 0.997
clusterT Riddler 0.936 0.946 0.053 0.762 0.997
clusterT Yanni 0.812 0.895 0.246 0.000 0.997
entropyT Brink 0.577 0.561 0.119 0.321 0.855
entropyT Kapur 0.614 0.704 0.254 0.016 0.943
entropyT Li 0.880 0.940 0.196 0.155 0.997
entropyT LiL 0.929 0.942 0.059 0.717 0.997
entropyT Shanbhag 0.662 0.660 0.185 0.018 0.963
entropyT Yen 0.463 0.470 0.244 0.007 0.851
localT Bernsen 0.881 0.907 0.094 0.546 0.997
localT mAve 0.908 0.922 0.078 0.654 0.997
localT Niblack 0.488 0.479 0.087 0.170 0.677
shapeT unimodal 0.865 0.931 0.139 0.393 0.997

TABLE II
SUMMARY OF NCC DATA FOR EACH ALGORITHM’S ACCURACY ON THE 60

IMAGES.

The computation time of each algorithm is also assessed
and is calculated using the Matlab functions tic and toc,
which records the number of seconds that have elapsed since
tic was called.

To test the existence of a statistically significant difference
between the algorithms’ accuracy and computation time, the
data are analyzed using an ANOVA and post-hoc individual
pairwise comparison with α = 0.05.

III. RESULTS

A total of ten trials were conducted on each of the 21 algo-
rithms at binarizing the 60 image data set. As the algorithms
are deterministic and the data set does not change, the NCC
value of each algorithm-image pair is constant across each
trial. Thus, the NCC values are collected from a single trial,
while computation time data is collected from all ten trials.

In terms of NCC values (Table II), the highest mean
values are produced by clusterT Brink, clusterT Ridler and
clusterT Otsu respectively, while the lowest mean values
are produced by attribT Ramesh2, entropyT Yen and lo-
calT Niblack. In terms of computation time (Table III),
the best (lowest) means are produced by clusterT Yanni,
shapeT unimodal and entropyT Yen, while the three highest
mean times are produced by localT Niblack, attribT Ramesh2
and entropyT LiL respectively.

IV. ANALYSIS AND DISCUSSION

To determine if the data are normally distributed, regression
analysis is first conducted on the recorded data. For the NCC
and computation time data, r2 values of 81.2% and 24% were
observed respectively, both of which fall below the confidence
level of 95%. Because of the non-normality of the data,
non-parametric statistics were employed for the remaining
statistical calculations.

For both NCC and computation time, an ANOVA (α =
0.05) was calculated for all algorithms, which produced p-
values of 1.42E-123 and 0 respectively, indicating that a

Algorithm Mean Median StdDev Min Max
attribT BaradezMSA 0.387 0.399 0.167 0.022 1.532
attribT Huang 0.127 0.124 0.048 0.045 0.436
attribT moments 0.040 0.031 0.097 0.003 1.534
attribT Ramesh1 0.007 0.007 0.003 0.006 0.050
attribT Ramesh2 3.268 3.215 2.085 0.645 7.235
attribT Yager1 0.057 0.055 0.018 0.024 0.091
attribT Yager2 0.055 0.054 0.018 0.023 0.098
clusterT Brink 0.032 0.020 0.031 0.018 0.217
clusterT Otsu 0.005 0.005 0.001 0.004 0.030
clusterT Riddler 0.006 0.006 0.004 0.002 0.041
clusterT Yanni 0.002 0.001 0.001 0.001 0.010
entropyT Brink 0.036 0.036 0.001 0.034 0.055
entropyT Kapur 0.294 0.275 0.111 0.100 0.480
entropyT Li 0.076 0.063 0.040 0.005 0.196
entropyT LiL 0.660 0.662 0.020 0.613 0.883
entropyT Shanbhag 0.032 0.033 0.004 0.012 0.071
entropyT Yen 0.004 0.003 0.002 0.002 0.047
localT Bernsen 0.092 0.092 0.027 0.009 0.148
localT mAve 0.128 0.120 0.085 0.027 0.292
localT Niblack 18.547 18.133 12.179 3.751 39.394
shapeT unimodal 0.002 0.001 0.014 0.001 0.330

TABLE III
SUMMARY OF EACH ALGORITHM’S COMPUTATION TIME ON THE 60

IMAGES.

Family Mean Median StdDev
AttribT 0.649 0.802 0.362
ClusterT 0.905 0.941 0.141
EntropyT 0.751 0.833 0.232
LocalT 0.759 0.854 0.211
ShapeT 0.865 0.931 0.139

TABLE IV
SUMMARY OF NCC FOR ALGORITHM FAMILIES

statistically significant difference exists between groups. Post-
hoc individual pairwise comparisons of the data were used to
test the central hypothesis. The post-hoc comparison utilizes
the difference of each pair of algorithms’ means and standard
error to compute a p-value, where p-values < α = 0.05
reflect a statistically significant difference between the paired
algorithms. A summary of these post-hoc comparisons based
on NCC values is given in Table IV, where the algorithm
name in cell (i, j) indicates a statistically significantly higher
NCC value of the algorithms in the ith row and jth column. A
blank cell indicates that there is not a statistically significant
difference between the two algorithms. Additionally, a graph-
based summary of the post-hoc comparisons is given in Fig. 2
as a partial ordering of algorithms, with the better performing
algorithms situated atop the worse performing algorithms.
Algorithms within the same node or layer are not significantly
different.

Given that the graph is not a linear structure and a full or-
dering cannot be established, the hypothesis that a statistically

Family Mean Median StdDev
AttribT 0.563 0.070 1.364
ClusterT 0.011 0.005 0.020
EntropyT 0.184 0.037 0.239
LocalT 6.255 0.120 11.179
ShapeT 0.002 0.001 0.014

TABLE V
SUMMARY OF TIME FOR ALGORITHM FAMILIES



attribT attribT attribT attribT attribT attribT attribT
BaradezMSA Huang moments Ramesh1 Ramesh2 Yager1 Yager2

shapeT unimodal unimodal unimodal unimodal
localT Niblack Huang moments Ramesh1 Yager1 Yager2
localT mAve mAve mAve mAve mAve mAve
localT Bernsen Bernsen Bernsen Bernsen
entropyT Yen Huang moments Ramesh1 Yager1 Yager2
entropyT Shanbhag Huang moments Ramesh1 Shanbhag Yager1 Yager2
entropyT LiL LiL LiL LiL LiL LiL LiL
entropyT Li Li Li Li Li Li Li
entropyT Kapur Huang moments Ramesh1 Yager1 Yager2
entropyT Brink Huang moments Ramesh1 Yager1 Yager2
clusterT Yanni Yanni Yanni
clusterT Ridler Ridler Ridler Ridler Ridler Ridler Ridler
clusterT Otsu Otsu Otsu Otsu Otsu Otsu Otsu
clusterT Brink Brink Brink Brink Brink Brink Brink
attribT Yager2 Yager2 Yager2 /
attribT Yager1 Yager1 Yager1 /
attribT Ramesh2 Huang moments Ramesh1 /
attribT Ramesh1 Ramesh1 moments /
attribT moments moments /
attribT Huang moments /
attribT BaradezMSA /

clusterT clusterT clusterT clusterT entropyT entropyT entropyT
Brink Otsu Ridler Yanni Brink Kapur Li

shapeT unimodal unimodal unimodal
localT Niblack Brink Otsu Ridler Yanni Li
localT mAve mAve mAve
localT Bernsen Bernsen Bernsen
entropyT Yen Brink Otsu Ridler Yanni Li
entropyT Shanbhag Brink Otsu Ridler Yanni Li
entropyT LiL LiL LiL LiL
entropyT Li Li Li /
entropyT Kapur Brink Otsu Ridler Yanni /
entropyT Brink Brink Otsu Ridler Yanni /
clusterT Yanni Brink Otsu Ridler /
clusterT Ridler /
clusterT Otsu /
clusterT Brink /

entropyT entropyT entropyT localT localT localT shapeT
LiL Shanbhag Yen Bernsen mAve Niblack unimodal

shapeT unimodal unimodal unimodal unimodal /
localT Niblack LiL Shanbhag Bernsen mAve /
localT mAve mAve mAve /
localT Bernsen Bernsen Bernsen /
entropyT Yen LiL Shanbhag /
entropyT Shanbhag LiL /
entropyT LiL /

TABLE VI
SUMMARY OF POST-HOC COMPARISONS BASED ON NCC VALUES. THE ALGORITHM NAME IN CELL (i, j) HAS A SIGNIFICANTLY HIGHER MEAN NCC

(α = 0.05) OF THE ALGORITHMS IN THE ith ROW AND jth COLUMN.

significant difference exists between all algorithms based on
their NCC is rejected. The hypothesis that a single algorithm
performs better than all others across the entire data set is also
rejected.

Post-hoc comparisons of the computation time of each pair
of algorithms were also conducted, the results of which are
summarized as a partial ordering graph (Fig. 3). Again, a
full ordering of algorithms cannot be established based on
computation time for binarizing the test images, as there is
not a statistically significant difference between the 18 fastest
algorithms. The hypothesis that a single algorithm will perform
better across the entire image set in terms of computation time
is also rejected, as the fastestcomputation times vary between
clusterT Yanni, entropyT Yen and shapeT unimodal, despite
the latter providing the fastest time on 98.83% of the tests.

Regression analysis of the NCC and time data for each
algorithmic indicates that the data is non-normal (r2 = 78%
and 24% respectively), and again non-parametric post-hoc

Better

Worse

entropyT_Shanbay

attribT_Yager1
attribT_Yager2 clusterT_YanniattribT_HuangattribT_Ramesh1

clusterT_Brink
clusterT_Otsu

clusterT_Riddler
entropyT_LiL

localT_Bernsen
shapeT_unimodal
attribT_moments

entropyT_LilocalT_mAve

entropyT_Kapur entropyT_Brink attribT_BaradezMSA
localT_Niblack

entropyT_YenattribT_Ramesh2

Fig. 2. Partial ordering of algorithms from post-hoc comparisons of NCC.



attribT_moments clusterT_Yanni
attribT_Ramesh1 entropyT_Brink
attribT_Yager1 entropyT_Li
attribT_Yager2 entropyT_Shanbay
clusterT_Brink entropyT_Yen
clusterT_Otsu localT_Bernsen
clusterT_Riddler shapeT_unimodal

entropyT_Kapur
localT_mAve

attribT_BaradezMSA
attribT_Huang

entropyT_LiL

attribT_Ramesh2

Better

Worse
localT_Niblack

Fig. 3. Partial ordering of algorithms from post-hoc comparisons of
computation time.

comparisons were performed. With regards to accuracy (Ta-
ble IV), the cluster- and shape-based algorithmic families
were not significantly different from each other, but were
found to produce significantly higher NCC values than the
other families (with AttribT, EntropyT, and LocalT not being
significantly different from each other). For computation time
(Table V), a statistically significant full ordering of algorithmic
families was observed: ShapeT, ClusterT, EntropyT, AttribT,
and Local (with ShapeT being fastest).

It is interesting to note that the accuracy of localT Niblack
is among the lowest and its computation time is statistically
significantly worse than all other evaluated algorithms. This is
surprising given that the algorithm has been shown to provide
superior performance in comparative evaluations of algorithms
as a preprocessing step for OCR [1] and its frequent use in
the OCR domain [4, 5].

V. CONCLUSION

Twenty-one binarization algorithms were evaluated to de-
termine which algorithm is best suited for the preprocessing
of elevation drawings for vectorization, and it was found that
a statistically significant full ordering of algorithms based
on their NCC performance cannot be established. Sixty 8-
bit gray scale images of dimensions 256 × 256, 512 × 512
or 800 × 600 were binarized ten times by each algorithm,
with computation time (seconds) and accuracy (the normalized
cross-correlation value between the binary output image and its
corresponding template) being recorded for each trial. Post-hoc
individual pairwise comparisons of computation time and NCC
of each algorithm were used to establish a partial ordering of
algorithms for each variable. Although no single algorithm can
be seen as a panacea for binarizing elevation drawings, it is
noted that clustering-based algorithms, specifically Brink’s [8],
Otsu’s [15] and Ridler and Calvard’s [22] may make suitable
candidates for this problem, as they were shown to produce
quick, accurate results for the data set.

Future work may include utilizing this experimental frame-
work in the evaluation of text/graphics segmentation algo-

rithms, which typically follow binarization in the preprocess-
ing of elevation drawings for vectorization. Similarly, vector-
ization and direct-recognition algorithms may also be com-
pared using this framework, with rasterized CAD-based line
drawings serving as templates, and their degraded/modified
versions serving as input images. Finally, the results of this
experiment may also be applied in several other domains,
including for example, the binarization of modern maps for
GIS input, historic maps and diagrams for indexing and
analysis, as well as the binarization of figures and images in
primarily textual documents.
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