
Evaluation of Binarization Algorithms
Bruce A. Bobier

Department of Computing and Information Science,
University of Guelph, Guelph, ON, N1G 2W1

Email:bbobier@uoguelph.ca

Michael Wirth
Department of Computing and Information Science,

University of Guelph, Guelph, ON, N1G 2W1
Email: mwirth@uoguelph.ca

Abstract—Twenty-one algorithms are compared for their per-
formance at binarizing line drawings. And some other stuff
happens.

Index Terms—Binarization, Line Drawings, Performance Eval-
uation

I. PURPOSE

Binarization, the process of labeling each pixel in a gray
scale image as object data or background, is a common pre-
processing step in most image analysis systems [1]. Numerous
binarization algorithms have been presented in the literature
and currently there are no known comparative evaluations of
the algorithms’ performance at binarizing line drawings. Sev-
eral survey papers have however, evaluated such algorithms in
the context of document image analysis and optical character
recognition (OCR) [1–5].

Although the problem of recognizing characters in digitized
textual documents is similar in principle to that of recognizing
lines, arcs and shapes in line drawings, the intrinsic nature of
each document class, and their subsequent image processing
stages, suggest that techniques that are successful at binarizing
textual documents are not necessarily amenable to processing
line drawings. As such, this experiment attempts to conduct
an objective and quantifiable evaluation of the suitability of a
given binarization algorithm in the context of preprocessing
architectural elevation drawings for vectorization. An archi-
tectural elevation drawing is a representation of a building’s
geometrical exterior as perceived from a horizontal viewpoint
without dimensional perspective. The drawings are manually
created with pen and paper and digitized as 8-bit gray scale
images using a scanner or overhead camera. An immense num-
ber of architectural elevation drawings are contained in digital
and analog archives worldwide, and in order for their contents
to be fully realized for archival, retrieval and analytical tasks,
a method of representing their semantic information in a non-
visual format may be provided by preprocessing, vectorizing
and classifying the drawings.

As there are no known comparative studies of algorithms for
binarizing line drawings, current researchers and practitioners
must select an algorithm based on the results of related
studies (e.g. [1–3, 5]), prior experience, trial and error, or
arbitrary selection. Thus, this experiment aims to solve the
problem of selecting the binarization algorithm best suited to
the preprocessing of line drawings for vectorization.

II. METHOD DETAILS

In this experiment, 21 algorithms [6–27] are compared for
their performance at binarizing line drawings. The central
hypothesis to be tested by this experiment is that a statistically
significant difference will be observed between the algorithms
using the normalized cross-correlation approach that will allow
a full ordering of algorithms to be established. One difficulty
involved in comparing the algorithms on actual line drawings
is that the ground truth, or optimal binary solution, is unknown.
This has been overcome through the use of a data set of
synthesized line drawings that characterize elevation drawings,
and for which an optimal template is available. The diversity of
test image size and complexity involved with this experiment
should provide a wide spread of results which allows a
significant difference between algorithms to be observed and
quantified, if such a difference exists. Further, the evaluation
of algorithms belonging to diverse algorithmic families should
aid the verification of this hypothesis, as some algorithmic
families may be better suited to binarizing line drawings than
others.

If however, this hypothesis is not verified, an alternative
hypothesis is that a single algorithm will perform uniformly
better across the entire image set. This will also be verified or
disproved by this experiment, because the experimental design
permits the analysis of the performance and computation
time of all algorithms on a per-image basis. However, by
constructing the experiment using a repeated measures design,
the statistical analysis of the results may also consider the
performance and computation time of an algorithm across
the entire data set, which supports the testing of the central
hypothesis.

The conceptual definition of performance is defined as the
degree to which image I resembles the corresponding template
T . In operational terms, the performance of algorithm A for
binarizing a gray scale image is defined as the value of the
normalized cross-correlation between I and T . Normalized
cross-correlation (NCC) is a statistical approach often used
in template matching and pattern recognition problems that
computes the probability of a binarized image being an in-
stance of the template [28]. Formally, performance is defined
by the normalized cross-correlation function for computing the
degree of similarity between I and T :



γ(u, v) =P
x,y [I(x, y)− Iu,v ][T (x− u, y − v)− T ]

{
P

x,y [I(x, y)− Iu,v ]
2 P

x,y [T (x− u, y − v)− T ]
2}

0.5

where I is the mean of I and Iu,v is the mean of I(x, y)
in the region of the template, and is calculated using the
normxcorr2(I, T) function in the Image Processing Tool-
box for Matlab [29]. If I matches T exactly, then γ will equal
1, whereas γ = 0 if I and T are entirely dissimilar.

Computation time is an additional factor that may influence
an algorithm’s suitability for binarizing a given type of line
drawing. The operational definition of the computation time
of algorithm A to binarize a gray scale test image is defined
as the number of seconds required to binarize the image.
The measurement of each algorithm’s computation time is
calculated using the built-in Matlab functions tic and toc,
which return the number of seconds that have elapsed since
tic was called.

To test the hypothesis that a statistically significant dif-
ference will be observed between the algorithms at binariz-
ing a set of gray scale line drawings, the measurements of
performance and computation time are subjected to post-hoc
individual pairwise comparison using each algorithm’s mean
and a standard error value. These comparisons produce a p-
value that is used to determine which of the algorithms are
significantly different (α = 0.05) and by how much.

A. Data Set

The data set used for this experiment consists of 120 images:
60 gray scale testing images and 60 template images used
to quantify the performance of each algorithm. The data set
is divided equally into three image subsets, with each subset
having a scale of 256×256, 512×512 and 800×600. Each bi-
narization algorithm processes all of the images in the data set,
resulting in the generation of 2880 binary output images. The
input, template and output images are non-interlaced .png
files, as this format is bitmapped, uses lossless compression
and preserves sharp edges. The file size of each template
ranges from 1 to 4 Kb, while the test images range from 10
to 264 Kb, depending on the complexity of the background or
degradation.

Each file is created in Adobe Photoshope CS2 [30] as a
binary .png file composed of lines, arcs and simple shapes,
and constitutes the template for later use during performance
evaluation. Next, a copy of the template image is created,
converted to 8-bit gray scale, and subjected to several forms
of degradation or alteration to more accurately characterize an
elevation drawing.

To degrade the foreground data in some images, uniform
noise is added (with a parameter value between 15% and 45%)
to mimic the dirt, aging and scanning artifacts that appear in
elevation drawings. Frequently, elevation drawings that have
been digitized with a scanner or overhead camera exhibit a
small amount of blurring along the lines (∼2-4 pixels in width,

Fig. 1. Sample input images (left) and their templates (right)

depending on the resolution), due to ink bleeding in the paper
and hardware limitations. This is simulated by applying a 2
pixel Gaussian blur to the lines in some of the test images
using the Photoshop filter.

To create the test images with altered backgrounds, each
template’s foreground data (black pixels) is placed in a sep-
arate layer, thereby allowing modifications to be made to the
background data (white pixels). Several forms of background
modification are also employed. In many images, background
data is copied from actual elevation drawings in the Historic
American Building Survey (HABS) [31], while in others,
synthesized textures are created using Photoshop filters. In
both cases, the new background data is placed beneath the
template’s foreground data, which remains untouched.

B. Algorithms

Twenty-one algorithms are evaluated in this experiment,
each implemented in Matlab by Michael Wirth as part of the
Microscopy and Imaging Toolbox [32]. The algorithms can be
categorized into six groups, as outlined in the comprehensive
literature survey by Sezgin and Sankur [5]:

1) Object attribute-based methods (AttribT), which search
for a similarity measure between the gray level and bina-
rized images (using for example, fuzzy shape similarity,
edge coincidence, etc.);

2) Clustering-based methods (ClusterT), which cluster the
gray level samples into two groups as either foreground
or background data, or alternatively by modeling the
image as a mixture of two Gaussian distributions;

3) Entropy-based methods (EntropyT), which use the dif-
ference of entropy between the foreground and back-
ground data or the cross-entropy between the original
and binarized image;

4) Local methods (LocalT), which calculate an adaptive
threshold value for each pixel based on the local image
characteristics;

5) Histogram shape-based (ShapeT), which analyze the
characteristics of the image’s smoothed histogram, view-



ing it as a mixture of two Gaussian distributions at-
tributed to foreground and background data; and

6) Spatial methods (SpatialT), which use higher-order
probability distribution and/or correlation between pixels
to establish a threshold value.

The twenty-one algorithms used in this experiment are listed
in Table I, and further algorithmic details can be found in [32]
and the associated reference. In addition to these, two of
the algorithms, AttribT Ramesh and AttribT Yager, can be
executed in variant forms, the former using either the sum
of square errors or the sum of two variances, and the latter
using either the Hamming or Euclidean metric for computing
threshold values. Note that for evaluative and analytical pur-
poses, each variant is treated as a separate algorithm. Only
two other algorithms (LocalT Bernsen and LocalT Niblack)
accept additional arguments beyond the image to be binarized.
For Niblack’s local algorithm, a 15 × 15 neighbourhood
and adjustment parameter of k = −0.2 is selected for the
experiment, following from [1, 32], while for Bernsen’s local
algorithm, values of 90, 16 and 1 are selected for the local
contrast threshold, window size and high homogenous areas
parameters respectively.

Algorithms

AttribT

BaradezMSA [6]
Huang [10]
moments [20]
Ramesh [16]
transition [24]
Yager [21]
Yumusak [23]

ClusterT

Brink [8]
Otsu [15]
Ridler [25]
Yanni [22]

EntropyT

Brink [9]
Kapur [11]
Li [13]
LiL [12]
Sahoo [18]
Shanbag [19]
Yen [27]

LocalT
Bernsen [7]
mAve [26]
Niblack [14]

ShapeT unimodal [17]

TABLE I
BINARIZATION ALGORITHMS USED FOR EVALUATION.

III. RESULTS

A total of ten runs are conducted on each of the 21 algo-
rithms at binarizing the 60 image data set. As the algorithms
are deterministic and the data set does not change, the NCC
value of each algorithm-image pair is constant across each
run. Thus, the NCC values are collected from a single run,
while computation time data is collected from all ten runs.
For each run, the algorithm name, iteration number, image
number, NCC value, and computation time are collected.

Algorithm Mean Median StdDev Min Max
attribT BaradezMSA 0.569226 0.530652 0.202992 0.203241 0.996981
attribT Huang 0.687451 0.932432 0.379734 0.002628 0.997165
attribT moments 0.898139 0.918019 0.068305 0.729864 0.99131
attribT Ramesh1 0.770029 0.789179 0.22225 0.00635 0.978208
attribT Ramesh2 0.250925 0 0.39323 0 0.993745
attribT Yager1 0.683956 0.930568 0.377973 0.002628 0.997165
attribT Yager2 0.684309 0.930568 0.37814 0.002628 0.997165
clusterT Brink 0.93649 0.94572 0.052502 0.762223 0.997165
clusterT Otsu 0.936415 0.945599 0.052537 0.762223 0.997165
clusterT Ridler 0.936484 0.94572 0.052516 0.762107 0.997165
clusterT Yanni 0.811676 0.895292 0.246052 0 0.997165
entropyT Brink 0.57682 0.561405 0.119266 0.320521 0.854516
entropyT Kapur 0.614028 0.704027 0.253877 0.015692 0.943415
entropyT Li 0.880164 0.939553 0.195514 0.154944 0.997165
entropyT LiL 0.92949 0.941533 0.058827 0.717405 0.997165
entropyT Shanbay 0.661826 0.660025 0.184887 0.017651 0.962726
entropyT Yen 0.463138 0.46985 0.243909 0.007179 0.851005
localT Bernsen 0.881277 0.907131 0.093592 0.545552 0.997165
localT mAve 0.908303 0.922011 0.077843 0.654122 0.996849
localT Niblack 0.487988 0.478945 0.086522 0.169757 0.676835
shapeT unimodal 0.864657 0.930611 0.139252 0.39323 0.997165

TABLE II
SUMMARY OF NCC DATA FOR EACH ALGORITHM’S PERFORMANCE ON

THE 60 IMAGES.

Algorithm Mean Median StdDev Min Max
attribT BaradezMSA 0.386537 0.398678 0.16696 0.022312 1.53228
attribT Huang 0.127213 0.123961 0.047938 0.044865 0.436086
attribT moments 0.040085 0.031251 0.097215 0.002581 1.53401
attribT Ramesh1 0.007223 0.006976 0.003158 0.00597 0.049817
attribT Ramesh2 3.26847 3.21496 2.08482 0.64457 7.23454
attribT Yager1 0.056724 0.055313 0.018395 0.023805 0.090669
attribT Yager2 0.055498 0.054064 1.82E-02 0.023439 0.098499
clusterT Brink 0.032262 0.019785 0.030579 0.017644 0.216629
clusterT Otsu 0.004903 4.80E-03 0.001294 0.003825 0.030006
clusterT Ridler 0.006109 0.005665 0.00438 0.001745 0.040934
clusterT Yanni 0.001505 0.001407 8.33E-04 6.74E-04 0.009538
entropyT Brink 0.036491 0.036452 0.001391 0.033686 0.054843
entropyT Kapur 0.293961 0.27528 0.111458 0.099838 0.480385
entropyT Li 0.075896 0.062869 0.040031 0.00461 0.196157
entropyT LiL 0.660154 0.661647 0.02017 0.613333 0.882634
entropyT Shanbay 0.032258 0.032618 0.003743 0.011959 0.07089
entropyT Yen 0.003618 0.003318 0.002319 0.002166 0.046796
localT Bernsen 0.091852 0.092106 0.02655 0.009117 0.148374
localT mAve 0.127845 0.119715 0.084713 0.026979 0.291845
localT Niblack 18.5466 18.1334 12.1792 3.75117 39.3944
shapeT unimodal 0.001815 0.00109 0.013568 5.16E-04 0.330134

TABLE III
SUMMARY OF COMPUTATION TIME DATA FOR EACH ALGORITHM’S

PERFORMANCE ON THE 60 IMAGES.

In terms of NCC values (Table II), the highest means are
generated by clusterT Brink [8], clusterT Ridler [25] and
clusterT Otsu [15] respectively, while the lowest mean values
are generated by attribT Ramesh2 [16], entropyT Yen [27]
and localT Niblack [14]. In terms of computation time (Ta-
ble III), the best (lowest) means are produced by clus-
terT Yanni [22], shapeT unimodal [17] and entropyT Yen,
while the three highest mean times are produced by lo-
calT Niblack, attribT Ramesh2 and entropyT LiL [12] re-
spectively.

IV. ANALYSIS AND DISCUSSION

To perform statistical analysis of the experimental data,
regression analysis is first conducted on a normal probability
plot to determine if the data are normally distributed. For
the NCC and computation time data, r2 values of 81.2% and
24% are computed respectively, both of which fall below the



confidence level of 95%. Because of the non-normality of the
data, non-parametric statistics are employed on the ranked data
for the remaining statistical calculations.

For both NCC and computation time, an ANOVA (α =
0.05) is calculated for all algorithms, which produces p-
values of 1.42E-123 and 0 respectively, and indicates that
there is a statistically significant difference between groups.
Data Desk [33] is then used to conduct a post-hoc individual
pairwise comparison of algorithms to test the central hypoth-
esis. The post-hoc comparison utilizes the difference of each
pair of algorithms’ means and a standard error to compute
a p-value, such that a p-value that is less than α = 0.05
reflects a statistically significant difference between the paired
algorithms. A summary of these post-hoc comparisons based
on NCC values is given in Table IV, where the algorithm name
in cell (i, j) has the statistically significantly higher mean NCC
of the algorithms in the ith row of the leftmost column and the
jth column of that section’s top row. A blank cell indicates that
there is not a statistically significant difference between the
two algorithms. Additionally, a graph-based summary of the
post-hoc comparisons is given in Fig. 2 as a partial ordering of
algorithms, with the better performing algorithms situated atop
the worse performing algorithms. Each node indicates that the
contained algorithms perform better than those contained in its
child nodes, as well as all nodes below its child. Further, there
is not a statistically significant difference between algorithms
in the same node or nodes of equal depth in the graph.

Given that the graph is not a linear structure and a full or-
dering cannot be established, the hypothesis that a statistically
significant difference exists between algorithms based on their
NCC that allows for a full ordering, is rejected. The hypothesis
that a single algorithm performs better across the entire image
set is also rejected, because although clusterT Brink obtains
the highest NCC value on every image in the data set, these
values are not statistically significantly better than the other
algorithms that achieved the highest NCC value on some but
not all images.

Post-hoc comparisons of the computation time of each pair
of algorithms are also conducted, the results of which are
summarized as a partial ordering graph (Fig. 3). Again, a
full ordering of algorithms cannot be established based on
computation time for binarizing the test images, as there is
not a statistically significant difference between the 18 fastest
algorithms. The hypothesis that no single algorithm performs
better across the entire image set in terms of computation time
is also rejected by this experiment, as the lowest computa-
tion time varies between clusterT Yanni, entropyT Yen and
shapeT unimodal, despite the latter providing the fastest time
on 98.83% of the tests.

Cross-correlation between algorithms and images to deter-
mine on which images each algorithm struggles cannot be
computed, as there is an insufficient number of instances of
each variable for statistical analysis. However, analysis of
NCC values for all algorithm-image pairs shows a mean of
0.735, median of 0.861, minimum of 0, maximum of 0.997,
and standard deviation of 0.286. Similarly, statistical analysis

Better

Worse

entropyT_Shanbay

attribT_Yager1
attribT_Yager2 clusterT_YanniattribT_HuangattribT_Ramesh1

clusterT_Brink
clusterT_Otsu

clusterT_Riddler
entropyT_LiL

localT_Bernsen
shapeT_unimodal
attribT_moments

entropyT_LilocalT_mAve

entropyT_Kapur entropyT_Brink attribT_BaradezMSA
localT_Niblack

entropyT_YenattribT_Ramesh2

Fig. 2. Partial ordering of algorithms from post-hoc comparisons of NCC.

attribT_moments clusterT_Yanni
attribT_Ramesh1 entropyT_Brink
attribT_Yager1 entropyT_Li
attribT_Yager2 entropyT_Shanbay
clusterT_Brink entropyT_Yen
clusterT_Otsu localT_Bernsen
clusterT_Riddler shapeT_unimodal

entropyT_Kapur
localT_mAve

attribT_BaradezMSA
attribT_Huang

entropyT_LiL

attribT_Ramesh2

Better

Worse
localT_Niblack

Fig. 3. Partial ordering of algorithms from post-hoc comparisons of
computation time.

of the interaction between each algorithm’s performance can-
not be conducted due to insufficient data, although post-hoc
analysis of all NCC and computation time on each image size
is performed. Analysis of the NCC values (Table V) shows
a statistically significant difference (α = 0.05) between the
mean values of the 20 256 × 256 and 512 × 512 images
(p = 0.000026782), as well as between the 256 × 256 and
800 × 600 images (p = 0.00266498). Analysis of the com-
putation time values for each image size (Table VI) shows a
statistically significant difference of computation time between
the 20 256 × 256 and 512 × 512 images (p = 2.00E − 13)
only.

From the analysis of these results, several unexpected results
are noted. First, the performance of localT Niblack is among
the lowest, which is surprising given that the algorithm has
been shown to provide superior performance in comparative



attribT attribT attribT attribT attribT attribT attribT
BaradezMSA Huang moments Ramesh1 Ramesh2 Yager1 Yager2

shapeT unimodal unimodal unimodal unimodal
localT Niblack Huang moments Ramesh1 Yager1 Yager2
localT mAve mAve mAve mAve mAve mAve
localT Bernsen Bernsen Bernsen Bernsen
entropyT Yen Huang moments Ramesh1 Yager1 Yager2
entropyT Shanbay Huang moments Ramesh1 Shanbay Yager1 Yager2
entropyT LiL LiL LiL LiL LiL LiL LiL
entropyT Li Li Li Li Li Li Li
entropyT Kapur Huang moments Ramesh1 Yager1 Yager2
entropyT Brink Huang moments Ramesh1 Yager1 Yager2
clusterT Yanni Yanni Yanni
clusterT Ridler Ridler Ridler Ridler Ridler Ridler Ridler
clusterT Otsu Otsu Otsu Otsu Otsu Otsu Otsu
clusterT Brink Brink Brink Brink Brink Brink Brink
attribT Yager2 Yager2 Yager2 /
attribT Yager1 Yager1 Yager1 /
attribT Ramesh2 Huang moments Ramesh1 /
attribT Ramesh1 Ramesh1 moments /
attribT moments moments /
attribT Huang moments /
attribT BaradezMSA /

clusterT clusterT clusterT clusterT entropyT entropyT entropyT
Brink Otsu Ridler Yanni Brink Kapur Li

shapeT unimodal unimodal unimodal
localT Niblack Brink Otsu Ridler Yanni Li
localT mAve mAve mAve
localT Bernsen Bernsen Bernsen
entropyT Yen Brink Otsu Ridler Yanni Li
entropyT Shanbay Brink Otsu Ridler Yanni Li
entropyT LiL LiL LiL LiL
entropyT Li Li Li /
entropyT Kapur Brink Otsu Ridler Yanni /
entropyT Brink Brink Otsu Ridler Yanni /
clusterT Yanni Brink Otsu Ridler /
clusterT Ridler /
clusterT Otsu /
clusterT Brink /

entropyT entropyT entropyT localT localT localT shapeT
LiL Shanbay Yen Bernsen mAve Niblack unimodal

shapeT unimodal unimodal unimodal unimodal /
localT Niblack LiL Shanbay Bernsen mAve /
localT mAve mAve mAve /
localT Bernsen Bernsen Bernsen /
entropyT Yen LiL Shanbay /
entropyT Shanbay LiL /
entropyT LiL /

TABLE IV
SUMMARY OF POST-HOC COMPARISONS BASED ON NCC VALUES. THE ALGORITHM IN CELL (i, j) HAS THE STATISTICALLY SIGNIFICANTLY HIGHER

MEAN NCC OF THE ALGORITHMS IN THE ith ROW OF THE LEFTMOST COLUMN AND THE jth COLUMN OF THAT SECTION’S TOP ROW.

SIZE Mean Median Min Max StdDev
256x256 0.698569 0.835453 0 0.993745 0.299481
512x512 0.748921 0.871161 0 0.993745 0.281592
800x600 0.757666 0.875383 0 0.996981 0.273687

TABLE V
SUMMARY OF POST-HOC ANALYSIS OF NCC ON EACH IMAGE SIZE.

Scale Mean Median Min Max StdDev
256x256 0.319654 0.035156 0.000516 5.632906 0.88898
512x512 1.095231 0.044479 0.001048 19.52365 3.764706
800x600 1.99351 0.042607 0.001638 39.39436 7.235143

TABLE VI
SUMMARY OF POST-HOC ANALYSIS OF COMPUTATION TIME ON EACH

IMAGE SIZE.

evaluations of algorithms as a preprocessing step for OCR [1].
Further, the computation time of localT Niblack is statistically
significantly worse than all other evaluated algorithms, which

is also surprising when considering its frequency of use in the
OCR domain [4, 5].

V. CONCLUSION

This experiment evaluates 21 binarization algorithms to
determine which algorithm is best suited for the preprocessing
of elevation drawings for vectorization and reports that a sta-
tistically significant full ordering of algorithms based on their
NCC performance cannot be established. Sixty 8-bit gray scale
images of dimensions 256× 256, 512× 512 or 800× 600 are
binarized ten times by each algorithm, with computation time
(seconds) and performance (the normalized cross-correlation
value between the binary output image and its corresponding
template) being recorded for each run. Post-hoc individual
pairwise comparisons are made, between both the computation
time and NCC of each algorithm, and used to establish a partial
ordering of algorithms for each variable. As a full ordering
cannot be established from the test data values, no single



algorithm can be seen as a panacea for binarizing elevation
drawings. However, generally Brink’s [8], Otsu’s [15] and
Ridler and Calvard’s [25] clustering-based methods are noted
as being suitable candidates for this problem, as they provide
quick, accurate results for the data set.

Several new hypotheses are noted from this experiment,
the first being that a statistically significant full ordering of
this experiment’s nine best performing algorithms (as they
cannot be statistically discriminated) can be established based
on their NCC values from binarizing a larger, different data
set. Similarly, it is hypothesized that a full ordering of these
algorithms can be established by using an alternative similarity
metric, such as the Hausdorff distance [34, 35], for compar-
ing each algorithm’s output with the image’s corresponding
template. A third hypothesis is that a full ordering of each
algorithm’s computation time can be established by using a
larger data set comprised of images with larger dimensions
(i.e. > 1500× 1500).

Future work may include utilizing this experimental frame-
work in the evaluation of text/graphics segmentation algo-
rithms, which typically follow binarization in the preprocess-
ing of elevation drawings for vectorization. Similarly, vector-
ization and direct-recognition algorithms may also be com-
pared using this framework, with rasterized CAD-based line
drawings serving as templates, and their degraded/modified
versions serving as input images. Finally, the results of this
experiment may also be applied in several other domains,
including for example, the binarization of modern maps for
GIS input, historic maps and diagrams for indexing and
analysis, as well as the binarization of figures and images in
primarily textual documents.

REFERENCES

[1] Ovind Due Trier and Anil K. Jain. Goal-directed eval-
uation of binarization methods. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17(12):1191–
1202, 1995.

[2] C.A. Glasbey. An analysis of histogram-based threshold-
ing algorithms. Graphical models and image processing,
55(6):532–537, November 1993.

[3] S.U. Lee, S.Y. Chung, and R.H. Park. A comparative
performance study of several global thresholding tech-
niques for segmentation. Computer Vision and Graphic
Image Processing, 52(2):171–190, November 1990.

[4] P.W. Palumbo, P. Swaminathan, and S.N. Srihari. Docu-
ment image binarization: Evaluation of algorithms. SPIE
Applications of Digital Image Processing, 697:278–285,
1986.

[5] Mehmet Sezgin and Bülent Sankur. Survey over image
thresholding techniques and quantitative performance
evaluation. Journal of Electronic Imaging, 13(1):146–
165, January 2004.

[6] M.O. Baradez, C.P. McGuckin, N. Forraz, R. Pettengell,
and A. Hoppe. Robust and automated unimodal his-
togram thresholding and potential applications. Pattern
Recognition, 37(6):1131–1148, June 2004.

[7] J Bernsen. Dynamic thresholding of grey-level images. In
International Conference on Pattern Recognition, pages
1251–1255, 1986.

[8] A.D. Brink. Gray-level thresholding of images using
a correlation criterion. Pattern Recognition Letters,
9(5):335–341, June 1989.

[9] A.D. Brink and N.E. Pendock. Minimum cross-entropy
threshold selection. Pattern Recognition, 29(1):179–188,
January 1996.

[10] L.K. Huang and M.J.J. Wang. Image thresholding by
minimizing the measures of fuzziness. Pattern Recogni-
tion, 28(1):41–51, January 1995.

[11] J.N. Kapur, P.K. Sahoo, and A.K.C. Wong. A new
method for gray-level picture thresholding using the
entropy of the histogram. Graphical Models and Image
Processing, 29(3):273–285, March 1985.

[12] Chun Hung Li and C. K. Lee. Minimum cross entropy
thresholding. Pattern Recognition, 26(4):617–625, 1993.

[13] C.H. Li and P.K.S. Tam. An iterative algorithm for min-
imum cross-entropy thresholding. Pattern Recognition
Letters, 19(8):771–776, June 1998.

[14] Wayne Niblack. An Introduction to Digital Image Pro-
cessing. Prentice Hall, New Jersey, 1986.

[15] N. Otsu. A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1):62–66, 1979.

[16] N. Ramesh, J.H. Yoo, and I.K. Sethi. Thresholding based
on histogram approximation. IEEE Proceedings Vision,
Image and Signal Processing, 142(5):271–279, October
1995.

[17] P.L. Rosin. Unimodal thresholding. Pattern Recognition,
34(11):2083–2096, November 2001.

[18] Wilkins Sahoo, P., C., and J. Yeager. Threshold selection
using Renyi’s entropy,. Pattern Recognition, 30:71–84,
1997.

[19] Abhijit G. Shanbhag. Utilization of information measure
as a means of image thresholding. CVGIP: Graphical
Model and Image Processing, 56(5):414–419, 1994.

[20] H Tsai. Moments preserving thresholding: A new ap-
proach. Computer Vision, Graphics and Image Process-
ing, 29(3):377–393, 1985.

[21] R Yager. On the measures of fuzziness and negation.
International Journal of General Systems, 5:221, 1979.

[22] M.K. Yanni and E. Horne. A new approach to dynamic
thresholding. In EUSIPCO European Signal Processing
Conference, volume 1, pages 34–44, 1994.

[23] N. Yumusak, F. Temurtas, O. Cerezci, and S. Pazar.
Image thresholding using measures of fuzziness. In 24th
Annual Conference of the IEEE Industrial Electronic
Society, pages 1300–1305, 1998.

[24] Y. J. Zhang and J. J. Gerbrands. Transition region
determination based thresholding. Pattern Recognition
Letters, 12(1):13–23, 1991.

[25] T.W. Ridler and S. Calvard. Picture thresholding using an
iterative selection method. System, Man and Cybernetics,
8(8):629–632, August 1978.



[26] P. Wellner. Adaptive thresholding on the DigitalDesk.
Technical report: EPC-93-110, EuroPARC, 1993.

[27] J.C. Yen, F.J. Chang, and S. Chang. A new criterion for
automatic multilevel thresholding. IEEE Transactions in
Image Processing, 4(3):370–378, March 1995.

[28] Lisa Gottesfeld Brown. A survey of image registration
techniques. ACM Computing Surveys, 24(4):325–376,
1992.

[29] Mathworks Inc. Matlab - image processing
toolbox. http://www.mathworks.com/ ac-
cess/helpdesk/help/toolbox/images/, 2006.

[30] Adobe. Photoshop CS2.
www.adobe.com/products/photoshop/, 2007.

[31] Historic American Buildings Survey/Historic
American Engineering Record (HABS/HAER).
http://memory.loc.gov/ammem/collections/ habs haer,
2007.

[32] Purdue University Cytometry Laboratories. Microscopy
& Imaging 3. http://www.cyto.purdue.edu, August 2005.

[33] P.F. Velleman. Data desk 4.2: Data description. Ithaca,
N.Y., 2006.

[34] Daniel P. Huttenlocher, Gregory A. Klanderman, and
William J. Rucklidge. Comparing images using the
Hausdorff distance. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 15(9):850–863, September
1993.

[35] C. Robertson and J.A. Robinson. Page similarity and the
Hausdorff distance. In Seventh International Conference
on Image Processing and Its Applications, volume 2,
pages 755–759, 1999.


