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ABSTRACT
Several querying interfaces for content-based image retrieval
(CBIR) are reviewed and a new CBIR system is introduced
that uses Hierarchical Temporal Memory for the automatic
indexing of architectural images and provides a sketch-based
and iconic index querying interface. Experimentation shows
the system is robust for recognizing query images under
varying amounts of noise, distortion, occlusion, blurring, and
affine transformation.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Retrieval
models; I.2.6 [Image Processing and Computer Vi-
sion]: Connectionism and neural nets

General Terms
Experimentation, Performance, Theory

Keywords
Content-based Image Retrieval, Hierarchical Temporal Mem-
ory, Querying Interfaces

1. INTRODUCTION
The vast amount of digital visual information stored in on-

line databases has increased the need for more efficient and
effective means of its management and retrieval. Content-
based image retrieval (CBIR) refers to the problem of search-
ing for images in large databases using techniques from com-
puter vision, artificial intelligence and pattern recognition [2].
Content-based approaches are needed for the management
of visual information in cases where textual annotations for
images are either incomplete or nonexistent. Content-based
image retrieval (CBIR) has been used for indexing and re-
trieving numerous types of visual information including pho-
tographs, medical images, videos, line drawings, sketches,
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Figure 1: Example of an elevation drawing.

artwork, and 3D images [7]. In this article, the focus is
placed on CBIR for the automatic indexing and retrieval
of architectural elevation drawings. Elevation drawings are
manually created with pen and paper and digitized as bi-
nary, grey scale or color images using a scanner or overhead
camera (Figure 1). Presently, thousands of these drawings
are stored in online databases, with even more known to ex-
ist in offline archives and collections. In the coming years
when the offline collections are digitized and combined with
online collections, the need for an effective means of manag-
ing and retrieving these images based on their contents will
be of even greater importance.

Current image indexing schemes often rely on textual in-
formation such as the name, date, location, and architect of
the represented building, which results in databases that in-
dex the circumstances of the image rather than the content.
Color and texture-based indexing and retrieval schemes are
similarly limited, as for most architectural design tasks, color
and shading features are less relevant to the user than are
form and spatial features [5].

This paper presents a new approach to CBIR, dubbed
HTMCBIR, that uses the Numenta NuPic platform [4] to
provide an intelligent system that aims to understand a
query’s semantics, rather than the low-level image features
for indexing and retrieval using iconic indexes and a sketch-
based interface. The system is trained on six categories of
architectural elements and is shown to be robust to noise,
distortion, occlusion, blurring, and affine transformations.

2. QUERYING INTERFACES
Formulating and specifying a query has been performed

using numerous approaches, the most common being to de-
scribe images using textual keywords, which requires previ-
ous manual annotation of the image data. Keyword searches



are further limited by their low scalability, poor ability to
capture semantic information and that users prefer to re-
trieve images based on their content, rather than their asso-
ciated keywords [3, 6].

Query-by-example (QBE) is another approach that in-
volves the user supplying or selecting an image that is exem-
plary of the type of content they wish to retrieve. When an
image is not provided, the user is presented with a pseudo-
random selection of images of sufficiently diverse content or
feature values, and upon selection of one or more images,
the system retrieves the set of most closely related images.
This process may be repeated to iteratively refine the re-
sults until the user is satisfied. Relevance feedback may also
be provided by the user for each set of presented images,
for each of which they assign positive or negative feedback
as a means of refining their query. This approach requires
considerable user interaction and often performs poorly at
interpreting for what image attributes and features the user
specified their feedback [8].

Query by shape involves the user constructing their query
image by dragging geometric primitives onto a drawing can-
vas, although such approaches may not be suitable for the
problem domain, and limit the user’s ability to specify less
structured or free-form queries.

A more versatile approach to querying by shape employs
a sketch-based interface with which the user can form queries
by drawing free-form objects or using simple geometric shapes.
For the retrieval of architectural drawings, this approach is
most suitable as it affords the most familiar interface for
users and may also include predefined shapes, layouts and
textures.

Iconic indexes are symbolic descriptors of image data or
relationships, and are among the more suitable approaches
to querying elevation drawing databases, as the hierarchical
organization of architectural elements enables the user to
iteratively refine their query using multiple iconic indexes
(e.g. window - transom - Georgian-style transom).

3. HIERARCHICAL TEMPORAL MEMORY
Hierarchical temporal memory (HTM) is a recent paradigm

that models some of the structural and algorithmic prop-
erties of the human neocortex using elements of Bayesian
networks such as the constant sharing of information be-
tween nodes and Belief Propagation. Although HTMs are
similar to Bayesian networks, they differ in that HTMs have
a clear parent/child relationship, are self-training and can
more easily handle time-varying data [4]. An HTM is repre-
sented as a tree-shaped multi-level hierarchy of nodes, where
information can flow in both vertical directions.

The nodes in Level 1 of the HTM receive sensory input
directly from the image and use this data to construct a
model of the HTM’s environment by looking for spatiotem-
poral correlations in the input data points. Each level 1
node is supplied with sensory data from a small portion of
the image, such that all of the input data is distributed
equally across the lowest level nodes without overlap.

Figure 2 illustrates an HTM network with three levels,
where the input is a 32x32 pixel image. At level 1, the
32x32 pixel input is received directly from the sensors and
distributed across 64 nodes, with each node perceiving a 4x4
pixel area. At level 2, each node receives its input from the
outputs of four level 1 nodes, which describe an 8x8 pixel
area in the input image.

Figure 2: HTM with 3 levels (adopted from [4]).

Whereas the lowest level nodes receive their input from
sensory data about the environment, nodes in higher levels
of the hierarchy are provided with input comprised of their
children’s beliefs. Every node looks for spatial and tempo-
ral patterns, and the spatial patterns of higher level nodes
are formed from the commonly recurring patterns of the be-
liefs reported by their children, while the temporal patterns
are composed from the recurring changes of their children’s
beliefs.

Every node in an HTM network shares a common algo-
rithm, regardless of its position in the hierarchy. When new
data is submitted to the HTM, each node forms beliefs about
the input data by creating two 2-column tables for each of
its spatial and temporal beliefs. In each table, the left col-
umn enumerates the spatial or temporal patterns that the
node has learned, and the right column reports the corre-
sponding probability of the patterns occurring. During each
cycle of input data being presented, each node performs two
steps. First, the node assigns to each spatial quantization
point the probability that the current input data matches
this point. Second, the node searches for common sequences
of quantization points, and represents each sequence as a
variable. Over time, the node determines the probability
that the current input belongs to each each sequence and
assigns this probability to each variable. The probability
that the input belongs to each sequence variable is added to
a vector of probabilities and passed up the hierarchy to serve
as input for the node’s parent. Each node may also pass be-
lief information down the hierarchy to its children, such as
the spatial pattern it anticipates to encounter next, based
on the temporal sequence that is believed to be currently
occurring.

Nodes in lower levels deal with simple events that change
quickly and occupy smaller spatial areas, while nodes in
higher levels combine series of input patterns to form more
stable groups over a greater range of data. Specifically,
higher nodes sense more complex structures, namely pat-
terns of patterns, which evolve less quickly and exist in larger
spatial areas.

During each cycle, a node determines the distance between
the input data and each quantization point. The causes dis-
covered by lower level nodes are causes of low complexity,



Figure 3: Iconic indexes of image categories.

Category Training Testing
Images Images

chimney 37 7
column 14 3
door 21 4
dormer 13 3
roundWindow 19 3
window 37 7

Table 1: Number of training and testing images per
object category for HTMCBIR.

such as edges, lines and corners, which can serve as com-
ponents in higher level causes and allows for scalable and
efficient memory usage, as the memory used to store low
level causes is shared by the high level causes. However,
a shortcoming of this paradigm is that a trained network
has difficulty learning to recognize new objects that are not
composed of previously learned sub-objects.

4. CBIR USING HTM
In this section, the HTMCBIR system is introduced that

uses Numenta’s NuPic [4] as a basis to perform automatic
indexing, querying and retrieval of architectural drawings.
The network topology of the HTMCBIR system consists of
four levels, where the nodes in the lowest level operate di-
rectly on the pixel data, and nodes in each subsequent higher
level operate on the belief vectors produced by the previous
level. The network is trained on a data set of 141 8-bit
greyscale images that are divided into 6 categories (see Ta-
ble 1). All of the training and testing images are of architec-
tural elements that are commonly found in elevation draw-
ings of houses and were cropped from actual drawings in the
Library of Congress’ Historic American Building Survey [1]
and were converted to greyscale and resized. The original
images were approximately 15,000 pixels square, and be-
cause of the drastic resizing, some of the images were man-
ually edited to reconnect lines and restore information lost
in downsampling.

Two methods of specifying a query are provided in HTM-
CBIR. The first falls under the iconic indexes paradigm, in
which the user selects an iconic representation of an object
category from the “Training Images” panel of the main win-
dow (Figure 4). The second method allows the user to sketch
a line drawing query on the 128x128 drawing canvas. With
both methods, once the query is entered into the drawing
canvas, the user clicks the “Recognize Picture” button and
the query is submitted to the system for recognition and
classification. These query methods were selected as the
majority of elevation drawings are grey scale or binary im-
ages, for which color- and texture-based approaches are not
applicable. Further, they allow the user to visually spec-
ify their query in terms of object shape and spatial layout,

Figure 5: Retrieved images from the “door” cate-
gory.

which provides a more usable and intuitive interface that is
not influenced by the user’s language or vocabulary.

To retrieve images based on the query image, HTMCBIR
attempts to infer the category of the sketch based from the
set of learned categories. The results of the recognition pro-
cess are displayed in the main window as the three best
matching object categories, with each possible category’s de-
gree of certainty being indicated by a bar chart (Figure 4).
If the correct category is not included in this list, the user
alters their query and has the system attempt to recognize it
again. Once the intended category is included in the recog-
nition results, the user clicks on the category’s icon or label
under the bar chart to retrieve all images of that category.
This opens a secondary window containing thumbnail ver-
sions of each stored image in that category (Figure 5). Click-
ing on one of the thumbnails displays a zoomed-in version
of the selected image and its location on disk.

5. QUERY RECOGNITION ACCURACY
To measure the performance of HTMCBIR for recognizing

visual queries, the system was evaluated on seven criteria:
recognition accuracy for an untouched testing corpus, accu-
racy with testing data distorted with lines, noise, occlusion,
translation, blur, and scaling. The experiments use the same
HTM network that is trained using 141 clean 128×128 pixel
images from 6 categories. Here, “recognition accuracy” is
operationally defined as the number of correctly classified
query images divided by the total number of testing images.

The first experiment evaluates the HTMCBIR’s ability to
recognize hand drawn visual queries using a test set of 27
images taken from [1] and aims to measure the generalization
ability of the system for a large corpus of testing data. A
single run of this experiment was conducted, as static data
sets are used for training and testing. Using the testing data
set, a recognition accuracy of 92.6% was observed, wherein
25 of the query images were correctly recognized.

To test the system’s robustness to noisy queries, random
lines and noise were added to the testing data set. The
random lines consist of pixel wide lines of random lengths
drawn at random location. As the remaining experiments
are non-deterministic, 50 runs were conducted for each. Us-
ing the 27 test images, mean recognition accuracies of 89.3%
were observed when with two and four lines were added, and
88.6% with eight lines.

To add noise to the testing images, each pixel in the image
was perturbed by a random amount with probability p =
{15, 30, 90}, for which mean recognition accuracies of 89.3%
were with each value of p.

The system was also tested for its ability to recognize
queries under occlusion. First, a single black rectangle of



Figure 4: HTMCBIR application showing iconic indexes, sketch-based interface, and recognition results.

random dimensions between 13x13 and 26x26 was added to
each testing image, for which the system correctly recognized
87.8% of the queries on average over 50 runs. For the second
and third occlusion testing variations, four and eight black
rectangles of random dimensions between 13x13 and 51x51
were added to each test image, resulting in mean recognition
accuracies of 38.4% and 17.4% respectively. Note that with
four and eight occlusions, more than 50% of the test images
were often occluded.

To test the system’s ability to recognize queries under
translation, the testing images were translated horizontally
and vertically by a random amount in the range of [-10,10],
[-19,19], and [-38,38] pixels, for which mean accuracies of
74.2%, 66.4%, and 45.3% were observed respectively.

The system’s ability to recognize blurred images was also
tested, wherein each testing image was blurred using the
Python Imaging Library’s ImageFilter.BLUR function. When
the images were blurred once, a recognition accuracy of
85.7% was observed, and when repeatedly blurred a random
number of times in the range [2, 3], and [4,8], recognition
accuracies of 63.7% and 55.9% were observed.

The scale invariance for query recognition was also tested
by scaling the images a random amount between 80-120%,
60-140% and 30-170% of their original size, resulting in recog-
nition accuracies of 81.4%, 70.4% and 57.6% respectively.

6. CONCLUSION
This article has reviewed prominent querying interfaces

for CBIR and introduced a new approach for automatically
indexing architectural drawings and retrieving them with a
usable interface. For indexing, many current approaches fail
to capture the semantic information contained in the im-
ages by using image features and attributes that greatly dif-
fer from those used by the human vision system for object
recognition and clustering of related images. Hierarchical
Temporal Memory is a biomimetic approach to the vision
problem, that in the context of CBIR, aims to “bridge the
semantic gap” by translating the low-level features to high-
level concepts that are more easily understood by the user
and allow them to specify queries using their own terminol-
ogy. The HTMCBIR system presented here, which extends
Numenta’s NuPic implementation, has been shown to pro-
vide promising results for indexing and recognizing small
greyscale images. The querying interface of HTMCBIR al-

lows the user to quickly and easily specify a query, and the
query image recognition algorithm was shown to be robust
to spatial noise, occlusions, blurring, and affine transforma-
tions despite having been trained on only clean, undistorted
images.

With additional training data and parameter tuning, it is
believed that the HTMCBIR system is capable of achieving
a higher recognition accuracy. The purpose of this imple-
mentation is a proof of concept to show that HTM is suf-
ficiently flexible to provide efficient and accurate indexing
of line drawings. Future work may investigate the scalabil-
ity of HTM and evaluate its suitability for processing large
data sets (e.g. the Library of Congress’ Historic American
Building Survey has approximately 30,000 elevations draw-
ings that are ∼15,000 pixels square [1]).
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