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Abstract

Temporal derivatives are computed by a wide variety of neural circuits, but the prob-

lem of performing this computation accurately has received little theoretical study. Here

we systematically compare the performance of diverse networks, which calculate deriva-

tives using 1) cell-intrinsic adaptation and synaptic depression dynamics, 2) feedforward

network dynamics, and 3) recurrent network dynamics. Examples of each type of net-

work are compared by quantifying the errors they introduce into the calculation, and

their rejection of high-frequency input noise. This comparison is based on both analytical

methods and numerical simulations with spiking leaky-integrate-and-fire (LIF) neurons.

Both adapting and feedforward-network circuits provide good performance for signals

with frequency bands that are well-matched to the time constants of post-synaptic

current decay and adaptation, respectively. The synaptic-depression circuit performs

similarly to the depression circuit, although strictly speaking, precisely-linear differen-

tiation based on synaptic depression is not possible, because depression scales synaptic

weights multiplicatively. Feedback circuits introduce greater errors than functionally-

equivalent feedforward circuits, but they have the useful property that their dynamics

are determined by feedback strength. For this reason, these circuits are better suited

for calculating the derivatives of signals that evolve on time scales outside the range of
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membrane dynamics, and possibly for providing the wide range of timescales needed for

precise fractional-order differentiation.

1 Introduction

The brains of behaving animals calculate many derivatives. Most of these arise from spike-

rate adaptation (Lundstrom, Higgs, Spain, & Fairhall, 2008) and synaptic depression (Abbott

& Regehr, 2004), common cell-intrinsic processes with high-pass, derivative-like dynamics.

Notably, both of these processes have been proposed to optimize information transmission

(Goldman, Maldonado, & Abbott, 2002; Wark, Lundstrom, & Fairhall, 2007). However, the

resulting derivatives may also be used in dynamic computations. For example, a derivative

that arises from adaptation and synaptic depression in series (a common occurrence in the

cortex) has been proposed to contribute to a predictive computation that compensates for

axonal conduction delays (Puccini, Sanchez-Vives, & Compte, 2007).

Notably, despite the prevalence of adaptation and synaptic depression, other derivative

computations rely on network mechanisms. For example, a differentiator in the vestibular

system, which converts head velocity signals into acceleration signals, is based on the con-

vergence of excitatory inputs and slower inhibitory inputs (Holstein et al., 2004). Excitation

combined with delayed inhibition may also drive a differentiation that accounts for retinal

direction selectivity (Yoshida et al., 2001). In C. elegans, chemotaxis is based on the tempo-

ral derivative of chemical attractant concentration, and models combining direct excitation

with indirect inhibition through interneurons reproduce this behaviour, and agree with the

anatomy (Dunn, Lockery, Pierce-Shimomura, & Conery, 2004). In many other cases, the

mechanism of neural differentiation is less clear. For instance, respiratory rhythm is influ-

enced by NMDA-dependent differentiation (Young, Eldridge, & Poon, 2003; Poon, Young,

& Siniaia, 2000), but the exact mechanism has not been identified. Similarly, derivative in-

put/output relationships have been observed in human auditory cortex (Jenison, 2007), and

in the reflex that stabilizes arterial pressure (Kawada et al., 2004), but the mechanisms are
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unknown. More abstractly, temporal-difference learning models, which account well for the

activity of midbrain dopamine neurons, require an accurate derivative of reward prediction,

but there is a lack of consensus about how this computation is performed in the brain (Joel,

Niv, & Ruppin, 2002).

In addition to the specific, well-documented instances above, differentiation is likely to

play a broader role in motor control, as suggested by the importance of differentiation in

engineering control theory. Despite the prevalence of state-space methods in modern control

theory, output feedback remains an important method by which engineers ensure robustness,

either to uncertainty in the plant or to changes in the plant over time (in neuromuscular

control such changes can occur due to muscular fatigue). The inclusion of a derivative

component in output feedback reduces overshoot and oscillation around the endpoint of

a movement. Interestingly, this type of movement error is observed in cerebellar ataxia,

and can be induced by transcranial magnetic stimulation of motor cortex (Topka et al.,

1999). Furthermore, derivative feedback allows higher-gain proportional feedback, indirectly

improving control precision (Vegte, 1994).

1.1 The problem of differentiation

Despite the prevalence of derivatives in neural systems, and their interest as a fundamental

dynamic operation, factors affecting the accuracy of these computations have received lit-

tle theoretical study. In contrast, neural mechanisms of temporal integration have received

much attention (Robinson, 1989, 1968), especially for their role in oculomotor control (Seung,

1996) and working memory (Goldman, Levine, Major, Tank, & Seung, 2003; Miller, Brody,

Romo, & Wang, 2003). Theoretical studies of neural integration have highlighted impor-

tant questions regarding their stability: integrator circuits that incorporate realistic neuron

models tend to drift toward attractors that arise from imperfect weight tuning (Koulakov,

Raghavachari, Kepecs, & Lisman, 2002). Here, we undertake an analogous theoretical study

of neural differentiation.
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The main barriers to accurate neural differentiation are the minimization of distortion and

the rejection high-frequency noise. Distortion errors in neural circuits are loosely analogous

to quantization errors in digital systems, in that they arise because signals are approximated

through the organization of relatively generic devices, resulting in small residual differences

between the ideal and approximate representations. This is potentially a serious problem

for differentiation, because differentiating fundamentally involves the difference between an

input signal and some internal state that slightly lags the input. (For example, in synaptic

depression, the size of the readily-releasable pool of synaptic vesicles lags spiking activity.)

The difference at any moment in time between the lagged and non-lagged signals will typically

be small, and distortions in these signals can easily be of the same order of magnitude, creating

fluctuations that obscure the derivative.

The second barrier to accurate differentiation is high frequency noise. Noise arises from

many sources in neural systems. As well, frequencies much higher than those of overt be-

havioural relevance abound in neural circuits, because communication between neurons is

mediated by temporally sharp (and hence spectrally broad) action potentials. Unfortu-

nately, differentiation naturally amplifies high frequencies (by the chain rule, i.e. d
dtsin(ωt) =

ωcos(ωt)). Therefore, practical differentiators must be band-pass filters: like pure differen-

tiators, they must amplify signal-band inputs in proportion to their frequency, but they must

respond minimally to noise components at higher frequencies.

Our present goal is to advance the basic theory of temporal differentiation in neural

systems, by contrasting different classes of differentiator networks in terms of these two

sources of error. To this end, we present three types of neural networks that perform temporal

differentiation in different ways, and analyse examples of each type in terms of distortion error

and rejection of high-frequency noise. These example circuits are archetypes of different

differentiator categories, rather than models of specific, identified differentiator circuitry, but

the results presented below provide a sound theoretical context for more specific models.
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1.2 Relationship with past work

A number of specific differentiator networks have been modelled in the past (Holstein et al.,

2004; Kawada et al., 2004; Young et al., 2003; Poon et al., 2000; Dunn et al., 2004). One

previous study (Puccini et al., 2007) also performed a frequency-response analysis similar

to the one presented here. The present study extends this approach to several types of

differentiator networks. It also models error propagation through these networks, in such

a way that their performance can be compared analytically. As far as we know, this type

of systematic, analytical comparison of a wide range of neural differentiator mechanisms

has not been undertaken previously. The scope of this study is limited to integer-order

differentiation. However, the analytical approach, and most of the models, extend in a

straightforward manner to fractional-order differentiation (see Discussion).

2 Differentiator Networks

We begin by developing abstract dynamical models of each type of differentiator, and then

elaborate these abstract models into population-coding networks of spiking neurons.

As noted above, we use the term “differentiator” to mean “band-pass filter”, which is a

practical approximation of an ideal differentiator, in the presence of noise. The required char-

acteristics are easily described in the Laplace domain. In the Laplace domain, the derivative

of a signal u is su, where s is the complex Laplace variable, which increases proportionally

with signal frequency. A system acting as a practical differentiator should have a transfer

function similar to y/u = s/(τs+1), where y is the output of the system and τ is a small con-

stant. (Note that this is the derivative of y/u = 1/(τs+1), which is the Laplace transform of

the non-amplifying impulse response (1/τ)e−t/τ , an exponential function with integral one.)

For low-frequency inputs (small s), such a system will output essentially the derivative y = su

(assuming zero initial conditions), while for higher frequency inputs (large s) the output will

be roughly proportional to the input. Such a transfer function is therefore high-pass. A
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transfer function with a higher-order denominator behaves similarly, but further reduces the

response to high-frequencies, becoming band-pass.

We study three types of networks that have the required dynamic properties: 1) networks

with fast excitation in parallel with slower inhibition; 2) networks with neurons that have

intrinsic habituating behavior; and 3) networks with feedback that produces band-pass dy-

namics. Note that we do not study any examples of single-cell differentiator models. This

is because considering intra-cellular mechanisms in a network context allows us to compare

these mechanisms more directly with network mechanisms, and because in any case, mam-

malian neurons typically operate in large correlated groups. Sketches of examples of each

type of network are shown in Figure 1. In this figure, each circle indicates an ensemble of

neurons that encodes a scalar value, in a population code. Each of these networks is described

in more detail in section 2.2.

2.1 Abstract Models vs. Detailed Network Models

Abstract dynamical models of each of these network structures are shown in Figure 2, as

Laplace-domain block diagrams. We will first briefly discuss the abstract models themselves,

before going into detail about their relationship with neurons (see paragraph after next and

Figure 3).

To obtain the abstract models, it is assumed that the firing activity of each ensemble

of neurons encodes a scalar variable. For example, the ensemble labelled “input” in Figure

1A encodes the instantaneous value of the signal that is to be differentiated. A node is

created in the block diagram for each encoded variable. We then add dynamic blocks, which

contain the Laplace variable s, to model the relevant neural dynamics. For neurons that fire

at a constant rate in response to constant input, feed-forward dynamics are dominated by

post-synaptic current dynamics (Eliasmith & Anderson, 2003), and the transfer function of an

ensemble closely approximates the transfer function of the post-synaptic current. These post-

synaptic current dynamics are approximated as single-time-constant exponential decays, with
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Figure 1: Structures of example differentiator networks. Each circle indicates a population of

neurons, and each line indicates an axonal projection from one population to another (the flat

end indicates axon terminals). Populations are labelled according to the information that they

encode, i.e. input to be differentiated (“in”), differentiated output (“out”), and state variables

used in the calculation of the derivative (“d”). For now, plus (+) and minus (-) signs can be

taken to indicate excitation and inhibition, respectively, but a more sophisticated mapping

to addition and subtraction of encoded variables will be defined shortly (section 3). A and

B show examples of feedforward networks. In A, inhibition is slowed by passage through an

intermediate population. In B, inhibition is slowed relative to excitation because the post-

synaptic current time constant τ2 is longer than τ1. C, Structure of a differentiator network

based on cell-intrinsic firing-rate adaptation. Here the ensemble “d” consists of adapting

neurons. D, Differentiator based on short-term depression in synapses that originate from the

ensemble labelled “in”. E, A feedback network structure with two populations that represent

state variables. This structure can support a wide range of 2nd-order dynamics, of which

two examples will be presented.
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impulse response 1
τ e
−t/τ (for t > 0) and Laplace transform 1/(τs+1). Figure 2C and D also

contain dynamic blocks that model firing-rate adaptation and short-term synaptic depression,

respectively. These dynamics are also modelled as single-time-constant exponential decays,

with different time constants. This is a simplification, in that these processes operate on

multiple timescales, which can lead to approximately fractional-order dynamics over large

frequency ranges (we return to this issue in the Discussion). Finally, we add static blocks,

which correspond to mappings between encoded variables that arise from synaptic weights.

These static mappings are parameterized to perform whatever amplification is required, so

that the output of the network is the derivative of the input. The block diagram for each

network is described in detail in Section 2.2.

Each of these abstract dynamical models serves as a starting point for a network model

composed of leaky-integrate-and-fire (LIF) neurons. In these models, the dynamics of adap-

tation and synaptic depression are modeled in more detail, as described in the following

section. Post-synaptic current dynamics are again modeled as first-order filters. Within each

ensemble, neuron parameters are varied randomly across neurons, so that a given input to

an ensemble elicits a variety of neuron responses. This type of response variation allows

an ensemble that encodes a scalar x to project a function f(x) to post-synaptic ensembles,

where f(x) depends on synaptic weights. Synaptic weights are chosen to optimally approx-

imate the transforms specified in the abstract models, using the methods described in the

Appendix (see also Eliasmith & Anderson, 2003). These detailed circuit models are therefore

closely related to the corresponding abstract models, because: 1) the abstract and detailed

models have similar dynamic elements; and 2) the synaptic weights in the detailed models

are optimized to approximate the static blocks in the abstract models. In other words, each

network model is an optimal approximation of a certain idealized differentiator, given (mod-

elled) biophysical constraints. The relationships between block diagrams and network models

is illustrated in Figure 3. As we verify below (Sections 3 and 4), the detailed models behave

very similarly to the abstract models.
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Figure 2: Block diagram models of the neural network structures in Figure 1 (insets show

the corresponding network structures; correspondences are indicated by dashed lines in A).

Each model has an input u and an output y. Each block corresponds to a transfer function.

Those containing the Laplace variable s are dynamic transfer functions, and those that do

not contain s are static functions that simply scale their inputs. The variables xi are internal

state variables. The dynamic blocks are parameterized with time constants: τ (without

a subscript) is the time constant of post-synaptic current decay in all neuron populations,

unless otherwise specified; τF is the time constant of the fast-decaying post-synaptic currents

in the dual-time-constant network; τA and τD are time constants of adaptation and synaptic

depression, respectively, which are defined in the text (section 2.2.2); and τE is the time

constant of synapses external to the differentiating part of the network. In panel E, ω is a

corner frequency, and pi are scale factors, which are also defined in the text (section 2.2.3).

A, intermediate-ensemble network; B, dual-time-constant network; C, adaptation network;

D, synaptic-depression network; E, butterworth network; F, second feedback network that

approximates intermediate-ensemble network.
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This optimization allows us to study the best possible performance of different circuit

architectures. The resulting functional similarity between detailed and abstract models also

allows us to use the abstract models for analysis. The abstract models are of interest because

1) they are readily analysed, and 2) each one concisely describes a large family of nearly-

equivalent detailed models, since in a detailed network model, a change in neuron parameters

can be largely offset by a change in synaptic weights. Networks thus related will behave very

similarly, although there will probably be differences in the accuracy of their population

codes. The effects of these subtle differences on network performance could be determined

by sampling randomly from the family of detailed models that correspond to a single abstract

model. However, we instead elaborate the abstract models with explicit models of coding

errors (see section 5). This approach allows us to perform parametric analyses that concisely

describe entire network families.

It should be noted that because differentiation is a linear operation, all of the networks

must have essentially linear responses over their operating ranges. There are many non-

linearities in the detailed network models. However, because the synaptic weights are opti-

mized to approximate the linear abstract models, using the methods described in the Ap-

pendix, these non-linearities largely cancel each other out. For example, if one neuron were

to saturate around a certain input value, and another were to begin firing around the same

input value, then summing these responses with appropriate weights would produce a net

response that was more linear than either neuron’s response alone. The optimization method

produces quite linear net responses from hundreds of such combinations. This is possible

in general because as long as the nonlinear neuron responses are sufficiently diverse, their

first few principal components typically span something very close to a linear function. The

result is that the detailed models have near-linear input-output maps, despite many local

non-linearities.
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Figure 3: Relationship between abstract and detailed models. A, Example block diagram

with two state variables (x and y). The diagram also includes a static block, which multiplies

x by α, and a dynamic block, which filters αx to produce the output y. B, Schematic of

a neural network model that corresponds to this block diagram. Each circle indicates a

neuron. On the left is a population of neurons that encodes the value of x (i.e. the firing of

these neurons is correlated with x, in such a way that x can be estimated from their activity

pattern). These neurons project to another population of neurons on the right, which encodes

the value of y. The synaptic weights in this projection are chosen so that an optimal estimate

of αx is conveyed to the y neurons (the procedure for determining these synaptic weights is

described in the Appendix). The transfer function of each synapse, which maps a spike input

to a post-synaptic current response, is the same as the transfer function of the block diagram

in A. As a result of these similarities, the population-coding network essentially exhibits the

behavior described by the block diagram.
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2.2 Types of Differentiator Networks

At noted above, for any block-diagram model of a neural circuit, there are infinitely many

detailed models that behave in essentially the same way. However, even at the block diagram

level, there are many possible variations on each basic network type. For example, consider

the type of differentiator that compares a fast excitatory signal with a slower inhibitory one.

An example of this type is sketched in Figure 1B. In this example, the inhibitory projection is

slower because the inhibitory post-synaptic dynamics have a longer time constant. However,

inhibition could also be slowed by passage through an intermediate ensemble (as in Figure

1A) or by a greater pure delay in conductance. In short, there are many possible combina-

tions of network topology and cellular dynamics that may implement any of the three types

of differentiators described above. To avoid excessive length, only two specific examples of

each type of circuit are discussed (the chosen examples are attractive because they are rela-

tively simple and obvious, but there is no definite justification for these choices). While this

makes the analysis non-exhaustive, the chosen examples reflect simple, biologically-relevant

strategies, so we expect that many of the unconsidered possibilities are variations on these

themes.

2.2.1 Parallel Feedforward Networks

We begin with networks that calculate the derivative of an input signal using a fast feedfor-

ward excitatory projection, in parallel with a lagged inhibitory projection. Specific examples

differ in the ways in which the inhibitory projection is lagged.

In the first example, the input ensemble projects directly to the output ensemble (no lag),

and also indirectly through another ensemble, which introduces a lag. This structure is shown

in Figure 1A: a projection from the input ensemble (labelled “in”) branches to both the output

ensemble (labelled “out”) and an intermediate ensemble (labelled “d”). The intermediate

neurons in turn project to the output neurons. This form of circuit has been suggested to

underlie chemotaxis in C. elegans (Dunn et al., 2004). Figure 2A shows the corresponding
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block diagram. In this panel, the input u corresponds to the scalar variable that is represented

by the input ensemble. The two branches along which u travels correspond to the two

projections from the “in” ensemble in Figure 1A. At the end of each projection, the signal

enters a 1st-order filter that models post-synaptic current dynamics. This filtering models

the communication of the represented variable to a post-synaptic ensemble through synaptic

connections, as described in the Appendix. The variable x on the diagram corresponds to

the scalar variable that is represented by the intermediate ensemble. The negative of this

variable is projected to the output ensemble, where it sums with the direct projection of u.

This subtraction is critical to the computation. As discussed in Section 3 (below) there are

a number of biophysical mechanisms by which the abstract subtraction operation might be

realized through inhibitory synapses; detailed network models will be developed assuming

the mechanism described by Parisien et al. (2008). Finally, the variable y ≈ su at the right

of the diagram corresponds to the scalar variable that is represented by the output ensemble.

In the second circuit (Figure 2B), two copies of the input signal are projected directly and

simultaneously onto the output ensemble, but post-synaptic current dynamics are slower in

one projection (bottom branch in the diagram) than in the other. The fast time constant is

modeled on AMPA receptors (τ1 = .005s), and the slow time constant on GABAB receptors

(τ2 = .1s).

It should be noted that the vestibular differentiator (Holstein et al., 2004) has either this

form, or a closely related form that exploits a difference in conductance delays rather than

in time constants. In theory, it would be possible for a circuit to combine both conductance

delay and time constant differences. However, the transfer function of such a circuit would

contain an additional, non-differentiating term, unless either the slow dynamics were much

slower than the fast dynamics, or of higher order.

2.2.2 Networks with Cell-Intrinsic Habituating Behavior

The second type of differentiator circuit is based on habituating processes within neurons,

which combine to produce band-pass behavior at the population level. We present examples
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based on firing-rate adaptation (Figure 2C) and synaptic depression (Figure 2D).

Neurons with firing-rate adaptation are modeled as adapting leaky-integrate-and-fire

(ALIF) neurons. This model provides a good approximation of the adaptation effects ob-

served in more detailed compartmental models (Koch, 1999; Naud, Berger, Badel, Roth, &

Gerstner, 2008). We use an implementation (Camera, Rauch, Lüscher, Senn, & Fusi, 2004) in

which adaptation is driven by an unspecified chemical species N, the concentration of which

varies as

d[N]/dt = −[N]/τN +AN
∑
k

δ(t− tk).

Here [N] is the concentration of the chemical species responsible for adaptation, τN is a time

constant of decay of [N], and AN > 0 is an increment in [N] with each spike. This model can

also be expressed in terms of firing rates (rather than spikes) as

d[N]/dt = −[N]/τN +ANr(u, [N ])

where r(u) is the firing rate. In the present model, these neurons are parameterized so that

their unadapted firing rates vary nearly linearly with driving current. Considering the high-

pass dynamics of adaptation in conjunction with the low-pass dynamics of synapses, each

neuron then behaves like a linear band-pass filter with a negative zero (i.e., firing rate is a

sum of low-pass and band-pass components). If γ is the derivative of the unadapted firing

rate with respect to driving current, then as long as the neuron’s firing rate does not drop to

zero,

r(u, [N ]) = γ(Id(u)− gN [N ]),

where Id(u) is the difference between the net driving current and current threshold for firing,

and gN scales the adaptation-related current. Then the neuron will have first-order dynamics

with time constant

τA = (1/τN + γgNAN )−1,
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(Liu & Wang, 2001). Summarizing, the driving current Id is mapped to the weighted output

yi at the ith synapse by the state equations

d[N]/dt = −(
1
τN

+ γgNAN)[N] +ANγId,

yi = wγ(Id − gN [N ]),

where w is the synaptic weight, yielding the transfer function

yi(s)
Id(s)

= wγτA
s+ 1/τN
τAs+ 1

.

For each neuron, we set gN = 1, and γ between 35 and 45 spikes/s per unit of current

(arbitrary units). The remaining adaptation parameters, AN and τN , are set so that 1) τA =

.1, and 2) the neuron adapts as strongly as possible, without adapting so much that its firing

rate drops to zero with a sudden drop in synaptic drive. Specifically, τN = τA(β/α + 1)/2,

where β is the neuron’s bias current (see Appendix), α is the net synaptic current flowing

into the neuron per unit of the encoded scalar variable (which is normalized to the range -1

to 1), and AN = (1/τA − 1/τN )/γ. Within an ensemble, 75% of the neurons are adapting.

The other (non-adapting) neurons perform a static input-output mapping that cancels out

the zero of the adapting neurons (which arises from the term 1/τN in the numerator, above).

The ensemble output is scaled through appropriate synaptic weights, to produce the net

ensemble dynamics,
y(s)
u(s)

=
s

τAs+ 1
.

The second example of this type of network (Figure 2D) is based on short-term synap-

tic depression. Synaptic depression is usually a pre-synaptic phenomenon that arises from

depletion of the readily-releasable pool of synaptic vesicles. In simple models, the readily-

releasable pool is depleted sharply with each spike and replenished with exponential dynamics

(Zucker & Regehr, 2002). The dynamics of the readily-releasable pool are therefore closely
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analogous to those of [N] (above). Let F be the proportion (between 0 and 1) of the pool that

is depleted with each spike, and let S(t) be the remaining proportion of the pool at time t. If

the synaptic weight with a full readily-releasable pool is w, then the effective synaptic weight

at any instant is wS(t). If we make the same assumptions as in the adaptation model, i.e.,

that the firing rate r > 0 and the response function is linear in this range (i.e. r(u) = γId(u)),

then the state equations relating input current Id to weighted output yi are

dS/dt = (1− S)/τS − FSγId,

yi = wSγId,

where τS is the time constant with which the readily-releasable pool is replenished, and

γ is again the derivative of the firing rate with respect to the driving current Id.

Importantly, despite many similarities with adaptation dynamics, both the dynamic and

output equations are non-linear in the depression case, because each equation contains a

product of the input Id and the state variable S (unlike the adaptation model above, which

is linear). The dynamic nonlinearity is weak when F is low, and it is also possible that more

elaborate models might further linearize the dynamics. However, the output nonlinearity is

unavoidable, and it implies that synaptic depression can only produce linear differentiating

behavior when the temporal derivative of the firing rate is zero. Thus the intuitive notion

that synaptic depression produces derivative-like output is necessarily an approximation. In

other words, in contrast with the other models studied here, which exhibit random errors

around ideal linear behavior, this network exhibits random errors around behaviour that is

systematically non-ideal, in that it is mildly nonlinear.

It must be noted that this stark contrast between linear adaptation and nonlinear de-

pression is exaggerated by the simplicity of the models (all of which ignore many nonlinear

properties of real neurons), and in particular that more detailed adaptation models contain
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nonlinearities. The main nonlinearity that has been neglected in our adaptation model arises

from the dependence of mean membrane potential on the firing rate (Benda & Herz, 2003).

However, this nonlinearity is arguably less essential to adaptation than the above multiplica-

tive nonlinearity is to depression, because it is small relative to the linear component (Benda

& Herz, 2003). Furthermore, the nonlinear component depends on a number of variable

factors that could, conceivably, interact to bring it close to zero in some cases. For example,

it is increased when the membrane potential approaches spike threshold slowly at low fir-

ing rates, suggesting a dependence on noise parameters (due to early noise-driven threshold

crossings). To summarize, it is certainly a simplification to model adaptation as linear, but

this simplification is reasonable in our view, whereas we do not see analogous arguments for

making the same simplification in the case of synaptic depression.

Nevertheless, the depression equations can be linearized about the operating point (S0, I0),

corresponding to the neuron’s mean input and the associated steady-state S, as

d

dt
δS = −(

1
τS

+ FγI0)δS − FS0γδI,

δyi = wγI0δS + wS0γδI,

where δS = S − S0, δI = Id − I0, and δyi = yi − yi0.

To facilitate comparison with the adapting-neuron network, depression parameters are set

so that the linearized model of depression decays with time constant τD = .1s. Specifically,

F = 1/(2τDγI0), where γI0 is the neuron’s mean firing rate, and τS = 2τD. These parameters

result in weak depression. Weaker depression makes the output more linear, but it also makes

the derivative-like output signal smaller relative to the noise. With these parameters, the

linearized model has transfer function

δyi(s)
δI(s)

= wγS0

τDs+ 1
2

τDs+ 1
.

Analogously to the adapting model, parallel non-depressing synapses are weighted to cancel
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out the zero, and depressing synaptic weights are chosen to yield the net ensemble dynamics,

y(s)
u(s)

≈ s

τDs+ 1
.

To reiterate, this transfer function approximates the nonlinear dynamics that arise from

the synaptic-depression model above, whereas the transfer function of the adapting-neuron

ensemble corresponds directly to the simplified adaptation model.

Note that our convention is for each network to contain one ensemble with firing rates that

encode the input signal, and another ensemble with firing rates that encode its approximate

derivative. The adaptation network therefore requires three ensembles (input, adapting,

and output), because the firing rates of the adapting neurons correspond to neither the

input nor its derivative, while the depression network requires only two ensembles (input

and output). Consequently, the depression network’s block diagram contains one fewer post-

synaptic dynamics block.

2.2.3 Feedback Networks

The final type of differentiator we explore is again based on network properties, but on

feedback rather than feedforward dynamics. There are many different feedback circuits with

band-pass behavior. The scope of this diversity becomes clear if we consider that for any set of

explicit ordinary differential equations, there is a family of neural circuits with essentially the

same dynamics (Eliasmith, 2004). As an interesting consequence, a feedback network model

can be parameterized to match observed differentiator dynamics. Two second-order band-

pass networks are presented as examples. The first of these (Figure 2E) acts as a Butterworth

filter (Sedra & Smith, 1991). This is a standard engineering filter, which maximizes stop-band

attenuation without introducing ripples into the frequency response (this idealized filter is

chosen to emphasize the versatility of the feedback network structure). The second example

(Figure 2F) has the same transfer function as the interneuron circuit (section 2.2.1), in order

to provide a point of comparison between feedforward and feedback circuits.
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The transfer function of the 2nd order band-pass Butterworth filter is:

y(s)
u(s)

=
ω2s

s2 + 2
1
2ωs+ ω2

,

where ω is the corner frequency, in radians/s. As is the case with any linear system, there

are infinitely many ways to express this transfer function as a system of ordinary differential

equations. In theory, it should be possible to find the realization that optimizes performance

in the face of population coding errors and noise. However, this problem is not straightfor-

ward, and is outside the present scope. Instead, we begin with a canonical realization, and

adjust it in order to make good use of the neurons’ operating ranges. The resulting equations

are:

ẋ1(t) =
1√
2
(−ωx1(t) +

p1

p2
ωx2(t)) + p1ω

2u(t),

ẋ2(t) =
1√
2
(−p2

p1
ωx1(t)− ωx2(t))− p2ω

2u(t),

y(t) = x1(t)/p1.

The variables p1 and p2 scale the two state variables to between -1 and 1, within which

range the firing rates of the neurons that encode the state variables do not saturate. To find

a family of neural circuits with these dynamics, we transform the above state space model

into a form that uses post-synaptic current dynamics in place of integration (Eliasmith &

Anderson, 2003). The resulting neural circuits have a form that is similar to the state-space

model, but with stronger feedback. We begin by writing the dynamic equations above in the

Laplace domain, using vector and matrix notation. This gives

s

 x1(s)

x2(s)

 =
1√
2

 −ω p1ω/p2

−p2ω/p1 −ω


 x1(s)

x2(s)

+

 p1ω
2

−p2ω
2

u(s),
where s is the Laplace variable. It is then possible to rewrite this equation in terms of

first-order post-synaptic current (PSC) dynamics, which have transfer function 1/(τs + 1),
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as x1(s)

x2(s)

 =
1

(τs+ 1)

 1− τω/
√

2 p1
p2
τω/
√

2

−p2p1 τω/
√

2 1− τω/
√

2


 x1(s)

x2(s)

+
τω2

(τs+ 1)

 p1

−p2

u(s).

y(s) = [ 1/p1 0 ]

 x1(s)

x2(s)

 .
These equations lead directly to the structure shown in Figure 2E. For example, in the block

diagram of Figure 2E, there are three inputs to the x1 node, all of which pass through the

block 1/(τs + 1). One of these inputs is from u, another feeds back from x1, and the third

is from x2. These three inputs correspond to the three terms on the right-hand side of the

equation for x1, above, all of which share the term 1/(τs+1). The differentiator ensembles d1

and d2 encode the state variables x1 and x2, respectively. Note that the dynamic behaviour

of this circuit as a whole is not governed only by τ , but that it depends also on the strength of

feedback connections. This contrasts with the feedforward networks above, in which dynamics

are determined by τ .

For consistency with other models, the output of the Butterworth filter feeds into an out-

put ensemble, which represents the derivative. The signal therefore passes through additional

post-synaptic current dynamics, yielding the full transfer function,

y(s)
u(s)

=
ω2s

(s2 + 2
1
2ωs+ ω2)(τEs+ 1)

,

where τE is the post-synaptic time constant of the synapse onto the output ensemble (the

subscript “E” stands for “external”, as in external to the core network that performs differen-

tiation).
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The second feedback network (Figure 2F) has transfer function

y(s)
u(s)

=
s

(τ2s2 + 2τs+ 1)(τEs+ 1)
,

which is identical to the feedforward circuit with an intermediate ensemble (Figure 2A) except

for the additional post-synaptic current dynamics associated with the output ensemble. Here

τ is the time constant of the post-synaptic current dynamics taken from the circuit in Figure

2A. This transfer function is realized as

s

 x1(s)

x2(s)

 =
1
2τ

 −1 −p1/p2

p2/p1 −3


 x1(s)

x2(s)

+
1
τ

 p1

3p2

u(s),

y(s) = [ 1/τp1 0 ]

 x1(s)

x2(s)

 ,
where again p1 and p2 are scale factors. Like the Butterworth filter, these equations can be

re-written in terms of post-synaptic current dynamics, as

 x1(s)

x2(s)

 =
1

2(τs+ 1)

 1 −p1/p2

p2/p1 −1


 x1(s)

x2(s)

+

 p1

3p2

u(s),

y(s) = [ 1/τp1 0 ]

 x1(s)

x2(s)

 ,
which leads to the abstract model shown in Figure 2F. Note that in this model the time

constant of the network equals the time constant of post-synaptic current (i.e. τ). This

causes some τ to cancel out, making these equations relatively simple.
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3 Simulations

This section presents numerical simulations with networks of spiking neuron models, so that

their behavior can be compared with that of the abstract models. Simulation code is available

from the authors’ web site (http://compneuro.uwaterloo.ca).

As discussed in the previous section, the structure and synaptic weights of the full spik-

ing models are derived systematically from the abstract dynamical models. However, this

procedure leaves a number of parameters to be specified, including the number of neurons in

each ensemble, and parameters of the spiking neuron models. Each of the simulated circuits

contains 2000 input neurons and 1000 output neurons. Additionally, all but the dual-lag and

synaptic-depression circuits contain 2000 differentiator neurons. Additional neuron parame-

ters are given in the Appendix.

We must also specify how excitation and inhibition interact to produce increases and

decreases in encoded variables. So far, we have assumed that excitation of neurons increases

the value of the variable encoded by the population, and inhibition decreases this value.

However, in a population-coding network, there are a number of other possibilities. The

main constraint is that the outgoing synaptic weights of any given neuron should all have

the same sign, because individual neurons are usually either excitatory or inhibitory, except

in rare cases.

To satisfy this constraint, we choose a structure that is typical of the cortex, in which

excitatory projection neurons synapse directly onto post-synaptic targets, and also indirectly

through a smaller group of inhibitory interneurons. This combination of direct excitation

and indirect inhibition can closely approximate any set of mixed excitatory and inhibitory

synaptic weights, as discussed extensively elsewhere (Parisien, Anderson, & Eliasmith, 2008).

This allows us to first specify an approximate model, with projections that consist of optimal

unconstrained synaptic weights, and then to transform each of these idealized projections

into physiologically realistic projections that function in essentially the same way. The trans-

formation to this form (Figure 4) involves biasing the original synaptic weights, which have
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excitatory
inhibitory

............

presynaptic postsynaptic presynaptic postsynaptic

interneurons

Figure 4: Conversion of an idealized projection model to a physiologically realistic form.

The left diagram depicts an idealized projection from one population of neurons to another.

Each of the pre-synaptic neurons is a source of both excitatory (black) and inhibitory (gray)

synapses. Any idealized model of this form can be mapped onto the physiologically-realistic

form on the right, which is typical of cortical anatomy. In this form, each pre-synaptic

neuron is purely excitatory, and projects both directly to the post-synaptic neurons, and also

indirectly through a smaller group of interneurons. See text for further details (section 3).

mixed signs, so that they are all excitatory. This introduces a bias current into the post-

synaptic neurons, which is a function of the variable encoded by the pre-synaptic neurons.

The pre-synaptic neurons also project to a small group of inhibitory interneurons, which

project in turn to the post-synaptic neurons, compensating for the bias current that was

introduced by increasing the excitatory weights. In this way, the original mapping is approx-

imately recovered (Parisien et al., 2008). Because the indirect component of each projection

passes through interneurons, it lags slightly behind the direct component. The idealized map-

ping is therefore slightly corrupted, proportionately with the derivative of the bias function.

However, the time constant of synaptic current decay at excitatory synapses onto interneu-

rons is often very rapid, on the order of 1ms (Geiger, Ĺ’ubke, Roth, Frotscher, & Jonas,

1997; Walker, Lawrence, & McBain, 2002). The models are therefore parameterized with

time constants of 1ms, which minimizes the lag-related corruption.

Results of example simulations with noisy ramp input are shown in Figure 5. In these
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simulations, the input signal (Figure 5A) passes through post-synaptic current dynamics,

and is then injected as current into the neurons of the input ensemble of each network. The

output of the circuit is an estimate of the variable encoded by the output ensemble, which

is decoded from the activity of the neurons in this ensemble (see Appendix). Outputs of the

idealized abstract models are overlaid with decoded outputs of the corresponding detailed

spiking models. The output is noisy for each circuit, but much less noisy than the output of

a pure differentiator, for which output noise is much larger than the range of the figure axes.

Note that despite the nonlinearity of the depression model, its performance is comparable to

that of the adaptation model, because other sources of error dominate.

Two main points can be taken from these simulation results. The first is that the response

of each of the abstract models (dark lines) is slightly different. For example, there are

differences in how quickly the different abstract models respond to the ramp, and in the

amplitudes of their output noise. These differences are best described in terms of the abstract

circuits’ frequency responses, which are explored in detail in the next section. The second

point is that the behavior of each circuit approximates the behavior of the corresponding

abstract model, but it is noisier. Following the analysis of ideal frequency responses, we

model this noise explicitly, and compare the noise that arises in each circuit.

4 Ideal Frequency Responses

In this section, we analyse the idealized frequency response characteristics of the example

networks, in order to determine how they respond to input noise. We ignore for the moment

that the networks are not only conduits of noise, but also sources, and return to this matter

in the next section.

Laplace-domain transfer functions, obtained from the block diagrams (Figure 2) are listed

in Table 1. These transfer functions describe the input-output behavior of the abstract

models. Each transfer function has two or more poles, which reject high frequencies, and a

single zero at the origin of the Laplace plane, which performs differentiation. (A zero is a
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Figure 5: Example simulations with spiking LIF neurons. A, Noisy ramp input used in all

simulations, and a spike raster showing spiking patterns of 50 neurons in the input ensemble

(each row shows spike times for a single neuron; as the represented value increases, the firing

rate of each neuron either increases or decreases, depending on its preferred direction φ̃i; see

Appendix). The remaining panels show output of the different networks, for the input shown

in panel A. Black lines indicate the output of abstract models, and gray lines indicate the

decoded output of the corresponding neural network models. B, Feedforward network with an

intermediate differentiator ensemble. C, Feedforward network in which parallel projections

have different time constants. D, Network with adapting neurons. E, Network with synapses

that exhibit short-term depression. F, Feedback network that approximates a Butterworth

filter (scale factors tuned for this input; p = [ .1741 .0774 ]T ). G, Feedback network with

the same transfer function as the feedforward network of panel B (p = [ 1 2
3

]T ). The scale

bars in A (0.5s; 0.2 normalized units of the represented variable) apply to all panels.

25



Table 1: Idealized transfer functions of the example differentiator networks (i.e. network

output y over input u). These are given in terms of the Laplace variable s, and other

parameters that describe the network dynamics. τA and τD are time constants of adaptation

and synaptic depression, respectively. Other τ are time constants of post-synaptic current

decay at various synapses: τ is the time constant of core differentiator synapses, which is

modeled on NMDA receptors; τF corresponds to the faster parallel synapses in the dual-

time-constant network (modeled on AMPA); τE corresponds to the faster synapses on the

periphery of some networks (also modeled on AMPA). Finally, ω is the corner frequency of

the Butterworth network. The values of these parameters for the analysis and simulations

below are τ = τA = τD = 0.1s, τF = 0.005s, and ω = 2Hz, except where these parameters

are varied in section 6.

Circuit Transfer Function
1. y/u = s

(τs+1)2

2. y/u = s
(τF s+1)(τs+1)

3. y/u = s
(τEs+1)2(τAs+1)

4. y/u = s
(τEs+1)(τDs+1)

5. y/u = ω2s
(τEs+1)(s2+

√
2ωs+ω2)

6. y/u = s
(τs+1)2(τEs+1)

value of s for which the numerator of the transfer function vanishes, and a pole is a value at

which the denominator vanishes; poles determine the time constants and resonance properties

of a system.) The key differences are the pole locations. The poles of the circuits based on

feedforward network dynamics are determined by the time constants of post-synaptic current

decay. Similarly, those of the networks based on neuron-intrinsic dynamics are determined by

both post-synaptic current dynamics and dynamics of adaptation/depression. In contrast,

the poles of the networks based on feedback dynamics are not dictated by cell properties,

but depend on the relationship between post-synaptic current dynamics and the strength of

recurrent connections.

Phase and magnitude plots of the ideal and simulated frequency response of each circuit

are shown in Figure 6. Intrinsic sources of noise were minimized in these simulations, by

26



replacing each of the spiking neuron models used in the previous section with the corre-

sponding rate model. The ideal responses (solid lines) and simulated responses (open circles)

are similar, showing that the behavior of the optimized network models closely approaches

that of the abstract dynamical models.

5 Intrinsic Error Sources

The key difference between the performance of the abstract circuits and the performance of

the full spiking models (Figure 5) is that the spiking models are corrupted by much greater

errors. To model the errors that arise within each circuit, we supplement the block diagrams

with additive error terms εi, as shown in Figure 7. Each εi represents all the sources of

error that arise within a single axonal projection. We consider two types of error. Part of

the total error, which we call distortion, following engineering terminology, is a deterministic

function of the variable that is encoded by a neuronal population. Specifically, distortion

is the difference between the encoded value and the estimate of this value that is decoded

from the activities of the neurons (post-synaptic neurons have access only to the latter). In

contrast, we use the term noise to indicate error that is a random function of time. This

includes noise arising during axonal conduction (Lass & Abeles, 1975), vesicle release (Stevens

& Wang, 1994), etc. On the block diagrams, each εi term is shown as a function of both

time, and of the variable encoded by the associated population, to indicate both the noise and

distortion components. However, it should be noted that the errors are not strictly functions

of these represented variables, but rather of dimensionless variables that are normalized to

the representational range of each ensemble. Revised equations for the output of each system,

as a function of both input and errors, are given in Table 2.

Some insights into the relative importance of the different error terms can be gained by

direct inspection of the equations of Table 2. For example, in the first feedback circuit (#5

in Table 2) the differentiated components of ε3 and ε4 are amplified differently. With the
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Figure 6: Magnitude and phase of the analytically-determined and simulated frequency re-

sponses of each network. A-F correspond to the block diagrams A-F in figure 2. The straight

dashed line in each case corresponds to an ideal differentiator response. The solid black lines

indicate theoretical responses of each network, and circles indicate results of simulations. The

simulation results were obtained by running the networks in firing-rate mode, with sinusoidal

input at various frequencies. Scale factors in the feedback networks are p1 = p2 = 0.1741 for

E, and p1 = p2 = 1 for F.
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Figure 7: Revised block diagrams with additive error inputs εi. These error terms model

distortion and noise that arise within each projection. A-F correspond to A-F in Figure 2.

Table 2: Output of differentiator circuits, including error terms. These equations are given

in terms of the output y, rather than the transfer function y/u, in order to simplify inclusion

of the errors εi. Other variables are as in Table 1.

Circuit Circuit Output
1. y = su

(τs+1)2 −
ε1

τ(τs+1)2 + ε3−ε2
τ(τs+1)

2. y = su
(τF s+1)(τs+1) + 1

τ−τF

[
τsε1−τF sε2+ε1−ε2

(τF s+1)(τs+1)

]
3. y = su

(τEs+1)2(τAs+1) + sε1
(τEs+1)2(τAs+1) + ε2

(τEs+1)

4. y = su
(τEs+1)(τDs+1) + sε1

(τEs+1)(τDs+1) + ε2
(τEs+1)

5. y =
ω2su

(τEs+1)(s2+
√

2ωs+ω2)
+ s(ω2ε1+(1−τω/

√
2)ε3/τp1+ωε4/

√
2p2)

(τEs+1)(s2+
√

2ωs+ω2)

+ω3(ε1−ε2)/
√

2−ω(ε3/p1+ε6/p2)(τω−
√

2)/2τ+ω2(ε4/p2−ε5/p1)/2
(τEs+1)(s2+

√
2ωs+ω2)

+ ε7/p1
τEs+1

6. y = su
(τs+1)2(τEs+1) + s(ε1+ε3/2p1−ε4/2p2)

(τs+1)2(τEs+1) +
6(ε1−ε2)+3(ε3/p1−ε4/p2)+(ε6/p2−ε5/p1)

4τ(τs+1)2(τEs+1) + ε7/τp1
τEs+1
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parameters used in the present study, ε4 is amplified almost an order of magnitude more than

ε3. Since ε4 arises from the second differentiator ensemble, this suggests that more of the

available resources (i.e. neurons) should be devoted to accurately coding the corresponding

state variable x2 than x1.

This type of isolated observation is interesting, but it does not allow systematic compari-

son of errors across different circuits. However, by making some additional assumptions, the

distortion and noise in each circuit can be expressed as single quantities that correspond to

their power at the output. First, we assume for the purpose of this analysis that each neuron

is an independent source of Gaussian noise, with frequencies up to 500Hz. Then when a

greater number n of neurons is used to represent a variable, noise power in the represen-

tation decreases with 1/n, as predicted by the central limit theorem. Distortion error is a

function of the value that is represented by an ensemble at any given time. The frequency

content therefore depends on the frequency content of the input, although higher frequencies

will be introduced by distortion non-linearities. We assume for this analysis that the error

includes frequencies up to 200Hz. With linear decoding of diverse LIF neuron responses,

mean-squared distortion error varies with population size as 1/n2 (Eliasmith & Anderson,

2003). Errors that arise within projections from different populations are assumed to be

independent.

On the basis of these assumptions, net error power at the output can be calculated (using

Parseval’s theorem) as

E =
∑
i

f(ni)
ˆ ∞
−∞
|aiωbiω|2dω,

where ni is the number of neurons in the population from which the ith error term arises,

f(ni) scales the error with population size (this function describes the expected magnitude

of the error, which will be well-approximated for large ni), aiω is the Fourier coefficient of the

ith raw error term at frequency ω, and biω is the Fourier coefficient of the impulse response

that corresponds to the transfer function through which this raw error term passes before

reaching the output of the network. For example, using the assumptions outlined above, the
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total distortion error at the output of the intermediate-ensemble network (Figure 7A) is,

Ed =
εd1n

−2
u

400

ˆ 200

−200

∣∣∣∣Fω { t

τ3
e−t/τ

}∣∣∣∣2 dω +
εd1(n−2

u + n−2
x )

400

ˆ 200

−200

∣∣∣∣Fω { 1
τ2
e−t/τ

}∣∣∣∣2 dω.
Here Fω {•}2 indicates power (of the error impulse response, i.e. the inverse Laplace trans-

forms of the corresponding error transfer functions) at frequency ω, and εd1 is the mean-

squared distortion that would be expected from a single-neuron population (which is un-

known, but assumed constant across networks). Because the distortion is assumed to have

a white spectrum up to its cutoff frequency ωc = 200Hz, aiw = 1√
2ωc

for all ω within the

integration limits ±ωc.

This error expression allows more systematic inferences about the relative importance

of different error sources. For example, it allows one to find the optimal distributions of

neurons between differentiator ensembles in the feedback circuits. More importantly, this

error expression makes it possible to directly compare the effects of intrinsic error between

different networks. However, in order to quantify these errors for comparison across circuits,

two additional subtleties must be accounted for. The first is that the sources of error in the

adapting and depressing projections are not directly analogous to the others, so they cannot

be compared directly. Rather than avoid the comparison completely, we present ranges of

values based on the assumption that error arising from an adapting or depressing projection

varies with pre-synaptic population size in the same way as other errors, but has a larger

absolute value. Even if the adaptation and depression processes were themselves completely

noise-free, the error amplitude would probably be at least five times greater. This is because

1) independent errors arising from adapting and compensating sub-populations sum together,

and 2) the output of this projection must the amplified (because e.g. the adapting neurons

do not adapt completely), so that the error sum is also amplified. We therefore consider a

range (see Figure 9, below) of output error corresponding to between 5 and 50 times greater

error amplitude in these projections relative to static projections.

The secondly subtlety is that some of the circuits contain parallel projections from the
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same ensemble, raising the possibility that errors in these separate projections are corre-

lated. For example, the dual-time-constant network contains parallel projections with differ-

ent PSC time constants. In a network of this form, similar plasticity processes might regulate

the synaptic weights in each projection, resulting in correlations between the corresponding

synaptic weights. This in turn would result in correlated distortion and/or noise. To de-

termine how great an effect such correlations could have, we re-evaluate the output error,

assuming that instantaneous errors in different projections from the same ensemble are equal.

Setting ε1 = ε2 = ε in the dual-time-constant network, the output becomes

y =
su

(τ1s+ 1)(τ2s+ 1)
+

sε

(τ1s+ 1)(τ2s+ 1)
,

which has very low error from intrinsic sources. Figure 8 compares simulations with and

without this modification. Correlated weights do not reduce the amplification of input noise,

but intrinsic sources of error are greatly reduced.

The interneuron and feedback circuits also have parallel projections from the same en-

semble, which ultimately converge again. For example, the error transfer function of the

interneuron circuit can be arranged to give the term ε3 − ε1/(τs + 1), where ε3 and ε1 are

potentially correlated. In this case, the phase shift between these errors depends on the

frequency. At low frequencies the phase shift is zero, so these terms cancel out if ε3 = ε1.

Figure 9 shows the relative errors as a function of the size of the input population. For

circuits 1, 5, and 6, which contain differentiator ensembles in addition to input and output

ensembles, results are shown with different numbers of differentiator neurons. Panel A shows

error power under the assumption that errors in parallel projections are independent, and

panel B shows the lower error power at the output that arises from highly correlated errors.

The intermediate-ensemble network has lower error magnitude than the dual-time-constant

network, because the fast time constant in the latter network does not filter high-frequency

noise as sharply. The feedback and interneuron circuit errors do not fall as sharply as those of

the other circuits, with increasing input ensemble size, because their errors arise partly from
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Figure 8: The performance of the two-time-constant feedforward network is improved if errors

in each projection are correlated. A, Difference in distortion error between two independent

parallel projections from a 2000-neuron ensemble, i.e. the distortion error (see section 5)

of one projection minus that of another (independent distortion errors were modeled using

optimal weights with independent ensembles). B, Output of network simulations with spiking

LIF neurons and ramp input. Simulations with correlated (black line) and uncorrelated (grey

line) distortion error are shown. To make the distortion more visible in these simulations,

τ2 = 0.015s, and the spike output is filtered with a time constant of 20ms to reduce high-

frequency noise. In this example, the root-mean-squared error of the correlated model output

(.0616 arbitrary units) is comparable to that of an ideal filter with the same input noise (.0603;

not shown), and substantially lower than that of the uncorrelated model (.1412).
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Figure 9: Power at the network outputs that arises from noise (left panels) and distortion

(right panels) errors. Both noise and distortion have been estimated analytically using the

methods and assumptions of section 5. Error in each panel is a dimensionless quantity

which is relative to the error power expected in an ensemble of one neuron. For example,

a projection from an ensemble of 200 neurons produces noise with relative power 1/200. A,

Output error power as a function of input ensemble size, assuming that errors in parallel

projections from the same ensemble are independent. Black lines show errors for the feedfor-

ward networks (solid: intermediate-ensemble network; dashed: dual-time-constant network).

Gray lines show errors for the feedback networks (solid: Butterworth; dashed: intermediate-

ensemble-like; scale factors as in Figure 6). Where there are two lines with the same pattern,

these correspond to errors with 500 and 2000 differentiator neurons (higher and lower lines,

respectively). Finally, the gray areas indicate the range of possible error for the adaptation

network (with 2000 differentiator neurons), as described in the text (error in the depression

network is similar). B, Identical to panel A except that errors in parallel projections from

the same ensemble are assumed here to be highly correlated.
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non-input neurons. The performance of the feedback circuits is enhanced due to additional

low-pass filtering of errors by the post-synaptic dynamics of the output ensemble. In gen-

eral, populations post-synaptic to the derivative calculation help to filter noise, and the noise

they introduce has little effect on the output, because it is not differentiated. This implies

that any of the circuits could be improved by passing the output through one or more ad-

ditional ensembles with low-pass PSC dynamics, provided it is not necessary to differentiate

high-frequency signals.

6 Dependence of Error on Time Constants

Error power at the output of each network depends on the time constants of post-synaptic

current decay, adaptation, and depression. In the previous sections, the post-synaptic time

constants in the main projections were modeled on the relatively slow NMDA glutamate

receptors (τ = 0.1s). This section shows how error magnitudes change as these time constants

are reduced to the range of faster AMPA receptors (τ = .005s). We also vary the time

constants of adaptation and depression, which can be several seconds long in the brain.

Figure 10A shows how noise power depends on these time constants. Generally, slower

dynamics attenuate high-frequency noise more effectively. However, signal and noise bands

typically overlap, so that there is an inherent compromise between noise attenuation and

signal distortion. Figure 10B shows how a signal with bandwidth 0-5Hz is also attenuated as

these time constants increase. Figure 10C shows the corresponding signal-to-noise ratios.

In the feedforward and intrinsic-dynamics networks, a good balance of signal fidelity and

noise attenuation is achieved when the time constants are well-matched to the signal band.

The feedback circuits are distinct from the others, in that the signal power does not vary

with the post-synaptic current time constant τ . Instead, it varies with the network time

constants (e.g. ω), which depend on feedback strength. As a consequence, in a feedback

circuit composed of neurons with given intrinsic dynamics, changes in synaptic weights can

optimize the signal-to-noise ratio to the frequency band of the input signals. Longer intrinsic
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Figure 10: Signal and noise power as a function of neuron time constants (analytical results;

arbitrary units). The same line patterns are used for each network as in Figure 9. A, Signal

power: output power of each network (input signal power 1, bandwidth 0-5Hz; no noise), as a

function of τ in the feedforward and feedback networks, and of τA and τD in the habituating-

neuron networks (τF and τE are held constant at .005s). B, Noise power: output power of

each network with zero input and independent noise (power 0.1, bandwidth 0-500Hz) in each

projection. Distortion results (not shown) are similar. C, Signal-to-noise ratio: ratio of the

power shown in panel A to that in panel B.
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time constants reduce intrinsic noise, without influencing the signal.

7 Discussion

This study has analysed sources of error in networks that optimally estimate derivatives

through diverse mechanisms. Interestingly, all of the examples studied were able to calculate

a clear derivative signal. Therefore, in systems that contain a differentiator of unknown

form, none of these structures can be entirely ruled out on the basis of performance. The

main contrast between network types is that the feedforward and intrinsic-dynamic circuits

have simple structures, and perform well for input signals with time scales that are matched

to their internal dynamics, while the feedback circuits have more complex structures, and

more flexible dynamic properties. This flexibility would be useful when the bandwidth of

represented signals either does not correspond closely to membrane dynamics, or changes

over time.

Part of the motivation for studying neural differentiators lies in the crucial role played by

derivatives in feedback control. The network based on adaptation, in particular, may provide

some insight into feedback control in the motor system. One way in which a derivative signal

may be obtained in the motor system is through muscle spindle afferents. The group Ia

afferents exhibit an adapting response to muscle stretch, while group II afferents respond

statically. These responses are analogous to those in our adapting-neuron network, in which a

pure derivative signal is extracted from a combination of adapting and non-adapting neuronal

responses. Therefore, this network illustrates how distinct proportional and derivative signals

can be extracted from muscle spindle afferents, allowing the brain to exploit these signals to

improve feedback motor control.

There is a constraint on the flexibility of the feedback networks that is well worth not-

ing, although it was not encountered in our examples. The eigenvalues of these networks’

dynamics depend on the strength of the feedback connections. However, counter-intuitively,

these circuits can become unstable with large negative eigenvalues. This is due to a hidden
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feedback mode that arises from the projection through inhibitory interneurons (Figure 4).

This mode can become unstable with strong feedback of either sign. The precise stability

threshold depends in complex ways on the neuronal tuning curves. However, in general, sta-

bility is reduced with stronger feedback, longer post-synaptic current time constants in the

interneurons, and increasing slope of distortion error in the projection from the interneurons.

This mode limits the range of stable eigenvalues in the feedback circuits, to between zero

and roughly −2/τ . Feedback circuits without an interneuron structure like that of Figure

4 would not have this limitation, which is only apparent in the more biologically realistic

models. However, the additional phase lag that leads to instability could in principle be

largely compensated by a phase lead arising from synaptic depression in this pathway.

The full spiking models performed more poorly than the abstract models, due to distortion

in signal representations, and the high frequencies introduced by spiking. This suggests

that neurons are not particularly good at differentiating, which is counter-intuitive, because

natural neural circuits are evidently very powerful computational devices. However, when the

brain differentiates, it must do so with the tools available, i.e. neurons, whether or not they

are any good at that particular task. Differentiation is just one of many simple tasks (e.g.

arithmetic; working memory) at which artificial systems apparently outperform biological

systems.

7.1 Fractional Derivatives

The focus of this study has been on differentiation of order one. Higher-order derivatives

could arise from a chain of any of the models presented here. Most of these models could

also be modified to perform fractional differentiation (Kleinz & Osler, 2000). In the Laplace

domain, a fractional derivative is expressed as sk, where k is any real number. With k < 1,

the fractional derivative of a signal is intermediate to the signal and its derivative. Repeated

fractional derivatives may compose an integer-order derivative, e.g. s
1
2 s

1
2 = s. One reason

fractional derivatives are interesting is that they are timescale-invariant, in that they phase-
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shift all frequencies by the same angle. This means, for example, that the fractional derivative

of x(t) has the same shape as the fractional derivative of x(2t), although the amplitude

increases as the timescale shortens. Timescale-invariant dynamics (Drew & Abbott, 2006;

Wark et al., 2007) contrast with exponential dynamics, which have a distinct timescale.

Firing-rate adaptation in some pyramidal cells is more closely approximated by a fractional

differentiator than a band-pass filter, when responses are considered over several seconds

(Lundstrom et al., 2008), in that firing rates do not asymptotically approach positive values

after many multiples of the time constant of their initial decay. Fractional behavior has been

proposed to arise from diverse timescales of intrinsic adaptive processes (Lundstrom et al.,

2008).

A fractional derivative can be approximated as a weighted sum of high-pass responses

with different time constants (Anastasio, 1994). Introducing multiple time constants into the

above models should therefore (with proper weighting) produce fractional-order behavior.

Introducing multiple time constants into the adapting-neuron network is straightforward.

Recall that in this model, extra steps were taken to ensure that all of the neurons adapted

with the same time constant. Variations across a population in the slope of the onset response

function, and/or adaptation parameters, could lead to diverse time constants and fractional

dynamics at the population level. A model of such a system could be constructed by using

the methods of section 2.2.2 to optimize the distribution of time constants for a fractional

response. This mechanism would be independent of inherently-fractional behavior within

adapting neurons, and might serve to extend the frequency range of fractional behavior, or

to compensate for deviations from ideal fractional behaviour due to cell-intrinsic mechanisms

alone. Interestingly, if the firing rates of different neurons were to adapt with different time

constants, multiple alternative transfer functions might be supported by different sets of

synaptic weights applied to the same population activity.

The other mechanism that can provide a wide range of effective time constants in these

models is feedback. For example, the feedback networks described above could be divided
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into multiple parts with different time constants. If these sub-networks were segregated,

then fractional behavior would arise at the population level (hence in downstream neurons),

while individual neurons in the sub-networks exhibit integer-order responses. More generally,

individual neurons might participate in distributed coding of multiple state variables with

different dynamics, and therefore exhibit behaviour at multiple time scales.

In sum, fractional differentiation may serve a number of purposes in the brain, e.g.

compensating for fractional plant dynamics (Anastasio, 1994), or introducing other effects

of multiple-timescale behavior such as optimization of information transmission (Fairhall,

Lewen, Bialek, & Ruyter Van Steveninck, 2001). Experimental evidence suggests that cell-

intrinsic mechanisms occur on multiple timescales, contributing to cell responses that resem-

ble fractional derivatives. Population and network mechanisms like those explored in this

paper might improve this approximation, and/or extend this behavior over wider frequency

ranges. The present analytical approach could be used in the future to quantify the limita-

tions of fractional network mechanisms in detail. For example, while positive feedback can

theoretically produce a very wide range of time constants, attractors arise from long time

constants combined with distortion in the feedback (Eliasmith & Anderson, 2003). This

may suggest that relatively more neurons would be needed to code slower timescales, or that

slower timescales are managed more effectively by cell-intrinsic mechanisms.

7.2 Integrator Control

A suitable differentiator might reduce drift in a neural integrator. If an input signal is in-

tegrated over time, then the derivative of the integrator output could be compared to the

input signal. The resulting error information could then, in theory, be used as a proportional

control signal to improve an imperfect integrator. However, since the differentiator is also

imperfect, it is not guaranteed that this additional complexity would improve performance.

Analysis of this feedback loop shows that improvement is possible if errors in parallel differ-

entiator projections are correlated (not shown). The adapting network might also improve
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performance of an integrator, if the adapting projection errors were not much greater than

the others.

Perhaps more interestingly, a slight variation of the adapting-neuron differentiator might

directly implement an accurate integrator. It is well known that integrator error decreases

with longer post-synaptic current (PSC) time constants (Seung, 1996). However, even the

relatively long PSC time constants associated with NMDA and GABAB receptors are only

about 0.1s. In our adapting-neuron example, non-adapting neurons cancelled out the steady-

state response of the ensemble, resulting in a pure differentiator. If instead these non-adapting

neurons were to cancel out the onset response, the ensemble would behave like a low-pass

filter. This low-pass filter would have the time constant of adaptation, which could be much

slower than NMDA and GABAB currents, e.g. on the order of seconds (Sanchez-Vives,

Nowak, & McCormick, 2000b, 2000a). However, populations in such a circuit would have to

encode variables with larger values (if u is the input and x is the integral, they would have to

encode x+ τAu). Distortion error scales with the magnitude of values to be encoded, so that

increasing τA indefinitely would not yield any benefit. However, there might be a range of

longer adaptation time constants with better performance, particularly if inputs were small

relative to their integrals. Detailed exploration of the relation between these differentiator

circuits and neural integration is deferred for future work.

7.3 Limitations

While the differentiator circuits presented here have a degree of physiological realism, they

are idealized in several respects. For example, we have modelled the networks with least-

squares optimal synaptic weights, without addressing how these weights could be learned.

We also used simple point-neuron models in the simulations, which neglect many details of

the dynamics of real neurons, e.g. low-pass effects of spiking nonlinearities in some regimes

(Fourcaud-Trocmé, Hansel, Vreeswijk, & Brunel, 2003). The present study would have been

intractable without these simplifications.
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Secondly, the example networks presented here do not exhaust all the possibilities. For

instance, we have also modeled two varieties of differentiator that are based on delay lines

(not shown). The first has two parallel feedforward projections, of which one has a longer

axonal conductance time. In the second, conductance times in a feedforward projection vary

from zero to thirty milliseconds, and synaptic weights are chosen so that the projection acts

as a finite-impulse-response filter. These networks are comparable to the other feedforward

networks presented here. However, there may be other differentiator models that do not

belong to any of the classes we have studied. For example, a model that discriminates

between low and high velocities, using a dendritic spike-related mechanism (Tamosiunaite,

Porr, & Wörgötter, 2007) might be extended to encode velocity signals in more detail.

Furthermore, the analysis was based on a number of assumptions that may not hold for

biological networks. For example, there is growing evidence that noise does not scale with

population size in the manner we have assumed, because response variability in different

neurons is correlated (although whether it is reasonable to consider such correlated variability

as noise is unclear). Also, while our network models optimally approximate ideal filters,

biological networks may approximate ideal differentiators in a non-optimal manner. Both

of these assumptions affect estimates of error amplitudes. However, the present analytical

approach easily accommodates changes to these assumptions, if such changes seem warranted

in the future.

Some models of neural integrators have been criticized because they require precise tuning

of recurrent excitation, to avoid drift (Goldman et al., 2003; Koulakov et al., 2002), and it

is not clear how well such precise tuning can be maintained. Analogously, the differentiator

circuits presented here require a precise balance of excitation and inhibition. The consequence

of imbalance is increased distortion error, the effects of which are described in Section 5. A

related question is whether there are any signals available to contribute to fine-tuning this

balance. Over long periods, the average derivatives of many physiologically-relevant signals,

such as the outputs of sensory and proprioceptive receptors, must be zero. We therefore
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suggest that if the output signal of a neural differentiator could be accurately averaged or

filtered over a long time window, this might provide a useful error signal for fine-tuning the

circuit.

Finally, further work is needed to estimate the degree to which the nonlinearity of

synaptic-depression (section 2.2.2) is functionally relevant, particularly as compared with

the more subtle nonlinearities that would appear in more detailed models of adaptation.

This depends mainly on the magnitude of this nonlinearity, relative to other sources of error.

In simulations presented here, other sources of error were dominant, so the performance of

the synaptic depression model approached that of the adaptation model. Differences between

these models might become more obvious if other sources of error were reduced, e.g. with

greater numbers of neurons, but it is uncertain how great a reduction could be achieved

with physiologically realistic parameters. Also, it might be possible to modify the model

so that depression nonlinearities in different neurons cancelled out as much as possible at

the network level (much like the static nonlinearities in the present models). Finally, the

effect of a nonlinearity depends (by definition) on the input signal. In order to quantify the

effects of the depression nonlinearity in detail, it would be necessary to examine responses

to a much wider variety of inputs. The present results show that for certain inputs, in the

context of certain plausible levels of noise and other network parameters, synaptic depression

is functionally similar to firing-rate adaptation.

7.4 Summary

We have analyzed and contrasted three general mechanisms by which neural circuits can per-

form temporal differentiation of input signals. The analysis and accompanying simulations

estimate in detail how the key barriers to accurate differentiation, i.e. representational dis-

tortion and high-frequency noise, depend on intrinsic network properties. The results suggest

that no single mechanism is clearly superior, but that different mechanisms can be expected

to perform most effectively with input signals in different frequency bands. The analyti-
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cal approach developed here provides a systematic means of contrasting the performance of

diverse networks, and may therefore provide a useful foundation for more detailed models.

Finally, although we have focused on differentiators, the techniques presented for analysing

the effects of noise and distortion are more broadly applicable. It should be possible to anal-

yse networks that perform other computations in a similar manner. It may also be possible

to rule out certain mechanisms, or even to rule out a proposed function for a certain circuit,

on the basis of this type of analysis. Finally, if the function of a circuit is known, the same

methods could be used to determine bounds on the errors that can be introduced by different

ensembles, possibly shedding light on the robustness of a circuit to degeneration with disease.
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9 Appendix: Theoretical Framework

In the differentiator circuits presented here, firing activity in each neural ensemble encodes

a scalar variable. We begin by describing the encoding process in the input ensemble, which

(identically in each circuit) receives external input in the form of a scalar variable u. The

activity of each neuron in this ensemble can be expressed in terms of a firing rate r(u) which is

a function of net current I(u) flowing into the neuron’s axon hillock. We use leaky-integrate-

and-fire (LIF) neurons (Koch, 1999), for which

r(u) =
1

τref − τRC ln(1− Ith/I(u))
,
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where τref is the spike refractory time, τRC is the membrane time constant, and Ith is the

current at which the firing rate becomes non-zero. In our models, τRC = .02s, τref varies

between .0005s and .001s, and Ith = 1.

In non-adapting neuron models, the net current is

I(u) = αφ̃u+ β,

where α is a scaling factor, φ̃ is the neuron’s preferred direction in the encoded space (-1 or 1

since we are dealing exclusively with scalars) and β is a bias current. The bias current models

intrinsic conductance and input bias. For adapting LIF neurons (Camera et al., 2004),

I(u) = αφ̃u+ β − gN [N]

d[N]/dt = −[N]/τN +ANr(u).

Here [N] is the concentration of a chemical species responsible for adaptation, τN is a time

constant of decay of [N], AN is an increment in [N] with each spike, and gN scales the

associated current.

The firing rates of neurons in the input ensemble contain information about the input u,

and an estimate of u can be decoded through a linear combination of the activities of each

neuron, as

û =
∑
i

φiri(u).

Here û is the estimate of u from the neuronal activities, and φi are decoding coefficients.

Unconstrained optimal decoding coefficients are found by minimizing the squared error of

the estimate using the Moore-Penrose pseudo-inverse. This decoding of neuronal activity

allows us to plot the scalar that is represented by an ensemble over time (e.g. see Figure 5).

In some cases, neurons are simulated in spiking mode. In this case, the activity a(u) of

a neuron is not expressed as a scalar-valued rate a(u) = r(u), but a series of spike events
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a(u) =
∑
k δ(tk − t), where tk is the time at which the neuron spikes for the kth time. By

treating each spike as a unit impulse, and passing spikes through low-pass dynamics (of the

same form as post-synaptic current dynamics), we obtain a similar estimate of u.

The encoding and decoding processes described above allow us to find the synaptic weights

that are necessary for the input ensemble to communicate its estimate of u to another en-

semble. Suppose x ' u is the scalar variable represented by a second ensemble. The current

in these neurons is a function of û rather than u, e.g.

Ij(u) = αφ̃j û+ β = αφ̃j
∑
i

φiri(u) + β =
∑
i

wijri(u) + β.

Here wij = αφ̃jφi is the synaptic weight (between the ith neuron in the first ensemble and

the jth neuron in the second ensemble) that is necessary to communicate the estimate of u

from one ensemble to the other. Similarly, the synaptic weights necessary to communicate

a multiple of û, e.g. cû from one ensemble to another are wβij = αφ̃cφ. This expression

allows us to construct neuronal circuits in which external inputs are encoded, communicated,

transformed, and decoded as required. For simulation, these optimal synaptic weights are

converted to corresponding sign-constrained weights, as described in Section 3.

For a simple circuit, it is not difficult to write equations for the activities of each neuron, in

terms of the input signal. This process is not necessary for developing a computational model,

but an example may clarify the computations involved. Consider the dual-time constant

circuit (Figure 2B). For simplicity we ignore noise sources, and write the equations in terms

of neuronal firing rates rather than spike events (the equations are the same for spiking

simulations, except that real-valued rates are replaced with sums of impulses). The input to

the circuit is a scalar function of time, u. Although u is an abstract signal, we treat it like

a synaptic input and pass it through post-synaptic current dynamics with impulse response

function h(t) = 1
τ e
−t/τ , because physiological inputs to these neurons are filtered in this
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manner. The firing rate of the ith neuron in the input ensemble is then

ri(u) = Gi(αiφ̃iu(t) ∗ (
1
τ
e−t/τ ) + βi),

where ∗ denotes convolution, and Gi(·) is the rate function for the LIF neuron, which is given

above. Similarly, the firing rate of the jth neuron in the output ensemble is

rj(u) = Gj(αj φ̃j(
∑
i

φiri(u)) ∗ (
1
τF
e−t/τF − 1

τ
e−t/τ ) + βj),

where τF and τ are the fast and slow time constants of this circuit, as defined in the main text.

Finally, the output of the circuit, which approximates du/dt, is taken as a linear decoding of

the activity of the output ensemble:

ŷ =
∑
j

φjrj(u).

The above description provides all the theoretical details that are necessary for imple-

menting the models in the present study. The source code for the computational model

implementations can be downloaded from http://compneuro.uwaterloo.ca. Further details of

the theoretical methods, including generalization to the representation of vectors and func-

tions, have been presented previously (Eliasmith & Anderson, 2003).
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