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Abstract

Thousands of elevation drawings are contained in archives worldwide, although in
their current format, their contained semantic information is only accessible through
manual inspection and their associated brief annotations. The introduction of a
method to semantically interpret elevation drawings offers several knowledge con-
tributions, including the enablement of semantic-based archival searches, an alter-
native method of input for CAD systems, and a flexible symbol recognition process
that may be extended to other domains. This article discusses a two phase frame-
work for interpreting elevation drawings and surveys the numerous algorithms and
techniques that can be used during each phase for representing and classifying the
contained architectural elements.

1 Introduction

Existing architectural elevation drawings are predominately archived in paper-
or raster-based formats, and the tasks of indexing, retrieving and analysing
these drawings is, by an large, a cumbersome manual process. Representing the
drawings in a concise and accessible format will enable users and researchers to
more easily access the rich information about the elevation drawings, such as
the properties and dimensions of contained architectural elements, as well as
provide the ability to conduct new forms of analysis and more specific queries.

Over the last three decades, research on symbol recognition in digital docu-
ments has primarily focused on geographic maps [43], technical drawings [30,56],
mathematical equations [8], and diagrams [9], much of which is analogous to
the problem of identifying and classifying architectural elements in elevation
drawings. A symbol refers to graphic shape that can be distributed through
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Fig. 1. Framework for interpreting elevation drawings.

a document and is characterized by its attributed semantics and rule-based
construction [13]. From this, architectural elements such as doors, windows
and stairs may be similarly considered as symbols in the realm of elevation
drawings. Formally, an elevation drawing is a representation of a building’s
geometrical exterior as perceived from a horizontal viewpoint, without dimen-
sional perspective. The drawings are manually created with pen and paper
and digitized as 8-bit gray scale images using a scanner or overhead camera.

Currently, most content indexing and retrieval techniques rely on natural lan-
guage processing approaches that operate on textual information, and there
are several reasons to follow this paradigm for processing elevation drawings.
Search engines are designed to process and interpret textual information us-
ing vocabulary control-based approaches, and a verbal interface that is created
using thesauri of standard terms allows for the easier integration of content
by search engines. Further, textual representations that are based on common
terminology provide a familiar interface for users and reduce the amount of
required learning. The second reason is due to the large precedence of alphanu-
meric information processing in computer-based environments, and following
this direction may reduce the complexity and resource requirements for the
development and usage of the system. This precedence includes a sizable li-
brary of algorithms and methodologies that provide a foundation for indexing
and retrieving the elevation drawing contents and better enables a cohesive
integration with existing systems. Finally, if the textual representation is suf-
ficiently rich, it can be utilized by numerous CAD and information retrieval
systems. This article discusses a two phase framework for interpreting ele-
vation drawings and surveys the numerous algorithms and techniques that
can be used during each phase for representing and classifying the contained
architectural elements.

In general, the approach most commonly used for identifying and classifying
symbols follows two sequential phases (Fig. 1). The representation phase is
discussed in Section 2, and aims to transform the raster document into a form
that is better suited to the phase’s primary task of locating potential objects of
interest. This phase also includes the interpretation of lines and arcs through
vectorization or direct-recognition, which are discussed in Section 3. The clas-
sification phase seeks to classify the described symbols and is discussed in
Section 4. Finally, Section 5 concludes and discusses areas for future research.
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2 Representation Phase

The process of identifying and classifying symbols in a document begins with
the representation phase, which aims to extract from the document, the infor-
mation deemed to be most significant (e.g. black lines in an elevation drawing)
for subsequent analytical tasks. Additionally, this phase attempts to reduce
the amount of noise and data contained by the document, and to represent
the underlying content as accurately as possible.

The remainder of this section discusses the approaches that are commonly used
in the first part of this phase, namely preprocessing the document through
binarization and text/graphics segmentation.

2.1 Preprocessing

Most digital elevation drawings are created from scanned versions of pen and
paper drawings and frequently need to be preprocessed in order for the vec-
torization task to be successful. Presently, two common forms of preprocessing
are discussed, namely binarization and text/graphic segmentation.

2.1.1 Binarization

Depending on the format and origin of the elevation drawing to be analysed,
binarization (the process of converting a grey scale image to black and white),
may or may not be required. In elevation drawings, the primary need for
binarization is to remove unnecessary background information, such as paper
texture, in order to reduce the complexity of the subsequent representation
and classification. In many images, the black drawing ink bleeds in the paper,
causing shades of grey to dilate around the intended line, while in others, the
paper contained some wrinkles which are evident in the scanned version. Each
of these occurrences result in an image having multiple grey values and thus
require binarization.

In a recent comparative evaluation [6], 22 binarization algorithms were as-
sessed for their performance (both in terms of quality and computation time)
at binarizing a set of 60 images that characterize elevation drawings from the
Historic American Building Survey [1]. In this study, clustering-based meth-
ods, which cluster the gray level samples into two groups as either foreground
or background data, or alternatively by modeling the image as a mixture of
two Gaussian distributions, were found to be most successful. Specifically, the
clustering-based algorithms by Brink [7], Otsu [38], Ridler and Calvard [41],
and Yanni and Horne [58], were found to have an accuracy exceeding 90%,
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and to perform statistically significantly better than the other evaluated algo-
rithms.

2.1.2 Text/Graphic Segmentation

Frequently elevation drawings contain textual annotations embedded in the
drawing that describes attributes of the building, such as its construction ma-
terials, dimensions, name or function of the element, or notes from the artist.
Although this textual layer can provide an additional source of semantic infor-
mation, it also interferes with the process of recognizing the lines and building
elements, as the problem of recognizing curvilinear text is computationally
complex.

The process of segmenting text and graphics aims to separate the image into
two layers that exclusively contain either the textual characters and annota-
tions, or the graphical objects. Most authors perform this task early in the
classification pipeline using image processing techniques, while the image is
still in a raster format. A variety of methods have been presented to address
this problem, and can be divided into three basic classes [52]:

• Locating linear shapes (assuming them to be graphics) using directional
morphological filtering and removing all remaining curvilinear shapes (as-
suming them to be text),

• Locating and maintaining only lines based on the image’s distance transform
or vectorized representation, and

• Filtering the connected components through a set of rules to determine
them to be graphics or text.

The latter class, introduced by Fletcher and Kasturi [20] and later improved
by the LORIA group [52], has been the predominately selected approach for
segmenting text and graphics in line drawings. Pragmatically, this class anal-
yses the size and shape of the connected components in the image and groups
the characters into strings using a Hough transform. The size and location of
the strings’ bounding boxes may be manually corrected and stored for sub-
sequent character recognition. The remaining graphics layer is then further
segmented using morphological filtering according to the detection of thin
and thick lines, and the text is then iteratively eliminated from the resulting
image of the graphics layer.

Methods in this class are well suited to the problem of segmenting text in
technical and elevation drawings, as they scale well for processing many com-
plex images, and are applied to raster-based images prior to vectorization,
thereby reducing unnecessary subsequent computations [17,49,52]. However,
they are less successful at separating text that contacts the graphical infor-
mation (e.g. a string of characters placed atop a line), and therefore require
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Fig. 2. Text that needs to be seg-
mented from the graphics

Fig. 3. Overlapping text/graphics
that requires post-processing after
segmentation

that post-processing be performed using a localized interpolation algorithm to
rejoin any lines that were disconnected during segmentation. Fig. 2 provides
an example of a textual annotation that indicates the construction material
of the building element that will be easily removed prior to vectorization, and
Fig. 3 gives an example that requires that post-processing be performed due
to the overlapping text and graphics.

3 Line and Arc Interpretation

Once the document has been preprocessed through binarization and text/graphics
segmentation, the next step in the representation phase, which aim to accu-
rately represent the line and arc information, can follow. Existing representa-
tion methods can largely be classified into two paradigms: vectorization-based
methods and direct-recognition methods. The former first converts the sym-
bols into raw/low-level vectors and uses a vector-based recognition algorithm
to represent them, while the latter attempts to conduct the recognition by
operating directly on the raster image. This section discusses each of these
paradigms and outlines their shortcomings.

3.1 Vectorization

Vectorization techniques have been proposed and developed for converting
many types of line drawings, such as mechanical CAD drawings, schematic
diagrams, line-and-box diagrams, and lines extracted using an edge detec-
tor [3,9,36,37]. These techniques are approximately divided into three classes:
skeleton-based; matching opposite contours; and mesh-based. The following
subsections outline each approach and discusses their strengths and weak-
nesses.
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3.1.1 Skeleton-Based Methods

Skeleton-based approaches function by computing the medial axis, or topo-
logical skeleton, of a binary image by reducing the foreground image to a
skeletal remnant that preserves the topology and connectivity of the original
image, and discarding the majority of its foreground pixels. Within this class
of methods, two well known paradigms can be defined, both of which require
that the set of pixels constituting the drawing’s medial axes be linked after
skeletonisation, which is commonly performed using the algorithm described
in [49].

The first skeletonisation paradigm iteratively thins the pixel data by convert-
ing some pixels from black to white, while maintaining the image’s topological
and morphological properties until only unit-wide lines exist [14]. The space
complexity of these approaches is minimal, as only a few lines are buffered
in memory at any time, making it scalable for processing a large number of
complex drawings. However, as its iterative nature requires multiple passes
of the image, the substantial time complexity reduces the method’s ability to
process large, complex image sets [49].

The second paradigm computes a skeleton of the image by preserving only
those black pixels which constitute the centers of the maximal discs, while
maintaining the connectivity of the original image [49]. The maximal discs are
determined by calculating a distance transform for the pixel data in just two
passes, resulting in a lesser time complexity than the previous skeletonisation
paradigm. However, the space complexity of this approach limits its scalability,
as it is difficult to compute a distance transform without maintaining the
entire image in memory. This method has been applied in numerous studies
for vectorizing line drawings (e.g. [2,3,9,49]) that frequently use the chamfer
distance to approximate the Euclidean distance of the pixel data, following
from Di Baja’s [14] skeletonisation algorithm.

Each of these skeletonisation paradigms may be used to vectorize line draw-
ings, although for the specific problem of architectural elevation drawings,
the latter method of calculating the skeleton from the ridge of maximal disc
centres is generally preferred. One factor influencing its popular usage is that
the space complexity is only problematic when extremely large images are
analysed, and the system’s memory capacity is exceeded. To address this lim-
itation, several methods have been presented to split up the image into square
tiles, allowing the skeleton to be computed for each tile, after which the tiles
can be merged together again [17,55]. However, both skeletonisation methods
are very sensitive to noise, resulting in the false detection of “noisy” edges,
and the frequent misplacement of the junction points of two lines. Because
of the high level of geometric accuracy in elevation drawings, it is impera-
tive that junction points be placed as accurately as possible, a requirement
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which spurred the introduction of techniques that match opposite contours to
address this problem.

3.1.2 Matching Opposite Contours

Vectorization methods based on matching opposite contours generally function
in four steps [19,40,49]: detecting line contours in a drawing; polygonally ap-
proximating the lines; matching corresponding contours based on their slope
and distance transforms; and computing the medial axis from the pairs of
matched contours. The basic principle is to operate directly on the image’s
contours, rather than on the medial axis as skeleton-based methods do. During
the labeling of connected components, the contours can be extracted and ori-
ented to maintain the side of the contour on which the shape is located. Next,
the contours are approximated with polygons, and the opposite segments of
the same contour are matched together. The junction points of two lines are
then calculated wherever two matched contours intersect an adjacent segment,
thereby providing these approaches with more accurate junction placement
than skeleton-based methods. Finally, the medial axis of the image is located
by maintaining only the unit wide string of connected pixels located halfway
between the matched opposite contours and using these lines to construct the
vectorized image.

Compared with skeleton-based methods, contour-matching methods are more
accurate at correctly assigning junction points and are less sensitive to noise [50].
However, in analysing complex drawings, contour-matching methods often
have difficulty in resolving cases where several hypotheses may represent a
given contour (e.g. in approximating arcs with multiple polygons), and re-
quire additional guidance by heuristics [29]. This class of methods work well
on vectorizing straight lines, as well as thick lines, both of which are common
in elevation drawings. However, contour matching methods often fail when
attempting to match complex structures and require an extensive amount of
computation without necessarily generating accurate results [49].

3.1.3 Mesh-Based Methods

The mesh-based or subsampling method was first introduced by Lin et. al [28],
with numerous improvements made in [11,15,54]. These methods work by di-
viding the image into a number of n × n pixel meshes, with a value for n
chosen such that each mesh should intersect with no more than one line. The
difficulty in choosing a value for n is that it must be selected a priori, which
requires it to be assigned either manually via a parameter, or through iterative
attempts to automatically assign its value, both of which restrict the ability
for automation with a cost of increased computation time.
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Fig. 4. 48 characteristic meshes used by mesh-based methods (reproduced from [54]).

The basic idea of mesh-based methods is to examine only the intersections of
the sides of each mesh with other lines in the binary image, and using these
observations to hypothesize the local line configurations [54]. The hypotheses
are made by comparing each mesh with a set of 48 characteristic meshes (Fig-
ure 4, reproduced from [54]), and using a set of structural rules to extract a
line vector based on the matched characteristic mesh. If a given mesh is un-
matched with a characteristic mesh, it is recursively decomposed by extracting
simple lines of black pixels from the mesh and attempting to match the newly
formed mesh of extracted pixels until the original mesh is represented by a
set of characteristic meshes. The medial axis of the extracted lines is then
found by tracing along the known direction of the lines. An example of an
image matched with a characteristic mesh is shown in Figure 5, where the
perpendicular junction of two lines in the bottom left mesh is matched with
characteristic mesh (25).

The granularity of these methods is based on the assigned mesh size, which
typically results in a coarse vectorization of the image. In order to locate the
lines and junctions with sufficient precision, several automated post-processing
corrections are made to the coarse vectors to remove small barbs from the
lines, merge together small line segments, and to merge several meshes (e.g.
merging characteristic meshes (17), (18), (19), and (20) to create an area of
solid colouring).
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(25)

Fig. 5. Example image matched with a characteristic mesh

As with the other classes of vectorization methods, there are several strengths
and shortcomings of the mesh-based methods. These methods work well at
correctly positioning line edges with minimal displacement and are computa-
tionally efficient, as not all of the pixels are considered, merely those at the
edges of the mesh. However, this efficiency also causes mesh-base methods to
omit many small details (e.g. lines not accurately represented by a charac-
teristic mesh) and to doubly detect a single edge in some cases (e.g. a thick
line spanning multiple meshes). Further, in cases where a given mesh is not
matched with one of the characteristic meshes, the accuracy of the resulting
vector is reduced, as decomposing a complex mesh into a set of characteristic
meshes struggles when irregular and oblique lines are encountered. The re-
quirement of selecting an optimal mesh size is another shortcoming, as using
an n value which is too small results in excessive computation, double detec-
tions of a single edge and overly complex lines, whereas selecting too large of
an n value causes many meshes to be unclassified and small details to be omit-
ted. Although these methods are suitable for vectorizing elevation drawings of
simple linear buildings, they are not well suited for processing drawings with
more detailed areas such as column capitals, fan lights and arched windows,
or oblique lines, such as roofs and stone foundations.

3.2 Direct-Recognition Methods

Unlike vectorization-based methods, direct-recognition methods operate di-
rectly on the pixel level to recognize symbols from the raster image. These
techniques are divided into three classes: pixel tracking; Hough transform;
and region detection.
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3.2.1 Pixel Tracking Methods

Pixel tracking methods were first introduced in [26] and are capable of rec-
ognizing both straight lines and arcs. Recognizing a straight line begins by
locating two neighbouring foreground pixels in the image, and using this lo-
cation and a few of its surrounding pixels to construct the narrowest strip
of foreground pixels. Tracking then extends within this strip until no further
four-connected pixels can be found within the strip. To recognize an arc, at
least two connected straight lines must first be found in order to suggest the
presence of an arc. Next, lines connecting each pair of inner and outer pixels
are generated, and the intersections of these lines’ bisectors are used to con-
struct a centre polygon. Using this, if the original two straight lines are found
to conform to the centre polygon, the arc may be extended [47].

The advantages of these methods are that both lines and arcs can be detected
across line intersections, and that they are less sensitive to noise than other
direct-recognition and vectorization-based methods. However, their success
rests largely on the correct prediction of the initial direction of the strip,
which cannot be ensured [47]. Additionally, these methods do not maintain
line thickness.

3.2.2 Hough Transform Methods

Similar to pixel tracking, Hough transform-based methods are capable of di-
rectly recognizing both lines and arcs in raster images. Assessment of the
entire image is computationally expensive, both in terms of time and spatial
complexity, and to reduce this complexity, methods in this class select a subset
of pixels (e.g. edge or connected points), called feature points, on which the
transform is performed. The central advantage of these methods is their abil-
ity to easily and accurately recognize shapes in a noisy document. However,
even though not all pixels are considered, calculating the Hough transform
of just the feature points still requires a substantial amount computations to
be performed, which often makes this class of methods too time consuming
to be considered for symbol recognition in large documents. Again, as with
pixel tracking methods, Hough transform-based methods have difficulty in
recognizing line thickness [47].

3.2.3 Region-Based Methods

In [10], region-based methods were first proposed as an alternate means of
directly recognizing straight lines in raster images using a maximal inscrib-
ing circle (MIC). This method follows the observation that, for a given line
segment, the diameter of a MIC that inscribes the line, has a direction that
is perpendicular to the line’s orientation, provided that it has an absence of
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noise in the continuous domain. The diameter of the MIC has two end points
that are both edge pixels, which are indicative of the line’s width, and thus
the perpendicular of the diameter is hypothesized as being the orientation
of the inscribed line. The diameter also provides the initial direction for the
region test, wherein the testing region is comprised of all line segments origi-
nating from a pixel on the diameter and ending at the first encountered edge
pixel. The approach then uses the region encountered at these edge pixels as a
testing area, and iteratively tests these regions until the area currently being
tested is not larger than the previous region. When the exit condition has
been met, the final straight line is identified as the last region to have been
tested [10,47].

The advantages of these methods are that distortions at junctions are minimal,
and that line thickness is preserved. However, region-based methods fail to
directly recognize arcs and dashed lines, and frequently misrecognize incorrect
segments. Further, the iterative tests are computationally expensive, and the
methods perform poorly in noisy environments and when handling complex
intersections.

3.3 Quality of Representation

It has been long established that all vectorization-based methods have prob-
lems with handling junctions, and that none of the existing methods pro-
vide a perfect solution [49]. For instance, skeletonisation generates distortions,
contour-matching often fails to pair matching contours in complex situations,
while mesh-based methods struggle with oblique junctions and fine-grained
details. The shortcomings of each of these methods can be attributed to their
being driven by local data, where the vectors are yielded solely by the analysis
of a local pixel area, which results in an interpretation that does not match
that of the draftsperson. Further, since geometric constraints are not typically
considered until the post-processing of the vectors, the distorted symbol rep-
resentations created during vectorization are often of inconsistent orientation,
which offsets or transforms the final output from its ground truth form [47].

Direct-recognition methods on the other hand, employ geometric knowledge
directly during the pixel-level analysis and can better handle junctions and
instances of touching or overlapping regions. Additionally, they are global
data-driven methods, in that the final parameters are assigned with respect to
the global feature, and thus can often provide less ambiguous representations.
With the exception of the Hough transform-based methods, direct-recognition
is generally more time efficient than vectorization, because as the the repre-
sentation task progresses, pixels are erased once they have been represented,
thereby simplifying the raster data. Although lines and arcs can be recog-
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nized well, these methods cannot be applied to non-selfsimilar curves or arcs
with very large or very small radii, both of which cases are better handled by
vectorization-based methods. Additionally, direct-recognition methods leave
short or thin lines unrecognized, which vectorization-based methods are capa-
ble of recognizing, provided that the short line segments are not perceived as
noise.

3.4 Data Structures for Symbols

Once the information contained in a document has been described, either
through vectorization or direct-recognition, the next challenge is to insert
the structural description into a searchable data structure. Graphs in myriad
forms have long been established as suitable data structures for representing
structural descriptions [12], and are particularly common in representations
of documents that primarily consist of straight lines.

Attributed relational graphs (ARGs) are among the most widely employed
data structures for this task [13,39], where the nodes and edges in an ARG
respectively describe the junctions and chain of connected points linking to-
gether two junction points [48]. This data structure represents a symbol as a
set of geometric features and the spatial relations between them using rela-
tional attributes. Region adjacency graphs (RAGs), are an alternative data
structure that are capable of capturing a significant amount of information,
provided that the segmentation method used in the representation phase has
divided the document into homogeneous regions [30]. If an accurate segmen-
tation cannot be ensured (as is often the case in line drawings where a given
line may belong to multiple regions), a RAG can be constructed where the
attributes of the nodes describe the easily extracted features (e.g. lines, arc,
etc.), and the edges describe the topological and geometric relations between
the nodes [51].

4 Classification Phase

Following the representation phase, symbol classification may be performed,
wherein unknown candidate symbols are classified as belonging to a prede-
fined type or class of symbols. In this section, two classes of approaches are
discussed, namely structural-based methods, which include template match-
ing, graph matching, graph grammars, deformable template matching, and
Hidden Markov Models, and statistical-based methods, including plain binary
image, geometric features, and moment invariants, as well as methods to di-
vide the feature space, including artificial neural networks, decision trees, and
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similarity-based methods.

4.1 Structural-Based Classification

Template matching was among the earliest efforts in symbol recognition, and
is a technique that is still applied for classifying candidate symbols when there
is limited variability in the possible attributes (e.g. size, orientation, etc.) of
a symbol. The primary limitation of template matching is that the accurate
classification of symbols is largely scale and rotation dependent, such that the
computational complexity may become prohibitive if many transformations
must be computed and similarly evaluated. Additionally, the intrinsic nature
of exact matching poorly handle instances where the symbols are touching or
are occluded by lines or other symbols, as they are less flexible at recognizing
distorted or inexact representations.

Graph matching techniques are more applicable to the classification of symbols
in line drawings, or any document that contain noise or variable symbol shapes,
orientations, scales, etc.. Methods in this class commonly use techniques such
as isomorphism and graph-subgraph isomorphism for classifying candidate
symbols that have been previously described with graphs during the represen-
tation phase. As the linear nature of line drawings is well suited for vector-
or graph-based representations, graph matching techniques are an often em-
ployed technique for classification of symbols in these documents [12]. Inexact
symbols are common to this type of document due to the document noise and
variability of hand-drawn symbols, both of which may have been exacerbated
during digitization and in the previous phases. To aid in the matching process,
distance-based methods [28] are commonly employed to evaluate the distance,
or alternatively, the similarity, between a candidate symbol and prototype.
Error-correcting isomorphism (the minimum cost of transformations required
to distort a candidate symbol to the prototype symbol), is one such distance
that may be used to compute a distance value [33,34]. These transformations,
or edit operations, include the insertion, deletion and substitution of both
vertices and edges [31], with each operation having been previously assigned
a cost. Using the set of operations and their associated costs, the algorithm
operates by finding the sequence of transformations that minimize the cost of
distorting the prototype graph to match the candidate graph. The Hausdorff
distance is an alternative metric that has been shown to be robust in noisy
documents and effective for computing the distance between a candidate sym-
bol and prototype [27,39,46]. However, the computational complexity of the
Hausdorff distance is substantial, as it requires a complete search for matching,
and also has limitations in large geometrical transformations [39].

Although inexact graph matching techniques are generally better suited for
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recognizing symbols in line drawings than exact template matching techniques,
their larger time and spatial complexity is a significant limitation. However,
by clearly defining the prototypes in an efficiently searchable data structure,
the time complexity can be greatly reduced, although the spatial complexity
of maintaining many prototypes may remain prohibitive.

Methods using formal grammars, specifically graph grammars, are another
class of structural approaches that attempt to classify previously described
vectorial or graph-based candidate symbols [25,32,44]. These methods use a
grammar consisting of production rules, terminals, non-terminals, and a start
symbol to represent all valid forms that a symbol may take. The classifica-
tion phase for a candidate symbol consists of parsing the symbol’s vectorial or
graph-based model to determine if it can be generated by a prototypical gram-
mar. To perform inexact matching, various types of error-correcting parsers
have been introduced [22]. Grammar-based methods are best suited to classi-
fication tasks where the symbols generally follow a standardized notation and
thus can be unambiguously specified by a grammar [32].

Another prominent type of structural approaches are those which use de-
formable template matching [23,53] in an attempt to classify a candidate
symbol by finding a deformation of a symbol prototype that closely matches
it. The classification is conducted by minimizing an energy function that is
composed of an internal energy that measures the degree of deformation of
the prototype, and an external energy that measures the degree of similarity
between the deformed prototype and the candidate symbol. These approaches
are known to be efficient at classifying symbols in hand-drawn images [4],
although a shortcoming is that the scalability is not guaranteed when the
number of prototypes increases.

Hidden Markov Models (HMMs) are another set of structural methods, wherein
each symbol’s structure is represented by a sequence of states which, when
combined, generate the image. Generally, the problem of classifying a candi-
date symbol involves discovering the sequence of discrete states that have the
highest probability of generating the symbol. HMMs have the advantage of
being able to support numerous features to represent symbols, to segment the
symbols, and to classify distorted symbols [30].

4.2 Statistical-Based Classification

Whereas structural approaches typically operate on vector-based representa-
tions of a symbol previously decomposed into vectorial primitives, with statis-
tical approaches, the primitives are usually represented by an n-dimensional
feature vector [32]. For these approaches, classification is performed by di-
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viding the feature space into distinct classes, such that each symbol belongs
to a unique class. The first step is to define the statistical descriptors with
respect to the properties of the symbols to be classified. The primary goals
of this step are to minimize the within-class distance of related symbols, and
to maximize the distance between disjoint symbol classes. The remainder of
this section briefly discusses the three major groups of statistical descriptors:
plain binary image, geometric features, moment invariants, shape context, and
image transformations, as well as three methods for partitioning the feature
space: artificial neural networks, decision trees, and similarity-based methods.

The most basic statistical descriptor is the plain binary image, in which each
pixel in the image constitutes a single feature in the feature vector [45]. The
main advantages of these descriptors is the low complexity of the feature
space, which also maps directly to the visual image. However, they are nei-
ther rotation- nor scale-invariant and are very sensitive to distortion and
noise [32,57]. Methods using geometric features such as area, holes and in-
tersections, have feature space dimensions that are much smaller than those
of the plain binary image descriptor. A difficulty of using these descriptors is
in making the correct selection of geometric features that are appropriate for
the document type, as this is crucial for discrimination of symbols with affine
transformation invariance. A third group of statistical descriptors that have
been applied to symbol classification problems are moment invariants [21,35],
which offer the advantages of being scale- and rotation-invariant and easily
computed. However, this descriptors in this group have the disadvantage of
being unable to profile the symbol’s structure in detail [57].

Once a set of descriptors has has been selected, the second phase of classifica-
tion involves the selection of a method to partition the features space and to
classify the feature vectors to a predefined symbol class [32]. The task of parti-
tioning the features space is usually performed using artificial neural networks
(ANNs), decision trees, or similarity-based methods.

Artificial neural networks have been applied to classification tasks in numer-
ous problem domains with good results [5]. With these methods, learning is
performed automatically via a training set of feature vectors, for which the
ANN attempts to learn the optimal parameters to the network for classifica-
tion. This learning ability is a central advantage of ANNs, as it allows them to
adapt to the properties of the training set, thereby enabling greater flexibility
for future classification.

Decision trees, such as the C4.5 classifier, are also capable of performing sym-
bol classification, where each tree node represents a specific condition about
the value of a particular feature in the feature vector [32]. With decision trees,
classification is performed by recursively traversing the tree in accordance to
the results of each node’s condition test on the input symbol. Once a leaf node
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has been reached, the traversal halts and the candidate symbol is classified as
an instance of that leaf node.

Similarity-based methods are the most basic method to partition the feature
space and, similar to structural graph-matching techniques, involve defining a
distance function over the feature vectors. The function is then used to classify
each candidate symbol’s feature vector as belonging to the symbol class having
the nearest prototype. A related partitioning method involves using the k-
nearest neighbours, wherein several prototypes of each class are selected, and
for each candidate symbol, a set of the k-nearest prototypes is constructed.
From these, classification is performed by assigning the candidate symbol to
the class having the most representatives in the set of k-nearest prototypes.

5 Conclusion

This article has presented a survey of symbol recognition approaches for clas-
sification of architectural elements in elevation drawings by dividing the prob-
lem into two phases: representation and classification. Given that each sur-
veyed vectorization-based and direct-recognition approach comes with its own
strengths and limitations, one of the most promising approaches to the repre-
sentation phase involves the construction of a stable and efficient combination
of vectorization-based and direct-recognition methods that emphasizes the
strengths of each and mitigates their weaknesses. For example, such an ap-
proach may first apply a direct-recognition technique such as pixel-tracking
to represent straight lines, arcs and circles, and erasing them after recogni-
tion. Next, a vectorization-based technique such as skeletonisation could be
applied to represent the remaining curves, short/thin lines and small arcs. Sev-
eral advantages of this combined approach may be noted, including improved
computational efficiency due to the erasure of recognized segments, as well as
the more accurate placement of junction points from their direct-recognition.

Regardless of the vectorization method that is selected, a certain amount of
post-processing is required to improve the accuracy of approximating arcs and
correct X, L, T, and Y shaped junction points, and to simplify the number
of nodes in the lines. These post-processing techniques have been consciously
omitted from the scope of this article, as they alone constitute a significant
literature review. Future research may conduct a comparison of methods to
correct junction points (e.g. [24]), simplify lines (e.g. [18]), and approximate
arcs (e.g. [15,16,42]). Finally, numerous data structures have been proposed
for storing the symbol prototypes, such as ontologies, databases, hierarchies,
etc., and it too merits the attention of a full comparative article in future
work.
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