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Abstract
We present a novel cognitive architecture built from realistic 
spiking  neurons  that  exhibits  basic  production  system 
capabilities.  It uses Holographic Reduced Representations to 
encode  structured  information  and  the  Neural  Engineering 
Framework  to  create  detailed  neuro-biologically  plausible 
networks  of  spiking  neurons  for  storing  and  manipulating 
these representations.  We demonstrate this system's abilities 
to  encode  IF-THEN  rules  and  manipulate  its  own 
representations in response to the current state.  This leads to 
predictions about the sorts of rules that would be difficult for 
neurons  to  encode,  and  the  maximum  complexity  of  such 
rules.   Our  system   bridges  the  gap  between  high-level 
cognitive  architectures  (including  ACT-R)  and  modern 
neuroscience research, allowing details such as the numbers, 
types, and connections of neurons to be related to cognitive 
behaviour.

Keywords: neural  production  systems;  neural  engineering 
framework;  holographic  reduced  representations;  ACT-R; 
cognitive architectures; compositionality

Introduction
Human cognition requires  representation and combination 
of concepts, and the manipulation of these concepts.  These 
representations must also allow for internal structuring, so 
that  “dog chases  cat”  is  different  from “cat  chases  dog”. 
Furthermore, cognition entails modifying, recognizing, and 
acting on the basis of these structures.  Exactly how such 
compositionality  can  occur  is  a  fundamental  question  for 
cognitive  science.   Aspects  of  this  process  have  been 
identified as challenges that must be met by any theory of 
human cognition (e.g. Jackendoff, 2002).

Cognitive  theories  approach  this  problem  in  different 
ways.  Some, such as ACT-R (Anderson & Lebiere, 1998), 
simply posit that such symbolic manipulation and storage is 
possible,  and  build  up  the  architecture  from  there. 
However,  models  are  starting  to  be  developed  which 
describe  how symbolic  representations  can be  built  using 
neurons.   Both  LISA  (Hummel  &  Holyoak,  2003)  and 
Neural  Blackboard  Architectures  (van  der  Velde  &  de 
Kamps, 2006) can form such structures, although neither is 
used to manipulate such structures to perform cognition.

Neural Modelling Rationale
Before describing our model, it is important to justify the 

creation of such a model.  Many cognitive scientists have 
noted that neurons are at the wrong level of description for 
cognitive behaviour (e.g. Pylyshyn, 1984).  Even the models 
that  are “neurally inspired” generally use highly idealized 
neurons,  avoiding  the  issues  of  how  a  series  of  voltage 
spikes can represent a given value, how to deal with random 

firing noise, the effects of different neurotransmitters, and 
the  hundreds  of  different  types  of  neurons  in  the  human 
brain.   Furthermore,  if  a  neural  level  of  description  is 
desired, then it is unclear as to whether we should require a 
molecular, atomic, or quantum level of description.  Below 
a certain level, there may be no advantage to going deeper, 
as  the  lower  level  implementation  does  not  significantly 
affect the upper level behaviour.

We believe  that  the neural  level  should be included in 
cognitive science theories.  Thanks to modern neuroscience 
advances, the neural level is one that we know a great deal 
about.  The major processes involved in neuron behaviour 
and  their  responses  to  a  wide  range  of  stimuli  are 
significantly more understood than any other level of brain 
phenomena.  Furthermore, there is a large body of evidence 
as  to  the  effects  of  various  influences  (neurotransmitters, 
alcohol,  nicotine,  etc.)  both on neurons and on high-level 
overt behaviour.  Theories of cognition that bridge this gap 
can be tested on the basis of this sort of evidence.

We also believe that neural-level effects do trickle up to 
the higher levels in useful an interesting ways.  The effects 
of  approximations  and  variability  due  to  neural 
implementation  may  be  empirically  detectable  in  overt 
behaviour.   A  neural  cognitive  theory  will  perform 
differently  from  a  purely  symbolic  model,  and  these 
differences can inform our understanding of cognition.

Our Modelling Approach
The goal of our research is a realistic neural model of high-
level cognitive behaviour.  This is the sort of behaviour that 
is traditionally modelled using symbolic approaches such as 
ACT-R.   We  have  developed  a  model  that  uses  spiking 
neurons, connected in a plausible manner, that is capable of 
performing  basic  cognitive  tasks.  Furthermore,  while  its 
overt  behaviour  is  similar  to  that  of  a  purely  symbolic 
model,  it  differs  in  important  ways.  For  example, 
performance degrades as structures become more complex.

This  neural  cognitive  architecture  makes  use  of  two 
separate  areas  of  research.   First,  we  use  Holographic 
Reduced  Representations  (HRRs;  Plate,  2003)  for  storing 
and manipulating structured representations.    Importantly, 
this  allows  us  to  represent  atomic  concepts,  structures  of 
concepts,  and manipulations  of  those  structures  using  the 
same representational form: a simple vector of numbers.

The  second  area  used  is  the  Neural  Engineering 
Framework  (NEF;  Eliasmith  &  Anderson,  2003).   This 
describes  how  groups  of  neurons  can  represent  and 
transform  numerical  values  in  a  robust  manner  that  is 
plausible given current neuroscientific evidence. It includes 
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details  handling  different  types  of  neurons,  the  various 
neurotransmitters, connectivity issues, and firing patterns.

From these, we have developed a basic neural production 
system.  Our system can follow a set of rules (productions), 
where each rule contains a condition in which it should be 
applied and an action to perform.  For example, a rule might 
state “if dog chase cat, then scold dog” or “if asked three 
plus four, then say seven”.  These sorts of rules are the basis 
of symbolic cognitive architectures, and have been widely 
successful in modelling aspects of human cognition.   They 
are able to detect complex situations, manipulate symbols to 
determine a response, and generate that response.

In this paper, we describe our system and present some 
preliminary  results.   The  similarities  and  differences 
between our system and ACT-R are provided.  We further 
highlight  the  advantages  that  a  neural  cognitive  model 
provides,  including aspects  of  the  neural  level  that  affect 
understanding of high-level behaviour (and vice-versa).

Holographic Reduced Representations
A  Vector  Symbolic  Architecture  (VSA)  is  a  method  for 
using a distributed representation to encode structure (see 
Gayler, 2003 for an overview).  In this work, we use a VSA 
known  as  Holographic  Reduced  Representations  (HRRs), 
developed by Plate (1995).  Information is represented as a 
vector in a high-dimensional space (usually more than 100 
dimensions).   For  example,  the  symbol  cat might  be 
represented  by  the  vector  [-0.3,0,0.4,-0.6,0.6].   For  our 
work,  the representations for  all  such atomic symbols  are 
chosen randomly from a high-dimensional unit sphere.

The important feature of HRRs is that representations can 
be combined to form a new value that is also a vector in the 
same number of dimensions.  That is, if a neural structure is 
capable  of  storing  a  simple,  atomic  HRR,  it  can  also 
represent  combinations  of  HRRs.   Importantly,  these 
combined representations can later be decomposed into their 
original  constituents.   For  example,  an  HRR representing 
“dogs chase cats” might calculated as follows:

dogssubject + chaseverb + catsobject        (1)

Each of the elements in this equation (dogs, subject, etc.) are 
atomic  HRRs  (defined  as  per  the  previous  paragraph  as 
random  unit  vectors).  The  +  sign  represents  standard 
numerical addition.  The  sign indicates a more complex 
process, cyclic convolution.  For C=AB, this is defined as:

c j=∑
k =0

N −1

ak b j−k mod N      (2)

The key feature that makes HRRs (and VSAs in general) 
useful  for  representing  structure  is  that  the  cyclic 
convolution  can  be  inverted.   That  is,  given  a  structured 
HRR such as  that  in  (1),  we can extract  out  the original 
atomic symbols that formed it.  For example, if we want to 
know what the subject is, we perform a cyclic convolution 
between (1) and the  inverse of the HRR for  subject.  The 
inverse is formed by rearranging the original values:

a0, a N−1 , aN−2 ,... , a1      (3)

Writing the inverse of A as AT, in general BAAT≈B. 
After  cyclic  convolution,  the  resulting  value  will  be  an 
approximation of the original value that was combined with 
subject; in this case, dogs.  This makes HRRs a lossy form 
of representation, so we cannot pack an infinite amount of 
information into a single HRR.  Plate (1995) showed that 
the  storage  capacity  increases  exponentially  with  more 
dimensions.

For HRRs, similarity is defined as the cosine of the angle 
between  the  two values (equivalently,  the normalized  dot 
product).  This means that A+B is similar to both A and B, 
while AB is not similar to either A or B.    This will be 
important for using HRRs to build production systems.

Production systems
Since  HRRs  (and  other  VSAs)  exhibit  compositionality, 
they could be used to implement systems similar to standard 
symbolic production systems.  This requires a representation 
of  the  current  state  and  a  set  of  IF-THEN  rules  which 
identify what to do in different states.  The current state is 
normally  represented  as  a  set  of  slot/value  pairs.   For 
example, if the model is in the process of counting and is 
currently at the value three, the current state might have the 
value  counting in the slot  mode and the value  three in the 
slot value.  This would be represented in an HRR as:

modecounting + valuethree        (4)

In some production systems (such as ACT-R), the state is 
divided  into  multiple  buffers.   In  an  HRR,  these  can  be 
represented by nesting the representations.  For example, if, 
while counting, the model is also looking at a picture of a 
cat, the visual buffer would hold this information while the 
goal buffer holds the information about counting.
goal(modecounting+valuethree)+visual(isapicture+valuecat)     (5)

Given these state representations, an IF-THEN rule could 
then indicate that if the  mode is  counting and the  value is 
three,  then  we  should  change  the  value to  four.   The  IF 
portion of this production rule would be defined by 

goal(modecounting+valuethree)        (6)

We can determine whether the rule applies to the current 
state by measuring the similarity between this value and the 
current state.  Since the state (5) is the same as the rule's IF 
pattern (6) plus the extraneous extra values from the visual 
buffer,  these  will  be  similar  (i.e.  have  a  dot  product 
significantly above zero), indicating the rule can be applied.

To apply a rule, we need a representation of the THEN 
portion.  Since this is meant to be an action to be performed, 
this  can  be  represented  by  an  HRR  value  that  is  to  be 
combined via cyclic convolution with the current state.  For 
example, to output four given that the current counting value 
is three, the THEN portion of the above rule could be:

fourthreeT        (7)

When combined with the current state given in (5), we get 
a value that is approximately the following:

goalvaluefour        (8)
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More complex production rules (both in terms of the IF 
and THEN portions) are discussed later.  The accuracy of 
such  a  system,  in  terms  of  the  amount  of  extraneous 
information that can be successfully ignored and the amount 
of nesting that can occur, can be increased by using more 
dimensions.  The system is also similarly robust to random 
noise  being  added  onto  the  represented  value.   This  is 
important  when  using  realistic  neurons  to  implement  an 
HRR-based production system.

Neural Engineering Framework
The  Neural  Engineering  Framework  (NEF;  Eliasmith  & 
Anderson, 2003) provides a methodology for understanding 
how physical neurons represent and manipulate information. 
This is based on the idea that information is represented by 
neural groups and the connection weights between neural 
groups  can  be  seen  as  transformations of  these 
representations.   It  has  been  used  to  model  a  variety  of 
neural  systems, including the owl audition (Fischer  et  al., 
2007) and rodent navigation (Conklin & Eliasmith, 2005).

A neural  group is  a  set  of  neurons  with  a  realistically 
heterogeneous  range  of  neural  properties  (i.e.  maximum 
firing rates, refractory periods, neurotransmitters, etc.).  The 
pattern  of  firing  across  these  neurons  can  be  seen  as  a 
representation  of  a  particular  value.   For  example,  one 
particular  firing  pattern  might  represent  the  vector 
[-0.3,0,0.4,-0.6,0.6]  (used  in  the  previous  section  to 
represent  the  symbol  cat).   Importantly,  the  number  of 
dimensions in the vector is  not the same as the number of 
neurons in the neural group.  This is in contrast to standard 
neuron  representation  schemes  where  there  is  a  direct 
mapping between particular neuron firing rates and values 
in the vector being represented.

More  precisely,  we  can  define  a  mapping  from  a 
particular value we want to represent and the firing pattern 
for  each  neuron  in  the  neural  group.   This  is  done  by 
assigning  encoding vectors to each neuron.  This encoding 
vector  is  the  vector  for  which  the  neuron  will  fire  the 
strongest.   The  precise  details  of  this  mapping  will  vary 
depending on the type of neuron (and the degree of accuracy 
to  which the neuron is  being simulated).   In  general,  the 
activation a of a particular neuron i to represent a value x is:

a i=G i i  i⋅xJ i
bias       (9)

Here,  α is  the  neuron  gain  or  sensitivity,  is  the 
encoding or preferred direction vector,  and  Jbias is  a fixed 
input current to model background neural activity.   G is the 
response  function,  which  is  determined  by  what  sort  of 
neuron  is  being  modelled,  including  its  particular 
resistances, capacitances, maximum firing rate, and so on. 
In  our  work,  we use  the  response  function  for  the  leaky 
integrate-and-fire (LIF) model, which is widely used for its 
reasonable  trade-off  between  realism  and  computational 
requirements.  NEF can easily make use of more detailed 
models simply by changing this response function.

Using  this  approach,  we  can  directly  translate  from  a 
particular value that we want to represent (x) to the spike 

trains over time of each neuron in the group (ai).  The value 
being represented is distributed across all of the neurons.

Decoding Vectors
If we have the firing pattern for a neural group, we can also 
determine what value is currently being represented.  This is 
the reverse of the encoding process.  This is more complex 
than encoding, and in general it  is impossible to perfectly 
recover the original value from the firing pattern.  However, 
we can determine an optimal linear decoder .  This is a set 
of vectors  i (one for each neuron) which are multiplied 
by the activation level of each neuron to get a sum that is the 
best  possible  linear  approximation  of  the  original  value 
(Eliasmith & Anderson, 2003).
= −1 ; ij=∫ai a j dx ; j=∫a j x dx          (10)
Importantly, this formula gives an approximation that is 

highly  robust  to  random  variations  in  the  firing  rates  of 
neurons (and to neuron death).  The representations can thus 
be made as accurate as desired by increasing the number of 
neurons used, as shown in Figure 1.

Figure 1: Representational accuracy for varying numbers of 
neurons per neural group.  HRRs with 100, 200, and 400 
dimensions are shown, using default neural parameters.

Connecting Neural Groups
To make use of neural groups, we need to connect them so 
as to perform the desired manipulations of the values they 
are representing.  As with most neural models, interactions 
between neurons are via the synaptic connection weights.

The most  common way of  connecting neural  groups in 
NEF is  to  directly  calculate  what  the connection  weights 
should be.  This bypasses the question of how these weights 
would have developed over time.

The simplest case is a transformation that does nothing. 
That is, if we have two neural groups (A and B), and we set 
the  value  of  group A to  be  x,  we want  group B to  also 
represent  x.  This can be seen as the direct transmission of 
information from one location in the brain to another.  For 
this situation, the optimal connection weights between each 
neuron i in group A and each neuron j in group B are:

 ji= j  j⋅ i (11)
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If this  formula is  used to determine the strength of the 
synaptic connection between the neural groups, then group 
B will be driven to fire such that it represents the same value 
as group A.  As noted in the previous section, the accuracy 
of this representation will be dependent on the number of 
neurons in the groups.  Importantly, this system works even 
though none of the neurons in the two neural groups will 
have  exactly  the  same  encoding  vector  (and  thus  firing 
pattern).  That is, there will generally not be a one-to-one 
correspondence between any neurons in the groups.

We can also connect neural groups in such a way as to 
transform the value from A to B.  That is, we can set the 
synaptic  weights  so  that  B  represents  the  result  of  any 
desired function f(x).  This is done using the same formula 
as (11), but the direct decoding vector  i is replaced by 
a  specialized  one  determined  using  the  following 
modification of (10):

 j=∫a j f x dx     (12)
As  we  have  previously  shown  (Eliasmith,  2005),  this  is 
sufficient  for  implementing  accurate  circular  convolution, 
requiring only a single intermediate neural layer.  

Learning Transformations
Instead  of  specifying  the transformation function between 
two  neural  groups,  and  thus  manually  specifying  the 
synaptic  connection  weights,  we  can  also  have  these 
weights be learned.  Given a set of desired input activations 
(ai)  and  the  corresponding  output  activations  (bi),  the 
following learning rule can be used.

  ij=− ∑
i
 ij a i−∑

j
 ij b j      (13)

This  is  a  local,  Hebbian  learning  rule,  where  updating 
each  neuron's  synaptic  weights  only  requires  information 
that  is  available  to  that  neuron,  making  it  biologically 
plausible.  However, a precise biochemical mechanism for 
this sort of learning has not yet been identified.

Neurobiological Realism
An important feature of the Neural Engineering Framework 
is that the general approach continues to be applicable no 
matter how detailed the neural model is.  It can be applied to 
rate neurons, leaky integrate-and-fire neurons, adaptive LIF 
neurons,  and  even  the  highly  complex  compartmental 
models  that  require  supercomputers  to  simulate  the firing 
pattern of a single neuron.  This means that as we determine 
more accurate details of the particular neurons involved in a 
cognitive behaviour, we can add those constraints into the 
cognitive  model  without  disrupting  the  overall  system. 
Furthermore, simulations can first be done using a simplistic 
neural model requiring less computing power, and then once 
a suitable model is created a more detailed neural model can 
be used to generate precise predictions about firing patterns, 
representational accuracy, etc.

One  example  of  this  involves  the  synaptic  connection 
weights.  In general, the approach described above results in 
both positively and negatively weighted connections.  This 

is not consistent  with what is  found in real brains,  where 
positive (excitatory)  and negative (inhibitory)  weights use 
different  neurotransmitters  and different  types of neurons. 
However, Eliasmith and Anderson (2003, section 6.4) show 
an alternate approach to determining weights that separates 
excitatory and inhibitory connections.

A Neural Production System
While the NEF has been used successfully to create models 
of  complex perception activity,  our  current  work aims to 
apply  it  to  a  cognitive  domain.   This  is  an  extension  of 
previous  work  (Eliasmith,  2005)  where  state-based  rule 
following  behaviour  was  shown  using  NEF  and  HRRs. 
However, the state which identified the HRR transformation 
rule to apply was merely a single numerical value (1 or 0). 
In  full  production  systems,  the  current  state  which 
determines the rule to follow is much more complex.

Figure  2  depicts  the  core  organization  of  our  neural 
production  system.   One  neural  group  stores  the  current 
state.   This  is  used by the associative memory system to 
determine which production rule is to be used next.  To do 
this, we can train a network using the learning rule given in 
(13),  which  would  form  a  simple  associative  memory 
between particular states and the rule to be applied.

Once this rule is selected, it can be applied by performing 
a  cyclic  convolution  with  the  current  state.   This  allows 
rules  to  generalize  over  multiple  situations,  as  will  be 
demonstrated below.  The resulting value can be interpreted 
as  the  chosen  actions  to  perform (the  THEN part  of  the 
production  rule).   This  output  can  also  feed  back  to  the 
current state, allowing complex sequenced action.

Figure 2: The core of a neural production system.  Boxes 
represent neural groups and ovals represent calculations 

performed by synaptic connections between neural groups.

Simple Rule Following
To demonstrate the basic capabilities of this system, we can 
implement a model of simple addition.  This is based on the 
model in the ACT-R unit 1 tutorial,  where it  is presumed 
that  experts  at  addition can add numbers  directly without 
recourse to declarative memory to explicitly recall addition 
facts.   While  implementing  a  declarative  memory  system 
can be done with HRRs and NEF, this is not covered here.

Actions
(to rest of  brain)

Associative
Memory

Cyclic
Convolution

Current State Selected Rule

Output

 State Inf ormation
(f rom rest of  brain)

Feedback
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The  productions  in  this  system  are  shown  in  Table  1. 
They  can  be  implemented  by  training  the  associative 
memory using each pair.  This will cause the correct rule to 
be represented in the Selected Rule neural group, which will 
be convolved with the current state to produce an output. 
As many productions as desired can be added in this way.

Table 1: Production rules for expert addition.
IF THEN

stateadding+add1one+add2one twostateTaddingT

stateadding+add1one+add2two threestateTaddingT

stateadding+add1one+add2three fourstateTaddingT

stateadding+add1two+add2two fourstateTaddingT

stateadding+add1two+add2three fivestateTaddingT

With  this  associative  memory  defined,  if  the  state  is 
similar  to  stateadding+add1one+add2three,  then  the 
selected action will be  fourstateTaddingT.  This rule is then 
applied by convolving it with the current state.

(stateadding+add1one+add2three)(fourstateTaddingT)

Due to the nature of the   and + rules for VSAs, this is 
equivalent to the following value

four+(add1one+add2three)fourstateTaddingT

As a result, the output will be similar to the value for four. 
The system is thus capable of simple rule following.  The 
accuracy  of  this  rule  following will  be  dependent  on the 
complexity of the rule,  and the number of neurons in the 
representation, as shown in Figure 3.  This is a lower bound 
on accuracy; performance improvements are underway.

Figure 3: Accuracy of rule selection as the number of 
components in the rule is changed.

Production Rules With Variable Binding
Production systems do not generally have specific rules for 
every single possible state.   We often want to be able to 
have values in the output be based on current state values. 
This  is  referred  to  as  variable  binding in  ACT-R.   For 
example,  consider  a  production  system  for  scolding  any 
animal that chases any other animal.  If this is represented 
with states such as subjectdog+verbchases+objectcat, and 
we want an output such as scolddog, we would not want to 
have to add productions for each possible type of animal. 
Instead, we can just add the rule shown in Table 2.

Table 2: Production rule for scolding animals
IF THEN

verbchases scoldsubjectT

This will match any situation where an animal is chasing 
anything.  Since the THEN portion is convolved with the 
current state, this results in the following:

   (subjectdog+verbchases+objectcat)(scoldsubjectT)
    = scolddog+(verbchases+objectcat)(scoldsubjectT)
    ≈ scolddog

Iteration
Since the output value can be fed back to adjust the current 
state,  the  production  system  can  be  used  to  perform  a 
sequence of actions.  Given the following simple production 
rules and an initial state of one, the system will count from 
one to five.

Table 3: Production rules for counting.
IF THEN

numberone twooneT

numbertwo threetwoT

numberthree fourthreeT

numberfour fivefourT

Given to the temporal aspect of this example, it is worth 
observing  that  the  actual  behaviour  is  affected  by  the 
biochemical characteristics of the neurons.  If  the neurons 
use a neurotransmitter that leads to a quickly decaying post-
synaptic  current,  then  the  representations  will  change 
quickly, while longer lasting neurotransmitters will require 
significantly more time.  As our model is further developed, 
we believe these details will provide an explanation for the 
amount of time needed for a production to fire (generally 
assumed to be ~50msec regardless of rule complexity).

Slot Detection
The production rule examples thus far are based on a simple 
similarity  measure  between  the  state  and  some  particular 
value specified by the rule.  While this is straightforward to 
implement using the Hebbian synaptic connection weights 
given in (13), there are types of rules which cannot work in 
this way.  For example, in ACT-R, it is possible for a rule to 
indicate that it should only fire if a particular slot  exists in 
the current state, regardless of its value.

As  there  is  no  value  that  all  matching  states  will  be 
similar  to,  this  situation  cannot  be  identified  using  the 
associative  memory  system  described  above.   However, 
similar  functionality  can  be  achieved  by  adding  a  slot  
detection module to the system.  This is a separate set  of 
neural groups that can be controlled by the output in Figure 
2 and whose output affects the current state of the system. 
Using  a  variation  of  a  butterfly  cleanup  memory  (Singh, 
2005), this system can be instructed to inspect a particular 
slot and add detectedyes to the state if any valid value is in 
that slot (and detectedno otherwise).  Production rules can 
thus match on this state, rather than directly specifying the 
slots they require to be valid.
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This approach differs from the standard production rules 
in two ways.  First, an extra step is required to tell the slot 
detection module what slot  to detect,  thus requiring more 
time.  Second, only one slot can be detected at a time, so it 
is  impossible  to  have  two  rules  which  need  to  detect 
different  slots  at  the  same  time.   While  this  could  be 
improved by adding a few more independent slot detection 
modules, another option is to re-examine existing cognitive 
models to see whether we do in fact need to detect separate 
slots at the same time.

The  slot  detection  module  can  also  be  used  to  detect 
whether two (or more) different slots have the same value. 
This is done by asking the detection system to look for the 
sum of the slots,  since AX+BX = (A+B)X.  This is 
also a common feature of ACT-R models.

Negative Matching
We can also enhance the model to account for  rules  that 
should only be applied if a particular pattern does not exist. 
For example, a rule might match on AB, but should not be 
applied if AB+CD.  To achieve this, we add a second 
associative memory system in parallel to the first one, but 
whose  output  value  is  subtracted  from the  Selected  Rule 
neural group in Figure 2.  The rule AB (and its associated 
THEN value) is put in the first associative memory, while 
the rule AB+CD is put in the second one.  This allows 
the rule to be selected if AB, but not when CD.

This  capability  is  necessary  for  many  ACT-R  models. 
However,  it  is  still  unclear  how to  form a  rule  that  uses 
negative matching on variables,  which is  also present  but 
less common in ACT-R.

Conflict Resolution
The previous examples have all assumed that only one rule 
can apply at a given time.  In general, multiple rules could 
match at once, but only one should be used at a time.  In 
ACT-R, each rule has a strength value, used to select a rule 
probabilistically when multiple rules could apply.

The  associative  memory  system  described  here  does 
support rules having a certain strength by scaling the stored 
vector.   However,  it  will  always choose the rule with the 
highest strength.  A more flexible approach would be to use 
a variation of a cleanup memory system (Singh, 2005) with 
a winner-take-all mutual inhibition system.

Results and Current Research
Our system demonstrates the basic functionality needed for 
a neural production system.  We can model rule-following 
behaviour  using  arbitrarily  realistic  spiking  neurons,  and 
determine  the  behavioural  properties  of  such  a  system. 
However,  further  work  must  be  done  to  explore  the 
connection between the neural and behavioural levels.

First, we have shown that the number of atomic concepts 
available in the system relates to the number of neurons in 
the neural groups (Figure 1).  Given this, we estimate that 
1,000,000  neurons  is  sufficient  to  store  10,000  atomic 

concepts  (plus  structures  built  up  from  them).   For 
comparison, other methods which do not make use of VSAs 
(van der Velde & de Kamps, 2006; Hummel & Holyoak, 
2003) require many billions of neurons, while there are only 
100  billion  neurons  in  the  brain.   This  result  uses  the 
characteristics of typical neurons, and will be further tuned 
as parts of our model are matched to particular brain regions 
and the characteristics of neurons found within.

Second, the implementational details of our model affect 
the high-level behaviour.  The time taken to select a rule and 
apply  it  is  based  on  the  properties  of  the  neurons 
themselves, rather than being imposed on the system via a 
“clock” signal or other pattern generator.  This allows for 
investigation into situations that can affect this timing.  We 
also  found  (Figure  3)  that  accuracy  is  decreased  as  the 
number  of  components  in  a  rule  increase.   This  forms  a 
natural limitation on the complexity of cognitive rules, and 
relates to the ACT-R suggestion to only use 7±2 slots.  We 
have  also  indicated  that  particular  sorts  of  rules  that  are 
standard  in  production  systems  are  problematic  to 
implement  in  a  neurally  plausible  manner.   Adding these 
limitations  to  ACT-R  provides  new  constraints  that  may 
lead to more accurate cognitive models.
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