
Building Production Systems with Realistic Spiking Neurons

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Chris Eliasmith (celiasmith@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
Waterloo, ON, Canada, N2L 3G1

Abstract
We present a novel cognitive architecture built from realistic
spiking neurons that exhibits basic production system
capabilities. It uses Holographic Reduced Representations to
encode structured information and the Neural Engineering
Framework to create detailed neuro-biologically plausible
networks of spiking neurons for storing and manipulating
these representations. We demonstrate this system's abilities
to encode IF-THEN rules and manipulate its own
representations in response to the current state. This leads to
predictions about the sorts of rules that would be difficult for
neurons to encode, and the maximum complexity of such
rules. Our system bridges the gap between high-level
cognitive architectures (including ACT-R) and modern
neuroscience research, allowing details such as the numbers,
types, and connections of neurons to be related to cognitive
behaviour.

Keywords: neural production systems; neural engineering
framework; holographic reduced representations; ACT-R;
cognitive architectures; compositionality

Introduction
Human cognition requires representation and combination
of concepts, and the manipulation of these concepts. These
representations must also allow for internal structuring, so
that “dog chases cat” is different from “cat chases dog”.
Furthermore, cognition entails modifying, recognizing, and
acting on the basis of these structures. Exactly how such
compositionality can occur is a fundamental question for
cognitive science. Aspects of this process have been
identified as challenges that must be met by any theory of
human cognition (e.g. Jackendoff, 2002).

Cognitive theories approach this problem in different
ways. Some, such as ACT-R (Anderson & Lebiere, 1998),
simply posit that such symbolic manipulation and storage is
possible, and build up the architecture from there.
However, models are starting to be developed which
describe how symbolic representations can be built using
neurons. Both LISA (Hummel & Holyoak, 2003) and
Neural Blackboard Architectures (van der Velde & de
Kamps, 2006) can form such structures, although neither is
used to manipulate such structures to perform cognition.

Neural Modelling Rationale
Before describing our model, it is important to justify the

creation of such a model. Many cognitive scientists have
noted that neurons are at the wrong level of description for
cognitive behaviour (e.g. Pylyshyn, 1984). Even the models
that are “neurally inspired” generally use highly idealized
neurons, avoiding the issues of how a series of voltage
spikes can represent a given value, how to deal with random

firing noise, the effects of different neurotransmitters, and
the hundreds of different types of neurons in the human
brain. Furthermore, if a neural level of description is
desired, then it is unclear as to whether we should require a
molecular, atomic, or quantum level of description. Below
a certain level, there may be no advantage to going deeper,
as the lower level implementation does not significantly
affect the upper level behaviour.

We believe that the neural level should be included in
cognitive science theories. Thanks to modern neuroscience
advances, the neural level is one that we know a great deal
about. The major processes involved in neuron behaviour
and their responses to a wide range of stimuli are
significantly more understood than any other level of brain
phenomena. Furthermore, there is a large body of evidence
as to the effects of various influences (neurotransmitters,
alcohol, nicotine, etc.) both on neurons and on high-level
overt behaviour. Theories of cognition that bridge this gap
can be tested on the basis of this sort of evidence.

We also believe that neural-level effects do trickle up to
the higher levels in useful an interesting ways. The effects
of approximations and variability due to neural
implementation may be empirically detectable in overt
behaviour. A neural cognitive theory will perform
differently from a purely symbolic model, and these
differences can inform our understanding of cognition.

Our Modelling Approach
The goal of our research is a realistic neural model of high-
level cognitive behaviour. This is the sort of behaviour that
is traditionally modelled using symbolic approaches such as
ACT-R. We have developed a model that uses spiking
neurons, connected in a plausible manner, that is capable of
performing basic cognitive tasks. Furthermore, while its
overt behaviour is similar to that of a purely symbolic
model, it differs in important ways. For example,
performance degrades as structures become more complex.

This neural cognitive architecture makes use of two
separate areas of research. First, we use Holographic
Reduced Representations (HRRs; Plate, 2003) for storing
and manipulating structured representations. Importantly,
this allows us to represent atomic concepts, structures of
concepts, and manipulations of those structures using the
same representational form: a simple vector of numbers.

The second area used is the Neural Engineering
Framework (NEF; Eliasmith & Anderson, 2003). This
describes how groups of neurons can represent and
transform numerical values in a robust manner that is
plausible given current neuroscientific evidence. It includes

17641759

details handling different types of neurons, the various
neurotransmitters, connectivity issues, and firing patterns.

From these, we have developed a basic neural production
system. Our system can follow a set of rules (productions),
where each rule contains a condition in which it should be
applied and an action to perform. For example, a rule might
state “if dog chase cat, then scold dog” or “if asked three
plus four, then say seven”. These sorts of rules are the basis
of symbolic cognitive architectures, and have been widely
successful in modelling aspects of human cognition. They
are able to detect complex situations, manipulate symbols to
determine a response, and generate that response.

In this paper, we describe our system and present some
preliminary results. The similarities and differences
between our system and ACT-R are provided. We further
highlight the advantages that a neural cognitive model
provides, including aspects of the neural level that affect
understanding of high-level behaviour (and vice-versa).

Holographic Reduced Representations
A Vector Symbolic Architecture (VSA) is a method for
using a distributed representation to encode structure (see
Gayler, 2003 for an overview). In this work, we use a VSA
known as Holographic Reduced Representations (HRRs),
developed by Plate (1995). Information is represented as a
vector in a high-dimensional space (usually more than 100
dimensions). For example, the symbol cat might be
represented by the vector [-0.3,0,0.4,-0.6,0.6]. For our
work, the representations for all such atomic symbols are
chosen randomly from a high-dimensional unit sphere.

The important feature of HRRs is that representations can
be combined to form a new value that is also a vector in the
same number of dimensions. That is, if a neural structure is
capable of storing a simple, atomic HRR, it can also
represent combinations of HRRs. Importantly, these
combined representations can later be decomposed into their
original constituents. For example, an HRR representing
“dogs chase cats” might calculated as follows:

dogssubject + chaseverb + catsobject (1)

Each of the elements in this equation (dogs, subject, etc.) are
atomic HRRs (defined as per the previous paragraph as
random unit vectors). The + sign represents standard
numerical addition. The  sign indicates a more complex
process, cyclic convolution. For C=AB, this is defined as:

c j=∑
k =0

N −1

ak b j−k mod N (2)

The key feature that makes HRRs (and VSAs in general)
useful for representing structure is that the cyclic
convolution can be inverted. That is, given a structured
HRR such as that in (1), we can extract out the original
atomic symbols that formed it. For example, if we want to
know what the subject is, we perform a cyclic convolution
between (1) and the inverse of the HRR for subject. The
inverse is formed by rearranging the original values:

a0, a N−1 , aN−2 ,... , a1 (3)

Writing the inverse of A as AT, in general BAAT≈B.
After cyclic convolution, the resulting value will be an
approximation of the original value that was combined with
subject; in this case, dogs. This makes HRRs a lossy form
of representation, so we cannot pack an infinite amount of
information into a single HRR. Plate (1995) showed that
the storage capacity increases exponentially with more
dimensions.

For HRRs, similarity is defined as the cosine of the angle
between the two values (equivalently, the normalized dot
product). This means that A+B is similar to both A and B,
while AB is not similar to either A or B. This will be
important for using HRRs to build production systems.

Production systems
Since HRRs (and other VSAs) exhibit compositionality,
they could be used to implement systems similar to standard
symbolic production systems. This requires a representation
of the current state and a set of IF-THEN rules which
identify what to do in different states. The current state is
normally represented as a set of slot/value pairs. For
example, if the model is in the process of counting and is
currently at the value three, the current state might have the
value counting in the slot mode and the value three in the
slot value. This would be represented in an HRR as:

modecounting + valuethree (4)

In some production systems (such as ACT-R), the state is
divided into multiple buffers. In an HRR, these can be
represented by nesting the representations. For example, if,
while counting, the model is also looking at a picture of a
cat, the visual buffer would hold this information while the
goal buffer holds the information about counting.
goal(modecounting+valuethree)+visual(isapicture+valuecat) (5)

Given these state representations, an IF-THEN rule could
then indicate that if the mode is counting and the value is
three, then we should change the value to four. The IF
portion of this production rule would be defined by

goal(modecounting+valuethree) (6)

We can determine whether the rule applies to the current
state by measuring the similarity between this value and the
current state. Since the state (5) is the same as the rule's IF
pattern (6) plus the extraneous extra values from the visual
buffer, these will be similar (i.e. have a dot product
significantly above zero), indicating the rule can be applied.

To apply a rule, we need a representation of the THEN
portion. Since this is meant to be an action to be performed,
this can be represented by an HRR value that is to be
combined via cyclic convolution with the current state. For
example, to output four given that the current counting value
is three, the THEN portion of the above rule could be:

fourthreeT (7)

When combined with the current state given in (5), we get
a value that is approximately the following:

goalvaluefour (8)

17641760

More complex production rules (both in terms of the IF
and THEN portions) are discussed later. The accuracy of
such a system, in terms of the amount of extraneous
information that can be successfully ignored and the amount
of nesting that can occur, can be increased by using more
dimensions. The system is also similarly robust to random
noise being added onto the represented value. This is
important when using realistic neurons to implement an
HRR-based production system.

Neural Engineering Framework
The Neural Engineering Framework (NEF; Eliasmith &
Anderson, 2003) provides a methodology for understanding
how physical neurons represent and manipulate information.
This is based on the idea that information is represented by
neural groups and the connection weights between neural
groups can be seen as transformations of these
representations. It has been used to model a variety of
neural systems, including the owl audition (Fischer et al.,
2007) and rodent navigation (Conklin & Eliasmith, 2005).

A neural group is a set of neurons with a realistically
heterogeneous range of neural properties (i.e. maximum
firing rates, refractory periods, neurotransmitters, etc.). The
pattern of firing across these neurons can be seen as a
representation of a particular value. For example, one
particular firing pattern might represent the vector
[-0.3,0,0.4,-0.6,0.6] (used in the previous section to
represent the symbol cat). Importantly, the number of
dimensions in the vector is not the same as the number of
neurons in the neural group. This is in contrast to standard
neuron representation schemes where there is a direct
mapping between particular neuron firing rates and values
in the vector being represented.

More precisely, we can define a mapping from a
particular value we want to represent and the firing pattern
for each neuron in the neural group. This is done by
assigning encoding vectors to each neuron. This encoding
vector is the vector for which the neuron will fire the
strongest. The precise details of this mapping will vary
depending on the type of neuron (and the degree of accuracy
to which the neuron is being simulated). In general, the
activation a of a particular neuron i to represent a value x is:

a i=G i i  i⋅xJ i
bias (9)

Here, α is the neuron gain or sensitivity,  is the
encoding or preferred direction vector, and Jbias is a fixed
input current to model background neural activity. G is the
response function, which is determined by what sort of
neuron is being modelled, including its particular
resistances, capacitances, maximum firing rate, and so on.
In our work, we use the response function for the leaky
integrate-and-fire (LIF) model, which is widely used for its
reasonable trade-off between realism and computational
requirements. NEF can easily make use of more detailed
models simply by changing this response function.

Using this approach, we can directly translate from a
particular value that we want to represent (x) to the spike

trains over time of each neuron in the group (ai). The value
being represented is distributed across all of the neurons.

Decoding Vectors
If we have the firing pattern for a neural group, we can also
determine what value is currently being represented. This is
the reverse of the encoding process. This is more complex
than encoding, and in general it is impossible to perfectly
recover the original value from the firing pattern. However,
we can determine an optimal linear decoder . This is a set
of vectors  i (one for each neuron) which are multiplied
by the activation level of each neuron to get a sum that is the
best possible linear approximation of the original value
(Eliasmith & Anderson, 2003).
= −1 ; ij=∫ai a j dx ; j=∫a j x dx (10)
Importantly, this formula gives an approximation that is

highly robust to random variations in the firing rates of
neurons (and to neuron death). The representations can thus
be made as accurate as desired by increasing the number of
neurons used, as shown in Figure 1.

Figure 1: Representational accuracy for varying numbers of
neurons per neural group. HRRs with 100, 200, and 400
dimensions are shown, using default neural parameters.

Connecting Neural Groups
To make use of neural groups, we need to connect them so
as to perform the desired manipulations of the values they
are representing. As with most neural models, interactions
between neurons are via the synaptic connection weights.

The most common way of connecting neural groups in
NEF is to directly calculate what the connection weights
should be. This bypasses the question of how these weights
would have developed over time.

The simplest case is a transformation that does nothing.
That is, if we have two neural groups (A and B), and we set
the value of group A to be x, we want group B to also
represent x. This can be seen as the direct transmission of
information from one location in the brain to another. For
this situation, the optimal connection weights between each
neuron i in group A and each neuron j in group B are:

 ji= j  j⋅ i (11)

17641761

If this formula is used to determine the strength of the
synaptic connection between the neural groups, then group
B will be driven to fire such that it represents the same value
as group A. As noted in the previous section, the accuracy
of this representation will be dependent on the number of
neurons in the groups. Importantly, this system works even
though none of the neurons in the two neural groups will
have exactly the same encoding vector (and thus firing
pattern). That is, there will generally not be a one-to-one
correspondence between any neurons in the groups.

We can also connect neural groups in such a way as to
transform the value from A to B. That is, we can set the
synaptic weights so that B represents the result of any
desired function f(x). This is done using the same formula
as (11), but the direct decoding vector  i is replaced by
a specialized one determined using the following
modification of (10):

 j=∫a j f x dx (12)
As we have previously shown (Eliasmith, 2005), this is
sufficient for implementing accurate circular convolution,
requiring only a single intermediate neural layer.

Learning Transformations
Instead of specifying the transformation function between
two neural groups, and thus manually specifying the
synaptic connection weights, we can also have these
weights be learned. Given a set of desired input activations
(ai) and the corresponding output activations (bi), the
following learning rule can be used.

  ij=− ∑
i
 ij a i−∑

j
 ij b j (13)

This is a local, Hebbian learning rule, where updating
each neuron's synaptic weights only requires information
that is available to that neuron, making it biologically
plausible. However, a precise biochemical mechanism for
this sort of learning has not yet been identified.

Neurobiological Realism
An important feature of the Neural Engineering Framework
is that the general approach continues to be applicable no
matter how detailed the neural model is. It can be applied to
rate neurons, leaky integrate-and-fire neurons, adaptive LIF
neurons, and even the highly complex compartmental
models that require supercomputers to simulate the firing
pattern of a single neuron. This means that as we determine
more accurate details of the particular neurons involved in a
cognitive behaviour, we can add those constraints into the
cognitive model without disrupting the overall system.
Furthermore, simulations can first be done using a simplistic
neural model requiring less computing power, and then once
a suitable model is created a more detailed neural model can
be used to generate precise predictions about firing patterns,
representational accuracy, etc.

One example of this involves the synaptic connection
weights. In general, the approach described above results in
both positively and negatively weighted connections. This

is not consistent with what is found in real brains, where
positive (excitatory) and negative (inhibitory) weights use
different neurotransmitters and different types of neurons.
However, Eliasmith and Anderson (2003, section 6.4) show
an alternate approach to determining weights that separates
excitatory and inhibitory connections.

A Neural Production System
While the NEF has been used successfully to create models
of complex perception activity, our current work aims to
apply it to a cognitive domain. This is an extension of
previous work (Eliasmith, 2005) where state-based rule
following behaviour was shown using NEF and HRRs.
However, the state which identified the HRR transformation
rule to apply was merely a single numerical value (1 or 0).
In full production systems, the current state which
determines the rule to follow is much more complex.

Figure 2 depicts the core organization of our neural
production system. One neural group stores the current
state. This is used by the associative memory system to
determine which production rule is to be used next. To do
this, we can train a network using the learning rule given in
(13), which would form a simple associative memory
between particular states and the rule to be applied.

Once this rule is selected, it can be applied by performing
a cyclic convolution with the current state. This allows
rules to generalize over multiple situations, as will be
demonstrated below. The resulting value can be interpreted
as the chosen actions to perform (the THEN part of the
production rule). This output can also feed back to the
current state, allowing complex sequenced action.

Figure 2: The core of a neural production system. Boxes
represent neural groups and ovals represent calculations

performed by synaptic connections between neural groups.

Simple Rule Following
To demonstrate the basic capabilities of this system, we can
implement a model of simple addition. This is based on the
model in the ACT-R unit 1 tutorial, where it is presumed
that experts at addition can add numbers directly without
recourse to declarative memory to explicitly recall addition
facts. While implementing a declarative memory system
can be done with HRRs and NEF, this is not covered here.

Actions
(to rest of brain)

Associative
Memory

Cyclic
Convolution

Current State Selected Rule

Output

 State Inf ormation
(f rom rest of brain)

Feedback

17641762

The productions in this system are shown in Table 1.
They can be implemented by training the associative
memory using each pair. This will cause the correct rule to
be represented in the Selected Rule neural group, which will
be convolved with the current state to produce an output.
As many productions as desired can be added in this way.

Table 1: Production rules for expert addition.
IF THEN

stateadding+add1one+add2one twostateTaddingT

stateadding+add1one+add2two threestateTaddingT

stateadding+add1one+add2three fourstateTaddingT

stateadding+add1two+add2two fourstateTaddingT

stateadding+add1two+add2three fivestateTaddingT

With this associative memory defined, if the state is
similar to stateadding+add1one+add2three, then the
selected action will be fourstateTaddingT. This rule is then
applied by convolving it with the current state.

(stateadding+add1one+add2three)(fourstateTaddingT)

Due to the nature of the  and + rules for VSAs, this is
equivalent to the following value

four+(add1one+add2three)fourstateTaddingT

As a result, the output will be similar to the value for four.
The system is thus capable of simple rule following. The
accuracy of this rule following will be dependent on the
complexity of the rule, and the number of neurons in the
representation, as shown in Figure 3. This is a lower bound
on accuracy; performance improvements are underway.

Figure 3: Accuracy of rule selection as the number of
components in the rule is changed.

Production Rules With Variable Binding
Production systems do not generally have specific rules for
every single possible state. We often want to be able to
have values in the output be based on current state values.
This is referred to as variable binding in ACT-R. For
example, consider a production system for scolding any
animal that chases any other animal. If this is represented
with states such as subjectdog+verbchases+objectcat, and
we want an output such as scolddog, we would not want to
have to add productions for each possible type of animal.
Instead, we can just add the rule shown in Table 2.

Table 2: Production rule for scolding animals
IF THEN

verbchases scoldsubjectT

This will match any situation where an animal is chasing
anything. Since the THEN portion is convolved with the
current state, this results in the following:

 (subjectdog+verbchases+objectcat)(scoldsubjectT)
 = scolddog+(verbchases+objectcat)(scoldsubjectT)
 ≈ scolddog

Iteration
Since the output value can be fed back to adjust the current
state, the production system can be used to perform a
sequence of actions. Given the following simple production
rules and an initial state of one, the system will count from
one to five.

Table 3: Production rules for counting.
IF THEN

numberone twooneT

numbertwo threetwoT

numberthree fourthreeT

numberfour fivefourT

Given to the temporal aspect of this example, it is worth
observing that the actual behaviour is affected by the
biochemical characteristics of the neurons. If the neurons
use a neurotransmitter that leads to a quickly decaying post-
synaptic current, then the representations will change
quickly, while longer lasting neurotransmitters will require
significantly more time. As our model is further developed,
we believe these details will provide an explanation for the
amount of time needed for a production to fire (generally
assumed to be ~50msec regardless of rule complexity).

Slot Detection
The production rule examples thus far are based on a simple
similarity measure between the state and some particular
value specified by the rule. While this is straightforward to
implement using the Hebbian synaptic connection weights
given in (13), there are types of rules which cannot work in
this way. For example, in ACT-R, it is possible for a rule to
indicate that it should only fire if a particular slot exists in
the current state, regardless of its value.

As there is no value that all matching states will be
similar to, this situation cannot be identified using the
associative memory system described above. However,
similar functionality can be achieved by adding a slot
detection module to the system. This is a separate set of
neural groups that can be controlled by the output in Figure
2 and whose output affects the current state of the system.
Using a variation of a butterfly cleanup memory (Singh,
2005), this system can be instructed to inspect a particular
slot and add detectedyes to the state if any valid value is in
that slot (and detectedno otherwise). Production rules can
thus match on this state, rather than directly specifying the
slots they require to be valid.

17641763

This approach differs from the standard production rules
in two ways. First, an extra step is required to tell the slot
detection module what slot to detect, thus requiring more
time. Second, only one slot can be detected at a time, so it
is impossible to have two rules which need to detect
different slots at the same time. While this could be
improved by adding a few more independent slot detection
modules, another option is to re-examine existing cognitive
models to see whether we do in fact need to detect separate
slots at the same time.

The slot detection module can also be used to detect
whether two (or more) different slots have the same value.
This is done by asking the detection system to look for the
sum of the slots, since AX+BX = (A+B)X. This is
also a common feature of ACT-R models.

Negative Matching
We can also enhance the model to account for rules that
should only be applied if a particular pattern does not exist.
For example, a rule might match on AB, but should not be
applied if AB+CD. To achieve this, we add a second
associative memory system in parallel to the first one, but
whose output value is subtracted from the Selected Rule
neural group in Figure 2. The rule AB (and its associated
THEN value) is put in the first associative memory, while
the rule AB+CD is put in the second one. This allows
the rule to be selected if AB, but not when CD.

This capability is necessary for many ACT-R models.
However, it is still unclear how to form a rule that uses
negative matching on variables, which is also present but
less common in ACT-R.

Conflict Resolution
The previous examples have all assumed that only one rule
can apply at a given time. In general, multiple rules could
match at once, but only one should be used at a time. In
ACT-R, each rule has a strength value, used to select a rule
probabilistically when multiple rules could apply.

The associative memory system described here does
support rules having a certain strength by scaling the stored
vector. However, it will always choose the rule with the
highest strength. A more flexible approach would be to use
a variation of a cleanup memory system (Singh, 2005) with
a winner-take-all mutual inhibition system.

Results and Current Research
Our system demonstrates the basic functionality needed for
a neural production system. We can model rule-following
behaviour using arbitrarily realistic spiking neurons, and
determine the behavioural properties of such a system.
However, further work must be done to explore the
connection between the neural and behavioural levels.

First, we have shown that the number of atomic concepts
available in the system relates to the number of neurons in
the neural groups (Figure 1). Given this, we estimate that
1,000,000 neurons is sufficient to store 10,000 atomic

concepts (plus structures built up from them). For
comparison, other methods which do not make use of VSAs
(van der Velde & de Kamps, 2006; Hummel & Holyoak,
2003) require many billions of neurons, while there are only
100 billion neurons in the brain. This result uses the
characteristics of typical neurons, and will be further tuned
as parts of our model are matched to particular brain regions
and the characteristics of neurons found within.

Second, the implementational details of our model affect
the high-level behaviour. The time taken to select a rule and
apply it is based on the properties of the neurons
themselves, rather than being imposed on the system via a
“clock” signal or other pattern generator. This allows for
investigation into situations that can affect this timing. We
also found (Figure 3) that accuracy is decreased as the
number of components in a rule increase. This forms a
natural limitation on the complexity of cognitive rules, and
relates to the ACT-R suggestion to only use 7±2 slots. We
have also indicated that particular sorts of rules that are
standard in production systems are problematic to
implement in a neurally plausible manner. Adding these
limitations to ACT-R provides new constraints that may
lead to more accurate cognitive models.

References
Anderson, J. R. & Lebiere, C. (1998). The atomic

components of thought. Mahwah, NJ: Erlbaum.
Conklin, J., & Eliasmith, C. (2005). An attractor network

model of path integration in the rat. Journal of
Computational Neuroscience, 18, 183-203.

Eliasmith, 2005. Cognition with neurons: A large-scale,
biologically realistic model of the Wason task. Cognitive
Science Society Conference. Stresa , Italy : July 2005.

Eliasmith, C., & Anderson, C. H. (2003). Neural
engineering: Computation, representation and dynamics
in neurobiological systems. Cambridge, MA: MIT Press.

Fischer, B., Pena, J.L., & Konishi, M. (2007). Emergence of
multiplicative auditory responses in the midbrain of the
barn owl. Journal of Neurophysiology, 98, 1181-1193.

Gayler, R. (2003). Vector symbolic architectures answer
Jackendoff’s challenges for cognitive neuroscience.
ICCS/ASCS International Conference on Cognitive
Science, Sydney: University of New South Wales.

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-
connectionist theory of relational inference and
generalization. Psychological Review, 110, 220-264.

Jackendoff, R. (2002). Foundations of language: Brain,
meaning, grammar, evolution. Oxford University Press.

Plate, T. (1995). Holographic reduced representations. IEEE
Transactions on Neural Networks, 6(3), 623-641.

Pylyshyn, Z. (1984) Computation and cognition.
Cambridge: MIT Press.

Singh, R. (2005). Cleanup memory in biologically plausible
neural networks. (MASc, University of Waterloo).

van der Velde, F., & de Kamps, M. (2006). Neural
blackboard architectures of combinatorial structures in
cognition. Behavioral and Brain Sciences, 29, 37-70.

17641764

	Introduction
	Neural Modelling Rationale
	Our Modelling Approach

	Holographic Reduced Representations
	Production systems

	Neural Engineering Framework
	Decoding Vectors
	Connecting Neural Groups
	Learning Transformations
	Neurobiological Realism

	A Neural Production System
	Simple Rule Following
	Production Rules With Variable Binding
	Iteration
	Slot Detection
	Negative Matching
	Conflict Resolution

	Results and Current Research
	References

