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Abstract
We  present  a  computational  model  capable  of  solving 
arbitrary  Tower  of  Hanoi  problems.   All  elements  except 
visual input and motor output are implemented using 150,000 
LIF spiking neurons.  Properties of these neurons (firing rate, 
post-synaptic time constant, etc.) are set based on the neurons 
in  corresponding  areas  of  the  brain,  and  connectivity  is 
similarly constrained.   Cortical  components  are all  general-
purpose modules (for storing state information and for storing 
and  retrieving  short-term  memories  of  previous  state 
information),  and could be used for  other tasks.   The only 
task-specific  components  are  particular  synaptic  connection 
weights  from cortex to basal ganglia  and from thalamus to 
cortex,  which   implement  19  context-specific  rules.   The 
model  has  a single  free  parameter  (the synaptic  connection 
weights  of  the  input  to  short-term memory),  and  produces 
timing behaviour similar to that of human participants.  
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Neural Cognitive Models
To  explain  human  behaviour,  cognitive  scientists  must 
identify both what the brain does and  how it does it.  This 
involves  finding  the  algorithms  underlying  cognitive 
performance as well  as determining how these algorithms 
are implemented within the brain through the interaction of 
neurons, neurotransmitters, and other physical components.

Our ongoing research is in the construction of large-scale 
neural  models  capable  of  exhibiting  complex  cognitive 
behaviour  such as  planning,  rule-following,  and symbolic 
reasoning.  The intent is to bridge the gap between cognitive 
theory and neuroscience,  allowing the fields to interact  in 
both directions.   With such a bridge,  high-level  cognitive 
theory would produce detailed low-level  predictions as  to 
the  neural  spiking  patterns,  connectivity,  and  so  on  that 
support particular human behaviours.  Neuroscience would 
in  turn  provide  constraints  on  high-level  algorithms, 
indicating  what  operations  can  be  performed  by neurons, 
how accurate they can be, and how much time is needed.

Our  approach  uses  the  Neural  Engineering  Framework 
(NEF; Eliasmith & Anderson, 2003), a general method for 
constructing computational  models whose components are 
simulations  of  spiking  neurons.   The  NEF  provides  a 
method  for  defining  how values  can  be  represented  in  a 
distributed manner across a set of neurons.  Most crucially, 
it also allows us to determine how groups of neurons can be 
synaptically connected such that they will compute desired 
functions.   This  allows  us  to  take  a  cognitive  theory 
expressed in terms of numerical values and transformations 
on those values and create a detailed neural model.

In previous work, we used this approach to create models 
of  list  memory (Choo & Eliasmith,  2010),  rule  induction 
(Rasmussen  &  Eliasmith,  2010),  the  Wason  card  task 
(Eliasmith,  2005),  and action selection (Stewart,  Choo, & 
Eliasmith,  2010a).   We have  also  argued  that  our  action 
selection model (based on the basal ganglia) is sufficient to 
implement  the  basic  functionality  of  a  production  system 
(Stewart & Eliasmith 2010).

This  paper  expands  on  this  work  to  present  the  first 
spiking  neural  model  implementing  rule  following, 
planning,  and  goal  recall.   The  model  conforms  to  the 
known anatomy, connectivity,  and neural properties of the 
basal ganglia, thalamus, and cortex.  The components of the 
model  are  general-purpose,  in  that  they could be  used to 
perform  different  tasks  without  changing  any  neural  
connections  within  the  cortex.   To  define  the  task  to  be 
performed,  we  only  need  to  set  the  synaptic  connection 
weights between the cortex and basal ganglia and between 
the thalamus and the cortex.  This makes our work both a 
neural explanation of a particular high-level cognitive task, 
and a general set of principles for creating neural models for 
other such tasks.

The Tower of Hanoi
The task considered here is the Tower of Hanoi, which has a 
rich history in cognitive science as a problem solving task 
(e.g. Simon, 1975).  Many symbolic (non-neural) cognitive 
models  exist  which  match  expert  human  behaviour  well 
(e.g.  Altmann & Trafton,  2002).  The task involves three 
pegs  and  a fixed number of  disks  of  different  sizes  with 
holes  in  them such  that  they can  be  placed  on  the  pegs. 
Given a starting position, the goal is to move the disks to a 
goal position, subject to the constraints that only one disk 
can be moved at a time and a larger disk cannot be placed 
on top of a smaller disk.

Figure 1 shows the optimal series of steps needed to solve 
the four-disk Tower of Hanoi when all disks start on one 
peg and must all be moved onto a different peg.  There are 
many algorithms that could be used to produce this series of 
steps,  and  cognitive  research  on  this  task  involves 
determining  which  algorithm(s)  people  are  using  by 
examining factors such as the time taken between steps and 
the types of errors produced.  Anderson, Kushmerick, and 
Lebiere  (1993)  provide  a  variety  of  measures  of  human 
performance  on  this  task,  and   Figure  1  compares  their 
empirical  data  to  our  model  performance  in  terms of  the 
time delay between movements (only conditions where no 
mistakes were made are considered here).



The basic algorithm used is the “Sophisticated Perceptual 
Strategy” from Simon (1975).  We start with the largest disk 
that is not in the correct location.  We then examine the next 
smaller disk.  If it blocks the move we want to make, then 
our new goal is to move that disk to the one peg where it 
will not be in the way.  We then iterate this algorithm, going 
back  to  previous  goals  once  we  have  accomplished  the 
current  one.  The effects of this algorithm can be seen in 
Figure 1, since steps 1, 5, 9, and 13 show long pauses as a 
new set of goals are established.  For example, in step 1, we 
have the goal of moving disk 4 to peg C, but in order to do 
that  we must  first  move disk 3 to peg B,  which requires 
moving disk 2 to peg C, which requires moving disk 1 to 
peg B.  These goals must be generated and stored so that 
once disk 1 is moved to peg B we can remember to now 
move disk 2 to peg C, rather than re-generating the entire 
sequence of moves.

Non-neural  symbolic  cognitive  models  already  exist 
which fit the empirical data extremely well (e.g. Altmann & 
Trafton,  2002).   However,  they  do  not  provide  a  neural 
explanation  of  the  operations  involved,  and  they  do  not 
provide  a  biological  grounding  of  the  various  parameters 
used within the model.

Figure 1: The sequence of moves to ideally solve the four-
disk Tower of Hanoi (top).  Time delay for expert human 

performance (Anderson, Kushmerick, & Lebiere, 1993) and 
our neural model is also shown (bottom).

The Neural Engineering Framework
The  Neural  Engineering  Framework  makes  two  key 
assertions.   First,  a  group  of  neurons  uses  distributed 
encoding to  represent  a  numerical  vector,  where  different 
patterns  of  activation  indicate  different  values  for  that 
vector.   Second,  synaptic  connection  weights  between 
neurons can be defined so that particular operations can be 
computed.  Thus, if one neural group is storing a vector with 
three elements (e.g. [x,y,z]), then these could be connected 
to  a  second  neural  group  that  would  store  two  values 
calculated from those three (e.g. [x*y,cos(y)+sin(z)]).  The 

accuracy of this calculation has been shown to depend on 
the properties of the neurons themselves and the complexity 
of  the  function  computed,  with  a  general  result  that  the 
mean squared  error  is  inversely related  to  the  number  of 
neurons in the group (Eliasmith & Anderson, 2003).

While the NEF can be used with any neuron model, the 
model presented here  uses Leaky Integrate-and-Fire (LIF) 
neurons.  Current entering and leaking out of each neuron 
affects the voltage.  If this voltage reaches a threshold, the 
neuron fires,  resetting the voltage to zero for a refractory 
period.   When  a  neuron  fires,  it  releases  current  to  all 
connected  neurons.   This  post-synaptic  current  decays 
exponentially  over  time  at  a  rate  τ that  depends  on  the 
neurotransmitter and receptors involved (ranging from two 
to hundreds of milliseconds).  The various parameters of the 
LIF  model  (refractory  period,  membrane  resistance, 
background current, post-synaptic time constant  τ, etc.) are 
set based on neurophsyiological measurements of different 
types  of  neurons  in  different  brain  areas.   The  most 
important of these from a functional perspective is the post-
synaptic  time  constant  τ  which  effectively  controls  how 
quickly the vector being represented can change.

To  represent  a  numerical  vector  with  a  group  of  LIF 
neurons,  the  NEF uses  preferred  direction  vectors,  which 
have long been observed throughout the visual  and motor 
cortices (e.g.  Georgopoulos et al., 1986).  Each neuron has 
a particular vector for which it will fire most strongly.  The 
amount  of  current  J flowing  into  the  neuron  is  the  dot 
product of the preferred vector e with the represented value 
x,  times the neuron's  gain  α,  plus the background current 
Jbias (Eq. 1).  Preferred vectors are randomly chosen, and  α 
and  Jbias  values  are  distributed  to  match  average  and 
maximal firing rates of real neurons.  We can force a group 
of  neurons to  represent  a  vector  x by directly  adding the 
amount  of  current  computed  via  Eq.  1.   This  is  used  to 
provide inputs to our simulation.

Eq. 1 allows us to convert a value  x into neural activity. 
We can also do the reverse and use the neural  activity to 
estimate the value x that is being represented by computing 
the optimal decoding vectors d using Eq. 2.  ai is the average 
firing  rate  for  neuron  i for  a  given  value  of  x,  and 
integration is over all values of  x.  To estimate  x, we add 
together the output current of each neuron, weighted by  d. 
This is the optimal least-squares linear estimate of x.  

Most  crucially,  we  can  use  d to  calculate  the  synaptic 
connection weights that will compute particular operations. 
To compute a linear operation where x is represented by one 
group and a second group should represent Mx, where M is 
an arbitrary matrix, we set the connection weights between 
neuron i in the first group and neuron j in the second group 
to  ωij as per Eq. 3.  For non-linear operations, we do the 
same, but compute a new set of d values via Eq. 4.

 

J= e⋅xJ bias (1)
d=−1  ij=∫ai a j dx  j=∫a j x dx (2)
 ij= j e j M d i (3)
d f x =−1  ij=∫ai a j dx  j=∫a j f x dx (4)



The  NEF  allows  us  to  convert  an  algorithm  in  terms  of 
vectors  and  calculations  on  those  vectors  into  a  neural 
model.   To use it  to create  cognitive models,  we need to 
express  cognitive  algorithms  in  terms  of  vectors.   As  a 
simple  example,  consider  the  case  of  storing  state 
information in one group of neurons and we want another 
group of neurons to represent  how similar that  state  is  to 
some  desired  state.   This  might  be  used  as  part  of  an 
algorithm that says “IF state=A THEN....”

To  convert  this  into  vectors,  we  can  consider  the 
similarity  measure  to  be  a  single  number  (a  vector  of 
dimension  1).   In  contrast,  the  state  can  include  many 
possible aspects, so we represent  it  as a high-dimensional 
vector.   In  this  paper,  we  use  128-dimensional  vectors 
represented  with  3000  neurons.   Each  neuron  has  a 
randomly chosen preferred vector e, and  α and Jbias  values 
chosen  to give an average  firing rate  around 40Hz and a 
maximum firing rate of 200Hz.  We can now use Eq. 1 to 
force the neurons to represent whatever state x we desire.

To compute the similarity between the current state x and 
the particular state A, we connect these neurons to a smaller 
group  of  40  neurons  representing  a  single  number.   To 
compute the similarity, we want to calculate the dot product 
between x and A.  The synaptic connection weights that will 
do this are given by Eq. 3, where M is the vector A.  Figure 
2 shows that as the state value is adjusted, the firing rate of 
the second group of neurons changes accordingly.

Figure 2: Computing the similarity between the current state 
and a specific state A.  The straight line shows the correct 

answer as the state value varies over time.  The jagged line 
is the value represented by the similarity neurons, decoded 
with Eq. 2.  Spike times of these neurons are also shown.

Action Selection
In previous work (Stewart, Choo, & Eliasmith, 2010a), we 
developed a model of action selection that conformed to the 
anatomy of the basal ganglia, thalamus, and cortex.  Groups 
of  neurons  in  the  cortex  represent  state  information,  and 
connections between the cortex and basal ganglia compute 
the similarity between the current state and the ideal state 
for each action available to the agent (as in Figure 2).  The 
role of the basal ganglia is to find the maximum of these 
values,  and  its  output  to  the  thalamus  should  inhibit  all 
actions except for the one action whose ideal state is closest 
to the current state.  Connections from thalamus to cortex 

implement  actions  in  two  ways.   Direct actions  involve 
sending a particular vector to a cortical area (implemented 
as in Figure 2, but with connections going the other way). 
Routing actions  indicate  that  information  should  be  sent 
from one cortical area to another.  These are implemented 
by  having  a  neural  group  that  takes  input  from the  first 
group  and  passes  it  on  to  the  second  (both  connections 
computed using Eq. 3 where M is the identity matrix).  We 
then add a group of neurons in the thalamus which inhibit 
all of the neurons in this middle group (ωij=-1), causing this 
communication channel to do nothing most of the time.  The 
thalamus  can  now  implement  the  action  of  passing  the 
information between the cortical  areas  by inhibiting these 
inhibitory neurons (see Figure 3).

The basal ganglia model used is from Gurney,  Prescott, 
and Redgrave (2001), which is expressed in terms of vectors 
and mathematical operations, making it natural to convert to 
spiking neurons using the NEF.  We have shown (Stewart, 
Choo,  &  Eliasmith,  2010a)  that  this  model  can  reliably 
detect states and implement direct and routing actions.  By 
setting  the  properties  of  neurons  to  those  typical  of  the 
neurons in these various brain regions, we found that direct 
actions  are  performed  in  34-44ms,  while  routing  actions 
require 59-73ms (Stewart, Choo, & Eliasmith, 2010b).

Figure 3: The basal ganglia, thalamus, and cortex.  Input to 
basal ganglia is calculated as in Figure 2, with IF matrix 

containing ideal states for each action.  Output to thalamus 
inhibits all actions except best one.  Connections to cortex 
via THEN matrix implement actions. Gate connection has 

ωij=-1.  All other connections calculated using Eq. 3, with I 
as the identity matrix and [1] as a matrix of all 1's. 

STN=subthalamic nucleous; GPi, GPe=globus pallidus 
internal, external; D1, D2 are distinct types of striatal cells.

Cortical Modules
The action selection system is capable of controlled routing 
of information between cortical areas.  To create a cognitive 
model, we need to specify what these cortical areas are and 
what  operations  they  perform.   These  areas  should  be 
general-purpose,  in  that  they  should  be  useful  for  many 
different tasks, not just the Tower of Hanoi, since we do not 
expect large-scale cortical change when learning the task.



To implement the Tower of Hanoi algorithm, we need to 
keep  track  of  three  variables:  the  thing  we  are  currently 
attending  to,  the  thing  we  are  trying  to  move,  and  the 
location we are trying to move it  to.  For this model, we 
assume  these  are  stored  in  three  separate  cortical  areas 
referred to as ATTEND, WHAT, and WHERE.

These systems must be capable of maintaining their state. 
That  is, given no input, they should continue to represent 
whatever  vector  they  are  currently  representing.   This 
requires feedback, as in Figure 4.  Synaptic connections are 
computed  with  Eq.  3,  where  M is  the  identity  matrix  I. 
However,  given  an  input,  the  feedback  loop  should  be 
disabled.  This is done with inhibitory weights between the 
input and the feedback neurons (ωij=-1).

 

   

 
 

Figure 4: Maintaining and changing state.  Input neurons are 
set to represent A from 0.1-0.2s, B from 0.3-0.4s, and A 
from 0.5-0.6s.  Plotted similarity is between the decoded 

vector from the state neurons and the randomly chosen ideal 
vectors for A and B.  The state is successfully stored over 

time and changes quickly when a new value is input.

The Tower of Hanoi algorithm also requires us to store 
and recall old goals of what disk to place where.  Storing a 
single goal such as “disk 4 on peg C” would be easy: add 
the  vectors  together  (D4+C)  and  store  the  result  using  a 
mechanism similar to that in Figure 4.  However, multiple 
goals cannot be stored in this manner, as (D4+C)+(D3+B) 
cannot be distinguished from (D4+B)+(D3+C).  This can be 
seen as an instance of the classic binding problem.

Binding using vector representations has been addressed 
by  a  family  of  approaches  known  as  Vector  Symbolic 
Architectures  (VSAs;  Gayler,  2003).   VSAs  introduce  a 
mathematical  operation  that  combines  two  vectors  to 
produce a third that  is highly dissimilar (dot product near 
zero)  to  either  original  vector.   Since  this  operation  is 
reversible, we can add together the combined vectors, store 
the result, and reliably extract the individual inputs.

For our model, we follow Plate (2003) and use circular 
convolution  ⊗ to combine vectors and circular correlation 
∅ as  an  approximate  inverse.   These  operations  can  be 
neurally  implemented  using  Eqs.  3  and  4  as  detailed  in 
(Eliasmith, 2005), and we have argued this approach allows 
for  complex  structured  symbol  manipulation  in  neurons 
(Stewart & Eliasmith, 2009).

To  store  a  set  of  goals,  we  compute  the  sum  of  the 
combined  vectors  V=D4⊗C+D3⊗B+D2⊗C.   To  recall 
where we wanted to place a particular  disk (e.g.  D3),  we 
compute V∅D3, which gives  a result of approximately B 
(accuracy improves with increased dimensions).

For our neural  model of this process,  we  use Figure 6. 
The WHAT and WHERE values are combined and fed into 
the  MEMORY.   Since  the  MEMORY  has  a  feedback 
connection,  any  input  will  be  added  to  its  current  value 
(MEMORY=MEMORY+α*WHAT⊗WHERE).  The value 
α (set to 0.01) controls how quickly the memory will store 
new information and forget old information.  Thus, any time 
a value is present in both the WHAT and WHERE neural 
groups,  information  about  that  pair  will  be  stored  in  the 
memory.  Once it is stored, to extract WHERE we planned 
to place a particular disk, we place its value in WHAT and 
nothing in WHERE.  The value in RECALL should now be 
the vector for the peg we want to move it to.

Our neural model also needs inputs and outputs.  Creating 
a complete model of the visual and motor systems required 
for this task is outside the scope of this paper.  Instead, we 
create neural groups and directly calculate via Eqs. 1 and 2 
what input currents should be fed to the vision system, and 
what actions are being indicated by the motor outputs.  For 
input, we have the location of the currently attended object 
(ATTEND_LOC), the location of the object we are trying to 
move (WHAT_LOC), and the final end goal location of the 
object we are trying to move (GOAL_LOC).  For output, we 
have  two motor  areas  for  indicating what  disk should be 
moved (MOVE_WHAT) and where it should be moved to 
(MOVE_WHERE).  We also include a simple action that 
causes  attention to  move to  the  largest  disk (i.e.  sets  the 
value in ATTEND to the vector for the largest visible disk).

  

Figure 5: Goal memory.  Vector pairs (D4,C; D3,B; D2,C) 
are presented in sequence to WHAT and WHERE neurons 

for first 3 seconds, loading the memory (top).  After 1 
second of no input, a recall is performed by putting D3 in 
WHAT and nothing in WHERE.  The RECALL neurons 
(bottom) now represent B, successfully recalling the goal.

D4⊗ C

D3⊗ B

D2⊗ C



The Tower of Hanoi Model
The components described in the previous sections define 
the vast  majority of the neurons and synaptic connections 
within our model.  We next need to define the set of internal 
actions the model can perform, and the conditions in which 
it should perform each action.  These rules define the IF and 
THEN matrices in Figure 3, and allow us to solve for the 
connections from cortex to basal ganglia (IF) and from the 
thalamus to cortex (THEN).

For  each  action,  we  determine  what  state  the  system 
should be in for that action to occur.  We then connect the 
cortical state neurons to the basal ganglia using Eq. 3 where 
M is the vector representation of the ideal state, as in Figure 
2.  In addition, we can also create a neural group that will 
compute  the  dot  product  between two  cortical  states, 
allowing us to define rules that will only apply if two states 
are the same (or different), regardless of what they are.

To implement the effects  of  an action, we connect  that 
action's thalamic neurons to the cortical neurons we want to 
affect.  Connection weights are found using Eq. 3, where M 
is the vector V we want to send to that cortical area.  If the 
neurons are active (representing 1), the effect will be to add 
the vector  1*V=V to  that  area.   If  the action neurons are 
inhibited by the basal ganglia (as will be true for all actions 
other than the current best one), the output will be 0*V=0. 
The same approach is used for routing actions except M=-1, 
which  will  inhibit  the  gate  which  is  inhibiting  the 
communication channel between the cortical areas.

The algorithm is to ATTEND to the largest disk (placing 
D4 in ATTEND).  Next, we form a goal to place D4 in its 
final location (route ATTEND to WHAT and GOAL_LOC 
to WHERE).  We now have D4 in ATTEND and WHAT 

and C in WHERE.  Next,  we check if  the object  we are 
trying  to  move  is  in  its  target  location.   If  it  is 
(WHERE=WHAT_LOC), then we've already finished with 
this disk and need to go on to the next smallest disk (loading 
D3 in WHAT and routing GOAL_LOC to WHERE).  

If the disk in WHAT is not where we are trying to move it 
to (WHERE is not equal to WHAT_LOC), then we need to 
try to move it.  First, we look at the next smaller disk (send 
D3 to ATTEND).  If we are attending a disk that is not the 
one we are trying to move (ATTEND is not WHAT) and if 
it is not in the way (ATTEND_LOC is not WHAT_LOC or 
WHERE), then attend the next smaller disk.  If it is in the 
way  (ATTEND_LOC=WHAT_LOC  or  ATTEND_LOC= 
WHERE), then we need to move it out of the way.  To do 
this, set a goal of moving the disk to the one peg where it 
will not be in the way.  The peg that is out of the way can be 
determined by sending the value A+B+C to WHAT and at 
the same time sending the values from WHAT_LOC (the 
peg the disk we're trying to move is on) and ATTEND_LOC 
(the peg the disk we're looking at is on) to WHAT as well, 
but  multiplied  by  -1.   The  result  will  be  A+B+C-
WHAT_LOC-ATTEND_LOC, which is the third peg.

This algorithm, with a special case for use when attending 
the smallest disk (D1 can always be moved, since nothing is 
ever in its way, and if we've made it to D1 without finding 
anything in the way, then we can move the disk we're trying 
to  move),  is  sufficient  for  solving  Tower  of  Hanoi. 
However, it does not make use of the memory system, so it 
has to rebuild its plans each time.  To address this, we first 
add  a  rule  to  do nothing if  RECALL is  not  the same as 
WHERE.  This occurs if we've set a new goal, but there has 
not been enough time for the memory to hold it (see Figure 
5).  Next, rules are added for the state where we have just 

Figure 6: The Tower of Hanoi model.  Connections are calculated as in Figures 3, 4, and 5.  All state values project to basal 
ganglia for action selection.  Basal ganglia chooses best action, releasing inhibition on that one action in thalamus.  Thalamus 
projects values to state inputs (direct actions) and controls gates (routing actions) to implement the action.  Inputs and outputs 
are provided via visual and motor cortex, which are the only elements not done in spiking neurons.  Total # neurons: 150,640.



finished moving a disk.  Instead of starting over from the 
beginning, we send the next largest  disk to ATTEND and 
WHAT  and  route  the  value  from  RECALL  to  WHERE. 
This recalls the goal location for the next largest disk and 
continues the algorithm.  All of this requires 19 actions.

Results
The model is able to successfully solve the Tower of Hanoi, 
given  any  valid  starting  position  and  any  valid  target 
position.   It  does  occasionally  make  errors,  and  recovers 
from them (analysis of these errors is ongoing).  

Figure 7 shows particular measures from the model as it 
solves  the  task.   The  input  to  the  basal  ganglia  is  the 
context-dependent utility of the 19 different actions it could 
perform.  To demonstrate its successful action selection in 
these  circumstances,  the  spiking  output  from  the  basal 
ganglia  to  the  thalamus  is  shown.   Different  groups  of 
neurons stop firing at the same time, releasing the inhibition 
in the thalamus, allowing that particular action to occur.

Figure 7: Input to basal ganglia (top) and action selection 
output to thalamus (bottom) during typical moves 1 and 2 of 
the Tower of Hanoi task.  Changing input reflects changing 

similarity between cortex states and ideal states for each 
action.  Utilities for four example rules are indicated. 

Spiking output inhibits actions from being executed.  At any 
given time, one group of output neurons (corresponding to 
the largest input) will stop firing (as seen in bottom spike 

raster), releasing inhibition and allowing the action to occur.

The  average  time  delay  between  moves  when  no  errors 
occur  is  shown  in  Figure  2,  compared  to  human 
performance.   The  model  does  not  exactly  match  the 
empirical  data.  However,  it  should be noted that there is 
only one parameter in the entire model: the scaling factor α 
in  the  memory  system.   All  other  timing  parameters  are 
taken  from  the  neurophysiology  of  the  various  brain 
regions.   (The  number  of  neurons  in  each  group  is  also 
freely chosen, but affects accuracy rather than timing).  

Our main result is that we can create a neural model at 
this level of complexity, implementing symbolic algorithms 
in  a  non-symbolic  manner.   The  fact  that  the  model 

performance is in the right ballpark is highly encouraging, 
and we expect to improve this by exploring modifications to 
the set of rules.  For example, Altmann and Trafton (2002) 
add heuristics such as “whenever you move disk 2, move 
disk 1 on top of it” and “don't undo your previous move”, 
both of which are needed for their symbolic model to match 
empirical data.

Our ongoing research is to develop this model into a full 
neural  cognitive architecture.   This involves exploring the 
use of the same cortical components in multiple tasks and 
identifying  neurological  constraints.   We are  also  adding 
learning rules to adjust the IF weights into the basal ganglia 
to  improve  performance  over  time,  as  this  is  where  the 
dopamine implicated in reinforcement learning is found.
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