
Neural Cognitive Modelling:
A Biologically Constrained Spiking Neuron Model of the Tower of Hanoi Task

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Chris Eliasmith (celiasmith@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada

Abstract
We present a computational model capable of solving
arbitrary Tower of Hanoi problems. All elements except
visual input and motor output are implemented using 150,000
LIF spiking neurons. Properties of these neurons (firing rate,
post-synaptic time constant, etc.) are set based on the neurons
in corresponding areas of the brain, and connectivity is
similarly constrained. Cortical components are all general-
purpose modules (for storing state information and for storing
and retrieving short-term memories of previous state
information), and could be used for other tasks. The only
task-specific components are particular synaptic connection
weights from cortex to basal ganglia and from thalamus to
cortex, which implement 19 context-specific rules. The
model has a single free parameter (the synaptic connection
weights of the input to short-term memory), and produces
timing behaviour similar to that of human participants.

Keywords: Tower of Hanoi; neural engineering; cognitive
architectures; computational neuroscience

Neural Cognitive Models
To explain human behaviour, cognitive scientists must
identify both what the brain does and how it does it. This
involves finding the algorithms underlying cognitive
performance as well as determining how these algorithms
are implemented within the brain through the interaction of
neurons, neurotransmitters, and other physical components.

Our ongoing research is in the construction of large-scale
neural models capable of exhibiting complex cognitive
behaviour such as planning, rule-following, and symbolic
reasoning. The intent is to bridge the gap between cognitive
theory and neuroscience, allowing the fields to interact in
both directions. With such a bridge, high-level cognitive
theory would produce detailed low-level predictions as to
the neural spiking patterns, connectivity, and so on that
support particular human behaviours. Neuroscience would
in turn provide constraints on high-level algorithms,
indicating what operations can be performed by neurons,
how accurate they can be, and how much time is needed.

Our approach uses the Neural Engineering Framework
(NEF; Eliasmith & Anderson, 2003), a general method for
constructing computational models whose components are
simulations of spiking neurons. The NEF provides a
method for defining how values can be represented in a
distributed manner across a set of neurons. Most crucially,
it also allows us to determine how groups of neurons can be
synaptically connected such that they will compute desired
functions. This allows us to take a cognitive theory
expressed in terms of numerical values and transformations
on those values and create a detailed neural model.

In previous work, we used this approach to create models
of list memory (Choo & Eliasmith, 2010), rule induction
(Rasmussen & Eliasmith, 2010), the Wason card task
(Eliasmith, 2005), and action selection (Stewart, Choo, &
Eliasmith, 2010a). We have also argued that our action
selection model (based on the basal ganglia) is sufficient to
implement the basic functionality of a production system
(Stewart & Eliasmith 2010).

This paper expands on this work to present the first
spiking neural model implementing rule following,
planning, and goal recall. The model conforms to the
known anatomy, connectivity, and neural properties of the
basal ganglia, thalamus, and cortex. The components of the
model are general-purpose, in that they could be used to
perform different tasks without changing any neural
connections within the cortex. To define the task to be
performed, we only need to set the synaptic connection
weights between the cortex and basal ganglia and between
the thalamus and the cortex. This makes our work both a
neural explanation of a particular high-level cognitive task,
and a general set of principles for creating neural models for
other such tasks.

The Tower of Hanoi
The task considered here is the Tower of Hanoi, which has a
rich history in cognitive science as a problem solving task
(e.g. Simon, 1975). Many symbolic (non-neural) cognitive
models exist which match expert human behaviour well
(e.g. Altmann & Trafton, 2002). The task involves three
pegs and a fixed number of disks of different sizes with
holes in them such that they can be placed on the pegs.
Given a starting position, the goal is to move the disks to a
goal position, subject to the constraints that only one disk
can be moved at a time and a larger disk cannot be placed
on top of a smaller disk.

Figure 1 shows the optimal series of steps needed to solve
the four-disk Tower of Hanoi when all disks start on one
peg and must all be moved onto a different peg. There are
many algorithms that could be used to produce this series of
steps, and cognitive research on this task involves
determining which algorithm(s) people are using by
examining factors such as the time taken between steps and
the types of errors produced. Anderson, Kushmerick, and
Lebiere (1993) provide a variety of measures of human
performance on this task, and Figure 1 compares their
empirical data to our model performance in terms of the
time delay between movements (only conditions where no
mistakes were made are considered here).

The basic algorithm used is the “Sophisticated Perceptual
Strategy” from Simon (1975). We start with the largest disk
that is not in the correct location. We then examine the next
smaller disk. If it blocks the move we want to make, then
our new goal is to move that disk to the one peg where it
will not be in the way. We then iterate this algorithm, going
back to previous goals once we have accomplished the
current one. The effects of this algorithm can be seen in
Figure 1, since steps 1, 5, 9, and 13 show long pauses as a
new set of goals are established. For example, in step 1, we
have the goal of moving disk 4 to peg C, but in order to do
that we must first move disk 3 to peg B, which requires
moving disk 2 to peg C, which requires moving disk 1 to
peg B. These goals must be generated and stored so that
once disk 1 is moved to peg B we can remember to now
move disk 2 to peg C, rather than re-generating the entire
sequence of moves.

Non-neural symbolic cognitive models already exist
which fit the empirical data extremely well (e.g. Altmann &
Trafton, 2002). However, they do not provide a neural
explanation of the operations involved, and they do not
provide a biological grounding of the various parameters
used within the model.

Figure 1: The sequence of moves to ideally solve the four-
disk Tower of Hanoi (top). Time delay for expert human

performance (Anderson, Kushmerick, & Lebiere, 1993) and
our neural model is also shown (bottom).

The Neural Engineering Framework
The Neural Engineering Framework makes two key
assertions. First, a group of neurons uses distributed
encoding to represent a numerical vector, where different
patterns of activation indicate different values for that
vector. Second, synaptic connection weights between
neurons can be defined so that particular operations can be
computed. Thus, if one neural group is storing a vector with
three elements (e.g. [x,y,z]), then these could be connected
to a second neural group that would store two values
calculated from those three (e.g. [x*y,cos(y)+sin(z)]). The

accuracy of this calculation has been shown to depend on
the properties of the neurons themselves and the complexity
of the function computed, with a general result that the
mean squared error is inversely related to the number of
neurons in the group (Eliasmith & Anderson, 2003).

While the NEF can be used with any neuron model, the
model presented here uses Leaky Integrate-and-Fire (LIF)
neurons. Current entering and leaking out of each neuron
affects the voltage. If this voltage reaches a threshold, the
neuron fires, resetting the voltage to zero for a refractory
period. When a neuron fires, it releases current to all
connected neurons. This post-synaptic current decays
exponentially over time at a rate τ that depends on the
neurotransmitter and receptors involved (ranging from two
to hundreds of milliseconds). The various parameters of the
LIF model (refractory period, membrane resistance,
background current, post-synaptic time constant τ, etc.) are
set based on neurophsyiological measurements of different
types of neurons in different brain areas. The most
important of these from a functional perspective is the post-
synaptic time constant τ which effectively controls how
quickly the vector being represented can change.

To represent a numerical vector with a group of LIF
neurons, the NEF uses preferred direction vectors, which
have long been observed throughout the visual and motor
cortices (e.g. Georgopoulos et al., 1986). Each neuron has
a particular vector for which it will fire most strongly. The
amount of current J flowing into the neuron is the dot
product of the preferred vector e with the represented value
x, times the neuron's gain α, plus the background current
Jbias (Eq. 1). Preferred vectors are randomly chosen, and α
and Jbias values are distributed to match average and
maximal firing rates of real neurons. We can force a group
of neurons to represent a vector x by directly adding the
amount of current computed via Eq. 1. This is used to
provide inputs to our simulation.

Eq. 1 allows us to convert a value x into neural activity.
We can also do the reverse and use the neural activity to
estimate the value x that is being represented by computing
the optimal decoding vectors d using Eq. 2. ai is the average
firing rate for neuron i for a given value of x, and
integration is over all values of x. To estimate x, we add
together the output current of each neuron, weighted by d.
This is the optimal least-squares linear estimate of x.

Most crucially, we can use d to calculate the synaptic
connection weights that will compute particular operations.
To compute a linear operation where x is represented by one
group and a second group should represent Mx, where M is
an arbitrary matrix, we set the connection weights between
neuron i in the first group and neuron j in the second group
to ωij as per Eq. 3. For non-linear operations, we do the
same, but compute a new set of d values via Eq. 4.

J= e⋅xJ bias (1)
d=−1  ij=∫ai a j dx  j=∫a j x dx (2)
 ij= j e j M d i (3)
d f x =−1  ij=∫ai a j dx  j=∫a j f x dx (4)

The NEF allows us to convert an algorithm in terms of
vectors and calculations on those vectors into a neural
model. To use it to create cognitive models, we need to
express cognitive algorithms in terms of vectors. As a
simple example, consider the case of storing state
information in one group of neurons and we want another
group of neurons to represent how similar that state is to
some desired state. This might be used as part of an
algorithm that says “IF state=A THEN....”

To convert this into vectors, we can consider the
similarity measure to be a single number (a vector of
dimension 1). In contrast, the state can include many
possible aspects, so we represent it as a high-dimensional
vector. In this paper, we use 128-dimensional vectors
represented with 3000 neurons. Each neuron has a
randomly chosen preferred vector e, and α and Jbias values
chosen to give an average firing rate around 40Hz and a
maximum firing rate of 200Hz. We can now use Eq. 1 to
force the neurons to represent whatever state x we desire.

To compute the similarity between the current state x and
the particular state A, we connect these neurons to a smaller
group of 40 neurons representing a single number. To
compute the similarity, we want to calculate the dot product
between x and A. The synaptic connection weights that will
do this are given by Eq. 3, where M is the vector A. Figure
2 shows that as the state value is adjusted, the firing rate of
the second group of neurons changes accordingly.

Figure 2: Computing the similarity between the current state
and a specific state A. The straight line shows the correct

answer as the state value varies over time. The jagged line
is the value represented by the similarity neurons, decoded
with Eq. 2. Spike times of these neurons are also shown.

Action Selection
In previous work (Stewart, Choo, & Eliasmith, 2010a), we
developed a model of action selection that conformed to the
anatomy of the basal ganglia, thalamus, and cortex. Groups
of neurons in the cortex represent state information, and
connections between the cortex and basal ganglia compute
the similarity between the current state and the ideal state
for each action available to the agent (as in Figure 2). The
role of the basal ganglia is to find the maximum of these
values, and its output to the thalamus should inhibit all
actions except for the one action whose ideal state is closest
to the current state. Connections from thalamus to cortex

implement actions in two ways. Direct actions involve
sending a particular vector to a cortical area (implemented
as in Figure 2, but with connections going the other way).
Routing actions indicate that information should be sent
from one cortical area to another. These are implemented
by having a neural group that takes input from the first
group and passes it on to the second (both connections
computed using Eq. 3 where M is the identity matrix). We
then add a group of neurons in the thalamus which inhibit
all of the neurons in this middle group (ωij=-1), causing this
communication channel to do nothing most of the time. The
thalamus can now implement the action of passing the
information between the cortical areas by inhibiting these
inhibitory neurons (see Figure 3).

The basal ganglia model used is from Gurney, Prescott,
and Redgrave (2001), which is expressed in terms of vectors
and mathematical operations, making it natural to convert to
spiking neurons using the NEF. We have shown (Stewart,
Choo, & Eliasmith, 2010a) that this model can reliably
detect states and implement direct and routing actions. By
setting the properties of neurons to those typical of the
neurons in these various brain regions, we found that direct
actions are performed in 34-44ms, while routing actions
require 59-73ms (Stewart, Choo, & Eliasmith, 2010b).

Figure 3: The basal ganglia, thalamus, and cortex. Input to
basal ganglia is calculated as in Figure 2, with IF matrix

containing ideal states for each action. Output to thalamus
inhibits all actions except best one. Connections to cortex
via THEN matrix implement actions. Gate connection has

ωij=-1. All other connections calculated using Eq. 3, with I
as the identity matrix and [1] as a matrix of all 1's.

STN=subthalamic nucleous; GPi, GPe=globus pallidus
internal, external; D1, D2 are distinct types of striatal cells.

Cortical Modules
The action selection system is capable of controlled routing
of information between cortical areas. To create a cognitive
model, we need to specify what these cortical areas are and
what operations they perform. These areas should be
general-purpose, in that they should be useful for many
different tasks, not just the Tower of Hanoi, since we do not
expect large-scale cortical change when learning the task.

To implement the Tower of Hanoi algorithm, we need to
keep track of three variables: the thing we are currently
attending to, the thing we are trying to move, and the
location we are trying to move it to. For this model, we
assume these are stored in three separate cortical areas
referred to as ATTEND, WHAT, and WHERE.

These systems must be capable of maintaining their state.
That is, given no input, they should continue to represent
whatever vector they are currently representing. This
requires feedback, as in Figure 4. Synaptic connections are
computed with Eq. 3, where M is the identity matrix I.
However, given an input, the feedback loop should be
disabled. This is done with inhibitory weights between the
input and the feedback neurons (ωij=-1).

Figure 4: Maintaining and changing state. Input neurons are
set to represent A from 0.1-0.2s, B from 0.3-0.4s, and A
from 0.5-0.6s. Plotted similarity is between the decoded

vector from the state neurons and the randomly chosen ideal
vectors for A and B. The state is successfully stored over

time and changes quickly when a new value is input.

The Tower of Hanoi algorithm also requires us to store
and recall old goals of what disk to place where. Storing a
single goal such as “disk 4 on peg C” would be easy: add
the vectors together (D4+C) and store the result using a
mechanism similar to that in Figure 4. However, multiple
goals cannot be stored in this manner, as (D4+C)+(D3+B)
cannot be distinguished from (D4+B)+(D3+C). This can be
seen as an instance of the classic binding problem.

Binding using vector representations has been addressed
by a family of approaches known as Vector Symbolic
Architectures (VSAs; Gayler, 2003). VSAs introduce a
mathematical operation that combines two vectors to
produce a third that is highly dissimilar (dot product near
zero) to either original vector. Since this operation is
reversible, we can add together the combined vectors, store
the result, and reliably extract the individual inputs.

For our model, we follow Plate (2003) and use circular
convolution ⊗ to combine vectors and circular correlation
∅ as an approximate inverse. These operations can be
neurally implemented using Eqs. 3 and 4 as detailed in
(Eliasmith, 2005), and we have argued this approach allows
for complex structured symbol manipulation in neurons
(Stewart & Eliasmith, 2009).

To store a set of goals, we compute the sum of the
combined vectors V=D4⊗C+D3⊗B+D2⊗C. To recall
where we wanted to place a particular disk (e.g. D3), we
compute V∅D3, which gives a result of approximately B
(accuracy improves with increased dimensions).

For our neural model of this process, we use Figure 6.
The WHAT and WHERE values are combined and fed into
the MEMORY. Since the MEMORY has a feedback
connection, any input will be added to its current value
(MEMORY=MEMORY+α*WHAT⊗WHERE). The value
α (set to 0.01) controls how quickly the memory will store
new information and forget old information. Thus, any time
a value is present in both the WHAT and WHERE neural
groups, information about that pair will be stored in the
memory. Once it is stored, to extract WHERE we planned
to place a particular disk, we place its value in WHAT and
nothing in WHERE. The value in RECALL should now be
the vector for the peg we want to move it to.

Our neural model also needs inputs and outputs. Creating
a complete model of the visual and motor systems required
for this task is outside the scope of this paper. Instead, we
create neural groups and directly calculate via Eqs. 1 and 2
what input currents should be fed to the vision system, and
what actions are being indicated by the motor outputs. For
input, we have the location of the currently attended object
(ATTEND_LOC), the location of the object we are trying to
move (WHAT_LOC), and the final end goal location of the
object we are trying to move (GOAL_LOC). For output, we
have two motor areas for indicating what disk should be
moved (MOVE_WHAT) and where it should be moved to
(MOVE_WHERE). We also include a simple action that
causes attention to move to the largest disk (i.e. sets the
value in ATTEND to the vector for the largest visible disk).

Figure 5: Goal memory. Vector pairs (D4,C; D3,B; D2,C)
are presented in sequence to WHAT and WHERE neurons

for first 3 seconds, loading the memory (top). After 1
second of no input, a recall is performed by putting D3 in
WHAT and nothing in WHERE. The RECALL neurons
(bottom) now represent B, successfully recalling the goal.

D4⊗ C

D3⊗ B

D2⊗ C

The Tower of Hanoi Model
The components described in the previous sections define
the vast majority of the neurons and synaptic connections
within our model. We next need to define the set of internal
actions the model can perform, and the conditions in which
it should perform each action. These rules define the IF and
THEN matrices in Figure 3, and allow us to solve for the
connections from cortex to basal ganglia (IF) and from the
thalamus to cortex (THEN).

For each action, we determine what state the system
should be in for that action to occur. We then connect the
cortical state neurons to the basal ganglia using Eq. 3 where
M is the vector representation of the ideal state, as in Figure
2. In addition, we can also create a neural group that will
compute the dot product between two cortical states,
allowing us to define rules that will only apply if two states
are the same (or different), regardless of what they are.

To implement the effects of an action, we connect that
action's thalamic neurons to the cortical neurons we want to
affect. Connection weights are found using Eq. 3, where M
is the vector V we want to send to that cortical area. If the
neurons are active (representing 1), the effect will be to add
the vector 1*V=V to that area. If the action neurons are
inhibited by the basal ganglia (as will be true for all actions
other than the current best one), the output will be 0*V=0.
The same approach is used for routing actions except M=-1,
which will inhibit the gate which is inhibiting the
communication channel between the cortical areas.

The algorithm is to ATTEND to the largest disk (placing
D4 in ATTEND). Next, we form a goal to place D4 in its
final location (route ATTEND to WHAT and GOAL_LOC
to WHERE). We now have D4 in ATTEND and WHAT

and C in WHERE. Next, we check if the object we are
trying to move is in its target location. If it is
(WHERE=WHAT_LOC), then we've already finished with
this disk and need to go on to the next smallest disk (loading
D3 in WHAT and routing GOAL_LOC to WHERE).

If the disk in WHAT is not where we are trying to move it
to (WHERE is not equal to WHAT_LOC), then we need to
try to move it. First, we look at the next smaller disk (send
D3 to ATTEND). If we are attending a disk that is not the
one we are trying to move (ATTEND is not WHAT) and if
it is not in the way (ATTEND_LOC is not WHAT_LOC or
WHERE), then attend the next smaller disk. If it is in the
way (ATTEND_LOC=WHAT_LOC or ATTEND_LOC=
WHERE), then we need to move it out of the way. To do
this, set a goal of moving the disk to the one peg where it
will not be in the way. The peg that is out of the way can be
determined by sending the value A+B+C to WHAT and at
the same time sending the values from WHAT_LOC (the
peg the disk we're trying to move is on) and ATTEND_LOC
(the peg the disk we're looking at is on) to WHAT as well,
but multiplied by -1. The result will be A+B+C-
WHAT_LOC-ATTEND_LOC, which is the third peg.

This algorithm, with a special case for use when attending
the smallest disk (D1 can always be moved, since nothing is
ever in its way, and if we've made it to D1 without finding
anything in the way, then we can move the disk we're trying
to move), is sufficient for solving Tower of Hanoi.
However, it does not make use of the memory system, so it
has to rebuild its plans each time. To address this, we first
add a rule to do nothing if RECALL is not the same as
WHERE. This occurs if we've set a new goal, but there has
not been enough time for the memory to hold it (see Figure
5). Next, rules are added for the state where we have just

Figure 6: The Tower of Hanoi model. Connections are calculated as in Figures 3, 4, and 5. All state values project to basal
ganglia for action selection. Basal ganglia chooses best action, releasing inhibition on that one action in thalamus. Thalamus
projects values to state inputs (direct actions) and controls gates (routing actions) to implement the action. Inputs and outputs
are provided via visual and motor cortex, which are the only elements not done in spiking neurons. Total # neurons: 150,640.

finished moving a disk. Instead of starting over from the
beginning, we send the next largest disk to ATTEND and
WHAT and route the value from RECALL to WHERE.
This recalls the goal location for the next largest disk and
continues the algorithm. All of this requires 19 actions.

Results
The model is able to successfully solve the Tower of Hanoi,
given any valid starting position and any valid target
position. It does occasionally make errors, and recovers
from them (analysis of these errors is ongoing).

Figure 7 shows particular measures from the model as it
solves the task. The input to the basal ganglia is the
context-dependent utility of the 19 different actions it could
perform. To demonstrate its successful action selection in
these circumstances, the spiking output from the basal
ganglia to the thalamus is shown. Different groups of
neurons stop firing at the same time, releasing the inhibition
in the thalamus, allowing that particular action to occur.

Figure 7: Input to basal ganglia (top) and action selection
output to thalamus (bottom) during typical moves 1 and 2 of
the Tower of Hanoi task. Changing input reflects changing

similarity between cortex states and ideal states for each
action. Utilities for four example rules are indicated.

Spiking output inhibits actions from being executed. At any
given time, one group of output neurons (corresponding to
the largest input) will stop firing (as seen in bottom spike

raster), releasing inhibition and allowing the action to occur.

The average time delay between moves when no errors
occur is shown in Figure 2, compared to human
performance. The model does not exactly match the
empirical data. However, it should be noted that there is
only one parameter in the entire model: the scaling factor α
in the memory system. All other timing parameters are
taken from the neurophysiology of the various brain
regions. (The number of neurons in each group is also
freely chosen, but affects accuracy rather than timing).

Our main result is that we can create a neural model at
this level of complexity, implementing symbolic algorithms
in a non-symbolic manner. The fact that the model

performance is in the right ballpark is highly encouraging,
and we expect to improve this by exploring modifications to
the set of rules. For example, Altmann and Trafton (2002)
add heuristics such as “whenever you move disk 2, move
disk 1 on top of it” and “don't undo your previous move”,
both of which are needed for their symbolic model to match
empirical data.

Our ongoing research is to develop this model into a full
neural cognitive architecture. This involves exploring the
use of the same cortical components in multiple tasks and
identifying neurological constraints. We are also adding
learning rules to adjust the IF weights into the basal ganglia
to improve performance over time, as this is where the
dopamine implicated in reinforcement learning is found.

References
Altmann, E. M. & Trafton, J. G. (2002). Memory for goals:

An activation-based model. Cognitive Science, 26, 39-83.
Anderson, Kushmerick, & Lebiere, 1993
Choo, F., Eliasmith, C. (2010). A Spiking Neuron Model of

Serial-Order Recall. 32nd Annual Conference of the
Cognitive Science Society.

Eliasmith, C. (2005). Cognition with neurons: A large-scale,
biologically realistic model of the Wason task. 27th
Annual Meeting of the Cognitive Science Society.

Eliasmith, C. & Anderson, C. (2003). Neural Engineering:
Computation, representation, and dynamics in
neurobiological systems. Cambridge: MIT Press.

Gayler, R. (2003). Vector symbolic architectures answer
Jackendoff’s challenges for cognitive neuroscience.
International Conference on Cognitive Science.

Georgopoulos, A.P., Schwartz, A., & Kettner, R.E. (1986).
Neuronal population coding of movement direction.
Science, 233, 1416-1419.

Gurney, K., Prescott, T., & Redgrave, P. (2001). A
computational model of action selection in the basal
ganglia. Biological Cybernetics 84, 401-423.

Rasmussen, D., Eliasmith, C. (2010). A neural model of
rule generation in inductive reasoning. 32nd Annual
Conference of the Cognitive Science Society.

Simon, H. A. (1975). The functional equivalence of problem
solving skills. Cognitive Psychology, 7(2), 268–288.

Stewart, T.C., Choo, X., & Eliasmith, C. (2010a). Symbolic
reasoning in spiking neurons: A model of the cortex/basal
ganglia/thalamus loop. 32nd Annual Meeting of the
Cognitive Science Society.

Stewart, T.C., Choo, X. & Eliasmith, C. (2010b). Dynamic
behaviour of a spiking model of action selection in the
basal ganglia. 10th Int. Conf. on Cognitive Modeling

Stewart, T.C,, & Eliasmith, C. (2009). Compositionality
and biologically plausible models. In W. Hinzen, E.
Machery, & M. Werning (Eds.), Oxford Handbook of
Compositionality.

Stewart, T.C. & Eliasmith, C. (2010). Neural symbolic
decision making: A scalable and realistic foundation for
cognitive architectures. Proceedings of the 1st Annual
Meeting of the BICA Society.

Do nothing until
RECALL=WHERE Move disk 1

Move disk 2

AT TEND
next disk

	Neural Cognitive Models
	The Tower of Hanoi
	The Neural Engineering Framework
	Action Selection
	Cortical Modules
	The Tower of Hanoi Model
	Results
	References

