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Abstract

A fundamental process for cognition is action selection:
choosing a particular action out of the many possible actions
available. This process is widely believed to involve the basal
ganglia, and we present here a model of action selection that
uses spiking neurons and is in accordance with the
connectivity and neuron types found in this area. Since the
parameters of the model are set by neurological data, we can
produce timing predictions for different action selection
situations without requiring parameter tweaking. Our results
show that, while an action can be selected in 14 milliseconds
(or longer for actions with similar utilities), it requires 34-44
milliseconds to go from one simple action to the next. For
complex actions (whose effect involves routing information
between cortical areas), 59-73 milliseconds are needed. This
suggests a change to the standard cognitive modelling
approach of requiring 50 milliseconds for all types of actions.
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Action Selection

The basal ganglia are generally believed by both
neuroscientists (e.g. Redgrave et al., 1999) and cognitive
scientists (e.g. Anderson et al., 2004) to be responsible for
action selection. Action selection consists of choosing one
action to perform out of the many actions in an organism's
repertoire. Selection is done on the basis of some sort of
context-dependent utility signal for each possible action.
Actions that are inappropriate for the current context may
have low utility, and a task of the basal ganglia is to select
the action that currently has the highest utility value.

Since such a mechanism forms the core of many cognitive
models, including all of those based on production systems
(where a single production much be chosen to fire), it is
useful to develop a computational model of this process.
Here, we develop a detailed spiking neuron model that takes
into account a broad range of neurological details about the
basal ganglia. Other spiking models of action selection
exist, but tend to be organized unlike the basal ganglia
(Belavkin & Huyck, 2009) and unconstrained by neural
properties (Shouno et al., 2009; see Humphries et al., 2006
for an exception and alternate approach).

By directly connecting our model to neuroscientific
results, we constrain our parameter values. Every parameter
in the model reflects neurological data from the relevant
brain areas, resulting in a model that has no free parameters
(that affect the results shown here). Furthermore, having a
biologically realistic model allows us to make predictions
about a wide range of measures, including spike patterns,
timing, variability, lesion effects, neural degeneration, the
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influence of various drugs, and so on. Importantly, all of
these predictions can come from the same model, with no
additional parameters.

Neural Structure

The basal ganglia are a group of subcortical structures that
are ideally suited for an action selection operation, as they
receive input from extremely broad areas of cortex and the
limbic system, and send output back to these areas via the
thalamus. The basic components are the striatum, the
subthalamic nucleous (STN), the globus pallidus internal
(GP1i), the globus pallidus external (GPe), and the substantia
nigra pars reticulata (SNr).

The classic way of thinking about the organization of the
basal ganglia is shown in Figure 1A. It consist of a direct
pathway, where excitatory inputs from cortex to the D1 cells
in the striatum inhibit corresponding areas in GPi and SNr,
which then in turn inhibit areas in the thalamus, and an
indirect pathway from the D2 cells in the striatum to GPe,
STN, and then GPi/SNr (Albin et al., 1989). However,
more recent evidence shows other major connections,
including a hyperdirect excitatory pathway straight from
cortex to STN (Nambu et al., 2002), and other feedback
connections, as shown in Figure 1B.
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Figure 1: Two schematic diagrams of the basal ganglia. A
shows the standard direct/indirect pathway. B includes the
other major connections that have been discovered.



There is also a great deal of topological structure in the
inhibitory connections in basal ganglia. Neurons in the
striatum project to a relatively localized area in the GPi,
GPe, and SNr, while the excitatory connections from STN
are very broad (Mink, 1996). This is an important
constraint for the model we discuss below.

Simple Action Selection Models

Two simple approaches to neurally modelling action
selection are shown in Figure 2. The inputs give the utilities
of three possible actions (0.3, 0.8, and 0.5), and the model's
task is to chose one of them. Importantly, since the output
from the basal ganglia is inhibitory, selecting an action
consists of having that particular inhibitory output be zero.
In other words, it will no longer inhibit the neurons to which
it is connected, allowing the action to occur. Thus, in
Figure 2, the selected action is the middle one, whose output
value is zero in both cases.

The model in Figure 2A is the most straight-forward.
Each input neuron inhibits its corresponding output neuron
and excites all others. For the first action, this results in an
output of -0.5%0.3+0.5*0.8+0.5%0.5=0.5. The action with
the largest input will have the smallest output, and if the
weights are in suitable ranges, only one output neuron will
be turned off. One problem with this approach is
determining suitable weights, although this can be helped by
introducing recurrent connections, as in our earlier model
(Stewart & Eliasmith, 2009). However, a more fundamental
problem is that real neurons are typically either excitatory or
inhibitory, and seldom both, as they are in this model.

An alternate approach is shown in Figure 2B. Here,
instead of each neuron being both excitatory and inhibitory,
a separate inhibitory interneuron is introduced. These are
found throughout the brain, and can be used here to divide
up the excitatory and inhibitory parts of the task. This
approach is commonly used in neural models of action
selection (e.g. Hazy et al., 2007; Stocco et al., 2010).
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Figure 2: Two simple models of action selection. Inputs are
the utilities of three possible actions, and an output of zero
indicates the selection of a particular action. Each neuron

(circle) outputs the sum of its weighted inputs.

236

A Realistic Rate Neuron Model

Gurney, Prescott, and Redgrave (2001) have developed a
computational model of the basal ganglia that is well-suited
to reimplementation using more realistic spiking neurons.
While their model uses rate neurons, they have carefully
followed the known biological constraints on the
connectivity and types of neurons in the basal ganglia.

One of the main differences between their model and
other computational models (e.g. Hazy et al., 2007; Stocco
et al., in press) is that it does not make use of inhibitory
interneurons in the striatum to perform action selection (as
in Figure 2B). This is important for two reasons. First,
while the striatum does include inhibitory interneurons, the
actual behaviour and biological characteristics of these
neurons is unclear, making them difficult to model. Second,
there seems to be little evidence of the sort of broad, diffuse
connectivity required by figure 2B (Gurney, et al., 2001).
Tepper and Bolam (2004) identify three different types of
striatal interneurons, and demonstrate their ability to affect
spike timing in the rest of the striatum. These interneurons
are highly influenced by dopamine (Bracci et al., 2002),
acetylcholine (Koos & Tepper, 2002), and seratonin
(Blomeley & Bracci, 2009), indicating that their role may be
more to do with learning and other large-scale cognitive
processes than with action selection.

Instead, Gurney, Prescott, and Redgrave (2001) present a
model where the inhibitory output from the striatum and the
excitatory output from the subthalamic nucleous (STN)
combine to produce the desired output. That is, instead of
treating the striatum as the primary input to the basal
ganglia, neurological evidence shows that the STN receives
excitatory connections directly from the cortex, and then
produces diffuse excitation in the output nuclei. Figure 3
shows how this leads to an action selection mechanism that

separates the inhibitory and excitatory connections.
STN

0.3 o0 @ 0.5
B & selected
0.8 ﬁ L4 ® 0.0 action
0.5 = X = ® 03
striatum D1 GPi/SNr

Figure 3: Action selection via the striatum D1 cells and the
subthalamic nucleous (STN). Connections from the STN
are all excitatory and set at a weight of 0.5. The input with
the highest utility (0.8) causes the corresponding output in
the globus pallidus internal (GPi) or substantia nigra (SNr)
to drop to zero, stopping the inhibition of that action.



While the model shown in Figure 3 is sufficient for action
selection in some circumstances, it turns out not to be fully
general. In particular, it has difficulty adjusting to situations
where there are many actions with large utilities or where all
actions have low utilities. For this reason, a control system
is needed to modulate the behaviour of these neural groups.
Gurney et al. (2001) argue that the globus pallidus external
(GPe) is ideally suited for this, as its only outputs are back
to the other areas of the basal ganglia, and it receives similar
inputs from the striatum and the STN as does the globus
pallidus internal (GPi). In their model, the GPe forms a
circuit identical to that in Figure 3, but its outputs project
back to the STN and the GPi. This regulates the action
selection system, allowing it to function across a full range
of utility values. The final network is shown in Figure 4.
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Figure 4: The model of action selection in the basal ganglia
presented by Gurney, Prescott, and Redgrave (2001). The
striatum D1 cells and the subthalamic nucleous (STN) are as
in Figure 3, while the striatum D2 cells and globus pallidus
external form a modulatory control structure.

Converting Rates to Spikes

The model discussed so far is capable of performing action
selection and reproducing a variety of single-cell recording
results from electrostimulation and lesion studies (Gurney et
al., 2001). However, it does so with rate neurons; that is,
the neurons do not spike and instead continually output a
numerical value based on their recent input. This makes it
difficult to make precise numerical timing predictions or to
make use of more accurate neural models. Furthermore, the
model has no redundancy, since exactly one neuron is used
per area of the basal ganglia to represent each action. The
model shown in Figure 4 uses a total of 15 neurons (dark
circles) to represent 3 possible actions, and if any one of
those neurons is removed the model will fail.

To make timing predictions and to constrain our model
with a broader range of neurological details, we needed to
adapt the rate model of the basal ganglia into one that uses
spiking neurons. For the results shown here, we use the
standard leaky integrate-and-fire (LIF) model of spiking
neuron behaviour, although our initial results with a more
detailed implementation of the medium spiny neurons in the
striatum (Gruber et al., 2002) are similar.
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For LIF neurons, current is constantly leaking out of the
neuron as per the membrane resistance R. If enough input
current is gathered to cause the voltage to be above a certain
threshold, then the neuron will fire. After firing, the voltage
is set to O for a fixed refractory period (~2 milliseconds)
before starting to gather current again. Given a constant
current input J and membrane resistance R, the voltage level
of the LIF neuron changes over time as given in Equation 1
and shown in Figure 1. The timing of this behaviour is
controlled by Tgc, the membrane time constant of the
neuron.
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Figure 5: LIF neuron with constant input current.

For a constant input, we can measure the average firing rate
of a given LIF neuron, and this will be dependent solely on
the neurophysicological details of the resistance R and the
membrane time constant, which tend to be fixed for any
particular type of neuron. However, for real in vivo
neurons, their output will also vary based on any
background current flowing into the neurons, and their
activity can be scaled by the strength of the incoming
synaptic connection. Thus, even among neurons of the
same type, their responses will vary, as shown in Figure 6A.
The behaviour of a neuron as its input varies is known as its
tuning curve, and the ones shown in Figure 6A are typical
for neurons throughout the brain.

In Figure 6B, we show the tuning curve for the rate
neurons used by Gurney et al. (2001). This does not look
like the realistic tuning curves of Figure 6A. However,
Figure 6C shows that we can implement the effects of such
a tuning curve by adding together the realistic tuning curves
of 6A. This allows a group of realistic neurons to provide a
similar effect to that assumed by the model.

When adding the outputs of the spiking neurons, we scale
each one by a factor d;, producing a weighted sum. We can
compute the optimal d; values using Equation 2, where the
integration is over all possible inputs x, a; is the average
firing rate of neuron i given input x, a; is the same for
neuron j, and f{x) is the desired output (Figure 6B). This
calculation determines the least-squared-error solution for
mapping the neural tuning curves onto the function f{x).
The method extends to complex functions and multiple
dimensions, making it the basis of the Neural Engineering
Framework (Eliasmith & Anderson, 2003).

d=I"'Y T,=[aad Y=[af(x)dx 2



While there clearly must be a developmental or learning-
based mechanism to determine these weights, we do not
consider this here, just as we do not consider the
developmental process for the creation of these separate
brain areas in the first place. Instead, we assume that
whatever such mechanisms exist converge to weights near

the values determined by Equation 2.
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Figure 6: Combining realistic tuning curves to produce a
desired function. A shows the average firing rate of three
different neurons as the amount of input to the neurons
increases. B shows the neural output function used by the
rate neuron model. C shows how B can be approximated by
taking a weighted sum of tuning curves in A.

=
o

Given these weighting values d;, we can construct a spiking
version of the model shown in Figure 4. Each single neuron
in the original model is replaced by a set of 20 spiking
neurons (increasing this value does not change our results).
These all have the same time constant (Tzc=20ms; common
throughout the brain), but have varying background currents
and scaling factors to produce the range of tuning curves
seen in Figure 6A. Each connection in the original model
from rate neuron A to rate neuron B is replaced by a set of
connections from all of the spiking neurons replacing A to
all of the spiking neurons replacing B. The actual synaptic
connection weight from the ith neuron in A to the jth neuron
in B is wa;d;, where « is the neuron's scaling factor and w is
the original rate model's connection weight.

Finally, the timing effects of a neuron firing must be
considered. This is vital for producing realistic temporal
predictions from a model of spiking neurons. When a
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neuron fires, it sends current into all of the neurons to which
it is connected. This current A(#) can be characterized by
Equation 3, where T, captures the effects of neurotransmitter
re-uptake and dispersal. As shown in Figure 7, a small T,
provides a fast, short-lasting effect (~10ms), while others
last for hundreds of milliseconds.

h(t)=te '™ 3)

AMPA (7g~5ms)

GABA-A (5~10ms)

NMDA (r5~50ms)

post-synaptic current

0.00 0.02 0.04 0.06 0.08 0.10
time (seconds)

Figure 7: Post-synaptic currents for common synapses.

Importantly, different neurotransmitters are used by the
different types of connections in the basal ganglia. All of
the inhibitory connections involve GABA (T,=6.lms to
10.5ms; Gupta et al., 2000), while the excitatory ones of
concern for this model involve fast AMPA-type glutamate
receptors (T,=2ms; Spruston et al., 1995). This means that
the excitation and inhibition in the model act at different
times scales, a factor not taken into account in the original
model. As we show below, the time constants of these
neurotransmitters have a strong impact on the temporal
behaviour of our model.

Results

Figure 8 demonstrates that the model is capable of correctly
performing action selection. Initially, action B has the
highest utility, and the output shows that B is the only action
that is not inhibited by the GPi/SNr outputs. In the middle,
C is selected and has the highest activation, followed by A.
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Figure 8: Spikes produced (bottom) for three possible

actions (A, B, and C) as their utility changes (top).



Response Latency

One of the key advantages of using a realistic neural model
is that timing predictions emerge from the neural
parameters. We start by determining how long it takes the
model to select an action when there is a sudden change in
the input. Figure 9 shows the output for an action when its
utility is suddenly increased at t=0. This matches empirical
findings that in the rat basal ganglia, output neurons stop
spiking 14 to 17 milliseconds after a similar input pulse
(Ryan & Clark, 1991).
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Figure 9: Spiking produced (bottom) for a sudden change
in utility (top). Firing for action A stops 15.1ms after its
utility is increased.

We can also examine how long it takes the model to decide
between two actions as we adjust the difference between the
top two utility values. Figure 10 indicates how the latency
changes from very similar utility values (38ms mean
latency, standard deviation 8.8ms) to highly differing utility
values (14ms mean latency, standard deviation 1.5ms). As
far as we are aware, this is a novel prediction.
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Figure 10: Mean and standard deviation of basal ganglia
response latency as for varying differences between utilities.
Error bars are 95% confidence intervals over 200 runs.

Cognitive Cycle Timing

In a full cognitive system, the output of the basal ganglia
would be used to affect the firing of other areas of the brain
(via the thalamus). This, in turn, will affect the input to the
basal ganglia, perhaps causing a different action to be
selected. This is the basis of our ongoing development of a
full production system using spiking neurons (Stewart,
Choo, and Eliasmith, 2010). To investigate how long this
whole cycle requires, we need to include the thalamus and a
simple cortical area in our model.
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For the cortex, we create a group of 5000 spiking neurons
representing the current state. These are connected to the
inputs to the basal ganglia so that the utility input for each
action will be the similarity (measured as the dot product)
between the current state and the ideal state for that action.
This is done using Equation 2, where f{x) is this similarity
measure. For the thalamus, we create neurons representing
the actions of switching to each possible state. They are
connected to the cortex similarly, such that the firing of one
group of neurons in the thalamus will cause the cortical
neurons to fire in a pattern representing that state.

To implement the chaining of actions one after the other,
we connect the output of the basal ganglia to the thalamic
neurons such that if the basal ganglia selects action A, this
will stop the inhibition of the thalamic neurons representing
state B, thus causing the cortex to go to state B, and the
basal ganglia to select action B. The actions are chained so
that A leads to B, B leads to C, C leads to D, and so on.
This can be thought of as a set of production rules of the
form “If A then B; If B then C; If C then D; etc.” The
newly added connections are excitatory, using AMPA-type
receptors (T,=2ms). All other parameters remain the same.

With this model, we can measure the time taken to change
from one action to the next. This provides a measure of the
minimum amount of time needed to go from one step to the
next in a sequence of cognitive actions. In cognitive models
that use production systems, extensive behavioural data has
been gathered indicating that this value should be around 50
milliseconds (Anderson et al., 1995).

Figure 11 shows the mean and standard deviation of the
cycle times produce by our model. The shaded area shows
the timing produced when the correct realistic time
constants for the inhibitory GABA neurotransmitter are
used. Importantly, there are no parameters in our model that
we can vary to affect this performance. In should be noted
that our model predicts cycle times between 34 and 44
milliseconds, which is somewhat shorter than the standard
50 milliseconds value. However, this result is only for

simple actions: more complex actions are considered next.
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Figure 11: Cognitive cycle times produced by our model
as the time constant T, of the inhibitory neurotransmitter
GABA varies. The shaded area indicates parameter settings
consistent with neurophysiology (Gupta et al., 2000).

Cognitive models generally use a cycle time of 50ms.

To be cognitively useful, an action selection mechanism
needs to be able to trigger more complex actions than those
considered so far. In particular, production system rules
generally allow actions that can send a value stored in one



brain area to another. To model this we can create
connections between cortical areas such that driving a
cortical area to a particular value causes a second cortical
area to send its value to a third cortical area. This can be
implemented using Equation 2 (see Stewart, Choo, and
Eliasmith, 2010 for more details). The timing of these types
of actions are shown in Figure 12. While simple actions
require less than 50 milliseconds, complex actions require
more than 50 milliseconds.
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Figure 12: Cognitive cycle times produced for complex
actions by our model as the time constant of the inhibitory
neurotransmitter GABA varies.
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Conclusions

We presented a spiking neuron model of action selection
that matches the anatomy of the basal ganglia and does not
assume the presence of diffuse inhibitory interneurons in the
striatum. By constraining the neurons' behaviour to match
that of real neurons in the basal ganglia, we produce timing
predictions from our model without parameter fitting.
Figure 9 shows that these predictions match well for single-
cell recordings in rats, and Figure 11 shows a close match
for a wide range of cognitive psychology results. Our
model thus provides a neural explanation of the commonly
used 50 millisecond cognitive cycle time (e.g. Anderson et
al., 1995). It also produces novel predictions of increases to
this cycle time for situations where two possible actions
have similar utilities (Figure 10) and for actions involving
information transfer between brain areas (Figure 12).
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