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The breadth of this handbook demonstrates the diversity of approaches to compositionality that 

characterize current research.  Understanding how structured representations are formed and 

manipulated has been a long-standing challenge for those investigating the complexities of cognition.  

Fodor and Pylyshyn (1988) and Jackendoff (2002) have provided detailed discussions of the problems 

faced by any theory purporting to describe how such systems can occur in the physical brain.  In 

particular, neural cognitive theories must not only identify how to neurally instantiate the rapid 

construction and transformation of compositional structures, but also provide explanatory advantages 

over classical symbolic approaches. 

Traditionally, cognitive theories have expressed their components using an artificial symbolic 

language, such as first-order predicate logic, e.g. chased(dog, boy). The atoms in such 

representations are non-decomposable letter strings, e.g. dog, chased, and boy.  Fodor and Pylyshyn 

(1988) call this a classical symbol system or classical cognitive architecture, and the defining 

characteristic is that the individual atoms explicitly appear in any overall structure in which they 

participate.  This sense of ‘classical architecture’ is used throughout this article. 

The technical problem of how symbolic representations, and the relations between such 

representations, can be accounted for in a neural approach has driven much of the discussion of 

neurally-inspired compositional models.  The specific approaches discussed in this paper have all been 

shown to meet Jackendoff's challenges (de Kamps and van der Velde, 2006; Gayler 2003), which 

highlight potential difficulties for neural systems that are easily accounted for by a traditional classical 

system.  However, each of these approaches continues to face two main criticisms: a) the architecture is 

uninteresting because it is an implementation of a classical system; b) the architecture is not 

biologically plausible.  We take it as important to understand how the brain implements a classical 

system (if it indeed does), but agree that none of the past proposals are sufficiently biologically 

plausible.  In this paper, we first discuss why implementation details may, in fact, be important for 

understanding cognitive behaviour.  We then review the past approaches and present concerns about 



biological plausibility.  We conclude by presenting a new architecture that is not an implementation of 

a classical architecture, is able to explain the relevant behaviour, and is biologically plausible. 

The Purpose of Neural Models 

Fodor and McLaughlin (1990) suggest that if a neural theory merely demonstrates how to implement a 

classical symbol system using neurons, then this is actually an argument against the importance of the 

neural description.  The fact that symbol systems are physically instantiated in neurons becomes a mere 

implementational detail, since there is a direct way to translate from the symbolic description to the 

more neurally plausible one.  It might then be argued that, while the neural aspects of the theory 

identify how behaviour arises, they are not fundamentally important for understanding that behaviour.  

Classical symbol systems would continue to be seen as the right kinds of description for psychological 

processes.   

However, it seems clear that there are explanatory advantages to having the neural level of description 

in addition to the purely classical one.  A realistic neural explanation opens the door to a wealth of new 

methods for analyzing and investigating cognitive behaviour, such as fMRI, EEG, single-cell 

recordings, and the rest of modern neuroscience.  Without such an explanation, there is no way to 

generate rigorous constraints from such evidence, and no way to create testable neurological 

predictions.  Cutting ourselves off from this empirical data because of our theoretical commitments 

(e.g., that cognitive systems are classical) is a case of putting the cart before the horse.  Indeed, a neural 

implementation of a classical system would strengthen the plausibility of the view enormously.  

However, this means that the biological realism of the proposed neural implementation is of the utmost 

importance: if the biological constraints are unrealistic then all that remains is a neurally implausible 

implementation of a classical architecture, of which there are many examples already. 

It is also important to entertain the possibility that a neural cognitive theory might not be an 

implementation of a classical symbol system.  Perhaps implementational details force us to reconsider 

our prior theoretical commitments.  That is, while our best implementation may exhibit compositional 

behaviour in its ability to rapidly manipulate structures, it may not have certain properties that are 

fundamental to the classical symbol system approach: e.g., in classical symbol systems a structured 

representation contains, as constituents, explicit representations of each of its components (Fodor & 

Pylyshyn, 1988; Fodor and McLaughlin, 1990).  Notably, some of the Vector Symbolic Architectures 

(VSAs) we discuss below do not meet this criteria, while still providing the compositional 



characteristics required for explaining cognitive behaviour.  Indeed, the neural theory we subsequently 

present (based on VSAs) not only provides interesting neurological constraints, it also relies on non-

classical theoretical commitments. 

Evaluating Neural Models 

A cognitive model of compositionality can be analyzed at any of a number of levels, including the 

molecular, cellular, network, systems, behavioural, social, etc. levels.  For the purposes of this 

discussion, however, we focus on two levels in particular (though we take the theories to be analyzable 

at many of these levels): the behavioural and the neural levels.  We have chosen to narrow our focus in 

this way because these particular levels of analysis make clear the distinctions between available 

alternative theories. 

Starting with behavioural constraints, we note that while compositionality is clearly a fundamental 

component of cognitive activity, it is equally clear that compositional behaviour is neither perfect nor 

unlimited.  Complex nested ideas and long conjunctions of concepts are difficult or impossible for 

people to process all at once.  The idea of cognitive load is extensively used in behavioral psychology 

to increase task difficulty until performance errors gradually increase to the desired level.  Importantly, 

this tends to be a gradual effect; people do not perform perfectly well at one moment, only to fail 

completely in a slightly harder situation. 

In the classical symbol system approach, this is considered to be an issue of ‘competence’ versus 

‘performance’ (after Chomsky, 1965).  That is, the underlying theory provides the capacity for 

arbitrarily complex compositions, but the limitations of the human cognitive system lead to less than 

perfect performance.  This suggests that the best way to understand human compositional activity is to 

consider it to be an approximation of an ideal theoretical construct, much as modern computers are 

considered to be approximations of ideal Turing machines.   

If a theory does not follow the classical approach, it may incorporate limits on compositionality at the 

theoretical level (i.e., regardless of implementational considerations).  For example, some VSAs 

combine components in lossy, imperfect ways, while still maintaining the accuracy needed for 

structured, organized cognition, in many cases.  This ‘inaccuracy’ is introduced at the theoretical level 

– it is a consequence of how representations and their processing are formally characterized –  as 

opposed to being an implementational detail. 

For both classical and non-classical approaches, similar constraints are provided by considerations of  



neural implementation.  Modern neuroscience has led to a wealth of knowledge about the details of 

neurons in various regions of the brain.  We know that neurons are limited in term of their firing rate, 

exhibit a great deal of random variation in their firing, are generally highly promiscuous in terms of 

their connections, and are  limited to about 100 billion in the human brain.  Neural systems are also 

known to be highly robust, as neuron death occurs regularly without catastrophic consequences to the 

overall system. 

Neural cognitive theories should conform to these constraints.  This is especially true for classical 

theories, since the only advantage they have over non-neural theories involves comparison to 

measurements made on real physical neurons.  The remainder of this article examines four different 

cognitive theories in terms of how well they conform to these known biological limitations, and how 

neural implementation leads to constraints on overall compositional behaviour.  As will be seen, the 

classical symbolic approaches are problematic, while a non-classical Vector Symbolic Approach 

accounts for behavioral limitations via realistic neural constraints. 

Classical Architectures 

The three methods for implementing classical symbol systems in a neural architecture discussed here 

are all capable of meeting Jackendoff's criteria for compositionality.  That is, they are able to represent 

symbols and relations between symbols using a connectionist approach.  These models generally do 

this by explicitly representing each component within a structure, and then adding representations of 

the relations between these components. 

LISA: Learning and Inference with Schemas and Analogies 

Hummel and Holyoak have presented a series of papers describing their LISA model (Hummel, John E 

Holyoak,Keith J., 2003; J. E. Hummel, Burns, & Holyoak, 1994; J. E. Hummel & Holyoak, 1997).  

Their model is meant to account for various aspects of analogical reasoning, using a schema-based 

approach.  This is common in classical symbol systems, and so their main contribution is showing how 

neurons can implement this classical architecture.  The neural plausibility of the proposal is thus 

essential to its contribution to our understanding of cognition. 

In LISA, a structured representation is constructed out of at least four levels of distributed and localist 

representations.  The first level consists of localist subsymbols (e.g. animal, furry, human, etc.). The 

second level consists of localist units connected to a distributed network of subsymbols relevant to 



defining the semantics of the second level symbols (e.g., dog is connected to furry, animal, etc.). The 

third level consists of localist subproposition nodes that bind roles to objects (e.g. dog+chase-agent to 

indicate that the dog is the chaser, not the entity being chased). The fourth and final level consists of 

localist proposition nodes that bind subpropositions to form whole propositions (e.g. dog+chaser 

combined with cat+chased results in chase(dog,cat)). 

Figure 1: The LISA architecture.  Each box is a single neural group.  Shown are just those neural 

groups required to represent dogs chase cats and Tom thinks that dogs chase cats.  Based on (Hummel 

& Holyoak, 2003, Figure 1) 

Hummel and Holyoak (2003) are careful to note that each of their localist units is intended to be a 

population of neurons: “we assume that the localist units are realized neurally as small populations of 

neurons (as opposed to single neurons), in which the members of each population code very selectively 

for a single entity” (p. 223).  Each such population only represents one subsymbol, symbol, 

subproposition, or proposition.  They do not provide details as to how the neurons in this neural group 

interact to form this representation. 

The simplest analysis in terms of neurological plausibility that can be done on this system is to 

determine how many neurons would be required to represent a reasonably complex language.  If we 



suppose that there are 4,000 nouns and 2,000 verbs (relations) in our language,1 this suggests we need 

6,000 populations to represent the basic concepts (i.e., at the second level of LISA’s representational 

hierarchy). Assuming only two-place relations, we then need 4000*2000*2 = 16,000,000 populations 

to represent the third level (subpropositions), i.e. each noun playing agent or theme roles for each verb. 

At the fourth level (propositions) we need 2000*4000*4000 = 32,000,000,000 populations to be able to 

represent the possibility that, for each verb, any noun could be either an agent or a theme.  Thus, to be 

able to represent any simple proposition of the form relation(agent,theme) requires around thirty 

billion neural groups, while only 100 billion neurons exist in the human brain.  If higher order relations 

are desired as well (e.g. knows(loves(agent, theme)), sees(hates(agent, theme)), etc.), we 

need that same number of groups again for each such higher order relation. 

Importantly, LISA does not fail gracefully when limited to a more reasonable number of neurons.  If 

particular neural groups are not present in the architecture, then the corresponding structures cannot be 

represented.  Even if some other mechanism were added that could identify neural groups that were not 

being used and adjust their connections to be able to represent the desired new concept, this would 

require adjusting synaptic connection weights between multiple neurons, a process which cannot occur 

in the few seconds it may take to read a novel sentence. 

Another key aspect of the LISA model is its use of neural synchronization.  At any given time, a few 

different propositions can be encoded in a LISA model.  This is done by having the neurons 

corresponding to each proposition fire together, but at a different time from the other neurons.  This 

idea is based on the currently heated debated among neuroscientists about the observations of such 

synchronized firing seen in physical brains.  Since this bursting firing pattern is observed to have a 

period of around 25msec, and since neuron firing precision is considered to be around five 

milliseconds, this means that only five separate propositions can be encoded at the same time.  Hummel 

and Holyoak take this to be a limit on human working memory. 

However, the kind of synchronization used in LISA is not like that being argued for in biological 

brains.  In LISA, synchronization occurs because there are inhibitory populations connected to each 

subproposition which set up an oscillatory behavior when the proposition they are connected to is given 
                                                

1  Estimates for the size of the vocabulary of English speakers vary between about 40,000-100,000. For instance, 

Crystal (2003) estimates that the average college graduate has 60,000 active words.  While there are more nouns than verbs, 

there are about 11,000 verbs in English.  As a result, the estimates we are using are very conservative. 



a constant input.  That oscillation is then reflected in all units that are excitatorily connected to these 

subpropositions (i.e. propositions and objects/relations).  Usually, synchronization in the 

neurobiological literature is considered functional only if it is not explainable by common input.  In 

LISA binding is established first by construction of subproposition units and that binding then results in 

synchronization.  In the neurobiological literature, synchronization is supposed to result in binding 

(Engel, Fries, & Singer, 2001).  Consequently, the neural plausibility of LISA is not supported by 

current work on synchronization.  This severely challenges the claims to neural plausibility or realism 

made by the model’s proponents.  Our concern is that, if LISA adopted neurally plausible units, most of 

the explanatory mechanisms would fail to operate as they do in the much simplified cases explored to 

date.  

LISA is able to represent complex nested structures, and it does so in a classical manner with 

populations of neurons that represent the sub-components of the overall structure.  However, it is 

limited in terms of the depth of structures that can be represented.  This limit is a hard, fixed limit that 

can be increased only by vastly increasing the number of neurons used.  Indeed, even simple structures 

like relation(agent,theme) require more neurons than exist in the human brain.  Furthermore, the 

neurons in this model are extreme idealizations and cannot be directly compared to real neurons.  

Although the synchronization aspect of LISA is inspired by neural evidence, it uses a mechanism that 

is at odds with the neurobiological literature.  We believe these problems make LISA a poor candidate 

for neural explanations of cognitive behaviour. 

Neural Blackboard Architectures 

Many of the difficulties of the LISA model derive from the exponential growth in the number of 

neurons required.  This problem is greatly reduced in van der Velde and de Kamps' (2006) neural 

blackboard architectures.  This architecture consists of neural groups that can be temporarily bound to 

particular atomic concepts, and these neural groups can then be combined to form structures.  Since 

structures are only built out of a restricted number of these temporary processors, this approach does 

not encounter the exponential growth problem of connecting every possible relation to every possible 

noun.  By reuse of the structure assemblies, neural blackboard architectures can build much more 

complex structures than the fixed LISA approach with the same number of neural groups. 

This approach uses a fixed number of noun assemblies and verb assemblies (plus separate assemblies 

for determiners, adjectives, prepositions, clauses, etc.).  Any of these assemblies can be connected to 



any of its associated words.  That is, a particular noun assembly might at one time be bound to boy, 

while at another time it may be bound to dog.  This binding is not done by forming new neural 

connections, as this would be implausible on a fast time scale.  Instead, binding is accomplished via a 

complex mesh of carefully designed interacting neural groups (Figure 2b) that connect every noun 

assembly to every noun.  This mesh requires eight neural groups for every noun/assembly pair (Figure 

2c).  That is, if there are 4000 nouns and we have 20 noun assemblies, 20*4000*8 = 640,000 neural 

groups are required.  Similar calculations can be done for each of the other types of word assemblies. 

 

Figure 2: The neural blackboard architecture.  Groups in (a) are connected by mesh grids (b) consisting 

of multiple copies of a complex system of neural groups (c).  Excitatory connections are shown with 

arrows and inhibitory connections with circles.  For more details, see (van der Velde & de Kamps, 

2006). 

Once these words are bound to particular assemblies in the blackboard, a separate set of neural 

structures is used to allow these atoms to bind together.  This is done by having each of the assemblies 

also have connections to separate neural groups (called sub-assemblies) representing the role of the 

term. Thus each noun assembly has both an agent sub-assembly and a theme sub-assembly, which can 

be made active or non-active based on a control system that interacts with a gating assembly between 



the two.  Each of these sub-assemblies are connected to each other similar sub-assembly in the same 

manner as every noun assembly is connected to every noun.  Given this system, it is possible to adjust 

the activations of the binding and gating systems to allow complex structures to be represented. 

Unfortunately, this capability comes at a significant cost in terms of complexity.  Notably, each gating 

circuit and memory circuit consists of eight or nine carefully arranged neural groups.  The number of 

neurons needed for each group is not defined, but due to the degree of accuracy required in this 

complex structure, we estimate a minimum of about 100 neurons would be required per group, which 

would provide a signal to noise ratio of about 100:1, and a reasonably stable dynamics over about 2-5s 

(Eliasmith & Anderson, 2003).  If we allow 20 assemblies for each word type and a total vocabulary 

(including nouns, verbs, adjectives, adverbs, etc.) of 50,000 words,2 over 8,000,000 neural groups are 

required3.  Given our estimate of at least 100 neurons per neural group, the architecture demands about 

in 800,000,000 neurons, or approximately 50cm2 of cortex.  While this is considerably less than is 

required by LISA, this is still a very large area of the brain (about the size of all language areas 

combined).  And, this is the area that is required merely to represent a structure, it does not include the 

systems for controlling how sentences are encoded into this format, semantic connections between the 

words (encoded as subsymbols in LISA), methods for manipulating these structures, and so on.   

Notably, the architecture depicted in Figure 2 has extremely dense inter-connectivity between neural 

groups.  As far as we are aware, there is no evidence that such a dense connection arrangement is 

common across language areas of cortex.  The evidence cited by van der Velde and de Kamps (2006) 

to support these structures demonstrates that some individual inhibitory cells in visual cortex synapse 

on other inhibitory cells in the same layer (Gonchar & Burkhalter, 1999) – it is not clear how this 

renders their architecture plausible in its details.   After all, the blackboard architecture necessitates that 

all noun assemblies and all verb assemblies are connected, and that all nouns are connected to all noun 

assemblies.  This demands very long distance, and highly complete connectivity, which is not observed 

in the brain. Most cortical connections are local and somewhat sparse (Song, Sjostrom, Reigl, Nelson, 

                                                

2  See ff 1 for references to typical vocabulary sizes in English. 

3  The neural requirements come from the two types of meshes shown in Figure 2.  The first set of meshes binds 

words to assemblies and requires 50,000 * 20 connections, each of which requires 8 neural groups.  The second set of 

internal meshes bind particular roles to each other to form the represented structure.  For 20 different roles, this results in 

20*20*20*8 neural groups.  50,000*20*8+20*20*20*8=8,064,000 neural groups. 



& Chklovskii, 2005). 

Furthermore, the highly complex binding and gating systems require thousands of intricately organized 

mutually dependent neural groups.  This ensures that word assemblies are only bound to a single word 

at a time, and that various different possible structures involving the same words can be distinguished.  

If some of these neurons are removed, or if they are not connected in exactly the right manner, then it is 

unclear what behaviour will occur.  Word assemblies could be stuck representing one particular word, 

or a particular noun assembly might become unable to connect to a particular verb assembly.  This is 

not the sort of error generally associated with compositionality performance limitations. 

The neural blackboard architecture also introduces a hard constraint on the number of noun, verb, and 

other word assemblies that exist.  That is, if there are only 10 noun assemblies, then structures with 

exactly 10 nouns will be represented without difficulty, but a structure with 11 nouns will be 

impossible.  This is not a pattern observed in human behaviour.  To deal with this problem, NBA can 

increase the number of word assemblies to some sufficiently large number (50 or 100 has been 

suggested).  This approximately linearly increases the number of neurons required (to 136cm2 or 

277cm2).  With this large a number of assemblies, it is possible that neural failure and timing issues 

may account for human performance limitations, although it is unclear to us how this occurs.  

However, this will require significantly more neural hardware than is associated with the language 

areas of the cortex. 

The neural blackboard architecture is an improvement over LISA in that it has reduced the number of 

neurons required (though not necessarily to a plausible limit).  However, the added complexity which 

allows this reduction does not seem to correspond to existing neural structures, and it is unclear what 

would happen to the system if neurons are removed or slightly mis-wired.  In short, the system does not 

convincingly abide by neural-level constraints. 

Tensor Products  

Both LISA and the neural blackboard architecture follow a similar approach to representing classical 

structures: particular neural groups are set to represent the atoms, and neural connections of various 

forms represent how they are related.  A radically different approach that employs tensor products was 

developed by Smolensky (1990).  Considerable debate has arisen over whether this method is, in fact, 

equivalent to a classical symbol system.  McLaughlin (1995) has convincingly argued that since the 

tensor product binding vectors (described below) can be chosen so that the representations of the 



atomic constituents are present in the representation of the complete structure, tensor products should 

be considered to be implementations of classical symbol systems.  It should be noted that Smolensky 

(1990) does not refer to his architecture as a classical system, but he seems to be employing a different, 

less common, definition than that we have adopted in this article.  Our defition of a classical symbol 

systems as one which explicitly represents the constituents of a structure when representing that 

structure is consistent with the proposals of Fodor (1997), McLauglin (1995), and Jackendoff (2002). 

The core idea behind the tensor product approach is to make use of a vector representation for the 

atomic components and to build up structures using algebraic manipulations.  That is, instead of a 

particular neuron (or small neural group) representing dog and another neuron representing cat (as in 

LISA and neural blackboard architectures), a pattern of activity over many neurons forms the 

representation.  For example, dog might be represented by the vector [0.4, 0.4, 0.5, 0.3, -0.4, …], while 

cat might be [0, -0.9, -0.2, 0.3, 0.2, …].  For technical reasons, these vectors are all fixed to have a 

magnitude of one, and thus lie on the unit hypersphere.  We refer to the number of values in a vector as 

the dimension of that vector. 

This vector representation can encode sub-symbols or semantic information about terms.  In the 

simplest approach, the values in the vector might be various possible properties of the term, such as 

whether or not it is a living thing, whether it is furry, and so on.  This is similar to the sub-symbols used 

in LISA, but any distributed representation scheme can be used.  Importantly, the advantage offered by 

the tensor products approach is to define how such representations can be combined to form a structure.  

To create a structure representing chase(dogs,cats), we perform the following calculation: 

dogagent+chaseverb+cattheme 

To do this, the  operation is defined as the tensor product (i.e., outer product).  This involves 

multiplying each element in the two vectors together to form a matrix of values, as shown in figure 3. 

Figure 3: Binding values via tensor products 



Importantly, with this technique the original components of the structure can later be extracted.  That 

is, if we only have the overall representation matrix, we can determine what the original agent was by 

performing the inner product of the matrix with the value for agent.  To complete our example, this can 

also be done for the verb and theme values, and the results summed to give the final matrix.  In other 

words, this matrix is a representation of the entire structure, since the individual components can be 

recovered or decoded. 

Although this approach is typically described in terms of vectors and algebraic manipulations, it can 

also be interpreted in terms of neurons.  The values in the vectors or matrices can be encoded by the 

firing of a neural group, so a representation consists of a set of neural groups.  The pattern of activation 

across the neural groups is the represented value.  Encoding and decoding structure can be done by 

connecting groups together so that they calculate the outer or inner product.  Since this requires 

multiplication of two values from different neural groups, there must be a neural mechanism capable of 

performing this nonlinear computation.  There is some evidence that certain neurons can compute 

nonlinearities directly (e.g. Mel, 1994; Koch & Poggio, 1992), but it is currently a matter of 

considerable debate how common such mechanisms are in cortical neurons.  However, it is also 

possible to use the Neural Engineering Framework (Elaismith & Anderson, 2003) discussed later in 

this article to organize highly typical cortical neurons to perform this multiplication. 

The tensor product approach also takes into account a fundamental property of physical neurons: the 

fact that they are noisy.  Because of the variability in spiking patterns and influences from the rest of 

the brain, it has been shown that the signal to noise ratio for a typical neuron is 10:1, meaning that it 

can only represent a value to within 10% accuracy (Rieke et al., 1997).  If this constraint is taken into 

account when evaluating the tensor product approach, we find that it degrades gracefully.  That is, it 

will slowly become less accurate, rather than suddenly failing like the architectures we previously 

considered.  To demonstrate this, consider a case with 25,000 atomic terms in the language where we 

are representing a structure of the form relation(agent,theme).  We measure the accuracy of the 

representation by decoding the agent and determining which of the 25,000 atomic terms is closest to 

the resulting value.  The accuracy shown in figure 4 indicates how often the correct decoding occurs.  

We can see from this figure that 20 dimensions (i.e. twenty values per vector) is sufficient to represent 

relation(agent,theme) with 95% accuracy, while 30 dimensions is required for more complex 

situations like relation(A,B,C,D) to be represented equally well. 



Figure 4: Decoding accuracy for relations of different complexities and number of dimensions, 

assuming representation noise of 10%. 

This smooth degradation of accuracy leads to behavior where more errors are made the more complex a 

task is.  This is a common pattern seen in behavioral psychology, where the cognitive load of a task is 

often increased specifically to cause errors in subject performance.  In other words, tensor products fail 

in a manner similar to that of human behaviour, unlike the catastrophic failures seen for LISA and 

neural blackboard architectures.   

However, tensor products encounter difficulties when creating more complex nested structures.  In 

particular, for 20 dimensional vectors, at least 20 neurons are needed to represent a single atomic value, 

but 400 (20*20) are needed to represent the matrix for AB, 8000 (20*20*20) are needed for 

ABC, and so on.  In other words, the maximum depth of the structure is fixed by the number of 

neurons used, and this value grows exponentially.  For two levels (e.g. ‘The cat that the dog chased 

likes the mouse’), with 100 neurons per dimension (as for the blackboard architecture) and 3500 

dimension per vector,4 1.2 billion neurons are required for each sentence. Clearly we will not be able to 

represent structures of sufficient complexity with the available neurons in the brain. 

Tensor products are more realistic in terms of their behavioural limitations on compositionality, since 

attempting to build more and more complex structures leads to a gradual increase in error.  

Furthermore, when they are implemented using neurons, there is a natural way to model how the 

randomness of neural firing affects the high-level behavior of the system.  However, tensor products 

                                                

4  See the section on Holographic Reduced Representations for the choice of this number of dimensions.  Essentially, 

3,500 neurons are needed to effectively code for 50,000 words. 



require unrealistic numbers of neurons to represent deep structures, which makes them problematic as a 

neural theory of compositionality.   

Non-Classical Architectures 

The previous three approaches are all implementations of classical symbol systems.  That is, their 

representations can be directly mapped to the standard symbolic approach to compositionality, where 

representations of the atomic components are constituents of the representation of the overall structure, 

just as dog, chase, and cat are constituents of chase(dog,cat).  The tensor product approach disguises 

this fact in its matrix representation, but it is possible to exactly extract those original components 

(ignoring implementation details such as neuron noise). 

Recently, a number of new approaches have been developed which are similar to the tensor product 

approach, but which abandon the idea of being able to perfectly extract the original components.  This 

family of approaches (including tensor products) are known as Vector Symbolic Architectures (VSAs; 

Gayler, 2003), and all share the basic principle of representing their atomic constituents via a numerical 

vector.  They differ, however, in terms of what values are allowed, how vectors are combined together, 

and how the original values are extracted.   

For the purposes of this article, we will focus on the VSA known as Holographic Reduced 

Representation (HRR; Plate, 2003).  This makes use of atomic representation vectors of the same form 

as that used in the tensor product approach discussed above: vectors of numbers with a total length of 

one.  Other VSAs, such as Binary Splatter Codes, only allow the values 0 and 1 for each dimension.  

Most of our discussion about how to form neural models will apply to any VSA.  Plate (2003) provides 

a detailed overview of the algorithmic differences between numerous VSAs. 

Holographic Reduced Representations 

The key difference between HRRs and the tensor product approach is that in HRRs, everything is a 

vector with a fixed length.  That is, instead of AB producing a large matrix, it produces a vector of 

the same size as the original vectors.  The operation used to do this is cyclic convolution, diagrammed 

in Figure 5.   



Figure 5: Binding values via Holographic Reduced Representations 

Since the result is of the same dimension as the original vectors, we can make a representation as deep 

as is desired, while still requiring only a fixed number of neurons.  However, this is accomplished at 

the expense of accurace: as the complexity of the structure increases, the expected accuracy of the 

decoding will decrease. 

Decoding is accomplished by performing a cyclic convolution with the inverse of a value.  The inverse 

is defined simply by rearranging the values in a vector so that, e.g., [a,b,c,d,e] becomes [a,e,d,c,b].  The 

result is a close approximation of the originally bound value.  For example, if we have the 

representation 

dogagent+chaseverb+cattheme, 

we can perform the calculation shown in figure 6 to determine what the value that was originally bound 

to  agent.   

 

Figure 6: Extracting structure from an HRR representation.  The combined structure is convolved with 

the inverse of agent, resulting in an output value that is an approximation of the original value for dog. 

This works because of two fundamental properties of HRRs (and VSAs in general):  

ABinverse(B)≈A         and          A+B ≈A. 

In words, the convolution of a product of vectors with the inverse of one element is equal to the other 

element, and the superposition of two elements is somewhat similar to either element.  As a 



consequence, elements can be bound and superposed multiple times and still be recoverable from the 

resulting vector. 

Plate (2003) determined how many dimensions are required to accurately represent and recover 

structures of this sort.  For a fixed number of atomic values in the language (m) and a given maximum 

number of terms to be combined (k), and a certain probability of error (q), the following formula can be 

used to determine the number of dimensions needed (n). 

 

Given this, we can represent structures with up to 100 terms out of a vocabulary of 50,000 words with 

99% accuracy using 3,500 dimensions.  Since HRRs are non-classical representation systems, this 

limitation on accuracy will be a part of any theoretical discussion, even before considering the issues 

involved in implementing HRRs in neurons.   However, using the estimate of 100 neurons per 

dimension, 350,000 realistic spiking neurons with properties typical to those found in the cortex would 

be sufficient.  This requires less than 2mm2 of cortical area, significantly less than the neural 

blackboard architecture, LISA or tensor products.  Indeed, this is many orders of magnitude fewer 

neurons than the other approaches.  However, when implemented in noisy, realistic neurons, with 

complex structures and atomic vectors that are not randomly distributed, more dimensions are likely to 

be required to achieve this degree of accuracy.  Exactly how much more depends on the 

neurophysiological details of the neurons involved.  It should also be noted that current neural 

simulations have used 100 dimensions. Efforts are underway to scale this up. 

Neural Engineering Framework 

Given that HRRs have the best plausibilty of scaling appropriately, here we consider how to implement 

the necessary operations to construct HRRs in biological realistic networks.  While these methods can 

be applied to the other approaches, their initial implausibility regarding the use of neural resources 

makes it unclear what value there is in pursuing that possibility.  

Examing the implementation of HRRs in detail allows an analysis of how (or if) realistic neurons can 

perform the necessary calculations, and what effects different sorts of neurotransmitters, firing rates, 

and the other diverse features of real physical neurons might have on these representations.  The 

approach we adopt is the Neural Engineering Framework (NEF; Eliasmith & Anderson, 2003), and has 

been used to model a wide variety of real neural systems, including the barn owl auditory system 



(Fischer, 2005), the rodent navigation system (Conklin & Eliasmith, 2005), escape and swimming 

control in zebrafish (Kuo & Eliasmith, 2005), working memory systems (Singh & Eliasmith, 2006), 

and the translational vestibular ocular reflex in monkeys (Eliasmith, Westover, & Anderson, 2002). 

As in the discussions of the previous models, neurons are divided into neural groups.  However, in 

NEF, a neural group can represent a complete vector, rather than just one value within a vector.  The 

neurons within a group are assumed to be heterogeneous (as observed in cortex) in that they all have 

different maximum firing rates and tuning curves, and possibly a variety of receptors and other 

physiological properties.  The pattern of firing across these neurons can be characterized as a 

representation of a particular value, such as [0, -0.9, -0.2, 0.3, 0.2, …] (used above to represent the 

symbol cat).  Notably, the number of dimensions in the vector is not the same as the number of 

neurons in the neural group.  By adding more neurons, we increase the representation accuracy, 

counteracting the effects of random noise in neuron firing patterns. 

To define a mapping from a particular value we want to represent to the population firing pattern, each 

neuron in the neural group is assigned an ‘encoding vector,’ which can be inferred from experimental 

data characterizing the tuning curve of a neuron if it is available.  This encoding vector is a vector in 

the represented space for which the neuron will fire the strongest.  This kind of characterization 

captures the observed behaviour of neurons in many areas of the brain, where such preferred direction 

vectors are generally found to cover all possible directions in the space being represented.  For our 

purposes, we choose these to be random vectors for each neuron.   

The details of how the encoding vector affects the firing of the neuron will vary depending on the type 

of neuron and the degree of accuracy to which the neuron is being simulated.  In general, the activity a 

(i.e., the spike train) of a particular neuron i to represent a value x is: 

 

Here, α is the neuron gain or sensitivity,  !!  is the encoding vector, and Jbias is a fixed current to model 

background neural activity.   G is the response function, which is determined by what sort of neuron is 

being modeled, including its particular resistances, capacitances, maximum firing rate, and so on.  In 

our work, we use the response function for the leaky integrate-and-fire (LIF) model, which is widely 

used for its reasonable trade-off between realism and computational requirements.  NEF can easily 

make use of more detailed models simply by changing this response function. 



Using this approach, we can directly translate from a particular value that we want to represent (x) to 

the steady-state firing rates of each neuron in the group (ai).  The value being represented is distributed 

across all of the neurons.  This allows for any vector of a given length to be represented, and any value 

for each dimension within that vector, including negative numbers (which are problematic to encode 

just by naively considering the firing rates of neurons). 

If we have the firing pattern for a neural group, we can also determine what value is currently being 

represented: the reverse of the encoding process.  This is more complex than encoding, and in general it 

is impossible to perfectly recover the original value from the firing pattern.  However, we can 

determine an optimal linear decoder, φ, to give a high quality estimate (Eliasmith & Anderson, 2003), 

öx :  

 

This decoder can be constructed to be robust to random variations in the firing rates of  neurons (and to 

neuron death).  The representations can thus be made as accurate as desired by increasing the number 

of neurons used. 

Since any theory of compositionality requires the ability to combine and extract information from the 

representational structures, we also need to determine how to manipulate these representations using 

neurons.  This must be done via the synaptic connections between neural groups.  We do not assume 

that it is possible to perform multiplication between two different values via a synaptic connection; 

instead, NEF shows how this can be performed using standard linear weighted connections. 

Let us begin by considering the simplest case of a transformation that computes the identity function 

f(x) = x.  That is, if we have two neural groups (A and B), and we set the value of group A to be x, we 

want group B to also represent x.  This can be seen as the direct transmission of information from one 

location in the brain to another.  For this situation, the optimal connection weights between each neuron 

i in group A and each neuron j in group B are (this can be seen by substituting the optimal decoding for 

neurons in A into the encoding equation for neurons in B): 

 

If this formula is used to determine the strength of the synaptic connection between the neural groups, 

then group B will be driven to fire such that it represents the same value as group A.  As noted in the 

previous section, the accuracy of this representation will be dependent on the number of neurons in the 



groups.  This system works even though none of the neurons in the two neural groups will have exactly 

the same encoding vector (and thus firing pattern).  That is, there will generally not be a one-to-one 

correspondence between any neurons in the groups. 

We can also connect neural groups in such a way as to transform the value from A to B.  That is, we 

can set the synaptic weights so that B represents a vector that is, e.g., twice the vector in A, or the sum 

of the values in the A, or any other desired function f(x).  This is done using the same formula as above, 

but the decoding vectors φ are replaced by an optimal linear function decoder determined using the 

following formulae: 

 

Using this approach, can determine the neural connection weights needed to compute the circular 

convolution of two input vectors.  Thus, we can bind together the values in different neural groups to 

create any HRR structure.  We have previously shown how this approach can be used to represent rule-

following behaviour in different contexts by modeling the Wason card-flipping task (Eliasmith, 2005).  

This involved over 20,000 spiking neurons organized to perform cyclic convolution on values stored in 

an associative memory.  In other words, not only can arbitrary structures be represented, but also 

manipulations of these structures can be represented and applied using this approach.  This allows for 

fully compositional behaviour, as necessary to meet Jackendoff’s (2002) challenges. 

An important feature of the Neural Engineering Framework is that the methods for generating 

connection weights and representations continue to be applicable no matter how detailed the underlying 

models of single neurons is.  It can be applied to rate neurons, leaky integrate-and-fire (LIF) neurons, 

adaptive LIF neurons, and even the highly complex compartmental models that require supercomputers 

to simulate the firing pattern of a single neuron.  This means that as we obtain more information about 

particular neurons involved in a cognitive behaviour, we can add relevant information into the 

cognitive model and determine the effects of those insights on the overall model.  Furthermore, 

simulations can first be done using a simplistic neural model requiring less computing power, and then 

once a suitable cognitive model is created a more detailed neural model can be used to generate precise 

predictions about firing patterns, representational accuracy, etc. 

An example of adding increased biological detail involves the synaptic connection weights.  In general, 

the approach described above results in both positively and negatively weighted connections.  This is 

not consistent with what is sometimes called ‘Dale’s Principle,’ the observation that in real brains 



positive (excitatory) and negative (inhibitory) weights use different neurotransmitters and are 

attributable to distinct types of neurons.  Parisien, Anderson, & Eliasmith (in press) show a related 

approach to determining weights which separates excitatory and inhibitory connections as needed, 

though with a slight increase in the number of neurons.  This biological detail can be added to any NEF 

model, without disrupting the original function of the model.   

Being able to incorporate whatever biological detail is deemed relevant for understanding the system 

allows the NEF to be a flexible tool for modeling neural systems.  Coupling the NEF with the HRR 

approach leads to a neural model of compositionality that is consistent with available modern 

neuroscientific evidence as to the capabilities and limitations of real physical neurons. 

Evaluating NEF HRRs 

The result of implementing Holographic Reduced Representations using the Neural Engineering 

Framework is a detailed, biologically plausible model of compositionality.  Unlike LISA and the neural 

blackboard architecture, an HRR-based system gradually becomes less accurate as the complexity of 

the structures increases.  This matches the observed gradual increase in error as cognitive load 

increases.  Like tensor products, similar behaviour is observed if neurons are destroyed in the NEF 

model.  The NEF approach to representing values by encoding them in neuron firing patterns is highly 

robust both to increased noise and the loss of neurons.  For example, in our model of the Wason card 

task (Eliasmith, 2005), on average a full third of the neurons could be removed from the HRR 

representation before the system became incapable of correctly decoding and applying structured rules.  

This is a side effect due to the system being designed to deal with realistic spiking neurons and neural 

variability. 

The NEF provides a direct method for designing neural systems that can transmit HRR representations 

from one location in the brain to another, something not considered by the other approaches.  Also, the 

algebraic manipulations of HRRs can all be implemented by calculating the connection weights 

between neural groups.  For example, the operation AB=C can be implemented by having a neural 

group representing A, a neural group representing B, an intermediate combined representation, and an 

final neural group representing C.  The total number of neurons required is five times the number of 

neurons needed for a single representation.  Given our previous calculations, this means about 1.4 

million neurons would be needed (9mm2 of cortex).  However, this same population of neurons can be 

used for every binding and unbinding operation, so there is no need to scale the network as structures 



become more complex, or as the number of possible elements increase.  This allows the model to 

extract required parts of structures and to build up new structures as needed.  All of these systems 

inherit the NEF's capacity for graceful degradation of performance as structure complexity increases. 

Finally, since models created using the NEF can be made to be as realistic as possible (in terms of 

accurately modeling neural behaviour), the results of such models can be directly compared to 

available of neuroscientific evidence.  Such comparisons could be based on patterns of connectivity, 

variability in firing rates, dendritic activity, and so on.  This provides a potentially rich source of 

evidence for testing and comparing theories of compositionality. 

However, this is not to say that our approach represents a full and complete theory of compositionality.  

Indeed, there are many unanswered questions that are topics of ongoing research.  For one, there are 

questions about constructing appropriate vector representations corresponding to the underlying 

symbols in our system.  We do not following the standard approach of having particular neural groups 

represent particular symbols (i.e. “grandmother cells”), but instead we claim that symbols correspond 

to distributed patterns of activation.  However, this raises the question of how these particular patterns 

come into such correspondence, and how various parts of the brain maintain common representations.  

It should be noted that although we have assumed random patterns in this paper, we take these patterns 

to often include semantic similarity, so that the patterns for cat and dog would be similar in some 

important ways.  Furthermore, our approach allows the dimensionality of the representation to change 

across different regions of the brain – certain regions need less accuracy or a less broad range of 

symbols.  Exactly how this is accomplished is an open question. 

The most important question, however, is how such a compositional system can be controlled.  In this 

paper we have focused entirely on the question of representation, and ensuring that the representation 

would support compositional structure manipulations.  To make use of such a system within a full 

cognitive architecture it is important to specify how this facility is used to answer questions, process 

complex embedded sentences, form new grounded representations, and so on.  Although we have made 

some progress in this direction, including using this approach to implement a production system 

associated with the basal ganglia (Stewart & Eliasmith, 2008), more work needs to be done.  That said, 

we believe that the approach of combining Vector Symbolic Architectures with the Neural Engineering 

Framework resolves many implementation issues and offers an alternative perspective from a purely 

classical approach. 



Summary 

We believe that neurobiological constraints can, and should, inform theory choice when evaluating 

theories of compositionality.  In particular, we find that by examining how a particular theory would be 

implemented neurally we can identify whether a model is implausible in terms of neural requirements 

(i.e. too many neurons, implausible connectivity, etc.).  We can also determine whether the high-level 

behavior of a model due to neural restrictions is comparable to the performance limitations of 

compositionality observed in humans. 

Examining LISA and neural blackboard architectures suggests that a direct implementation of a 

classical symbol system will inevitably be unrealistic.  LISA requires many orders of magnitude more 

neurons than are found in the human brain.  The neural blackboard approach requires fewer neurons, 

but in a highly complex and intricate arrangement that is unlikely to be robust.  More importantly, 

neither approach exhibits the gradual degradation of performance as complexity increases that is 

characteristic of human behaviour. 

Moving away from the directly classical approaches, the tensor product approach and VSAs in general 

(including HRRs) provide exactly the graceful degradation that is desired.  Tensor products (which are 

arguably isomorphic to classical symbol systems), however, require an unrealistic number of neurons 

to capture the necessary structures found in language.  Holographic Reduced Representations provide 

the best of both worlds: realistic neural limitations and realistic performance limitations. 

Although HRRs exhibit compositional behaviour, they are not classical symbol systems.  Even if the 

implementational details are ignored, a theoretical investigation of HRRs will diverge from classical 

theories of compositionality.  In particular, the representations of the constituents of a structure are not 

present in the representation of the structure itself.  Instead, noisy versions of these constituents must be 

extracted via algebraic manipulating: i.e., extraction will always provide merely an approximation of 

the original constituents. 

This new theory of compositionality also provides new avenues for evaluation.  Numerical 

comparisons can be made between the accuracy of this system as complexity increases and the 

accuracy observed in people.  The model can also be used to generate predictions of what sorts of firing 

patterns would be observed in neurons performing this sort of task, what connectivity they would have, 

and even the amount of time it would take to perform structure manipulations.  We believe that this 

exploiting these sources of evidence will be fruitful for evaluating theories of human compositional 



behaviour. 
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