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Abstract

Methods for cleaning up (or recognizing) states of a neural 
network  are  crucial  for  the  functioning  of  many  neural 
cognitive  models.   For  example,  Vector  Symbolic 
Architectures  provide  a  method  for  manipulating  symbols 
using a fixed-length vector representation.  To recognize the 
result of these manipulations,  a method for cleaning up the 
resulting  noisy  representation  is  needed,  as  this  noise 
increases  with  the  number  of  symbols  being  combined. 
While  these  manipulations  have  previously  been  modelled 
with biologically  plausible  neurons,  this  paper  presents  the 
first  spiking  neuron  model  of  the  cleanup  process.   We 
demonstrate that it approaches ideal performance and that the 
neural requirements scale linearly with the number of distinct 
symbols in the system.  While this result is relevant for any 
biological model requiring cleanup, it is crucial for VSAs, as 
it completes the set of neural mechanisms needed to provide a 
full neural implementation of symbolic reasoning.

Keywords: autoassociative  memory;  neural  engineering 
framework;  vector  symbolic  architectures;  holographic 
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Autoassociative Memory
A fundamental component of many cognitive architectures 
is an autoassociative memory.  This is a system that can be 
provided  with  a  partial  or  noisy  version  of  a  previously 
stored  memory  and  will  in  turn  provide  a  complete  and 
more accurate version of that memory.  This can be seen in 
ACT-R's declarative memory system (Anderson & Lebiere, 
1998),  CLARION's  non-action-centered  subsystem  (Sun, 
2006),  RAAM's  compressor  and  reconstructor  (Pollack, 
1988),  and many other  cognitive models.   This capability 
can  be  implemented  using  a  wide  variety  of  approaches, 
including  multilayer  perceptrons,  Hopfield  networks,  and 
any prototype-based classifier.

The  particular  use  of  autoassociative  memory  of 
importance  to  this  paper  is  as  a  cleanup  memory for 
cognitive operations.   Recent research has shown that  the 
storage and manipulation of cognitive symbol systems can 
be implemented as mathematical operations on fixed-length, 
high-dimensional vectors.  These approaches are known as 
Vector  Symbolic Architectures  (VSAs; Gayler,  2003) and 
include Holographic Reduced Representation (HRR; Plate, 
2003),  MAP  Coding  (Gayler  &  Wales,  2000),  Binary 
Splatter Codes (Kanerva, 1997), and others.  Each of these 
provides  an  alternate  method for  converting  symbols  and 
symbol  trees  into  vectors,  combining  vectors  to  perform 
symbolic  manipulations,  and  extracting  out  the  original 
components of that symbol tree.

In previous research we have shown how VSAs can be 
implemented  in  biologically  realistic  spiking  neurons 
(Eliasmith,  2005;  Stewart  &  Eliasmith,  2008).   This 
approach is many orders of magnitude more efficient1 than 
alternate theories of how symbolic manipulations could be 
performed  by  the  brain  (Stewart  &  Eliasmith,  in  press). 
However, one common criticism is that this approach does 
not  yet  show  how  these  systems  can  clean  up  their 
representations.   Performing  symbol  manipulations  using 
VSAs is an inherently noisy process, and these operations 
must be performed by spiking neurons, adding a significant 
amount of random variation.  When symbols are extracted 
from  a  bound  representation,  the  brain  needs  a  reliable 
method for  identifying which symbol  it  is,  allowing it  to 
respond appropriately.

The purpose of this paper is to present an autoassociative 
memory  constructed  from  spiking  neurons  which  is 
appropriate  for  cleaning  up  the  representations  resulting 
from  cognitive  manipulations  using  VSAs.   We  first 
describe  the  characteristics  of  VSAs  that  define  the 
statistical  properties  of  the  noise  that  must  be  removed. 
Next,  a  general  method  is  described  for  encoding  (and 
decoding) high-dimensional vectors across a population of 
spiking neurons.  We then show that standard approaches to 
deriving connection weights have difficulty when scaled up 
to the number of symbols required for human.  Our cleanup 
memory model is then presented, followed by an analysis of 
its behaviour.

Vector Symbolic Architectures
There are three core ideas for all VSAs.  First, each symbol 
is represented by a randomly chosen vector.  Second, two 
vectors can be combined by superposition () to produce a 
new vector  that is  similar to both of the original  vectors. 
Third,  two  vectors  can  be  combined  by  binding  ()  to 
produce  a  new  vector  that  is  dissimilar to  both  of  the 
original  vectors,  and  this  operation  can  be  reversed  by 
binding  with  the  inverse  of  a  vector  (denoted  with  an 
underline),  such  that  ABBA.   These  operations  are 
similar to standard addition and multiplication in terms of 
being associative, commutative, and distributive.  With such 
a  system  we  can  represent  a  structure  such  as 
chase(dog,cat) by performing the following calculation:

1 For realistic vocabulary sizes, this approach uses three orders 
of  magnitude  fewer  neurons  than  the  Neural  Blackboard 
Architecture (van der Velde & de Kamps, 2006) and seven orders 
of magnitude fewer than LISA (Hummel & Holyoak, 2003).



chaseverb     dogsubj     catobj

The  result  is  a  single  vector  of  the  same  length  as  the 
vectors  for  the  basic  symbols  (chase,  verb,  dog,  etc.). 
This one vector can be interpreted as a representation of the 
entire structure because it is possible to extract the original 
components.   For example,  to determine the object of the 
above structure, we take the whole vector and bind it with 
the inverse of obj.

  (chaseverb +dogsubj +catobj)obj
= chaseverbobj +dogsubjobj +catobjobj
cat +chaseverbobj +dogsubjobj

The result is a vector that is similar to cat, but is not exactly 
the same since it has two additional terms superposed on it. 
Due  to  the  properties  of  the  binding  operation,  however, 
these two terms  chaseverbobj and  dogsubjobj 
will be vectors unlike any of the original symbols.  They can 
thus be treated as randomly distributed noise.  It is this noise 
that must be removed by the cleanup memory system.

While  the  above  discussion applies  to  all  VSAs,  if  we 
choose  one  particular  type  of  VSA  we  identify  the 
properties of the symbol and noise vectors.  For this, we use 
Holographic Reduced Representations (HRRs; Plate, 2003). 
Here, each basic symbol vector is set by randomly selecting 
a point on the high-dimensional unit sphere (i.e. a random 
vector  normalized  to  a  length  of  one).   Superposition  is 
performed by vector addition and the binding operation is 
circular convolution.

The cleanup memory thus needs the following properties:

1) Recognize M unit vectors (one per symbol), distributed 
uniformly over a high-dimensional unit sphere.

2) Handle  additive  noise  produced  by  adding  k unit 
vectors uniformly distributed over the same sphere.

To  be  useful  for  cognitive  operations,  on  the  order  of 
100,000 symbols (M)  must  be able to be identified.   The 
complexity  of  the  structures  that  can  be  encoded  is 
determined by k, indicating the number of terms that can be 
superposed  and  still  lead  to  accurate  recognition.   This 
should be at least 7   2 to conform to the standard chunk 
sizes used in cognitive modelling.  

To determine whether recognition is accurate, we take the 
dot  product  of  the  correct  vector  and  the  output  of  the 
memory;  if  this value is  above a threshold the symbol  is 
successfully recognized.  For the purposes of this paper, we 
arbitrarily choose a threshold of 0.7, although Plate (2003, 
p.  100)  provides  a  method  for  determining  the  optimal 
threshold in special cases where k is fixed and known.

The final factor to consider when using Vector Symbolic 
Architectures is the number of dimensions.  In an ideal case 
(where vectors are represented exactly, rather then via noisy 
spiking  neurons),  Plate  (2003)  derived  the  following 
formula  for  determining  the  minimum  number  of 

dimensions  D required  to  represent  combinations  of  k 
vectors out of M symbols and have a probability of error q:

    D=4.5k0.7ln M /30q 4 (1)

From this, we note that 700 dimensions would be sufficient 
to represent chunks of up to 7 symbols out of a vocabulary 
of  100,000  with  an  accuracy  of  95%.   However,  this 
formula assumes an ideal cleanup memory. 

Distributed Representation
There are a variety of methods whereby a numerical vector 
can be represented by a population of spiking neurons. The 
most  simplistic  approach  is  to  have  one  neuron  per 
dimension, and the firing rate of that neuron indicates the 
value in that dimension.  However, this approach is highly 
fragile to neuron death and does not correspond to known 
methods  of  spatial  representation  by  neurons.   It  is  well 
established (e.g.  Georgopoulos et al., 1986) that movement 
directions  are  encoded  by  having  a  large  population  of 
neurons, each of which is sensitive to a different direction. 
The  firing  rate  of  each  neuron  is  related  to  the  angle 
between  that  neuron's  preferred  direction  vector  and  the 
value being encoded.2

We take this same approach to encode high-dimensional 
vectors.  Each neuron has a preferred direction vector 
and the current entering the neuron is proportional to the dot 
product between this and the vector x being represented.  If 
α is the neuron gain and Jbias is a fixed background current, 
then the total current flowing into cell i is:

     J i= i
 i⋅xJ i

bias (2)

This  current  can  be  used  as  the  input  for  any  model  of 
spiking neurons, such as the standard leaky integrate-and-
fire (LIF) model.  In general,  x can vary over time as  x(t) 
and  the  spikes  produced  will  be  based  on  this  varying 
current.  If the details of the neural model (i.e. the relation 
between input current and spiking behaviour) are written as 
G[∙] and the neural  noise of variance  σ2 is  η(σ),  then the 
encoding  of  any  given  x(t) as  the  temporal  spike  pattern 
across the neural group is given as:

     (3)

Since this spiking pattern is meant to represent the original 
vector x, it should be possible to determine an estimate (t) 
given  only  this  spiking  pattern.   This  can  be  done  by 
deriving linearly optimal (in terms of minimizing squared 
error) decoding vectors   for each neuron as per Equation 
4,  where  ai is  the  average  firing  rate  for  neuron  i (see 

2 It should be noted that the simplistic representation mentioned 
initially  is  a  special  case  of  this  approach,  where  the  preferred 
direction vectors are exactly aligned along the dimensions being 
represented, rather than being randomly distributed.



Eliasmith & Anderson, 2003 for details).  This method has 
been  shown  to  uniquely  combine  accuracy  and 
neurobiological plausibility (e.g. Salinas and Abbot, 1994).

    (4)

To  derive  an  estimate  of  x(t),  we  weight  the  decoding 
vectors  by the post-synaptic  current  h(t) induced by each 
spike.   The  shape  and  time-constant  of  this  current  are 
determined from the physiological properties of the neural 
group.  The result is the best possible linear estimate of x(t) 
using only the spike timing information.

   (5)

The  representational  error  between  x(t) and  (t) is 
dependent on the particular neural parameters and encoding 
vectors,  but  in  general  is  inversely  proportional  to  the 
number of neurons in the group.  

While the decoding vectors   are useful for determining 
what a spike pattern represents, a more important feature is 
that  they  can  also  be  used  to  derive  optimal  connection 
weights between neural groups.  That is, consider a situation 
where  one neural  population represents  x and we want  a 
second neural population to represent  Wx (where  W is an 
arbitrary  linear  transformation).   The  optimal  connection 
weights  ωij between  each  neuron  to  achieve  this  are 
determined by Equation 6 (see Eliasmith & Anderson, 2003 
for further details).

      ij= j  jW  i (6)

These results provide a generic framework for representing 
vectors  of  any  dimension  using  spiking  neurons.   These 
neurons  can  be  made  as  realistic  as  possible  (given 
computational  processing constraints),  including effects of 
adaptation,  neurotransmitter  re-uptake  rates,  refractory 
periods, and so on.  Furthermore, we can derive the synaptic 
connection weights that will cause the neurons to perform 
the desired transformations on these represented values.

Standard Approaches
Given the above representation system, we have two groups 
of neurons:  one representing the input (noisy) vector,  and 
one representing the output (cleaned) vector.  The goal then 
is  to  determine  how  to  connect  these  neurons  so  as  to 
achieve the best cleanup.

For  this  work,  we  are  only  considering  feed-forward 
networks.   That  is,  we  do  not  consider  models  where 
activity flows backwards from the output to the input,  or 
where the output is the same group of neurons as the input, 
but  at  a  later  time.   These  models,  such as  the  Hopfield 
network,  must  wait  for  their  output  to  “settle”,  requiring 
significantly more time than purely feed-forward models.

Linear Autoassociation
The  simplest  autoassociation  memory  merely  performs  a 
linear  transformation  on  the  input  to  produce  the  output 
(Hinton & Anderson, 1989).  If the matrix  X consists of a 
set  of  noisy  vectors  and  the  matrix  Y holds  the 
corresponding cleaned vectors, then we want to find W such 
that  WXY.   Given the subsequent noisy vector  x,  it  can 
then be multiplied by W to produce the estimated cleaned up 
item  y=Wx.   Once  W is  found, we derive the connection 
weights for this linear transformation using Equation 6.

A variety of methods exist to find the  W that minimizes 
the error between WX and Y.  Figure 1 shows the result of 
using the Penrose-Moore pseudoinverse, which was chosen 
since X is generally not full rank.

Figure 1: Accuracy of the linear autoassociation network for 
varying D, M, and k.  Values above 0.7 (shown in lightest 

shading) indicate successful cleanup (i.e. output values 
sufficiently close to the original non-noisy vector).

These results show that the linear association approach does 
not scale up for large values of M.  In 500 dimensions this 
network is unable to accurately clean up a vector where 4 
symbols are combined if  there are more than 50 possible 
symbols.  This is much smaller than the desired 100,000.

Linear Neural Transformation
A second  possibility  is  to  directly  determine  the  optimal 
connection  weights,  rather  than  relying  on  Equation  6. 
Here, instead of X being the noisy vectors, it is the spiking 
rate  of  the  individual  neurons  when  representing  those 
vectors.   This approach  is  used extensively in the Neural 
Engineering Framework (Eliasmith and Anderson, 2003) to 
derive  synaptic  connection  weights  that  can  perform 
nonlinear  operations,  using  a  slight  modification  of 
Equation  4  where  x is  replaced  by  the  corresponding 
cleaned up vector.  This allows synaptic connection weights 
to be derived that approximate arbitrary nonlinear functions.

While the results in Figure 2 show that this approach is a 
significant improvement over Figure 1 in terms of handling 
larger values of  k at smaller  D, it is still not scaling up for 
larger values of M.  



Figure 2: Accuracy of the linear autoassociation approach 
applied to individual neuron firing rates for varying D, M, 

and k.  Values above 0.7 indicate successful cleanup.

Multilayer Perceptron
One potential reason for the failure of the linear associator 
discussed in the previous section is that the function being 
computed is highly nonlinear.  To address this, we can make 
use of a multilayer perceptron, capable of computing much 
more complex functions.  This involves introducing a new 
hidden layer of neurons between the input and output.

The multilayer perceptron is the most famous and widely 
used  artificial  neural  network  (Rumelhart  et  al.,  1986). 
Using a two layer  MLP, a  mapping is  learned to convert 
noisy input vectors into their cleaned (or prototype) vectors.

Instead  of  directly  calculating  the  weights  for  these 
networks,  a  learning  rule  (such  as  the  classic 
backpropagation of error rule) must be used.  This allows 
the system to find a suitable intermediate representation in 
the hidden layer which makes the cleanup operation most 
accurate.  For this task we trained the MLP using gradient 
descent on the sum of the squared error.

In  theory,  given  enough  time,  hidden  nodes,  and  a 
sufficiently powerful optimization algorithm, this approach 
should  be  able  to  find  the  optimal  synaptic  connection 
weights  to  perform this  task.   However,  as  the results  in 
Figure 3 show, due to limited computational resources we 
were unable to successfully train this network for large M. 
This is in part due to the fact that the MLP requires many 
more hidden nodes than the vector  dimension in order  to 
generalize across the entire input domain.

More  importantly,  the  standard  strengths  of  a 
backpropagation network are not applicable to the cleanup 
task.  Crucially, there is no inner structure in the data being 
modelled;  each symbol is  a  randomly chosen unit  vector. 
This means that the network cannot use its hidden layer to 
form an internal representation that simplifies the task.

Overall, it is likely possible to improve on this approach 
to training a network to perform cleanup.  However, such a 
method  may  require  significantly  larger  amounts  of 
computing resources as M increases.

Figure 3: Accuracy of the multilayer perceptron for varying 
D, M and k.  Values above 0.7 indicate successful cleanup.

A Cleanup Memory Model
From the MLP model, it is clear that while transforming the 
initial representation through a middle layer of neurons can 
provide a significant improvement, it is impractical to learn 
the required synaptic connection weights.  Instead, for our 
cleanup  memory  model  we  choose  to  directly  derive  the 
optimal weights.  To do this, we first identify how we want 
the  middle  layer  of  neurons  to  respond.   This  involves 
defining their preferred direction vectors  , gain α, and 
Jbias as per Equation 2.  Given these, we can use Equation 6 
to derive the neural  connection weights that will result in 
this behaviour.  Since no transformation of the vector itself 
is to be performed by the weights, W in Equation 6 is set to 
be the identity matrix.

For  the  preferred  direction  vectors,  we  choose  exactly 
those vectors that must be cleaned up.  For redundancy, we 
have ~10 neurons for each of the  M vectors, meaning that 
there  are  particular  neurons  that  fire  maximally  for  each 
symbol.  Furthermore, we set Jbias to be slightly negative for 
each neuron.  The resulting connection weights ωij cause the 
middle layer neurons to only fire if the dot product of the 
input vector with the corresponding clean vector is greater 
than some small threshold (0.2).  

In  effect,  the inherent  non-linearity  of  the  neurons (the 
fact that they do not fire if their input current is too low) is 
being used to perform cleanup.  This middle layer is good at 
representing the cleaned vectors, but is poor at representing 
small  vectors  in any of those directions.   Since the noise 
added  to  the  input  consists  of  randomly  chosen  vectors, 
these will generally have small dot products with each of the 
preferred direction vectors, and so will not cause sufficient 
activation for the neuron to fire.  The presence of a slight 
background inhibition (the negative Jbias) allows the neurons 
to be insensitive to the noise.

The firing rates of ten sample middle layer neurons are 
shown in Figure 4.  Their activity varies as the dot product 
of  the  input  and  the  neurons'  preferred  direction  vector 
changes.



Figure 4: Middle layer neuron tuning curves.  Average 
firing rates for ten neurons are shown as the input to the 

cleanup memory changes.  Similarity is the dot product of 
the input vector with the preferred direction vector.

Given this middle layer representation we can then calculate 
the  optimal  connection  weights  with  the  output  neural 
group.  This output group can have any arbitrarily chosen 
preferred direction vectors  and other neural properties. 
Equation 6 is used to calculate these weights, again setting 
W to be the identity matrix.

Performance
We evaluated this implementation of cleanup memory in the 
same  manner  as  the  previous  models  and  the  results  are 
shown in Figure 5.   It  should be noted that  these  graphs 
extend to much larger  M (10,000 symbols rather than 500) 
than the previous figures.  

Figure 5: Accuracy of our neural cleanup memory for 
varying D, M and k.  Values above 0.7 indicate successful 

cleanup.

Importantly, our neural cleanup memory system was able to 
successfully  cleanup  combinations  of  8  symbols  out  of  a 
vocabulary  of  10,000  using  500  dimensional  vectors. 
Furthermore,  its  capabilities  increase  rapidly  with  the 
number of dimensions.  We have evaluated this model up to 
M=100,000  and  D=1000,  producing  consistently  high 
quality cleanup results.

We have thus demonstrated an effective implementation 
of a neural autoassociator as a cleanup memory for Vector 
Symbolic Architectures.   The number of neurons required 
for  cleanup  scales  linearly  with  M,  while  the  number  of 
neurons required for storing the resulting cleaned vector is 
linear in D.

Comparison to the Ideal
To  determine  how  closely  our  model  approaches  ideal 
behaviour (even though it is implemented using realistically 
noisy  spiking  neurons),  we  can  examine  the  recognition 
behaviour of a perfect mathematical cleanup system.  This is 
used  by  Plate  (2003)  in  his  analysis  of  the  Holographic 
Reduced Representation form of VSA, and merely outputs 
the  clean  vector  that  is  closest  to  the  input  noisy  vector. 
This ideal system can be approximated by Equation 1, and 
its actual behaviour is shown in Figure 6.

Figure 6: Accuracy of an ideal cleanup memory for varying 
D, M and k.  Values above 0.7 indicate successful cleanup.

From this result, we see that our neural cleanup memory and 
the  ideal  cleanup  both  exhibit  a  similar  growth  in 
representational  capacity  as  the  dimensionality  of  the 
vectors increases.  While the neural version is less accurate, 
it still is able to scale up to large M.  This ability is not seen 
in the cleanup models examined previously.

Dynamics and Timing
Since  a  cleanup  memory  is  meant  to  be  a  component  to 
support symbolic manipulations by spiking neurons, it must 
not only be efficient  in terms of numbers of neurons,  but 
also  in  terms  of  the  amount  of  time  required  to  perform 
clean  up.   This  is  why we  did  not  consider  models  that 
require a long settling time (such as a Hopfield network). 

Since the dynamics  of  the neurons  in  our  model  (G in 
Equation 3) can be adjusted to match those of real neurons, 
we  can  generate  predictions  as  to  how the  output  of  the 
cleanup memory will vary over time.  Even with a constant 
input  vector  x,  the  actual  value  being represented  by the 
output of the cleanup memory will vary since it is decoded 
from the spike train as per Equation 5.



The precise timing characteristics of the neural model will 
vary  based  on  the  neural  parameters.   We  used  typical 
values  for  cortical  neurons:  a  refractory  period of  2ms, a 
membrane  time constant  of  20ms,  and a maximum firing 
rate  of  200Hz.   We  applied  random  noise  in  the  input 
current  to each cell of  σ=10% (see Equation 3).  We also 
assumed NMDA neurotransmitter receptors,  giving a time 
constant  of  5ms  for  the  post-synaptic  current  (h(t) in 
Equation 5).

To observe the dynamics, we ran a cleanup memory with 
D=500, M=10,000, and k=8.  Over the course of 250ms of 
simulated  time,  we  input  five  different  noisy  vectors  for 
50ms each.  The output from the system was measured at 
each time step.  Figure 7 shows the result of comparing the 
output  of  the  model  (the  cleaned  up  vector)  with  the 
corresponding five original vectors.  As in the rest of this 
paper,  comparison  was  done  by  the  dot  product  of  the 
output vector and the desired clean vector.

Figure 7: Temporal accuracy of the cleanup memory.  Five 
noisy vectors are presented for 50msec each.  Graphed lines 
show the dot product of the output of the network and the 

five original clean vectors.

These results  indicate that  the network reliably cleans the 
input  vector  and does  so within 5-10 milliseconds.   This 
makes  our  cleanup  memory  suitable  for  fast  recognition, 
which is needed for symbolic manipulations at a cognitive 
time scale.

Conclusions
The model presented here is the first demonstration that a 
cleanup memory can be efficiently implemented by realistic 
spiking neurons.  The number of neurons required to build 
this  memory  increases  linearly  in  the  number  of  distinct 
symbols that can be recognized.  The accuracy approaches 
that  of  an  ideal  mathematical  cleanup,  and  can  perform 
cleanup in 5-10ms using realistically noisy spiking neurons.

Previous research (e.g. Eliasmith, 2005) has demonstrated 
realistic neurons performing the binding and superposition 
operations  required  for  Vector  Symbolic  Architectures. 
Given the cleanup memory presented here, arbitrary symbol 
structures can be encoded, transformed, and recognized, all 
within a spiking network.  As a result, we take this work to 
complete  the  currently  most  biologically  plausible 
implementation  of  a  symbolic  cognitive  architecture 
(Stewart & Eliasmith, 2009).
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