
A Biologically Realistic Cleanup Memory: Autoassociation in Spiking Neurons

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Yichuan Tang (y3tang@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo

Waterloo, ON, N2L 3G1

Abstract

Methods for cleaning up (or recognizing) states of a neural
network are crucial for the functioning of many neural
cognitive models. For example, Vector Symbolic
Architectures provide a method for manipulating symbols
using a fixed-length vector representation. To recognize the
result of these manipulations, a method for cleaning up the
resulting noisy representation is needed, as this noise
increases with the number of symbols being combined.
While these manipulations have previously been modelled
with biologically plausible neurons, this paper presents the
first spiking neuron model of the cleanup process. We
demonstrate that it approaches ideal performance and that the
neural requirements scale linearly with the number of distinct
symbols in the system. While this result is relevant for any
biological model requiring cleanup, it is crucial for VSAs, as
it completes the set of neural mechanisms needed to provide a
full neural implementation of symbolic reasoning.

Keywords: autoassociative memory; neural engineering
framework; vector symbolic architectures; holographic
reduced representation

Autoassociative Memory
A fundamental component of many cognitive architectures
is an autoassociative memory. This is a system that can be
provided with a partial or noisy version of a previously
stored memory and will in turn provide a complete and
more accurate version of that memory. This can be seen in
ACT-R's declarative memory system (Anderson & Lebiere,
1998), CLARION's non-action-centered subsystem (Sun,
2006), RAAM's compressor and reconstructor (Pollack,
1988), and many other cognitive models. This capability
can be implemented using a wide variety of approaches,
including multilayer perceptrons, Hopfield networks, and
any prototype-based classifier.

The particular use of autoassociative memory of
importance to this paper is as a cleanup memory for
cognitive operations. Recent research has shown that the
storage and manipulation of cognitive symbol systems can
be implemented as mathematical operations on fixed-length,
high-dimensional vectors. These approaches are known as
Vector Symbolic Architectures (VSAs; Gayler, 2003) and
include Holographic Reduced Representation (HRR; Plate,
2003), MAP Coding (Gayler & Wales, 2000), Binary
Splatter Codes (Kanerva, 1997), and others. Each of these
provides an alternate method for converting symbols and
symbol trees into vectors, combining vectors to perform
symbolic manipulations, and extracting out the original
components of that symbol tree.

In previous research we have shown how VSAs can be
implemented in biologically realistic spiking neurons
(Eliasmith, 2005; Stewart & Eliasmith, 2008). This
approach is many orders of magnitude more efficient1 than
alternate theories of how symbolic manipulations could be
performed by the brain (Stewart & Eliasmith, in press).
However, one common criticism is that this approach does
not yet show how these systems can clean up their
representations. Performing symbol manipulations using
VSAs is an inherently noisy process, and these operations
must be performed by spiking neurons, adding a significant
amount of random variation. When symbols are extracted
from a bound representation, the brain needs a reliable
method for identifying which symbol it is, allowing it to
respond appropriately.

The purpose of this paper is to present an autoassociative
memory constructed from spiking neurons which is
appropriate for cleaning up the representations resulting
from cognitive manipulations using VSAs. We first
describe the characteristics of VSAs that define the
statistical properties of the noise that must be removed.
Next, a general method is described for encoding (and
decoding) high-dimensional vectors across a population of
spiking neurons. We then show that standard approaches to
deriving connection weights have difficulty when scaled up
to the number of symbols required for human. Our cleanup
memory model is then presented, followed by an analysis of
its behaviour.

Vector Symbolic Architectures
There are three core ideas for all VSAs. First, each symbol
is represented by a randomly chosen vector. Second, two
vectors can be combined by superposition () to produce a
new vector that is similar to both of the original vectors.
Third, two vectors can be combined by binding () to
produce a new vector that is dissimilar to both of the
original vectors, and this operation can be reversed by
binding with the inverse of a vector (denoted with an
underline), such that ABBA. These operations are
similar to standard addition and multiplication in terms of
being associative, commutative, and distributive. With such
a system we can represent a structure such as
chase(dog,cat) by performing the following calculation:

1 For realistic vocabulary sizes, this approach uses three orders
of magnitude fewer neurons than the Neural Blackboard
Architecture (van der Velde & de Kamps, 2006) and seven orders
of magnitude fewer than LISA (Hummel & Holyoak, 2003).

chaseverb  dogsubj  catobj

The result is a single vector of the same length as the
vectors for the basic symbols (chase, verb, dog, etc.).
This one vector can be interpreted as a representation of the
entire structure because it is possible to extract the original
components. For example, to determine the object of the
above structure, we take the whole vector and bind it with
the inverse of obj.

 (chaseverb +dogsubj +catobj)obj
= chaseverbobj +dogsubjobj +catobjobj
cat +chaseverbobj +dogsubjobj

The result is a vector that is similar to cat, but is not exactly
the same since it has two additional terms superposed on it.
Due to the properties of the binding operation, however,
these two terms chaseverbobj and dogsubjobj
will be vectors unlike any of the original symbols. They can
thus be treated as randomly distributed noise. It is this noise
that must be removed by the cleanup memory system.

While the above discussion applies to all VSAs, if we
choose one particular type of VSA we identify the
properties of the symbol and noise vectors. For this, we use
Holographic Reduced Representations (HRRs; Plate, 2003).
Here, each basic symbol vector is set by randomly selecting
a point on the high-dimensional unit sphere (i.e. a random
vector normalized to a length of one). Superposition is
performed by vector addition and the binding operation is
circular convolution.

The cleanup memory thus needs the following properties:

1) Recognize M unit vectors (one per symbol), distributed
uniformly over a high-dimensional unit sphere.

2) Handle additive noise produced by adding k unit
vectors uniformly distributed over the same sphere.

To be useful for cognitive operations, on the order of
100,000 symbols (M) must be able to be identified. The
complexity of the structures that can be encoded is
determined by k, indicating the number of terms that can be
superposed and still lead to accurate recognition. This
should be at least 7  2 to conform to the standard chunk
sizes used in cognitive modelling.

To determine whether recognition is accurate, we take the
dot product of the correct vector and the output of the
memory; if this value is above a threshold the symbol is
successfully recognized. For the purposes of this paper, we
arbitrarily choose a threshold of 0.7, although Plate (2003,
p. 100) provides a method for determining the optimal
threshold in special cases where k is fixed and known.

The final factor to consider when using Vector Symbolic
Architectures is the number of dimensions. In an ideal case
(where vectors are represented exactly, rather then via noisy
spiking neurons), Plate (2003) derived the following
formula for determining the minimum number of

dimensions D required to represent combinations of k
vectors out of M symbols and have a probability of error q:

 D=4.5k0.7ln M /30q 4 (1)

From this, we note that 700 dimensions would be sufficient
to represent chunks of up to 7 symbols out of a vocabulary
of 100,000 with an accuracy of 95%. However, this
formula assumes an ideal cleanup memory.

Distributed Representation
There are a variety of methods whereby a numerical vector
can be represented by a population of spiking neurons. The
most simplistic approach is to have one neuron per
dimension, and the firing rate of that neuron indicates the
value in that dimension. However, this approach is highly
fragile to neuron death and does not correspond to known
methods of spatial representation by neurons. It is well
established (e.g. Georgopoulos et al., 1986) that movement
directions are encoded by having a large population of
neurons, each of which is sensitive to a different direction.
The firing rate of each neuron is related to the angle
between that neuron's preferred direction vector and the
value being encoded.2

We take this same approach to encode high-dimensional
vectors. Each neuron has a preferred direction vector 
and the current entering the neuron is proportional to the dot
product between this and the vector x being represented. If
α is the neuron gain and Jbias is a fixed background current,
then the total current flowing into cell i is:

 J i= i
 i⋅xJ i

bias (2)

This current can be used as the input for any model of
spiking neurons, such as the standard leaky integrate-and-
fire (LIF) model. In general, x can vary over time as x(t)
and the spikes produced will be based on this varying
current. If the details of the neural model (i.e. the relation
between input current and spiking behaviour) are written as
G[∙] and the neural noise of variance σ2 is η(σ), then the
encoding of any given x(t) as the temporal spike pattern
across the neural group is given as:

 (3)

Since this spiking pattern is meant to represent the original
vector x, it should be possible to determine an estimate (t)
given only this spiking pattern. This can be done by
deriving linearly optimal (in terms of minimizing squared
error) decoding vectors for each neuron as per Equation
4, where ai is the average firing rate for neuron i (see

2 It should be noted that the simplistic representation mentioned
initially is a special case of this approach, where the preferred
direction vectors are exactly aligned along the dimensions being
represented, rather than being randomly distributed.

Eliasmith & Anderson, 2003 for details). This method has
been shown to uniquely combine accuracy and
neurobiological plausibility (e.g. Salinas and Abbot, 1994).

 (4)

To derive an estimate of x(t), we weight the decoding
vectors by the post-synaptic current h(t) induced by each
spike. The shape and time-constant of this current are
determined from the physiological properties of the neural
group. The result is the best possible linear estimate of x(t)
using only the spike timing information.

 (5)

The representational error between x(t) and (t) is
dependent on the particular neural parameters and encoding
vectors, but in general is inversely proportional to the
number of neurons in the group.

While the decoding vectors are useful for determining
what a spike pattern represents, a more important feature is
that they can also be used to derive optimal connection
weights between neural groups. That is, consider a situation
where one neural population represents x and we want a
second neural population to represent Wx (where W is an
arbitrary linear transformation). The optimal connection
weights ωij between each neuron to achieve this are
determined by Equation 6 (see Eliasmith & Anderson, 2003
for further details).

  ij= j  jW  i (6)

These results provide a generic framework for representing
vectors of any dimension using spiking neurons. These
neurons can be made as realistic as possible (given
computational processing constraints), including effects of
adaptation, neurotransmitter re-uptake rates, refractory
periods, and so on. Furthermore, we can derive the synaptic
connection weights that will cause the neurons to perform
the desired transformations on these represented values.

Standard Approaches
Given the above representation system, we have two groups
of neurons: one representing the input (noisy) vector, and
one representing the output (cleaned) vector. The goal then
is to determine how to connect these neurons so as to
achieve the best cleanup.

For this work, we are only considering feed-forward
networks. That is, we do not consider models where
activity flows backwards from the output to the input, or
where the output is the same group of neurons as the input,
but at a later time. These models, such as the Hopfield
network, must wait for their output to “settle”, requiring
significantly more time than purely feed-forward models.

Linear Autoassociation
The simplest autoassociation memory merely performs a
linear transformation on the input to produce the output
(Hinton & Anderson, 1989). If the matrix X consists of a
set of noisy vectors and the matrix Y holds the
corresponding cleaned vectors, then we want to find W such
that WXY. Given the subsequent noisy vector x, it can
then be multiplied by W to produce the estimated cleaned up
item y=Wx. Once W is found, we derive the connection
weights for this linear transformation using Equation 6.

A variety of methods exist to find the W that minimizes
the error between WX and Y. Figure 1 shows the result of
using the Penrose-Moore pseudoinverse, which was chosen
since X is generally not full rank.

Figure 1: Accuracy of the linear autoassociation network for
varying D, M, and k. Values above 0.7 (shown in lightest

shading) indicate successful cleanup (i.e. output values
sufficiently close to the original non-noisy vector).

These results show that the linear association approach does
not scale up for large values of M. In 500 dimensions this
network is unable to accurately clean up a vector where 4
symbols are combined if there are more than 50 possible
symbols. This is much smaller than the desired 100,000.

Linear Neural Transformation
A second possibility is to directly determine the optimal
connection weights, rather than relying on Equation 6.
Here, instead of X being the noisy vectors, it is the spiking
rate of the individual neurons when representing those
vectors. This approach is used extensively in the Neural
Engineering Framework (Eliasmith and Anderson, 2003) to
derive synaptic connection weights that can perform
nonlinear operations, using a slight modification of
Equation 4 where x is replaced by the corresponding
cleaned up vector. This allows synaptic connection weights
to be derived that approximate arbitrary nonlinear functions.

While the results in Figure 2 show that this approach is a
significant improvement over Figure 1 in terms of handling
larger values of k at smaller D, it is still not scaling up for
larger values of M.

Figure 2: Accuracy of the linear autoassociation approach
applied to individual neuron firing rates for varying D, M,

and k. Values above 0.7 indicate successful cleanup.

Multilayer Perceptron
One potential reason for the failure of the linear associator
discussed in the previous section is that the function being
computed is highly nonlinear. To address this, we can make
use of a multilayer perceptron, capable of computing much
more complex functions. This involves introducing a new
hidden layer of neurons between the input and output.

The multilayer perceptron is the most famous and widely
used artificial neural network (Rumelhart et al., 1986).
Using a two layer MLP, a mapping is learned to convert
noisy input vectors into their cleaned (or prototype) vectors.

Instead of directly calculating the weights for these
networks, a learning rule (such as the classic
backpropagation of error rule) must be used. This allows
the system to find a suitable intermediate representation in
the hidden layer which makes the cleanup operation most
accurate. For this task we trained the MLP using gradient
descent on the sum of the squared error.

In theory, given enough time, hidden nodes, and a
sufficiently powerful optimization algorithm, this approach
should be able to find the optimal synaptic connection
weights to perform this task. However, as the results in
Figure 3 show, due to limited computational resources we
were unable to successfully train this network for large M.
This is in part due to the fact that the MLP requires many
more hidden nodes than the vector dimension in order to
generalize across the entire input domain.

More importantly, the standard strengths of a
backpropagation network are not applicable to the cleanup
task. Crucially, there is no inner structure in the data being
modelled; each symbol is a randomly chosen unit vector.
This means that the network cannot use its hidden layer to
form an internal representation that simplifies the task.

Overall, it is likely possible to improve on this approach
to training a network to perform cleanup. However, such a
method may require significantly larger amounts of
computing resources as M increases.

Figure 3: Accuracy of the multilayer perceptron for varying
D, M and k. Values above 0.7 indicate successful cleanup.

A Cleanup Memory Model
From the MLP model, it is clear that while transforming the
initial representation through a middle layer of neurons can
provide a significant improvement, it is impractical to learn
the required synaptic connection weights. Instead, for our
cleanup memory model we choose to directly derive the
optimal weights. To do this, we first identify how we want
the middle layer of neurons to respond. This involves
defining their preferred direction vectors  , gain α, and
Jbias as per Equation 2. Given these, we can use Equation 6
to derive the neural connection weights that will result in
this behaviour. Since no transformation of the vector itself
is to be performed by the weights, W in Equation 6 is set to
be the identity matrix.

For the preferred direction vectors, we choose exactly
those vectors that must be cleaned up. For redundancy, we
have ~10 neurons for each of the M vectors, meaning that
there are particular neurons that fire maximally for each
symbol. Furthermore, we set Jbias to be slightly negative for
each neuron. The resulting connection weights ωij cause the
middle layer neurons to only fire if the dot product of the
input vector with the corresponding clean vector is greater
than some small threshold (0.2).

In effect, the inherent non-linearity of the neurons (the
fact that they do not fire if their input current is too low) is
being used to perform cleanup. This middle layer is good at
representing the cleaned vectors, but is poor at representing
small vectors in any of those directions. Since the noise
added to the input consists of randomly chosen vectors,
these will generally have small dot products with each of the
preferred direction vectors, and so will not cause sufficient
activation for the neuron to fire. The presence of a slight
background inhibition (the negative Jbias) allows the neurons
to be insensitive to the noise.

The firing rates of ten sample middle layer neurons are
shown in Figure 4. Their activity varies as the dot product
of the input and the neurons' preferred direction vector
changes.

Figure 4: Middle layer neuron tuning curves. Average
firing rates for ten neurons are shown as the input to the

cleanup memory changes. Similarity is the dot product of
the input vector with the preferred direction vector.

Given this middle layer representation we can then calculate
the optimal connection weights with the output neural
group. This output group can have any arbitrarily chosen
preferred direction vectors  and other neural properties.
Equation 6 is used to calculate these weights, again setting
W to be the identity matrix.

Performance
We evaluated this implementation of cleanup memory in the
same manner as the previous models and the results are
shown in Figure 5. It should be noted that these graphs
extend to much larger M (10,000 symbols rather than 500)
than the previous figures.

Figure 5: Accuracy of our neural cleanup memory for
varying D, M and k. Values above 0.7 indicate successful

cleanup.

Importantly, our neural cleanup memory system was able to
successfully cleanup combinations of 8 symbols out of a
vocabulary of 10,000 using 500 dimensional vectors.
Furthermore, its capabilities increase rapidly with the
number of dimensions. We have evaluated this model up to
M=100,000 and D=1000, producing consistently high
quality cleanup results.

We have thus demonstrated an effective implementation
of a neural autoassociator as a cleanup memory for Vector
Symbolic Architectures. The number of neurons required
for cleanup scales linearly with M, while the number of
neurons required for storing the resulting cleaned vector is
linear in D.

Comparison to the Ideal
To determine how closely our model approaches ideal
behaviour (even though it is implemented using realistically
noisy spiking neurons), we can examine the recognition
behaviour of a perfect mathematical cleanup system. This is
used by Plate (2003) in his analysis of the Holographic
Reduced Representation form of VSA, and merely outputs
the clean vector that is closest to the input noisy vector.
This ideal system can be approximated by Equation 1, and
its actual behaviour is shown in Figure 6.

Figure 6: Accuracy of an ideal cleanup memory for varying
D, M and k. Values above 0.7 indicate successful cleanup.

From this result, we see that our neural cleanup memory and
the ideal cleanup both exhibit a similar growth in
representational capacity as the dimensionality of the
vectors increases. While the neural version is less accurate,
it still is able to scale up to large M. This ability is not seen
in the cleanup models examined previously.

Dynamics and Timing
Since a cleanup memory is meant to be a component to
support symbolic manipulations by spiking neurons, it must
not only be efficient in terms of numbers of neurons, but
also in terms of the amount of time required to perform
clean up. This is why we did not consider models that
require a long settling time (such as a Hopfield network).

Since the dynamics of the neurons in our model (G in
Equation 3) can be adjusted to match those of real neurons,
we can generate predictions as to how the output of the
cleanup memory will vary over time. Even with a constant
input vector x, the actual value being represented by the
output of the cleanup memory will vary since it is decoded
from the spike train as per Equation 5.

The precise timing characteristics of the neural model will
vary based on the neural parameters. We used typical
values for cortical neurons: a refractory period of 2ms, a
membrane time constant of 20ms, and a maximum firing
rate of 200Hz. We applied random noise in the input
current to each cell of σ=10% (see Equation 3). We also
assumed NMDA neurotransmitter receptors, giving a time
constant of 5ms for the post-synaptic current (h(t) in
Equation 5).

To observe the dynamics, we ran a cleanup memory with
D=500, M=10,000, and k=8. Over the course of 250ms of
simulated time, we input five different noisy vectors for
50ms each. The output from the system was measured at
each time step. Figure 7 shows the result of comparing the
output of the model (the cleaned up vector) with the
corresponding five original vectors. As in the rest of this
paper, comparison was done by the dot product of the
output vector and the desired clean vector.

Figure 7: Temporal accuracy of the cleanup memory. Five
noisy vectors are presented for 50msec each. Graphed lines
show the dot product of the output of the network and the

five original clean vectors.

These results indicate that the network reliably cleans the
input vector and does so within 5-10 milliseconds. This
makes our cleanup memory suitable for fast recognition,
which is needed for symbolic manipulations at a cognitive
time scale.

Conclusions
The model presented here is the first demonstration that a
cleanup memory can be efficiently implemented by realistic
spiking neurons. The number of neurons required to build
this memory increases linearly in the number of distinct
symbols that can be recognized. The accuracy approaches
that of an ideal mathematical cleanup, and can perform
cleanup in 5-10ms using realistically noisy spiking neurons.

Previous research (e.g. Eliasmith, 2005) has demonstrated
realistic neurons performing the binding and superposition
operations required for Vector Symbolic Architectures.
Given the cleanup memory presented here, arbitrary symbol
structures can be encoded, transformed, and recognized, all
within a spiking network. As a result, we take this work to
complete the currently most biologically plausible
implementation of a symbolic cognitive architecture
(Stewart & Eliasmith, 2009).

References
Anderson, J. R. and Lebiere, C. (1998). The Atomic

Components of Thought. Mahwah, NJ: Erlbaum.
Eliasmith, C. (2005). Cognition with neurons: A large-scale,

biologically realistic model of the Wason task.
Proceedings of the 27th Annual Meeting of the Cognitive
Science Society.

Eliasmith, C., & Anderson, C. (2003). Neural Engineering:
Computation, Representation, and Dynamics in
Neurobiological Systems. Cambridge: MIT Press.

Gayler, R. W., & Wales, R. (2000). Multiplicative binding,
representation operators and analogical inference. 5th
Australasian Cognitive Science Conference.

Gayler, R. (2003). Vector symbolic architectures answer
Jackendoff’s challenges for cognitive neuroscience.
ICCS/ASCS International Conference on Cognitive
Science.

Georgopoulos, A.P., Schwartz, A.B., & Kettner, R.E.
(1986). Neuronal population coding of movement
direction, Science 233(4771), 1416-1419.

Hinton, G., & Andersen, J. (1989). Parallel Models of
Associative Memory. Lawrence Erlbaum Associates, Inc.

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-
connectionist theory of relational inference and
generalization. Psychological Review, 110(2), 220-264.

Rumelhart, D., Hinton, G., and Williams, R. (1986).
Learning representations by back-propagating errors.
Nature 323, 533-536.

Kanerva, P. (1997). Fully distributed representation.
Proceedings of 1997 Real World Computing Symposium.

Plate, T. (2003). Holographic reduced representations.
Stanford, CA: CSLI Publication.

Pollack, J. B. (1988). Recursive auto-associative memory:
devising compositional distributed representations.
Proceedings of the 10th Annual Conference of the

 Cognitive Science Society.
Salinas, E., Abbott, L.F. (1994). Vector reconstruction from

firing rates. Journal of Computational Neuroscience 1,
89-107.

Stewart, T.C. and Eliasmith, C. (2008) Building Production
Systems with Realistic Spiking Neurons. Proceedings of
the 30th Annual Meeting of the Cognitive Science Society.

Stewart, T.C. and Eliasmith, C. (2009). Compositionality
and Biologically Plausible Models. In W. Hinzen, E.
Machery, and M. Werning (Eds.), Oxford Handbook of
Compositionality. Oxford University Press.

Sun, R. (2006). The CLARION cognitive architecture:
Extending cognitive modeling to social simulation. In
Ron Sun (ed.), Cognition and Multi-Agent Interaction.
New York: Cambridge University Press.

van der Velde, F., & de Kamps, M. (2006). Neural
blackboard architectures of combinatorial structures in
cognition. Behavioral and Brain Sciences, 29, 37-70.

	Autoassociative Memory
	Vector Symbolic Architectures
	Distributed Representation
	Standard Approaches
	Linear Autoassociation
	Linear Neural Transformation
	Multilayer Perceptron

	A Cleanup Memory Model
	Performance
	Comparison to the Ideal
	Dynamics and Timing

	Conclusions
	References

