
Available online at www.sciencedirect.com
www.elsevier.com/locate/cogsys

Cognitive Systems Research 12 (2011) 84–92
A biologically realistic cleanup memory: Autoassociation in
spiking neurons

Action editor: Richard P. Cooper

Terrence C. Stewart ⇑, Yichuan Tang, Chris Eliasmith

Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada N2L 3G1

Received 15 January 2010; accepted 23 June 2010
Available online 10 August 2010
Abstract

Methods for “cleaning up” (or recognizing) states of a neural network are crucial for the functioning of many neural cognitive models.
This process takes a noisy approximation of a state and recovers the original information. As a particular example, we consider the
cleanup required for the use of Vector Symbolic Architectures, which provide a method for manipulating symbols using a fixed-length
vector representation. To recognize the result of these manipulations, a mechanism for cleaning up the resulting noisy representation is
needed, as this noise increases with the number of symbols being combined. While these symbolic manipulations have previously been
modelled with biologically plausible neurons, this paper presents the first spiking neuron model of the cleanup process. We demonstrate
that it approaches ideal performance and that the neural requirements scale linearly with the number of distinct symbols in the system.
While this result is relevant for any biological model requiring cleanup, it is crucial for VSAs, as it completes the set of mechanisms
needed to provide a full neural implementation of symbolic reasoning.
� 2010 Elsevier B.V. All rights reserved.

Keywords: Auto-associative memory; Neural engineering framework; Vector Symbolic Architectures; Holographic reduced representation
1. Introduction

A fundamental component of many cognitive architec-
tures is an auto-associative memory. This is a system that
can be provided with a partial or noisy version of a previ-
ously stored memory and will in turn provide a complete
and more accurate version of that memory. This can be
seen in ACT-R’s declarative memory system (Anderson
& Lebiere, 1998), CLARION’s non-action-centered sub-
system (Sun, 2006), RAAM’s compressor and reconstruc-
tor (Pollack, 1988), and many other cognitive models.
This capability can be implemented using a wide variety
of approaches, including multilayer perceptrons, Hopfield
networks, and any prototype-based classifier.
1389-0417/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cogsys.2010.06.006

⇑ Corresponding author.
E-mail addresses: tcstewar@uwaterloo.ca (T.C. Stewart), y3tang@u-

waterloo.ca (Y. Tang), celiasmith@uwaterloo.ca (C. Eliasmith).
The particular use of auto-associative memory of impor-
tance to this paper is as a cleanup memory for cognitive
operations. Recent research has shown that the storage
and manipulation of cognitive symbol systems can be
implemented as mathematical operations on fixed-length,
high-dimensional vectors. These approaches are known as
Vector Symbolic Architectures (VSAs; Gayler, 2003) and
include Holographic Reduced Representation (HRR;
Plate, 2003), MAP Coding (Gayler & Wales, 2000), Binary
Splatter Codes (Kanerva, 1997), and others. Each of these
provides an alternate method for converting symbols and
symbol trees into vectors, combining vectors to perform
symbolic manipulations, and extracting out the original
components of that symbol tree. However, when symbols
are combined and manipulated using these techniques,
the results are approximate, in that the output is close to,
but not exactly the same as, the original symbols.

In previous research we have shown how VSAs can be
implemented using biologically realistic spiking neurons

http://dx.doi.org/10.1016/j.cogsys.2010.06.006
mailto:tcstewar@uwaterloo.ca
mailto:y3tang@uwaterloo.ca
mailto:y3tang@uwaterloo.ca
mailto:celiasmith@uwaterloo.ca
http://dx.doi.org/10.1016/j.cogsys.2010.06.006


T.C. Stewart et al. / Cognitive Systems Research 12 (2011) 84–92 85
(Eliasmith, 2005; Stewart & Eliasmith, 2008). This approach
is orders of magnitude more efficient1 than alternate theo-
ries of how symbolic manipulations could be performed
by the brain (Stewart & Eliasmith, in press), and is the basis
for our model of a neural production system (Stewart,
Choo, & Eliasmith, 2010a,b). However, one common criti-
cism is that we have not previously shown how these
systems can cleanup their representations. Performing
symbol manipulations using VSAs is an inherently noisy
process, and these operations must be performed by spiking
neurons, adding a significant amount of random variation.
When symbols are extracted from a combined representa-
tion, the brain needs a reliable method for identifying which
symbol it is, allowing it to respond appropriately.

The purpose of this paper is to present an auto-associa-
tive memory constructed from spiking neurons which is
appropriate for cleaning up the representations resulting
from cognitive manipulations using VSAs. We start by
describing the characteristics of VSAs that define the statis-
tical properties of the noise that must be removed. Next, a
general method is described for encoding (and decoding)
high-dimensional vectors across a population of spiking
neurons. We then show that standard approaches to deriv-
ing connection weights have difficulty when scaled up to
the number of symbols required for human vocabularies.
Our cleanup memory model is then presented, followed
by an analysis of its behaviour.

1.1. Vector Symbolic Architectures

Vector Symbolic Architectures (VSAs) map symbols
and symbol structures to vectors. To begin, each symbol
is represented by a high-dimensional vector. These vectors
can be randomly chosen, or they can be chosen to respect
semantic similarity, so that the vectors for two conceptu-
ally similar symbols, like cat and dog, will also be similar.
This notion of similarity is important for VSAs, and is gen-
erally defined based on having a small angle between two
vectors, or, equivalently, having a large dot product. For
simplicity, in this paper we randomly choose the vectors
for each symbol. For high-dimensional vectors, this means
that any two symbols will be highly dissimilar (i.e. will have
a dot product near zero).

To create symbol structures, we combine the vectors for
symbols using mathematical operations. The two core oper-
ations are superposition (+) and binding (�). Two vectors
can be combined by superposition (+) to produce a new
vector that is similar to both of the original vectors. Alter-
natively, two vectors can be combined by binding (�) to
produce a new vector that is dissimilar to both of the origi-
nal vectors. Importantly, this operation can be approxi-
mately reversed by binding with the inverse of a vector
1 For realistic vocabulary sizes, our approach uses three orders of
magnitude fewer neurons than the Neural Blackboard Architecture (van
der Velde & de Kamps, 2006) and seven orders of magnitude fewer than
LISA (Hummel & Holyoak, 2003).
(denoted with an underline), such that A�B�B � A. These
operations are similar to standard addition and multiplica-
tion in terms of being associative, commutative, and distrib-
utive. With such a system we can represent a structure such
as chase(dog,cat) by performing the following calculation:

chase� actionþ dog� actorþ cat� patient

The result is a single vector of the same length as the vec-
tors for the basic symbols (chase, action, dog, etc.).

This one vector can be interpreted as a representation of
the entire structure because it is possible to extract the ori-
ginal components. For example, to determine the patient of
the above structure, we take the whole vector and bind it
with the inverse of patient.

chase� actionþ dog� actorþ cat� patientÞ � patient

¼ chase� action � patientþ dog� actor� patient

þ cat� patient� patient

� catþ chase� action� patient

þ dog� actor� patient

The result is a vector that is similar to cat, but is not
exactly the same since it has two additional terms super-
posed on it. Due to the properties of the binding operation,
however, these two terms chase�action�patient and
dog�actor�patient will be vectors that are dissimilar to
all of the original symbols, and can thus be treated as ran-
domly distributed noise. It is this noise that must be
removed by the cleanup memory system.

While the above discussion applies to all VSAs, if we
choose one particular type of VSA we identify the proper-
ties of the symbol and noise vectors. For this, we use Holo-
graphic Reduced Representations (HRRs; Plate, 2003).
Here, each basic symbol vector is a point on the high-
dimensional unit sphere (i.e. a random vector normalized
to a length of one). Superposition is performed by vector
addition and the binding operation is circular convolution.

We can now define our requirements for a cleanup mem-
ory. This system will take as input a single vector and it will
output the vector that it is closest to. In other words, given
the vector cat + chase�action�patient + dog�actor�
patient (the result of trying to determine the patient of
chase(dog,cat)) it will output the vector cat.

To do this, our cleanup memory needs the following
properties:

(1) Be able to output one of M unit vectors (one per sym-
bol), distributed uniformly over a high-dimensional
unit sphere.

(2) Handle additive noise produced by adding k unit vec-
tors uniformly distributed over the same sphere (in
the above case, k = 2).

To be useful for cognitive operations, on the order of
100,000 symbols (M) must be able to be identified. The
complexity of the structures that can be encoded is



86 T.C. Stewart et al. / Cognitive Systems Research 12 (2011) 84–92
determined by k, indicating the number of terms that can
be superposed and still lead to accurate recognition. This
should be at least 7 ± 2 to conform to the standard chunk
sizes used in cognitive modelling.

Since the cleanup is to be performed by spiking neurons,
the result will not be a perfect representation of the desired
value; there will always be some inaccuracy. To measure
this error, we take the dot product of the correct vector
and the output of the memory; the larger the value the
greater the chance that the symbol is successfully recog-
nized. Plate (2003, p. 100) provides a method for determin-
ing how large this accuracy value should be in special cases
where k is fixed and known, and generally values above 0.7
are sufficient for recognition. Without a cleanup memory,
the dot product will be quite small: for k = 6 the average
value will be around 0.38 (or 1/

p
6).

The final factor to consider when using Vector Symbolic
Architectures is the number of dimensions. In an ideal case
(where vectors are represented exactly, rather then via
noisy spiking neurons), Plate (2003) derived the following
formula for determining the minimum number of dimen-
sions D required to represent combinations of k vectors
out of M symbols and have a probability of error q:

D ¼ 4:5ðk þ 0:7Þ lnðM=30q4Þ ð1Þ

From this, we note that 700 dimensions would be suffi-
cient to represent chunks of up to seven symbols out of a
vocabulary of 100,000 with an accuracy of 95%. However,
this formula assumes an ideal cleanup memory, rather than
one constructed using spiking neurons. This ideal perfor-
mance will be used as a benchmark for comparison.
1.2. Distributed representation

There are a variety of methods whereby a numerical vec-
tor can be represented by a population of spiking neurons.
The most simplistic approach is to have one neuron per
dimension, and the firing rate of that neuron indicates
the value in that dimension. However, this approach is
highly fragile to neuron death and does not correspond
to known methods of spatial representation by neurons.
It is well established (e.g., Georgopoulos, Schwartz, &
Kettner, 1986) that two-dimensional movement directions
are encoded in a highly distributed manner by having a
large population of neurons, each of which is most sensitive
to a different direction. That is, each neuron has a preferred
direction: a particular vector for which it will fire most
strongly. If a movement is in a slightly different direction,
then the firing rate for that neuron will be decreased. These
preferred directions are generally observed to be uniformly
distributed around the unit circle.

We generalize this approach to encode high-dimensional
vectors. If each neuron has a preferred direction vector e
then we can capture the observed behaviour by setting
the ionic current entering the neuron based on the dot
product between e and the vector x being represented. If
a is the neuron gain and Jbias is a fixed background current,
then the total current J flowing into neuron i is:

J ¼ ae � xþ Jbias ð2Þ
This current can be used as the input for any spiking

neural model, such as the standard leaky integrate-and-fire
(LIF) model, which is what we use here. This allows us to
convert any vector into a pattern of spikes that represents
that vector. Since this spiking pattern is meant to represent
the original vector x, it should be possible to determine an
estimate of x given only this spiking pattern. We compute
this by determining a decoding vector d for each neuron
using Eq. (3), where ai(x) is the average firing rate for neu-
ron i when representing the value x, and integration is over
the range of possible values of x. The resulting di values are
the least-squares linearly optimal decoding vectors for
recovering the original value x given only the outputs from
each of these neurons. That is, we can take the outputs
from each neuron, multiply them by di, and sum the results
to produce an estimate of x. This method has been shown
to uniquely combine accuracy and neurobiological plausi-
bility (e.g., Salinas & Abbott, 1994).

d ¼ C�1c Cij ¼
Z

aiðxÞajðxÞdx ci ¼
Z

ajðxÞx dx ð3Þ

The representational error introduced by this method is
dependent on the particular neural parameters and encod-
ing vectors, but in general is inversely proportional to the
number of neurons in the group (Eliasmith & Anderson,
2003). That is, by doubling the number of neurons
involved, the root mean squared error of the representation
will be halved.

While the decoding vectors d are useful for determining
what value a spike pattern represents, a more important
feature is that they can also be used to derive optimal syn-
aptic connection weights between neural groups. That is, if
one group of neurons represents x and we have another
group of neurons that we want to represent Wx (i.e. any
linear transformation of x), then this can be achieved by
setting their synaptic connection weights xij using the fol-
lowing equation

xij ¼ ajejWd i ð4Þ
While Eq. (4) allows us to compute any linear function

of x, we can also compute non-linear functions by adjust-
ing Eq. (3). By changing aj(x)x to aj(x)f(x), we find decod-
ing vectors that will approximate the function f(x). The
accuracy of this approximation is dependent on the charac-
teristics of the function, and in general the more non-linear
interactions there are between the dimensions of x, the
lower the accuracy (see Eliasmith & Anderson, 2003 for
further details). This will be used in Section 2.2.

These results provide a generic framework for represent-
ing vectors of any dimension using spiking neurons. These
neurons can be made as realistic as possible (given compu-
tational processing constraints), including effects of
adaptation, neurotransmitter re-uptake rates, refractory



T.C. Stewart et al. / Cognitive Systems Research 12 (2011) 84–92 87
periods, and so on. The only limitation is that there be
some steady-state average firing rate output from the neu-
ron model given a constant input determined using Eq. (2).
Furthermore, we can use Eq. (4) to derive the optimal syn-
aptic connection weights that will cause the neurons to
approximately calculate any linear or non-linear function
of the represented values. These techniques form the basis
of the Neural Engineering Framework (Eliasmith &
Anderson, 2003), and are suitable for modelling a wide
range of sensory and cognitive systems.

2. Standard approaches

Given the above representation system, we have two
groups of neurons: one representing the input (noisy) vec-
tor, and one that should represent the output (cleaned) vec-
tor. The goal is to determine how to connect these neurons
so as to achieve the best cleanup.

For this work, we are only considering feed-forward net-
works. That is, we do not consider models where activity
flows backwards from the output to the input, or where
the output is the same group of neurons as the input, but
at a later time. These models, such as the Hopfield net-
work, must wait for their output to “settle”, requiring sig-
nificantly more time than purely feed-forward models. If
cleanup systems are to be used by cognitive agents directly
interacting with the world, state recognition needs to pro-
ceed as quickly as possible.

2.1. Linear autoassociation

The simplest autoassociation memory merely performs a
linear transformation on the input to produce the output
(Hinton & Andersen, 1989). If the matrix X consists of a
Fig. 1. Accuracy of the linear autoassociation network for varying D (dimensio
to an ideal (non-neural) cleanup. The larger the value, the closer the output com
0.45, 0.38, and 0.33 for k = 2, 4, 6, and 8, respectively.
set of noisy vectors and the matrix Y holds the correspond-
ing cleaned vectors, then we want to find W such that
WX � Y. Given the subsequent noisy vector x, it can then
be multiplied by W to produce the estimated cleaned up
item y = Wx. Once W is found, we derive the synaptic con-
nection weights for this linear transformation using Eq.
(4).

A variety of methods exist to find the W that minimizes
the error between WX and Y. Fig. 1 shows the result of
using the Penrose–Moore pseudoinverse, which was chosen
since X is generally not full rank.

These results show that using a linear autoassociation
model does not approach ideal performance. The ideal sys-
tem is able to deal with large vocabulary sizes (M) when the
number of dimensions (D) is increased sufficiently, giving
accuracy values above 0.9. However, the linear autoassoci-
ator is unable to do this, and for M > 10 shows little
improvement (if any) over not having any cleanup memory
at all.

2.2. Direct function approximation

A second possibility is to directly determine the optimal
connection weights for computing the cleanup function.
This can be thought of in two mathematically equivalent
ways. First, we can follow the same method as in the pre-
vious section, but instead of X and Y being the vectors
being represented, we use the average firing rate of the indi-
vidual neurons when representing those vectors. Alterna-
tively, we replace x with f(x) when calculating the
decoders in Eq. (3), where f(x) is the cleanup function
(i.e. a function which returns the closest vector in the
vocabulary for a given x). This approach is used extensively
in the Neural Engineering Framework (Eliasmith & Ander-
ns in the vector), M (vocabulary size), and k (number of terms) compared
es to the correct (clean) result. Without cleanup, the values would be 0.58,



88 T.C. Stewart et al. / Cognitive Systems Research 12 (2011) 84–92
son, 2003) to derive synaptic connection weights that can
perform non-linear operations.

The results in Fig. 2 show that, while this approach is a
significant improvement over Fig. 1 in terms of handling
for complex structures (larger k) at a smaller number of
dimensions (D), it is still unable to accurate deal with large
vocabularies (M).

2.3. Multilayer perceptron

One potential reason for the failure of the direct func-
tion approximation approach discussed in Section 2.2 is
that the function being computed is highly non-linear. To
address this, we can make use of a multilayer perceptron,
capable of computing much more complex functions. This
involves introducing a new hidden layer of neurons
between the input and output.

The multilayer perceptron (MLP) is the most famous
and widely used artificial neural network (Rumelhart, Hin-
ton, & Williams, 1986). Using a two layer MLP, a mapping
is learned to convert noisy input vectors into their cleaned
(or prototype) vectors.

Instead of directly calculating the weights for these net-
works, a learning rule (such as the classic backpropagation
of error rule) must be used. This allows the system to find a
suitable intermediate representation in the hidden layer
which makes the cleanup operation most accurate. For this
task we trained the MLP using gradient descent on the sum
of the squared error.

In theory, given enough time, hidden nodes, and a suffi-
ciently powerful optimization algorithm, this approach
should be able to find the optimal synaptic connection
weights to perform this task. However, as the results in
Fig. 3 show, due to limited computational resources we
Fig. 2. Accuracy of the direct function approximation approach for varying D

compared to an ideal (non-neural) cleanup. The larger the value, the closer th
would be 0.58, 0.45, 0.38, and 0.33 for k = 2, 4, 6, and 8, respectively.
were unable to successfully train this network for large
M. This is in part due to the fact that the MLP requires
many more hidden nodes than the vector dimension in
order to generalize across the entire input domain.

More importantly, the standard strengths of a back-
propagation network are not applicable to the cleanup
task. Crucially, there is no inner structure in the data being
modelled; each symbol is a randomly chosen unit vector.
This means that the network cannot use its hidden layer
to form an internal representation that simplifies the task.

Overall, it is likely possible to improve on this approach
to training a network to perform cleanup. However, such a
method may require significantly larger amounts of com-
puting resources as M increases.

3. A cleanup memory model

From the MLP model (Section 2.3), it is clear that while
transforming the initial representation through a middle
layer of neurons can provide a significant improvement,
it is impractical to learn the required synaptic connection
weights for large M. Instead, for our cleanup memory
model we choose to directly derive connection weights suit-
able for this task. To do this, we first identify how we want
the middle layer of neurons to respond. This involves defin-
ing their preferred direction vectors e, gain a, and Jbias as
per Eq. (2). Given these, we can use Eq. (4) to derive the
neural connection weights that will result in this behaviour.
Since no transformation of the represented vector itself is
to be performed by the weights, W in Eq. (4) is set to be
the identity matrix.

For the preferred direction vectors e, we choose exactly
those vectors that must be cleaned up. For redundancy, we
have �10 neurons for each of the M vectors, meaning that
(dimensions in the vector), M (vocabulary size), and k (number of terms)
e output comes to the correct (clean) result. Without cleanup, the values



Fig. 3. Accuracy of the multilayer perceptron for varying D (dimensions in the vector), M (vocabulary size), and k (number of terms) compared to an ideal
(non-neural) cleanup. The larger the value, the closer the output comes to the correct (clean) result. Without cleanup, the values would be 0.58, 0.45, 0.38,
and 0.33 for k = 2, 4, 6, and 8, respectively.

Fig. 4. Middle layer neuron tuning curves. Average firing rates for 10
neurons are shown as the input to the cleanup memory changes. Similarity
is the dot product of the input vector with the preferred direction vector.

T.C. Stewart et al. / Cognitive Systems Research 12 (2011) 84–92 89
there are particular neurons that fire maximally for each
symbol. Furthermore, we set Jbias to be slightly negative
for each neuron, but allow a and the maximum firing rates
to vary as is typical in neural populations. The resulting
connection weights xij cause the middle layer neurons to
only fire if the dot product of the input vector with the cor-
responding clean vector is greater than some small
threshold.

In effect, the inherent non-linearity of the neurons (the
fact that they do not fire if their input current is too low)
is being used to perform cleanup. This middle layer is
good at representing the cleaned vectors, but is poor at
representing small vectors in those directions. Since the
noise that we are trying to cleanup consists of randomly
chosen vectors, these will generally have small dot prod-
ucts with each of the preferred direction vectors, and so
will not cause sufficient activation for the neuron to fire.
The presence of a slight background inhibition (the neg-
ative Jbias) allows the neurons to be insensitive to the
noise.

The firing rates of ten sample middle layer neurons are
shown in Fig. 4. Their activity varies as the dot product
of the input and the neurons’ preferred direction vector
changes. The closer the represented value is to this partic-
ular preferred vector, the higher the firing rate for each
neuron, much like is commonly found in sensory and
motor neurons.

Given this middle layer representation we can then cal-
culate the optimal connection weights with the output neu-
ral group. This output group can have any arbitrarily
chosen preferred direction vectors and other neural proper-
ties, much like the original input population. Eq. (4) is used
to calculate these weights, again setting W to be the identity
matrix.
3.1. Performance

We evaluated this implementation of cleanup memory
with an optimized middle layer of neurons in the same
manner as the previous models and the results are shown
in Fig. 5.

The important result here is that this implementation of
a cleanup memory, unlike the previous ones, does begin to
scale up for large vocabulary sizes (M). Indeed, it is the
only one of the models that was found to work with
M = 500, and its performance accuracy is only slightly
worse than the theoretical ideal.

To further explore this model’s capabilities, we examine
significantly larger vocabulary sizes in Fig. 6. Here we see
that the model continues to scale up well. Importantly,
our neural cleanup memory system was able to successfully
cleanup combinations of eight symbols out of a vocabulary
of 10,000 using 500-dimensional vectors. Furthermore, its



Fig. 5. Accuracy of our neural cleanup memory for varying D (dimensions in the vector), M (vocabulary size), and k (number of terms) compared to an
ideal (non-neural) cleanup. The larger the value, the closer the output comes to the correct (clean) result. Without cleanup, the values would be 0.58, 0.45,
0.38, and 0.33 for k = 2, 4, 6, and 8, respectively.

Fig. 6. Accuracy of our neural cleanup memory for varying D (dimensions in the vector), M (vocabulary size), and k (number of terms) compared to an
ideal (non-neural) cleanup for larger values of M. The larger the value, the closer the output comes to the correct (clean) result. Without cleanup, the
values would be 0.58, 0.45, 0.38, and 0.33 for k = 2, 4, 6, and 8, respectively.

90 T.C. Stewart et al. / Cognitive Systems Research 12 (2011) 84–92
capabilities increase rapidly with the number of dimen-
sions. We have evaluated this model up to M = 100,000
and D = 1000, producing consistently high quality cleanup
results.

We have thus demonstrated an effective implementation
of a neural autoassociator as a cleanup memory for Vector
Symbolic Architectures. The number of neurons required
for cleanup scales linearly with M, while the number of
neurons required for storing the resulting cleaned vector
is linear in D. For a realistic vocabulary of 100,000 terms,
we only require 20,000 neurons to represent a 1000 dimen-
sional vector. If this vector is any combination of up to
8 slot/value pairs (as per the VSA representation discussed
in Section 1.1), then we can perform operations on this vec-
tor to extract the relevant information and cleanup the
result using 1,000,000 neurons. This allows complex symbol
manipulation to be implemented in realistic spiking neu-
rons using relatively few neurons (0.005% of the cortex).

3.2. Dynamics and timing

Since a cleanup memory is meant to be a component to
support symbolic manipulations by spiking neurons, it
must not only be efficient in terms of numbers of neurons,



T.C. Stewart et al. / Cognitive Systems Research 12 (2011) 84–92 91
but also in terms of the amount of time required to perform
cleanup. This is why we did not consider models that
require feedback loops and a long settling time (such as a
Hopfield network).

To evaluate how our model performs over time, we can
decode its output using the d values from Eq. (3). That is,
we take the output from each neuron i, multiply by di, and
sum the result. Since this result is a high-dimensional vector
(the result of the cleanup), we can evaluate its accuracy by
comparing it to the correct ideal vector by taking the dot
product. Since the output from each neuron varies over
time, this result will also vary over time.

The precise timing characteristics of the neural model
will vary based on the neural parameters. We used typi-
cal values for cortical neurons: a refractory period of
2 ms, a membrane time constant of 20 ms, and a maxi-
mum firing rate of 200 Hz. We applied random noise in
the input current to each cell of r = 10%. We also
assumed NMDA neurotransmitter receptors, giving a
time constant of s = 5 ms for the post-synaptic current.
That is, instead of the output from each neuron being
an instantaneous spike, we model it as having a gradual
exponential decay of the form e�t/s, which is a common
first-order approximation of the effects of a neural spike
(e.g., Jack & Redman, 1971).

To observe the resulting dynamics, we ran a cleanup
memory using 500-dimensional vectors (D = 500) with a
vocabulary size (M) of 10,000. For the input, we used five
different noisy vectors comprised of eight terms each
(k = 8), presented over the course of 250 ms of simulated
time. The output from the system was measured at each
time step. Fig. 7 shows the result of comparing the output
of the model (the cleaned up vector) with the correspond-
ing five original vectors. As in the rest of this paper, com-
parison was done by the dot product of the output vector
and the desired clean vector.

These results indicate that the network reliably cleans
the input vector and does so within 5–10 ms. This makes
our cleanup memory suitable for fast recognition, which
is needed for symbolic manipulations at a cognitive time
scale.
Fig. 7. Temporal accuracy of the cleanup memory. Five noisy vectors are
presented for 50 ms each. Graphed lines show the dot product of the
output from the network and the five original clean vectors.
4. Discussion

The model we have presented differs from standard
auto-associative memories in a variety of respects. First,
it is in the family of purely feed-forward autoassociation
models. On the particular task of interest here (cleaning
up a high-dimensional unit vector that has had k randomly
distributed unit vectors added to it), it is significantly more
effective than the traditional linear autoassociation models.
This provides an accurate and highly powerful memory
using realistic noisy neurons, but without resorting to
recurrent feedback connections which require a longer time
to settle before producing a clean output.

Of particular interest for us is that this memory can be
used to cleanup the results of Vector Symbolic Architecture
operations. We have argued elsewhere (Stewart & Elia-
smith 2008, in press; Stewart et al., 2010b) that VSAs are
highly suitable for implementing high-level symbolic oper-
ations using realistic spiking neurons. The required super-
position (+) and binding (�) operations (vector addition
and circular convolution, respectively) are well approxi-
mated using synaptic connections calculated using Eq.
(4), and this results in a flexible method for creating neural
cognitive models that manipulate symbolic structures.
However, as demonstrated in Section 1.1, each VSA oper-
ation introduces noise into the representation. Given a
representation of chase(dog,cat), extracting one of the
components does not produce exactly cat, but rather cat
plus some random noise. In the non-neural VSA models
of Plate (2003), Gayler (2003), and Kanerva (1997), it is
simply assumed that there is some mechanism to find the
closest known vector given a noisy representation. We have
shown that this cleanup memory can be implemented in
spiking neurons, and that its accuracy approaches that of
their idealized version.

The fact that the number of neurons required for the
cleanup memory scales linearly in the size of the vocabu-
lary (M) also has interesting consequences. We note that
the vocabulary size is generally much larger than the num-
ber of dimensions (D), as we previously saw via Eq. (1) that
700 dimensions is adequate for a vocabulary of 100,000
items. However, given the distributed representational
scheme discussed in Section 1.2, the number of neurons
required to represent a vector is linear in the number of
dimensions of that vector. This means that, if we use VSAs
to represent symbol structures, we can use a small number
of neurons (on the order of tens of thousands) to represent,
store, and manipulate a complex symbol structure. How-
ever, if the brain needs to extract a particular symbol from
that symbol structure, many more neurons are needed (on
the order of millions).

We believe this means that cleanup should be a relatively
rare process in a neural cognitive architecture based on
VSAs. For example, this could mean that within a cogni-
tive module, complex representations can be manipulated
and stored, and perhaps cleanup only occurs between cog-
nitive modules, when particular discrete symbols need to be



92 T.C. Stewart et al. / Cognitive Systems Research 12 (2011) 84–92
sent (for motor behaviour or some other low-level task).
These sorts of considerations are vital for the development
of a neural cognitive architecture based on VSAs, and we
believe VSAs hold the most promise for a neural account
of high-level symbolic reasoning (Stewart & Eliasmith, in
press).

5. Conclusions

First, we have demonstrated a novel method for imple-
menting an auto-associative memory using spiking neu-
rons. This method is fast, in that it does not require a
settling time or make use of feedback loops, and well-suited
for situations where the stored values are a set of high-
dimensional vectors and the input consists of one of these
stored values plus a set of randomly distributed noise vec-
tors. The number of neurons required for performing this
autoassociation increases linearly in the number of items,
while the number of neurons required for representing
the input and output are linear in the number of dimen-
sions in the vector.

Second, we have demonstrated that this auto-associative
network is suitable as a cleanup memory when implement-
ing a Vector Symbolic Architecture using spiking neurons.
The model presented here is the first such cleanup memory
that can be efficiently implemented by realistic spiking neu-
rons for large vocabulary sizes. The number of neurons
required to build this memory increases linearly in the
number of distinct symbols that can be recognized. The
accuracy approaches that of an ideal mathematical
cleanup, and can perform cleanup in 5–10 ms using realistic
noisy spiking neurons.

References

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought.
Mahwah, NJ: Erlbaum.

Eliasmith, C. (2005). Cognition with neurons: A large-scale, biologically
realistic model of the Wason task. In Proceedings of the 27th annual

meeting of the cognitive science society.
Eliasmith, C., & Anderson, C. (2003). Neural engineering: Computation,

representation, and dynamics in neurobiological systems. Cambridge:
MIT Press.
Gayler, R. (2003). Vector symbolic architectures answer Jackendoff’s
challenges for cognitive neuroscience. In ICCS/ASCS international

conference on cognitive science.
Gayler, R. W., & Wales, R. (2000). Multiplicative binding, representation

operators and analogical inference. In 5th Australasian cognitive

science conference.
Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal

population coding of movement direction. Science, 233(4771),
1416–1419.

Hinton, G., & Andersen, J. (1989). Parallel models of associative memory.
Lawrence Erlbaum Associates, Inc..

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-connectionist theory
of relational inference and generalization. Psychological Review,

110(2), 220–264.
Jack, J. J. B., & Redman, S. J. (1971). The propagation of transient

potentials in some linear cable structures. Journal of Physiology, 215,
283–320.

Kanerva, P. (1997). Fully distributed representation. In Proceedings of

1997 real world computing symposium.
Plate, T. (2003). Holographic reduced representations. Stanford, CA: CSLI

Publication.
Pollack, J. B. (1988). Recursive auto-associative memory: devising

compositional distributed representations. In Proceedings of the 10th

annual conference of the cognitive science society.
Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representa-

tions by back-propagating errors. Nature, 323, 533–536.
Salinas, E., & Abbott, L. F. (1994). Vector reconstruction from firing

rates. Journal of Computational Neuroscience, 1, 89–107.
Stewart, T. C., & Eliasmith, C. (2008) Building production systems with

realistic spiking neurons. In Proceedings of the 30th annual meeting of

the cognitive science society.

Stewart, T. C., & Eliasmith, C. (in press). Compositionality and
biologically plausible models. In W. Hinzen, E. Machery, & M.
Werning (Eds.), Oxford handbook of Compositionality. Oxford Uni-
versity Press.

Stewart, T. C., Choo, X., Eliasmith, C. (2010a). Symbolic reasoning in
spiking neurons: A model of the cortex/basal ganglia/thalamus loop.
In Proceedings of the 32nd annual meeting of the cognitive science

society.
Stewart, T. C., Choo, X., Eliasmith, C. (2010b). Dynamic behaviour of a

spiking model of action selection in the basal ganglia. In Proceedings of

the 10th international conference on cognitive modelling.
Sun, R. (2006). The CLARION cognitive architecture: Extending cogni-

tive modeling to social simulation. In Ron Sun (Ed.), Cognition and

multi-agent interaction. New York: Cambridge University Press.
van der Velde, F., & de Kamps, M. (2006). Neural blackboard

architectures of combinatorial structures in cognition. Behavioral and

Brain Sciences, 29, 37–70.


	A biologically realistic cleanup memory: Autoassociation in spiking neurons
	Introduction
	Vector Symbolic Architectures
	Distributed representation

	Standard approaches
	Linear autoassociation
	Direct function approximation
	Multilayer perceptron

	A cleanup memory model
	Performance
	Dynamics and timing

	Discussion
	Conclusions
	References


