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Higher-Dimensional Neurons Explain the Tuning and
Dynamics of Working Memory Cells
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Measurements of neural activity in working memory during a somatosensory discrimination task show that the content of working
memory is not only stimulus dependent but also strongly time varying. We present a biologically plausible neural model that reproduces
the wide variety of characteristic responses observed in those experiments. Central to our model is a heterogeneous ensemble of two-
dimensional neurons that are hypothesized to simultaneously encode two distinct stimuli dimensions. We demonstrate that the spiking
activity of each neuron in the population can be understood as the result of a two-dimensional state space trajectory projected onto the
tuning curve of the neuron. The wide variety of observed responses is thus a natural consequence of a population of neurons with a diverse
set of preferred stimulus vectors and response functions in this two-dimensional space. In addition, we propose a taxonomy of network
topologies that will generate the two-dimensional trajectory necessary to exploit this population. We conclude by proposing some
experimental indicators to help distinguish among these possibilities.
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Introduction
The majority of work related to working memory takes stably
persistent activity to be an indicator that a cell is participating in
remembering a stimulus (Fuster, 1973; Gnadt and Andersen,
1988; Funahashi et al., 1989; Zhang, 1999; Taube and Basset,
2003). However, recent experiments have shown that the major-
ity of the neurons in areas associated with working memory have
dynamically varying activity during the delay period.

Using macaques trained to perform a vibrotactile discrimina-
tion task, Romo et al. (1999) have captured this dynamic activity
of individual neurons in the prefrontal cortex (PFC). Their ex-
periment requires the comparison of two mechanical vibrations
(f1 and f2) separated by 3– 6 s. The task has been analyzed as
consisting of three distinct phases: (1) the loading phase in which
f1 is registered; (2) the storage phase in which f1 is maintained;
and (3) the decision phase in which f1 and f2 are compared.
Spiking activities of individual neurons are recorded throughout
these time periods. In this study, we are primarily concerned with
the mechanisms of memorization and thus focus on the activity
during the storage phase.

The neural responses (see Fig. 2a–f) have been nominally cat-
egorized by their monotonic relationship to the base stimulus, f1
(Romo et al., 1999). Activities that increase with f1 are “positive
monotonic,” and those that decrease with f1 are “negative mono-
tonic.” Surprisingly, the activities of most neurons are not persis-

tent but display a characteristic ramping up or down behavior.
Consequently, the responses are further distinguished by periods
of monotonicity. Neurons that are monotonic throughout the
delay period are deemed “persistent,” whereas those that are only
monotonic during the beginning or end of the delay are desig-
nated “early” and “late” neurons, respectively.

In this modeling study, we propose a very simple means of
capturing the wide variety of observed responses in a neurally
plausible network. The current understanding of working mem-
ory is that such areas realize a simple one-dimensional line attrac-
tor or a set of such attractors (Wang, 1999; Seung et al., 2000;
Brody et al., 2003; Miller et al., 2003). Unfortunately, this as-
sumption makes it very difficult to capture the wide variety of
responses observed by Romo et al. (1999). This was recently dem-
onstrated by the model of Miller et al. (2003), in which they were
unable to capture responses like those in shown in Figure 2c with
a fairly complex, six-population model. In addition, past models
have difficulty incorporating the wide diversity of neural re-
sponse functions observed in these areas, usually assuming that
any heterogeneity of responses is a result of the “messiness” of
neural systems. We demonstrate that by considering a two-
dimensional model, all of the categories of responses observed by
Romo et al. (1999) can be captured. We show that this is possible
only because we explicitly incorporate the heterogeneity ob-
served in neural systems into the model. As a result, both the
messiness of the system and the higher-dimensional sensitivity of
neurons play an important role in explaining the experimental
data in a simple, one-population network.

Materials and Methods
To generate and exploit this two-dimensional population, we follow the
methodology of Eliasmith and Anderson (2003). Briefly, we begin by
randomly choosing neural parameters that fall within biologically plau-
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sible regimens. We then suggest a plausible population-level encoding
and decoding relationship with the relevant stimuli that defines the two-
dimensional encoding. Finally, we determine how to instantiate higher-
level dynamics (i.e., an appropriate state space trajectory) using this pop-
ulation of neurons. The resulting single-cell behavior is then compared
with observed data to determine whether the posited encoding, decod-
ing, and dynamics are reasonable. Here, we describe each of these steps in
detail, with comparisons to more familiar applications to one-
dimensional representations.

Central to our results is a general characterization of representation as
neural encoding and decoding. The population of neurons in the model
is a heterogeneous collection of adapting leaky integrate-and-fire (LIF)
neurons. As described in the study by Eliasmith and Anderson (2003),
more complex single-neuron models can be used as well, but there is a
significant computational cost without much gain in realism, especially
in the context of this particular model. The current present in the soma of
a particular neuron can be described generically as follows:

J i�x� � �i��̃i � x� � Ji
bias � �i , (1)

where Ji(x) is the input current to neuron i, x is the vector variable of the
stimulus space encoded by the neuron, �i is a gain factor, �̃i is the
preferred-direction vector of the neuron in the stimulus space, Ji

bias is a
bias current that accounts for background activity, and �i models neural
noise. Notably, the dot product, ��̃i � x�, describes the relationship be-
tween a high-dimensional physical quantity (e.g., a stimulus) and the
resulting scalar signal describing the input current.

For clarity, it is worth comparing the responses of one- and two-
dimensional neurons. In the one-dimensional case, the preferred-
direction vector is either �1 or �1. Neurons with a preferred direction
that is positive are “on” neurons. That is, they will increase their firing
rate as the value of the stimulus variable increases. The opposite is true for
the negative, or “off,” neurons. The addition of a second dimension
generalizes this characterization such that the preferred directions now
lie at any direction on the unit circle, rather than just �1. Thus, as a
constant magnitude stimulus vector sweeps past the preferred-direction
vector of the neuron, the firing rate of the neuron will trace out a typical
cosine-type tuning curve, with peak firing at the preferred direction. As
the magnitude of the stimulus increases at a constant direction (e.g., the
preferred direction), the firing rate of the neuron will increase propor-
tionally, just as it did in the one-dimensional case (see Fig. 3). In both
cases, these tuning curves are, in fact, the result of both Equation 1 and a
neural nonlinearity.

In particular, in our model, the time course of the somatic voltage in
response to this current evolves as a standard LIF neuron, with the addi-
tion of adaptation. These dynamics are captured by (Koch, 1999) as
follows:

dV i/dt � ��Vi�1 � RGadapt� � Ji�x�R�/�i
RC

dGadapt/dt � �Gadapt/�adapt , (2)

where Vi is the somatic voltage, R is the leak resistance, �i
RC is the RC time

constant, and Gadapt is the time-varying conductance modulated by
�adapt. The system is integrated until the membrane potential, Vi, crosses
the neuron threshold, Vth, at which point a �(t � tin) spike is generated,
Gadapt is increased by Ginc, and Vi is reset to zero for the duration of the
refractory period, �i

ref. The inclusion of adaptation helps account for the
observed effects of stimulus onset (see Fig. 2, gray bars). Notably, includ-
ing adaptation does not adversely affect the derivation or overall behav-
ior of the model.

As mentioned, it is important for the model to include the heteroge-
neity typical of single-cell responses observed in the cortex. Using Equa-
tions 1 and 2 as a model of neuron behavior, we randomly select a set of
neural parameters. In particular, the preferred-direction vectors, �̃i, are
drawn from a uniform distribution around the two-dimensional unit
circle. The distribution is uniform primarily because we have no indica-
tion that it should be otherwise, and this distribution has been shown
appropriate for other cortical models (Georgopoulos et al., 1984). The
gain and bias current, �i and Ji

bias, are chosen such that the maximum

firing rates are randomly assigned to neurons but evenly distributed
between 20 and 100 Hz, to match the data of Romo et al. (1999). The RC
time constant is chosen to lie in �RC � 5–15 ms, typical membrane time
constant values, and the adaptation constant is set to lie in �adapt � 1–200
ms to reflect the wide variety of adaptation in pyramidal neurons. The
refractory period is set to �i

ref � 1 ms, again a typical value, and Ginc � 20
nS, which has been shown to effectively match cortical adaptation (Koch,
1999). In addition, during the simulation, independent Gaussian noise,
�i � N(0, 0.1), is injected into the soma to account for various sources of
neural noise (e.g., spike jitter, thermal fluctuations, neurotransmitter
variations, etc.). In summary, given available evidence, the model popu-
lation was closely matched to the parameter regimens that describe the
kind of cortical population we suspect Romo et al. (1999) encountered
during their recordings. Because many of the parameters are statistically
matched, the precise responses of the model population will vary be-
tween runs.

We have now completed our characterization of neural encoding (Eqs.
1 and 2). Next we must address how these neurons can use the informa-
tion that they have encoded about the stimuli of interest. That is, we must
define neural decoding to determine (1) what information regarding the
stimulus has been encoded and (2) how the information can be used,
transformed, or computed over in a neural circuit.

For each neuron in a neural population, we find a neural decoder, �i.
This decoder is a least-squares optimal weight that can be applied to the
neural activities for estimating the encoded information in the popula-
tion (see Appendix, Neural representation, for methods used to deter-
mine decoders). Together, the elements of Figure 1 show the steps in-
volved in encoding and decoding a square wave and a ramp input in a
one-dimensional neural population. Specifically, Figure 1b shows the
spikes that result from encoding an input signal. Because we have sorted
these neurons, and removed adaptation, the encoded information is eas-
ily evident in the spike pattern. Figure 1c depicts example postsynaptic
currents (PSCs) that would result in a subsequent population that re-
ceives these spikes. This depicts temporally decoded (or filtered) spike
trains, an example of ai(t) in Equation 3. Figure 1a demonstrates the
results of summing over the population of neurons with such currents
and weighting them by their decoders (black line). That is, it shows a
decoded estimate x̂(t) of the original signal x(t). So, the difference be-
tween the input and output signals in Figure 1a indicates how well this
population has encoded the information in the original signal. To trans-
form this encoded information (i.e., to compute some function of the
input), the same methods can be used to find decoders for each such
transformation [see Eliasmith and Anderson (2003) for detailed discus-
sion]. This understanding of neural representation generalizes to the
two-dimensional case. Rather than scalar weights, the decoders are two-
dimensional vectors, but the methods do not otherwise change.

To this point, we have discussed the two-dimensional representation
used in our model. It is this characterization of representation that ex-
plains why we are able to produce the variety of results observed in the
neural system (see Results). This is because it is the path that the network
takes through this representational space that provides an explanation of
the data. However, we are also interested in understanding how this path
itself is generated. To do so, we need to understand how network-level
dynamics can be understood in the context of such representations.

After Eliasmith and Anderson (2003), we assume that the dynamics of
the population can be expressed in terms of the dynamics of the signal(s)
it is representing. As discussed in detail in the Appendix (see Neural
dynamics), taking the neural representation to be the state variable of a
dynamic system described by control theory leads to a general method
for constructing complex, dynamic neural models. For instance, Elias-
mith (2005) provides a comprehensive account of controlled spiking
attractor networks (i.e., point, line, ring, plane, cyclic, and chaotic attrac-
tor networks) using these methods.

As discussed later, a number of possible dynamic systems can account
for the behavior of the working memory neurons of interest here. How-
ever, to get a sense of how this variety of dynamics is used to construct a
model, let us consider the simple example of a one-dimensional integra-
tor. This recurrent network has previously been well characterized
(Seung, 1996; Seung et al., 2000; Koulakov et al., 2002; Eliasmith and
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Anderson, 2003; Goldman et al., 2003). In summary, to implement a
one-dimensional integrator of the signal x, we use our previously defined
neural representation of x to determine the appropriate recurrent con-
nection weights. If we would like the population to respect ẋ � 0 [i.e., that
there is no change in x over time without input (which defines an inte-
grator)], we must ensure that the representation encoded from the neural
inputs is the same as the representation decoded from those inputs.

Combining Equations 1 and 2, we can write the encoding at
the inputs as follows:

a i�t� � Gi	�i��̃ix�t�� � Ji
bias
, (3)

where Gi represents the encoding defined by Equation 2. We can also
write the decoding of this encoded information as a weighted sum (as
captured by Fig. 1) as follows:

x̂�t� � �
j�1

N

a j�t��j , (4)

where aj(t) is the neural activity (i.e., the postsynaptic filtered spike trains
from neuron i, as shown in Fig. 1c, although Gi in Eq. 3 should be con-
volved with the PSC filter but is left out for simplicity; see Appendix,
Neural representation, for a full characterization), N is the number of
neurons in the population, and x̂(t) is the optimal linear estimate of x
using the decoders. It should be noted that the subscripts i and j range
over the same population of neurons, because the connections are
recurrent.

With these definitions, we can now construct a one-dimensional neu-
ral integrator by allowing x̂(t) � x(t), thus substituting Equation 4 for
Equation 3, giving the following:

a i�t� � Gi��i��̃i �
j�1

N

aj�t��j� � Ji
bias� � Gi��

j�1

N

	ijaj�t� � Ji
bias�,

(5)

where 	ij � �i��̃i�j�. Equation 5 now defines a neural integrator in terms
of recurrent connection weights. That is, the circuit with recurrent con-
nections that are defined by this weight matrix will have dynamics that
are steady (i.e., an unchanging representation) under no input. As de-
scribed in the Appendix (see Neural dynamics), this simple derivation
can be generalized to arbitrary dynamics and more complex circuits (e.g.,
with an input signal). As well, it can be generalized to higher dimensions.
So, in the two-dimensional case, the preferred-direction (encoding) and
decoding vectors replace the encoding and decoding scalars, but other-
wise the derivation is the same (see Fig. 6 for plots of these weight
structures).

In essence, this derivation is much like those of Seung et al. (2000) and
others. They use similar least-squares methods to tune a one-
dimensional integrator. However, there are two important differences
between past derivations and the one presented here (detailed in the
appendices). First, Seung et al. (2000) and others do not characterize the
role of the encoders and decoders as we have done. Usually, both are
assumed to be free variables for finding the weights. In contrast, we have
taken the encoders to be inferable directly from experimentally observed
tuning curves. As a result, it is less clear how to generalize past methods to
higher dimensions. Here, however, the derivation is the same, regardless
of the dimensionality of the tuning curves. Second, we have introduced a
general dynamics matrix into our weight derivations, which results in a
standard form for the weights of 	ij � �i��̃iA��j� (see Appendix, Neural
dynamics). This is not evident in the simple one-dimensional integrator
case, because the A� matrix is equal to 1 and not explicitly included in past
derivations. However, as discussed in detail in Results, this characteriza-
tion allows us to construct a wide variety of complex dynamics in higher-
dimensional spaces.

To simulate the data of Romo et al. (1999), circuits derived in this
manner were modeled using the Neural Engineering Simulator, which is
available as an open source (http://sourceforge.net/projects/nesim). To
match the experimental setup of Romo et al. (1999), seven evenly spaced
step inputs are used to simulate the base stimulus (f1). The stimulus lasts
for 0.5 s, and the delay period runs for 3 s as in the original experiments.
The spiking activity of each neuron is collected. Again following the
method used by Romo et al. (1999), poststimulus time histogram
(PSTH) plots are generated by convolving the spike trains with Gaussian
kernels (
 � 150 ms during the delay period; 
 � 50 ms elsewhere). For
all simulations, the PSC time constant is 100 ms. A summary of the
parameters used can be found in Table 1.

Results
Here, we describe our simulation results and situate them with
respect to past attempts at modeling the observed working mem-

Figure 1. Population encoding and decoding of a square pulse and ramp signal. a, The input
x(t) (gray line) and the decoded estimate, x̂(t) (black line), using a population of 100 one-
dimensional LIF neurons. The weighted sum all of the PSCs yields the decoded estimate (black
line). b, The spike raster produced by encoding the input. Neurons are separated at i � 50 into
on and off neurons (�̃i ��1 and �1, respectively) and sorted by firing onset. c, The rasters of
neurons i � 80, 50, and 35 are plotted with their resulting PSCs. Notably, these were chosen to
hint at the ramping response of early, persistent, and late firing seen in the data of Romo et al.
(1999).
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ory effects. We then provide a taxonomy of network topologies
that give rise to the dynamics needed to explain the data of Romo
et al. (1999).

Related work
Much effort has been spent designing systems that maintain a
persistent signal after stimulus presentation, the presumed pur-
pose of working memory. However, this approach is somewhat at
odds with the data, which suggests that the majority of working
memory signals are not persistent. Hence, our purpose here is to
describe a neural model that reproduces the dynamics of the data
of Romo et al. (1999). We are less concerned with neural mech-
anisms for signal persistence (Seung, 1996; Koulakov et al., 2002;
Goldman et al., 2003). Nevertheless, as described above, our so-
lution is related to that of Seung et al. (2000), and we provide
some discussion of the robustness of the solution to fine-tuning
and noise. However, here we address the more immediate ques-
tion: How can memory be reliably encoded in a time-varying
signal and what explains the wide variety of dynamics observed in
working memory?

Miller et al. (2003) have recently proposed a model that ad-
dresses this question directly, and in the context of the vibrotac-
tile discrimination task. Their model consists of a large network
of LIF neurons in a locally structured circuit. To avoid the fine-
tuning problem that plagues some neural integrators [like that of
Seung et al. (2000)], Miller et al. (2003) use a collection of bistable
groups to create a network of multi-stable states (Koulakov et al.,
2002). However, they conclude that non-finely tuned networks
do not properly reflect the data because such networks result in
highly discontinuous neuron responses. Additionally, they dem-
onstrate that fine tuning is a reasonable alternative, which is also
supported by our results below.

Of greater interest here is how they attempt to reproduce the
wide variety of observed neural dynamics. To do so, they propose
a network of three neural integrator populations that capture the
characteristic ramping up, down, and tonic behaviors. The pop-
ulations are assumed to be assembled together with suitable ex-
citatory and inhibitory connections. Each population consists of
two subnetworks: one that supports negative monotonicity and
one that supports positive monotonicity. Each subnetwork con-
sists of 12 neuronal groups of 500 neurons each (the bistable
integrators). The resulting subnetworks have 6000 neurons each
for a total of 36,000 in the entire network (although each popu-
lation of 12,000 neurons is simulated independently).

Although their model can broadly simulate the categorized
responses, it is unable to reproduce the wide variety of neural
responses seen in data set of Romo et al. (1999). For instance,
neurons in the study by Miller et al. (2003) exhibit either tonic or
ramping curves but not variations of both, as in Figure 2, c and C,

where the high-frequency responses are ramping but the low-
frequency responses are tonic. This is because, like other past
characterizations of working memory (Zipser et al., 1993; Cam-
peri and Wang, 1998; Reutimann et al., 2004), Miller et al. (2003)
tacitly assume that neural responses in their populations encode
only one-dimensional signals. As a result, monotonicity with re-
spect to frequency is rendered independent from time-varying
dynamics. These features are then further subdivided: monoto-
nicity is split into positive and negative monotonic neurons, and
time-varying dynamics are split into ramping up or down ten-
dencies. Unfortunately, this divide-and-conquer approach has
two limitations. First, it unnecessarily complicates matters. For
instance, there is no need to explicitly simulate two oppositely
ramping responses; using a two-dimensional population with
randomly distributed preferred directions in the two-
dimensional space automatically provides neurons with oppo-
sitely directed tuning curves that naturally account for this kind
of behavior. Second, it results in missing some of the observed
properties of neural tuning. In addition to not reproducing Fig-
ure 2, c and C, separating the two dimensions will result in ramp-
ing neurons always starting from an initial (background) posi-
tion and “fanning” outward, although the opposite (fanning
inward) is seen in Figure 2, a and A.

Simulation results
The empirical responses shown in Figure 2a–f clearly portray
neurons that are both time and stimulus dependent. These de-
pendencies are independent only in the sense that frequency
monotonicity does not dictate time-varying behavior. This does
not entail that the representation of these dimensions needs to be
independent, however. Thus, we propose a model that views neu-
rons as simultaneously sensitive to both quantities, with those
sensitivities evenly and randomly distributed in a two-
dimensional space (see Materials and Methods). In particular, we
assume that the two-dimensional space of interest has, as its di-
mensions, “time” (i.e., a representation of time; but see Discus-
sion) and frequency. Mathematically, we denote the two quanti-
ties as the parameterized vector x(t) � [F(t),T(t)] (Fig. 3). Let us
first consider the role of this representation in explaining the data
of Romo et al. (1999).

Neurons representing this space will maximally fire to some
“preferred stimulus,” which defines a direction in the two-
dimensional space as depicted in Figure 3. As a result, the ob-
served gradations in sensitivity in a particular direction should be
a reflection of the heterogeneity of intrinsic neural response
curves (where such curves are understood as the responses found
by direct current injection). So, a representation of the two-
dimensional space that consists of randomly distributed pre-
ferred directions, along with a variety of intrinsic neural response
curves, should correspond to the different kinds of tuning shown
in Figure 2. Notably, these curves have been selectively chosen to
match the experimental data. It would be more informative to
compare the entire distribution of tuning curves to determine
how typical such neuron classes are. However, because we were
unable to examine the complete original data set, we cannot affect
this comparison. The even distribution that we have assumed for
tuning curves results in a wide variety of responses, many of
which are intermediate between the classes shown in Figure 2.
Other distributions would result in more “clustered” preferred-
direction vectors and thus fewer and more typical cell classes.
Given the general tendency to observe high heterogeneity in the
cortex, we take the even distribution to be a reasonable
assumption.

Table 1. Model parameters

Symbol Range Description

1. max Gi[J(x)] 20 –100 Hz Maximum firing rate
2. Gi[J(x)] � 0 �1 to 1 Normalized x-axis intercept
3. Ji

bias Satisfies 1 and 2 Bias current
4. �i Satisfies 1 and 2 Gain factor
5. �̃i ��̃i� � 1 Preferred-direction (encoding) unit vector
6. �i

RC 5–15 ms RC time constant
7. �adapt 1–200 ms Adaptation time constant
8. Ginc 20 nS Adaptation conductance
9. �i

ref 1 ms Refractory period
10. �PSC 100 ms PSC time constant
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However, this characterization of the neural representation
alone does not account for the changes over time of the neural
responses. The specific values taken on by the two-dimensional
quantity through time (i.e., the state space trajectory or dynam-
ics) also play a significant role. Assuming a two-dimensional rep-
resentation that consists of a time and frequency dimension, as

we have, examination of the experiments of Romo et al. (1999)
suggests that the observed dynamics result from a combination of
a constant signal along the frequency dimension (the memory of
f1) and a ramping signal in the time dimension.

To test this account, we built and simulated a network of
two-dimensional neurons that realized this trajectory (see Mate-
rials and Methods). The results are plotted in Figure 2A–F and
are juxtaposed with the experimental findings. The simulation
reveals early, late, and persistent neurons that exhibit positive and
negative monotonic responses, all of the classes of response de-
scribed in the original data. So, the model demonstrates that the
observed PSTHs can be understood as primarily the result of
two-dimensional neural tuning curves and the dynamics of a
two-dimensional quantity. Figure 4 provides a geometric expla-
nation of how dynamics and tuning curves interact to result in
the observed responses. In Figure 4b, filtered spike trains are
shown as a function of the state space trajectory projected onto
the two-dimensional tuning curve of a neuron. The path traveled
on this surface is driven by the dynamics of the working memory
signal. Each set of input signals produces a characteristic and
systematic path across the surface. We can thus understand the
observed variety of responses in the experiments: the PSTHs vary
systematically with f1, yet generally maintain the same shape be-
cause there is a monotonically increasing time signal, T(t), over a
consistent (neural) nonlinearity.

The variety of observed tuning curves is thus explained by the

Figure 2. PSTH plots during memorization. The gray bars under the axes indicate the onset of the stimulus, and black bars above the graph mark periods of monotonicity. The higher stimulus
frequency (f1) is marked with darker response curves. a, c, e, Positive monotonic. b, d, f, Negative monotonic. a, b, Early neurons. c, d, Persistent neurons. e, f, Late neurons. [Data are from Romo
et al. (1999).] A–F, Corresponding simulation results from the model shown.

Figure 3. Tuning curve of a two-dimensional neuron defined by Gi[�i��̃i � X� � Ji
bias. For

this neuron, the preferred-direction vector is �̃i � [�0.64, 0.766]. Three state space trajecto-
ries, defined by x(t) � [F(t), T(t)], are shown projected onto the curve. For each trajectory, F( t)
is a constant, T( t) is a ramping signal, and t ranges from 0 to 3 s. The units of F( t) and T( t) are
open to interpretation, but one can view them as normalized frequency and time, respectively.
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distribution of preferred-direction vectors, �̃ � [�̃f,�̃t], the firing
thresholds (along those vectors) in the two-dimensional space,
and the neural nonlinearity. Generally, monotonicity is deter-
mined by sign(�̃f), and early, late, and persistent firing is charac-
terized by �̃t. As mentioned, we chose the vectors randomly from
an even distribution over the unit circle and the response thresh-
old randomly from an even distribution along the vector. Better
fits to the likelihoods of observing various classes of responses
could be made by altering these distributions to match the neural
data (the complete data set was not available).

The key difference between this model and that of Miller et al.
(2003) is in the representation of the content of memory. Rather
than taking neurons to encode a series of one-dimensional sig-
nals, we understand them to encode a single two-dimensional
space. As a result, the myriad of observed responses are a natural
consequence of a heterogeneous population of individual neuron
tuning curves directed in this higher-dimensional space. As a
result, Figure 2, c and C, is observed in our model but not in that
of Miller et al. (2003). Additionally, this approach results in a
much more efficient use of neural resources. The results pre-
sented in Figure 2 are from a network of �3000 neurons (the
organization of which is described below). This is an order of

magnitude fewer neurons than in the model of Miller et al.
(2003), despite a more complete characterization of the observed
data, and the same degree of dynamic stability.

It is worth emphasizing that the neurons in our model are,
biophysically speaking, no different than those in past models.
The important difference is in how we have characterized what
those biophysical states are used to represent. As a result, refer-
ring to these neurons as higher dimensional denotes the fact that
they are sensitive to multiple physical dimensions concurrently.
This, it should be noted, has nothing to do with the dimension-
ality of the equations used to describe the time course of the
voltages and currents in the neuron model itself. What these
results show, then, is that mapping biophysical states of cells into
higher-dimensional representational spaces can more effectively
explain the observed transitions between those biophysical states
in real neural systems.

Dynamics
Our discussion so far leaves unresolved why or how this popula-
tion has the particular trajectory through the state space that it
does (i.e., a coupled ramp and constant). We address these ques-
tions in detail here. Systematically characterizing network-level
dynamics is essential because the time-varying activity might be
explained by a number of competing hypotheses. Some have sug-
gested that the network encodes the passage of time, which could
be used to deduce f1 (Brody et al., 2003; Reutimann et al., 2004).
Others have posited that signals with the necessary time course
are broadly projected to the PFC (Fiorillo et al., 2003). These
latter signals are thought to encode reward uncertainty and could
account for the observed dynamics in the PFC neurons. For the
most part, our modeling effort is agnostic as to the exact nature of
this quantity. However, here we discuss and model the architec-
tural implications of these different kinds of explanations for the
observed dynamics.

Recall that we have identified the necessary state space trajec-
tory as including a constant signal related to f1 and a time-varying
ramp signal, time. Clearly, then, any network architecture that
results in this state space trajectory will give rise to the single-cell
responses depicted in Figure 2. Figure 5 depicts four network
topologies that result in this trajectory. The topologies can be

Figure 4. a, Response curves of a late positive monotonic neuron. b, The spiking rates can be
seen as a mapping of the state space trajectory onto the two-dimensional tuning curve of the
neuron. The trajectories of every other curve in a are shown. The responses do not lie exactly on
the curve (as in Fig. 3) because of accumulated noise.

Figure 5. Network architectures that produce the observed responses. a, A simple two-
dimensional integrator. b, Coupled one-dimensional integrators. c, Projected external signals.
d, One-dimensional integrator with an external input. The circuits can be categorized as either
using two-dimensional integration (a, c) or two-dimensional projection (b, d) with inputs that
are locally generated (a, b) or external (c, d). 2D, Two-dimensional; 1D, one-dimensional.
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categorized as either using purely two-dimensional representa-
tions (Fig. 5a,c) or not (Fig. 5b,d), with behavior that is either
entirely locally generated (Fig. 5a,b) or not (Fig. 5c,d). Note that
all networks eventually rely on a two-dimensional representation
to explain the results. We believe that this taxonomy of networks
can both guide and be adjudicated by experimental results, as
discussed. First, however, we turn to a brief characterization of
each topology.

Two-dimensional integrator
Neural integration is a robust and common phenomenon across
brain areas and has been widely associated with working memory
(Douglas et al., 1995; Seung, 1996, 2000; Aksay, 2000, 2001).
Because we are using a two-dimensional representation, it may
make sense to account for this phenomena using a local, two-
dimensional integrator.

In terms of the desired trajectory through the two-
dimensional space, one dimension of the signal must represent
the frequency, F(t), and the other must represent a monotoni-
cally increasing function of time, T(t), that is dependent on the
initial frequency. F(t) can be linked directly to the integration of
f1, whereas T(t) can be considered an integration of the inte-
grated f1 signal. In other words, to reproduce the observed re-
sponse curves, we must integrate both the input frequency (to
remember it) and the results of that integration (to generate the
ramping time signal).

These “double-integration” dynamics can be defined in stan-
dard control theoretic terms, using the dynamics equation,
ẋ(t) � Ax (t) � Bu (t), as follows:

� ẋ1

ẋ2
� � � 0 0

� 0 ��x1

x2
� � � 1 0

0 0 ��u
0� , (6)

where u represents the stimulus presentation and � is a constant
that scales the effect of the frequency component on the time
component (i.e., the second integration). As described in the
Appendix (see Neural dynamics), we can use Equation 13 to con-
vert this two-dimensional integration network into a neurally
implementable network:

A� � � 1 0
�� 1 �, B� � � � 0

0 0 �. (7)

As described in Results, this is a natural extension of previous
characterizations of a one-dimensional integrator. The difference
lies in the fact that the representation is two-dimensional and the
dynamics are slightly more sophisticated, as reflected in the dy-
namics matrix A�.

In our simulations of up to 3000 neurons, this circuit is un-
stable, because trajectories drift rapidly and then rest on one of a
few attractor points (data not shown). These problems can be
alleviated with longer time constants (which may be biophysi-
cally unrealistic), by adding neurons (Eliasmith and Anderson,
2003) (we were unable to pursue this solution further because of
computational limitations), by including more sophisticated
control circuits (e.g., a differentiating compensator), or by intro-
ducing varieties of hysteresis (Koulakov et al., 2002; Goldman et
al., 2003).

Coupled one-dimensional integrators
Alternatively, it is possible to implement a similar solution in
which the integration dynamics are handled in separate popula-
tions. Figure 5b shows the topology of such a network. Here, two
one-dimensional integrators implement the same dynamic sys-
tem (i.e., double integration) and project their results into a two-

dimensional population. Nevertheless, Equation 6 describes the
dynamics of this network as well, because only the representation
and not the dynamics have changed. More accurately, Equation 6
could be written as two separate coupled differential equations
(although this is mathematically equivalent). The reason two dif-
ferent architectures are described by the same equations is be-
cause anatomical constraints are important for determining the
precise relationship between a dynamical description and its im-
plementation in a set of neurons, although such constraints are
not capture by the equations. So, the difference between panels a
and b in Fig. 5 is the result of a difference in our assumptions
regarding anatomical organization in these two cases (in the first
that there are broad reciprocal projections from all two-
dimensional neurons, in the second that there are feedforward
projections from the one-dimensional integrators to the two-
dimensional population).

The results from this network are shown in Figure 2A–F. To
achieve these results, each integrator used 1000 one-dimensional
neurons, and the two-dimensional population consisted of 500
neurons. The network is highly stable and thus able to reproduce
the results from the experiment. Notably, both this solution and
the previous one assume that the signals driving the movement
through the two-dimensional state space are internally gener-
ated, which is consistent with the idea that the network itself is
keeping track of the time elapsed between stimulus presentations.

Projected external signals
Unlike the characterization of the previous two architectures, the
dynamics could be driven by external signal sources. For in-
stance, signals from the ventral tegmental area project to the PFC
and could account for the time-varying signal observed in work-
ing memory. However, the existence of ramping signals seem to
be sensitive to the uncertainty regarding a reward, whereas the
monkey in these experiments receive a reward on almost all trials.
Indeed, it is possible that both the F(t) and T(t) signals are exter-
nal to the population in the PFC. In this scenario “working mem-
ory” is a misnomer for the function of this area, because there is
no active maintenance of a local signal in the region. Rather, the
PFC would simply be a merging of two independent signals into
a single two-dimensional representation. The results from this
network are identical to those presented in Figure 2, given appro-
priate input signals.

Including such external signals can be accomplished with a
simple modification of Equation 6:

� ẋ1

ẋ2
� � � �1 0

0 �2
��x1

x2
� � � 1 0

0 1 ��u
e�. (8)

With �1,2 � 0, neither dimension will be integrated as it was in the
previous networks and will thus both reflect the external signals
directly.

One-dimensional integrator with one external input
If, however, �1 � 0 or �2 � 0, then the corresponding dimension
will be integrated. Thus if only the frequency or time signals were
projected into the network from an external source, appropri-
ately varying Equation 8 will reflect this fact. For instance, sup-
posing that �1 � 0, then u would reflect the standard input to
working memory that would be integrated in this area, and e
would reflect an externally generated ramping time signal. The
results of simulating this network are identical to those in Figure
2 given appropriately chosen external signals for the chosen
dynamics.
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General dynamics results
Despite this variety of possible architectures, there are some gen-
eral insights that can be gained from examining them together
(we discuss ways of empirically distinguishing these topologies in
the Discussion). First, it is useful to recall at this point that the
connection matrices for all dynamics in these various architec-
tures are of the same form (i.e., 	ij � �1��̃iA��j

x� for recurrent
connections and 	ij � �1��̃iB��k

u� for input connections). Obvi-
ously, the specific values of these variables will change the precise
structure of the matrices. Nevertheless, there is some degree of
“typical” structure for recurrently connected integrators, regard-
less of their dimension (Fig. 6a,b). Specifically, both one- and
two-dimensional integrator populations display a noisy center-
surround organization, although this pattern is more evident in
the two-dimensional case. For the one-dimensional case, there
are only two possible encoders (�1), so the diagonal center is the
size of half of the population. However, this center-surround
structure has been observed in higher dimensions (e.g., 25 di-
mensions) as well (Conklin and Eliasmith, 2005). And this pat-
tern is strikingly similar to the hand-constructed center-
surround weight matrices used in past integrator models (Zhang,
1999). As a result, if connectivity patterns of neural populations

resemble this general pattern, they may be involved in a form of
neural integration for any dimensionality of representation.

One concern that arises with constructing weight matrices
using these methods is the “fine-tuning problem” (i.e., the prob-
lem of making the matrix robust to noise). One difficulty with
this characterization of the problem is that whether or not there is
actually a problem depends on the precise kind of disturbance
introduced. The weights in these networks are clearly robust to
some noise, as demonstrated by Figure 7. This figure shows that a
desired mean squared error (MSE) can be reached by increasing
the size of the integration population. Specifically, it can be seen
that the effects of the noise go down as 
1/N. These results indi-
cate that the integrator will be robust even for small population
sizes, because integrator stability is directly related to the MSE
(Eliasmith and Anderson, 2003). Similar robustness results for a
high-dimensional integrator have been reported by Conklin and
Eliasmith (2005), who showed that integration behavior was only
mildly affected by the addition of up to 
 � 50% noise.

However, this robustness is to zero mean, independent Gauss-
ian noise. We have no reason to believe that our network will be
especially robust to non-zero mean noise in the connection
weights. What is of importance, then, is not the presence of noise,
but rather some population-wide bias (e.g., shifting all weights in
one direction). We are unaware of any experimental results indi-
cating that such biases should be expected here, or in any other
integrator networks. We suggest that fine-tuning is thus a misno-
mer for the problem (because we can add random noise the
weights to a large degree and the network still functions). Perhaps
it should be called the “biased weight problem” instead.

Discussion
There are three major insights to be drawn from these results.
First, a two-dimensional neural representation can underwrite a
natural, efficient, and robust network that explains the wide va-
riety of responses exhibited by working memory neurons. In this
regard, it is important to note that this approach is also relevant
for systems with nonmonotonic (e.g., peaked) tuning curves,
which are observed in many working memory tasks (Nieder et al.,
2002). This is because if the dimensions of the representation are
polar coordinates (rather than Cartesian), peaked tuning natu-
rally results (because a sweep around the � dimension produces a

Figure 6. Recurrent connection weights for the one-dimensional integrator (a) and two-
dimensional integrator (b). Both axes are N, the neuron number assigned after sorting the
neurons by their encoders and decoders. The depth of gray indicates connection strength. These
matrices demonstrate the systematic relationship between center-surround connectivity and
attractor networks of any dimension.

Figure 7. Network robustness to connection weight noise. This is a log–log plot of the MSE
as a function of the number of neurons ( N) and the amount of Gaussian noise added to the
weights in the connection matrix. The noise added is calculated by taking the indicated percent-
age as the SD of Gaussian, independent mean zero noise that is then scaled by the original size
of the weight.
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peak centered on the preferred-direction vector), and the dynam-
ics can be described analogously. Notably, higher-dimensional
models can also result in this kind of peaked tuning (Eliasmith
and Anderson, 2003; Conklin and Eliasmith, 2005). These repre-
sentations may be relevant for understanding working memory
in visual areas, which are sensitive to a large number of
dimensions.

Second, this explanation relies on the observed heterogeneity
of neural responses. Elsewhere, we have argued that neural het-
erogeneity is a natural result of a trade off between representa-
tional efficiency and simple organizational mechanisms in neural
systems (Eliasmith and Anderson, 2003). So, this work supports
the idea that, rather than being a sign of the intractability of
neural systems, heterogeneity is both consistent with efficient
neural computation and essential to incorporate into models at-
tempting to explain such computation.

Third, these results provide evidence that the methods used
here allow for effective, plausible, and quantitative characteriza-
tions of neural representation and neural dynamics resulting
from a wide variety of possible network topologies.

However, these conclusions do not directly address two cen-
tral empirical questions: (1) How might we tell whether working
memory uses a two-dimensional rather than one-dimensional
(or higher-dimensional) representation? (2) How can we adjudi-
cate between the possible network topologies that give rise to the
state space trajectory?

Regarding the first question, we note that one benefit of a
two-dimensional representation is that it supports the linear ex-
traction of nonlinear functions of the represented dimensions
(Eliasmith and Anderson, 2003). If these neurons are used to
encode not only stimulus parameters but also act as a kind of
preparatory signal [as suggested by Brody et al. (2003)], extract-
ing such a function is essential. So, the model leads to the predic-
tion that some neural populations that receive projections from
this area will compute nonlinear functions of the represented
variables (which should be evident in their tuning). This high-
lights the close link between nonlinear computation and higher-
dimensional representation (under the assumption that neural
populations in the cortex perform linear transformations, i.e., by
summing weighted synaptic input).

However, this does not address the question of whether the
population may be representing more than two dimensions. This
is a valid concern because our simulation does not display all of
the subtleties of the data. For example, the minor ramping of
early neurons after the first second (Fig. 2a,b) are absent in our
simulations (Fig. 2A,B). Additionally, we do not find the “down-
then-up” responses evident in some neurons (data not shown).
Despite the fact that these responses account for a small portion
of the categorized curves, higher-dimensional extensions to the
current model might account for these additional phenomena. A
principal, or independent, component analysis of the experimen-
tal data could provide a good indication of how many dimensions
are required. It is important to note, however, that such features
of the data might also arise from different dynamics: including
the state space trajectory (we have assumed a very simple one).

Considering the number of dimensions needed to model the
data highlights predictions that distinguish models of different
dimensions. From a purely mathematical point of view, any
D-dimensional representation can be reproduced by D one-
dimensional representations (because both representations span
the D-dimensional space). However, when there are resource
constraints (e.g., maximum firing rates), these two representa-
tions can be distinguished because saturation effects will be dif-

ferent. Consider two two-dimensional populations: the first has
all preferred-direction vectors aligned with the x- or y-axes (be-
cause it is equivalent to two one-dimensional populations, we call
it the one-dimensional model), and the second has preferred-
direction vectors evenly distributed over the two-dimensional
space (the two-dimensional model). Distributions between these
two extremes will show related effects to greater and lesser de-
grees. In the first case, the saturation of representations along the
x dimension will be unaffected by any variations in the represen-
tations along the y dimension. In the second case, for the majority
of preferred-direction vectors, any increase in x-related firing
results in a comparable reduction in the range of y dimension
values that can be represented before saturation. These effects will
likely only be observed for delay periods longer than the expected
delay because of rapid renormalization of the stimuli. If the
renormalization is rapid enough, it may only be the first trial after
that expectation is violated that shows the effects. These effects
should be both neurally and behaviorally observable.

Consider high-frequency trials and neurons with positive
monotic, downward ramping responses. In the two-dimensional
model, such neurons are nearly saturated by the frequency input
but are driven toward zero by the ramping time signal. This sets
up a conflict between the representation of frequency and time.
So, after the saturation of the time signal (i.e., in which the time
signal is very negative for the neurons), these neurons will never-
theless have an above background firing rate because they are also
contributing to the representation of frequency. As a result, they
will downward slope but level off, even with an increasing time
signal. In contrast, a one-dimensional model will have all down-
ward ramping neurons driven to very low or zero firing rates.
This is because they are only representing the temporal aspect of
the signal, so there is no source of current (e.g., from representing
frequency) to counteract the strong downward signal.

Behaviorally there should be differences as well. In the trials
that violate the expected delay period, there should be a progres-
sive worsening of accuracy of response as the time course goes
past the expected delay period, because the x and y dimensions
interact, and y is ramping. However, this accuracy effect should
level off once both dimensions are saturated. In contrast, in a
one-dimensional model, there should be no effect on accuracy of
changes in time delay, because the dimensions represent (and
therefore saturate) independently.

Turning to the second question (adjudication of network dy-
namics), distinguishing these network topologies could be ac-
complished through carefully constructed microstimulation ex-
periments. This methodology has been applied to work in
decision making, motion processing, eye control, and tactile
working memory (Cohen and Newsome, 2004). Although there
are some concerns regarding the application and effects of stim-
ulation, the ability of microstimulation to elicit equivalent re-
sponses to tactile stimuli in S1 (Romo et al., 1998) suggests the
somatosensory cortex may be a good target for microstimulation.
As well, microstimulation has been applied successfully to char-
acterizing neural integration, a closely related form of dynamics
(Kustov and Robinson, 1995).

Microstimulation could be highly informative regarding the
network topology both for distinguishing the origin of the sig-
nals, and for distinguishing one- and two-dimensional integra-
tion. In the first case, if the memory signal is not stored in this
anatomical area but rather is projected to the network, brief stim-
ulation should only temporarily affect the representation during
the delay period. If, however, stimulation resulted in disruption
of the dynamics, and hence performance on the task, then the
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signals are at least partially locally generated. The differential
effects of microstimulation on one- or two-dimensional integra-
tors is likely more subtle. If both signals are disrupted after stim-
ulation and there is a systematic relationship between the two
disruptions (e.g., the time signal is still the integral of the fre-
quency signal), then Figure 5b is most likely. In contrast, if both
signals are arbitrarily disrupted by stimulation, Figure 5a is more
likely because the representation and dynamics in both dimen-
sions will be changed concurrently. If only one or the other signal
is locally generated, then only that signal would be disrupted by
microstimulation. So, it would be difficult to distinguish panel b
from panel d in Figure 5, because both are consistent with that
outcome. Thus, a series of results in which either the time signal is
disrupted or both signals are disrupted would be required to
make Figure 5b more likely. If only one of the signals was ever
disrupted, then Figure 5d is more likely. We should note that this
reasoning is dependent on the assumption of very small back-
propagation effects during microstimulation. It is commonly as-
sumed that microstimulation is highly local, affecting an area of
only 
200 �m or a few hundred cells (Tu and Keating, 2000;
Cohen and Newsome, 2004). However, some studies suggest the
possibility that the effects could traverse hemispheres (Seide-
mann et al., 2002).

In conclusion, our simulations demonstrate that a diverse
population of two-dimensional neurons can naturally reproduce
the data of Romo et al. (1999). We have emphasized how the
methods exploited here can suggest ways of systematically ex-
ploring the possible topologies to generate these results. Doing so
makes it clear that limiting models to one-dimensional represen-
tations unnecessarily limits the hypotheses being considered and
can overcomplicate models of the observed responses. Given
general methods for building models with higher-dimensional
populations, and given the availability of data that are highly
suggestive of trajectories through higher-dimensional spaces,
there is good reason to adopt this kind of alternative explanation
of neural behavior.

Appendix
Neural representation
We take representation in neural populations to be characterized
in terms of a nonlinear encoding process and a linear decoding
process (Eliasmith and Anderson, 2003). Encoding involves con-
verting a quantity, x(t), into a spike train:

�
n

��t � tin� � G i	 Ji�x�t��
, (9)

where Gi[�] is the nonlinear function describing the spiking re-
sponse (see Figs. 3 and 4b for typical LIF responses), Ji is the
current in the soma of the cell, i indexes the neuron, and n indexes
the spikes produced by the neuron. Note that the driving current
is described in detail by Equation 1 and the nonlinearity is de-
scribed by Equation 2. Equation 9 captures the nonlinear encod-
ing process from a high-dimensional variable, x, to a one-
dimensional soma current, Ji, to a train of spikes, �(t � tin).

To understand how a neural system might use the informa-
tion encoded into a spike train in this manner, we must charac-
terize a neurally plausible decoding as well. To do so, we need to
understand how this information can be converted from spike
trains back into a relevant quantity. Note that we are not suggest-
ing that this decoding process takes place explicitly in neurons.
Rather, it is a theoretically useful means of characterizing part of
the information processing characteristics of neurons. In partic-
ular, we characterize decoding in terms of PSCs and connection

weights. Somewhat surprisingly, a plausible means of character-
izing this decoding is as a linear transformation of the spike train.
Specifically, we can estimate the original stimulus vector x(t) by
decoding an estimate, x̂ (t), using a linear combination of filters,
hi(t), weighted by decoding weights, �i, as follows:

x̂�t� � �
in

��t � tin�*hi�t��i � �
in

hi�t � tin��i , (10)

where * indicates convolution (see Fig. 1). These hi(t) are thus
linear decoding filters that, for reasons of biological plausibility,
we take to be the PSCs in the subsequent neuron.

Revisiting Figure 1, we can understand the depicted processes
in terms of these equations. The encoding in Figure 1b produces
a raster of spike trains, �(t � tin), where tin indicates the nth spike
for neuron i. Neurons are separated at i � 50 into on and off
neurons (�̃i � �1 and �1, respectively) and sorted by firing
onset (the value of x for which Gi[Ji(x)] � 0). In Figure 1c, spike
trains are plotted with their PSC-filtered counterpart [i.e., hi(t �
tin) � �(t � tin) * hi(t)]. Finally, the weighted sum of all of the
filtered trains, �inhi(t � tin)�i, yields the overall decoded estimate
(Fig. 1a, black line).

To find the �i weights to determine this estimate, we minimize
the mean-squared error (see also Salinas and Abbott, 1994; Seung
et al., 2000):

E �
1

2
�	x�t� � x̂�t�
2�x,t

�
1

2
�	x�t� � �

in

�hi�t � tin� � �i��i

2�x,t,� (11)

where ���x denotes integration over the range of x and �i models
the expected noise. By optimizing with Gaussian random noise,
we ensure that fine tuning is not a concern, because the decoding
weights will be robust to fluctuations.

This method provides a means of defining n-dimensional rep-
resentations in a biologically plausible population of neurons.
Here, we have taken the population, �i, and temporal, hi(t), de-
coders to be independent, although this is not necessary, as can be
seen from the fact that Equation 11 can also be minimized over
time.

Neural dynamics
For generality, we can write the relevant dynamics of a popula-
tion in a control theoretic form (i.e., using the dynamics state
equation that comprises the foundation of modern control
theory):

ẋ�t� � Ax�t� � Bu�t�, (12)

where A is the dynamics matrix, B is the input matrix, u(t) is the
input or control vector, and x(t) is the state vector (see Fig. 8a for
a graphical depiction of this equation). In general, these matrices
and vectors can describe a wide variety of linear, time-invariant
physical systems [Eliasmith and Anderson (2003) show how
these same methods apply to time-varying and nonlinear systems
as well]. Here, we use Equation 12 to capture the hypothesized
high-level dynamics of a population of neurons.

Initially, this high-level characterization is divorced from
neural-level, implementational considerations. However, it is
possible to modify these matrices to render the system neurally
plausible. First, we must account for intrinsic neural dynamics by
converting this characterization into a neurally relevant one (Fig.
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8b). To do so, we assume a model of PSCs given by h(t) �
��1e�t / � and can derive the following relationship between pan-
els a and b in Figure 8 [see Eliasmith and Anderson (2003) for a
discussion that justifies assuming this (or, more generally, any
typically “peaked”) PSC model]:

A� � �A � I.

B� � �B (13)

So, our description of the high-level neurally plausible dynamics
becomes the following:

x�t� � h�t�*	A�x�t� � B�u�t�
. (14)

Notably, this transformation is general and assumes nothing
about the form of A or B. So, given any behavioral system defined
in the form of Equation 12, it is possible to construct the neural
counterpart by solving for A� and B�. A variety of applications of
this method to linear, nonlinear, and time-varying neural sys-
tems is described by Eliasmith (2005).

Next, we must incorporate this high-level description of the
dynamics with our previous characterization of the neural repre-
sentation. To do so, we combine the dynamics of Equation 14, the
encoding of Equation 9, and the population decoding of x and u
from Equation 10. That is, we take x̂ � �jnhj (t � tjn)�j

x and û �
�knhk (t � tkn)�k

u, which gives the following:

�
n

��t � t in� � Gi	�i��̃ix�t�� � Ji
bias


� Gi	�i��̃i	A�x̂�t� � B�û�t�
� � Ji
bias


� Gi	�i��̃i	A��jnhj�t � tjn��j
x � B��knhk�t � tkn��ku


� � Ji
bias
.

(15)

It is important to keep in mind that the temporal filtering is only
done once (here included in the estimate of the signals), despite
the fact that it is include in both Equations 14 and 10. That is, h(t)
in these equations both defines the dynamics and defines the
decoding of the representations. To put it in a more familiar
form, this equation can be written as follows:

G i	�i��̃i	A��jnhj�t � tjn��j
x � B��knhk�t � tkn��k

u
� � Ji
bias


� Gi	�jn	ijhj�t � tjn� � �kn	ikhk�t � tkn� � Ji
bias
, (16)

where 	ij � �1��̃iA��j
x� and 	ik � �1��̃iB��k

u� are the recurrent
and input connection weights, respectively. These weights will
now implement the dynamics defined by the control theoretic
structure from Equation 14 in a neurally plausible network.
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the standard state equation, ẋ(t) � Ax(t) � Bu(t). b, Diagram of the neural state equation,
x(t) � h(t) * [A�x(t) � B�u(t)]. Note that the dot is dropped in the neural equation because the
dynamics of the filter, h(t), accounts for integration. We can convert a into b using Equation 13.

Singh and Eliasmith • Tuning and Dynamics of Working Memory Cells J. Neurosci., April 5, 2006 • 26(14):3667–3678 • 3677



Reutimann J, Yakovlev V, Fusi S, Senn W (2004) Climbing neuronal activity
as an event-based cortical representation of time. J Neurosci
24:3295–3303.

Romo R, Hernandez A, Zainos A, Salinas E (1998) Somatosensory discrim-
ination based on cortical microstimulation. Nature 392:387–390.

Romo R, Brody C, Hernandez A, Lemus L (1999) Neuronal correlates of
parametric working memory in the prefrontal cortex. Nature
399:470 – 473.

Salinas E, Abbott L (1994) Vector reconstruction from firing rates. J Comp
Neurosci 1:89 –107.

Seidemann E, Arieli A, Grinvald A, Slovin H (2002) Dynamics of depolar-
ization and hyperpolarization in the frontal cortex and saccade goal. Sci-
ence 295:862– 865.

Seung HS (1996) How the brain keeps the eyes still. Proc Natl Acad Sci USA
93:13339 –13344.

Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of eye
position in a recurrent network of conductance-based model neurons.
Neuron 26:259 –271.

Taube JS, Bassett JP (2003) Persistent neural activity in head direction cells.
Cereb Cortex 13:1162–1172.

Tu TA, Keathing EG (2000) Electrical stimulation of the frontal eye field in
a monkey produces combined eye and head movements. J Neurophysiol
84:1103–1106.

Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance
of NMDA receptors to working memory. J Neurosci 19:9587–9603.

Zhang K (1999) Representation of spatial orientation by the intrinsic dy-
namics of the head-direction cell ensemble: a theory. J Neurosci
16:2112–2126.

Zipser D, Kehoe B, Littlewort G, Fuster J (1993) A spiking network model of
short-term active memory. J Neurosci 13:3406 –3420.

3678 • J. Neurosci., April 5, 2006 • 26(14):3667–3678 Singh and Eliasmith • Tuning and Dynamics of Working Memory Cells


