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Abstract

Inductive reasoning is a fundamental and complex aspect of
human intelligence. In particular, how do subjects, given a
set of particular examples, generate general descriptions of the
rules governing that set? We present a biologically plausible
method of accomplishing this task, and implement it in a spik-
ing neuron model. We demonstrate the success of this model
by applying it to the problem domain of Raven’s Progressive
Matrices, a widely used tool in the field of intelligence testing.
The model is able to generate the rules necessary to correctly
solve Raven’s items, as well as recreate many of the experi-
mental effects observed in human subjects.
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Introduction
Inductive reasoning is the process of using a set of exam-
ples to infer a general rule which both describes the relation-
ships shared by those examples and allows us to predict future
items in the set. For example, if a person were watching ob-
jects in a river or lake and saw a stick, a wooden rowboat,
and a telephone pole float past, they might induce the rule
that “wooden things float”. This rule both describes the rela-
tionship which linked those items (being wooden) and allows
the person to predict future items which would also float (a
wooden bookcase). Given even more examples—some non-
wooden floating objects—they might infer the general rule
that objects float when they displace a volume of water equal
to their weight.

This type of reasoning is fundamental to our ability to make
sense of the world, and represents a key facet of human intel-
ligence. It determines our ability to be presented with a novel
situation or problem and extract meaning from it. As such,
it is a process which has been made central to many tests of
general intelligence. One of the most widely used and well
respected tools in this field is the Raven’s Progressive Ma-
trices (RPM) test (Raven, 1962). In the RPM, subjects are
presented with a 3x3 matrix, in which each cell in the ma-
trix contains various geometrical figures with the exception of
the final cell which is blank (Figure 1). The subject’s task is
to determine which one of eight possible answers belongs in
the blank cell. They accomplish this by examining the other
rows and columns and inducing rules which govern the fea-
tures in those cells. They can then apply those rules to the last
row/column to determine which answer belongs in the blank
cell.

Although there has been much experimental and theoret-
ical effort put into understanding the mental processes in-
volved in performing RPM-like tasks, to our knowledge there

have been no models of the inductive process of rule gener-
ation. In this paper we present a method of rule generation,
and implement it in a neural model using simulated spiking
neurons. This model can induce the rules necessary to solve
Raven’s matrices, and also displays many of the most inter-
esting cognitive effects observed in humans: improved accu-
racy in rule generation over multiple trials, variable perfor-
mance in repeated trials, and both quantitative and qualitative
changes in individual performance.

Background
Raven’s Progressive Matrices
There are several variations of the RPM; the Standard and
Coloured versions are generally used to test children or adults
with cognitive deficits, while the Advanced is used to differ-
entiate average/above-average adults. In our work we focus
on the Advanced version.

Figure 1 depicts an example of a simple Raven’s-style ma-
trix.1 The matrix is shown at the top with one blank cell,
and the 8 possible candidates for that blank cell are along the
bottom. In order to solve this matrix the subject needs to gen-
erate three rules: 1) the number of instances of each shape in-
creases by one across the row, 2) the orientation of the shapes
within a cell is constant across the row, 3) each cell in a row
contains one shape type from the set {square, triangle, cir-
cle}. Subjects can then determine which elements belong in
the blank cell by applying the rules to the third row (i.e. there
should be 2+ 1 = 3 shapes, they should be arranged in the
same orientation (vertically), and they should be triangles,
since circle and square are already taken). Once they have

1For copyright reasons we have created a modified matrix to
present here, the model works with the true Raven’s matrices.

Figure 1: A simple Raven’s-style matrix



generated their hypothesis as to what the blank cell should
look like, they can check for a match among the 8 possible
answers. Not all subjects will explicitly generate these exact
rules, and their route to the answer may be more roundabout,
but they do need to extract equivalent information if they are
to correctly solve the problem.

Despite the test’s broad use, the only other computational
model for the RPM is that of Carpenter et al. (1990). Their
model accurately recreates high-level human data, but does
not reflect the flexibility and variability of individual human
performance nor take into account neurological data. In ad-
dition, Carpenter et al.’s model has no ability to generate new
rules; all the rules are pre-programmed. This limitation of
their model reflects a general lack of explanation in the liter-
ature as to how this inductive process is performed.

The two default assumptions regarding the origin of the
rules are that people are either 1) born with, or 2) learn earlier
in life, a library of rules. During the RPM, these pre-existing
rules are then applied to the current inductive problem. Hunt
described this theory as early as 1973, and also pointed out
the necessary conclusion of this explanation: if RPM perfor-
mance is dependent on a library of known rules, then the RPM
is testing our crystallized intelligence (our ability to acquire
and use knowledge or experience) rather than fluid intelli-
gence (our novel problem solving ability). In other words, the
RPM would be a similar task to acquiring a large vocabulary
and using it to communicate well. However, this is in direct
contradiction to the experimental evidence, which shows the
RPM strongly and consistently correlating with other mea-
sures of fluid intelligence (Marshalek et al., 1983), and psy-
chometric/neuroimaging practice, which uses the RPM as an
index of subjects’ fluid reasoning ability (Perfetti et al., 2009;
Prabhakaran et al., 1997; Gray et al., 2003). A large amount
of work has been informed by the assumption that the RPM
measures fluid intelligence, yet the problem raised by Hunt
has been largely ignored. Consequently, there is a need for a
better explanation of rule induction; by providing a technique
to dynamically generate rules, we remove the dependence on
a past library, and thereby resolve the problem.

In contrast to the paucity of theoretical results, there has
been an abundance of experimental work on the RPM. This
has brought to light a number of important aspects of hu-
man performance on the test that need to be accounted for
by any potential model. First, there are a number of learning
effects: subjects improve with practice if given the RPM mul-
tiple times (Bors & Vigneau, 2003), and also show learning
within the span of a single test (Verguts & De Boeck, 2002).
Second, there are both qualitative and quantitative differences
in individuals’ ability; they exhibit the expected variability in
“processing power” (variously attributed to working memory,
attention, learning ability, or executive functions), but also
consistent differences in high-level problem-solving strategy
between low-scoring and high-scoring individuals (Vigneau
et al., 2006). Third, a given subject’s performance is far
from deterministic; given the same test multiple times, sub-

jects will get previously correct answers wrong and vice versa
(Bors & Vigneau, 2003). In the Results section we demon-
strate how each of these observations is accounted for by our
model.

Vector encoding
In order to represent a Raven’s matrix in neurons and work
on it computationally, we need to translate the visual infor-
mation into a symbolic form. Vector Symbolic Architectures
(VSAs; Gayler, 2003) are one set of proposals for how to con-
struct such representations. VSAs represent information as
vectors, and implement mathematical operations to combine
those vectors in meaningful ways.

To implement a VSA it is essential to define a binding op-
eration (which ties two vectors together) and a superposition
operation (which combines vectors into a set). We use circu-
lar convolution for binding, and vector addition for superpo-
sition (Plate, 2003). Circular convolution is defined as

C = A⊗B

where

c j =
n−1

∑
k=0

akb j−k mod n (1)

Along with this we employ the idea of a transformation vector
T between two vectors A and B, defined as

A⊗T = B

or
T = A′⊗B (2)

where A′ denotes the approximate inverse of A.
With these elements we can create a vector representation

of the information in any Raven’s matrix. For example, sup-
pose we wanted to encode the information contained in the
third cell of Figure 1. The first step is to define a vocab-
ulary, the elemental vectors which will be used as building
blocks. These vectors are randomly generated, and the num-
ber of vectors that can be held in a vocabulary and still be dis-
tinguishable as unique “words” is determined by the dimen-
sionality of those vectors (the more words in the vocabulary,
the higher the dimension of the vectors needed to represent
them).

Once the vocabulary has been generated it is possible to
encode the structural information in the third cell. A sim-
ple method to do this is by using a set of attribute⊗ value
pairs: shape⊗ circle + number⊗ three + colour⊗ black +
orientation⊗horizontal + shading⊗ solid and so on, allow-
ing us to encode arbitrary amounts of information. As de-
scriptions become more detailed it is necessary to use more
complex encoding; however, ultimately it does not matter to
the inductive system how the VSA descriptions are imple-
mented, as long as they encode the necessary information.
Thus these descriptions can be made as simple or as complex
as desired without impacting the underlying model.



Figure 2: Recordings from the output population of the model, which expresses the similarity between the predicted answer
and each of the 8 possible choices. On the left is the spike raster, and on the right is the decoded information from those spikes.
The model correctly picks answer number one (the top line).

VSAs have a number of other advantages: vectors are eas-
ier to represent in populations of neurons than complex vi-
sual information, they are easier to manipulate mathemati-
cally, and perhaps most importantly the logical operation of
the inductive system is not dependent on the details of the
visual system. All that our neural model requires is that the
Raven’s matrices are represented in some structured vector
form; the visual processing which accomplishes this, though
a very difficult and interesting problem in itself (see Meo et al.
2007 for an example of the complexities involved), is beyond
the scope of the current model. This helps preserve the gen-
erality of the inductive system: the techniques presented here
will apply to any problem that can be represented in VSAs,
not only problems sharing the visual structure of the RPM.

Neural encoding
Having described a method to represent the high-level prob-
lem in structured vectors, we now define how to represent
those vectors and carry out the VSA operations in networks of
simulated spiking neurons. There are several important rea-
sons to consider a neural model. First, by tying the model to
the biology we are better able to relate the results of the model
to the experimental human data, both at the low level (eg.
fMRI or PET) and at the high level (eg. non-deterministic
performance and individual differences). Second, our goal is
to model human inductive processes, so it is essential to de-
termine whether or not a proposed solution can be realized in
a neural implementation. Neuroscience has provided us with
an abundance of data from the neural level that we can use to
provide constraints on the system. This ensures that the end
result is indeed a model of the human inductive system, not a
theoretical construct with infinite capacity or power.

We use the techniques of the Neural Engineering Frame-
work (Eliasmith & Anderson, 2003) to represent vectors and
carry out the necessary mathematical operations in spiking
neurons. To encode a vector x(t) into the spike train of neu-
ron ai we define

ai(x(t)) = Gi

[
αiφ̃ix(t)+ Jbias

i

]
(3)

Gi is a function representing the nonlinear neuron
characteristics—essentially, how will the neuron spike given
the input described within the brackets. In our model we use
Leaky Integrate and Fire neurons, but the advantage of this
formulation is that any neuron model can be substituted for
Gi without changing the overall framework. αi is a gain on
the input, determined by the characteristics of this particular
neuron. Jbias

i is the background current, modelling the activ-
ity in the network which is not a direct input to this neuron.
φ̃i represents the neuron’s preferred stimulus, that is, which
inputs will make it fire more strongly. Broadly speaking, the
activity of neuron ai is a result of its unique response (de-
termined by its preferred stimulus) to the input x(t), passed
through a nonlinear neuron model in order to generate spikes.

We can then define the decoding from spike train to vector
as

x̂(t) = ∑
i

h(t)∗ai(x(t))φi (4)

where h(t) is a model of the post-synaptic current generated
by one spike, ai(x(t)) are the spikes generated by Equation 3,
and φi are the optimal linear decoders. The optimal linear
decoders are calculated analytically so as to provide the best
linear representation of the original input x(t); they are essen-
tially a weight on the post-synaptic current generated by each
neuron (the result of summing the current generated by each
spike).

We have defined how to transform a vector into neural ac-
tivity and how to turn that neural activity back into a vector,
but we also need to be able to carry out the VSA operations
(binding and superposition) on those representations. One
of the primary advantages of the NEF is that we can calcu-
late the synaptic weights for arbitrary transformations analyt-
ically, rather than learning them. If we want to calculate a
transformation of the form z =C1x+C2y (C1 and C2 are any
matrix), and x and y are represented in the a and b neural
populations (we can add or remove these terms as necessary
to perform operations on different numbers of variables), re-
spectively, then we describe the activity in the output popula-
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Figure 3: Schematic diagram of the rule generation section with cleanup memory, displaying the approximate number of
neurons used in each submodule. The inputs (Ai and Bi) represent two adjacent cells in the matrix. The “Input Inverse” module
calculates A′i, while “Input” simply leaves Bi unchanged. The “Circular Convolution” module calculates A′i⊗Bi (the rule for that
particular pair of cells). “Integrator” is storing the calculated rule so far (based on previous pairs of adjacent cells), which we
combine with the current calculation. The output of “Integrator” is the overall rule, which we pass through a cleanup memory,
potentially giving us a less noisy version of that rule. Finally, “Solution Generator” generates a prediction of what should be in
the blank cell by convolving the second-last cell with our calculated rule, and then “Solution Checker” calculates the similarity
between that hypothesis and each of the eight possible answers given in the problem.

tion as

ck(C1x+C2y) = Gk

[
∑

i
ωkiai(x)+∑

j
ωk jb j(y)+ Jbias

k

]

where ck, ai, and b j describe the activity of the kth, ith,
and jth neuron in their respective populations. The ω

are our synaptic weights: ωki = αk〈φ̃kC1φx
i 〉m and ωk j =

αk〈φ̃kC2φ
y
j〉m. Referring back to our descriptions of the vari-

ables in Equations 3 and 4, this means that the connection
weight between neuron ai and ck is determined by the pre-
ferred stimulus of ck, multiplied by the desired transformation
and the decoders for ai. To calculate different transformations
all we need to do is modify the C matrices in the weight cal-
culations, allowing us to carry out all the linear computations
necessary in this model. For a more detailed description of
this process, and a demonstration of implementing the nonlin-
ear circular convolution (Equation 1), see Eliasmith (2005).

The Model and Results

Rule generation

The key to our model is the idea of the transformation vector
(Equation 2). Since we have our Raven’s matrix items en-
coded as vectors, we can represent rules as transformations
on those vectors. For example, if A is the vector representa-
tion of one square, and B is the vector representation of two
squares, then the transformation vector T = A′ ⊗ B will be
analogous to the rule “number of squares increases by one”.
However, we do not just want to calculate individual trans-
formations, we want general rules for the whole matrix. To
accomplish this we treat all adjacent pairs of cells as a set of
A and B vectors, and extract a general transformation from
that set of examples. Neumann (2001) has shown that we can

accomplish this by calculating

T =
1
n

n

∑
i=0

A′i⊗Bi

In order to perform this operation in neurons (where we
cannnot instantly sum over a set of examples) we translate it
into the equivalent learning rule, where each pair of A and B
vectors is presented sequentially:

Ti+1 = Ti−wi(Ti−A′i⊗Bi)

We implement this by combining a neural integrator (to
maintain the overall value of T ) with a network which calcu-
lates the Ti for the current pair of examples. We present the
examples in a top-down row-wise fashion, as that is the gen-
eral scanning strategy employed by humans as revealed by
eye-tracking studies (Carpenter et al., 1990; Vigneau et al.,
2006). Let us again take Figure 1 as an example, and exam-
ine how the model induces one of the rules necessary to solve
the matrix: “number of objects increases by one”. A0 is the
vector representation of one square, and B0 is the vector rep-
resentation of two triangles (we will omit orientation in this
example to keep things simple, but it is treated in exactly the
same way). The network calculates T1 = A′0⊗B0, which is
something like the rule “number of objects increases by one
and squares become triangles”, and that value is stored in the
neural integrator. In the next step A1 is two triangles and B1
is three circles, and T2 is “number of objects increases by one
and triangles become circles”. However, when T2 is added to
the neural integrator, “number of objects increases by one” is
reinforced (since it was already present) while the other in-
formation is not. This process continues with the next two
rows. Thus we begin with a very noisy rule, but over time
relations which are particular to individual A and B pairs are



drowned out by the relation which all the pairs have in com-
mon: “number of objects increases by one”.2

Once this process is complete we have the overall T vec-
tor, representing a general rule for the problem. Thus we have
accomplished our primary goal, to provide an explanation as
to how subjects can inductively generate descriptions of the
rules governing a set of examples. We use these rules by
applying them to the second-last cell of the Raven’s matrix
A⊗T giving us B, a vector representing what our rules tell us
should be in the blank cell. We then compare this hypothesis
to the eight possible answers and take the most similar (de-
termined by the dot product between the two vectors) as our
final answer (see Figures 2 and 3).

Cleanup memory
In addition to being able to generate the rules to solve a ma-
trix, the model should improve at this process given practice.
We accomplish this by adding a cleanup memory, a system
which stores certain values and, when given a noisy version
of those values as input, outputs the clean version stored in
memory. A cleanup memory can be implemented in neu-
rons by creating a network which contains neural populations
tuned to respond only to certain inputs and output the clean
version of those values (Stewart et al., 2009). We implement
a cleanup memory in this model by storing the past rules the
system has induced. The current rule generated by the net-
work, which will be perturbed by neural noise and the de-
tails of the particular Raven’s matrix, is passed through this
cleanup memory, and if the cleanup memory contains a simi-
lar rule then that clean version of the rule is output.

The cleanup memory is improved over time by two mech-
anisms. First, if the cleanup memory receives an input that
it does not recognize, it adds that input to its memory so that
it will be recognized in the future. Second, if the cleanup
memory receives an input that it does recognize, it uses that
input to refine the value stored in memory, so that the stored
value becomes increasingly accurate. Thus as the system en-
counters rules it has calculated before it will be able to draw
on its past efforts to provide a more accurate output. See Fig-
ure 4 for a demonstration of how this improvement in cleanup
memory can lead to improved inductive performance.

The cleanup memory not only helps account for observed
learning effects, it also bridges the gap between this model of
inductive rule generation and theories of a “library” of known
rules. In short, we are improving on current theories by ex-
plaining where that past knowledge comes from, and why its
use is a dynamic, fluid process.

Higher level processes
In addition to the inductive process of rule generation, there
are high-level problem solving effects (what we might call
the subject’s “strategy”) which will have a significant impact
on performance. For example, how does the subject decide

2This same process will help eliminate the noise added at the
neural level.

Figure 5: A demonstration of both low-level (vector dimen-
sion) and high-level (strategy) influences on accuracy (dis-
playing 95% confidence intervals).

when and where to apply the rule generation system? When
there are multiple rules to be found, how does the subject dif-
ferentiate them, and how do they decide they have found all
the rules? How does the subject decide whether their hypoth-
esis is good enough to settle on as a final answer? These are
important questions, but they are dependent on the particular
problem the subject is solving.

We have implemented such a strategy system for the RPM
(although not at the neural level) in order to collect aggre-
gate test results and explore individual differences. Figure 5
shows an example of these results, demonstrating the model’s
ability to recreate differences caused by both low-level neural
processing power and high-level strategy. The low-level vari-
able is the dimensionality of the vectors, higher dimension
vectors requiring more neurons to represent. The high-level
variable is how willing the model is to decide it has found a
correct rule: the lower line represents a subject who has less
stringent standards, and is willing to accept rules that may not
be completely correct, whereas the top line represents a sub-
ject employing a more conservative strategy. These results
demonstrate that both low and high level variables have a sig-
nificant impact on accuracy, and reflect the quantitative and
qualitative individual differences observed in human perfor-
mance. Figure 5 also reveals that although the overall per-
formance trends are clear, there is significant variability (av-
erage σ = 0.13) in any given trial, another parallel of human
subjects. There are many such interesting avenues of explo-
ration, however we will not go into the details of the strategy
system here; the primary contribution of this research is the
general rule-induction system described above, which is not
dependent on the higher level framework within which it is
used.



Figure 4: An example of the model’s ability to learn over time. The model was presented with a series of matrices that appeared
different but required the same underlying rules to solve; as we can see, the model is able to more quickly and definitively pick
out the correct answer on later matrices.

Conclusion
We have presented a novel, neurally-based model of induc-
tive rule generation, and we have applied this system to the
particular problem of Raven’s Progressive Matrices. The
success of the system is demonstrated in its ability to cor-
rectly find general rules that enable it to solve these matri-
ces, as well as in the model’s ability to recreate the interest-
ing effects observed in human subjects, such as learning over
time, non-deterministic performance, and both quantitative
and qualitative variability of individual differences. These
results demonstrate the potential for gaining a deeper under-
standing of human induction by adopting a neurally plausible
approach to modeling cognitive systems.
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