
Solving the problem of negative synaptic weights in
cortical models

Christopher Parisien,1 Charles H. Anderson,2 Chris Eliasmith3∗

1Dept. of Computer Science, University of Toronto,

Toronto, ON M5S 3G4, Canada
2Dept. of Anatomy and Neurobiology, Washington University School of Medicine,

St. Louis, MO 63110, U.S.A.
3Centre for Theoretical Neuroscience, University of Waterloo,

Waterloo, ON N2L 3G1, Canada

∗To whom correspondence should be addressed; E-mail: celiasmith@uwaterloo.ca

In cortical neural networks, connections from a given neuron are either in-

hibitory or excitatory, but not both. This constraint is often ignored by the-

oreticians who build models of these systems. There is currently no general

solution to the problem of converting such unrealistic network models into

biologically plausible models that respect this constraint. We demonstrate a

constructive transformation of models that solves this problem for both feed-

forward and dynamic recurrent networks. The resulting models give a close

approximation to the original network functions and temporal dynamics of

the system, and are biologically plausible. More precisely, we identify a gen-

eral form for the solution to this problem. As a result, we also describe how the

precise solution for a given cortical network can be determined empirically.

1

It is often suggested that constructing detailed theoretical models of neural systems is in-

dispensible to advancing our understanding of those systems (Aamodt, 2000). The degree of

biological plausibility of these models corresponds to our certainty regarding whether or not

actual biological systems operate in the same way as the model. Currently, biologically real-

istic models are designed largely using a “bottom-up” methodology: observable physiological

constraints are respected by hand-wiring small populations of neurons together (see eg. Selver-

ston and Miller, 1980; Ekeberg et al., 1995; Menschik and Finkel, 1999; McAlpine and Grothe,

2003). However, many important behaviors of cellular networks are not yet amenable to this

method. The reasons vary from lack of physiological information to uncertainty regarding how

to connect the elements to realize a given network-level function. As a result, a more com-

mon approach to modeling is to adopt a “top-down” method. In this case, models begin with

more simplified neurons and then either learn the desired function (see eg. Zipser and Andersen,

1988; Deneve and Pouget, 2003), or analytically solve for the necessary weights to realize some

function (see eg. Zhang, 1996; Pouget et al., 1998; Seung et al., 2000; Xie et al., 1996; Conklin

and Eliasmith, 2005; Kuo and Eliasmith, 2005). While such networks solve the problems of

bottom-up models, they have the converse problem of not being biologically plausible because

of the initial simplifying assumptions.

One central, and unrealistic, feature of networks resulting from top-down approaches, whether

learned or analytic, is that the resulting networks usually contain individual neurons with both

negative (inhibitory) and positive (excitatory) projections to other neurons in the network. In

contrast, there is a clear division between excitatory and inhibitory neurons in the brain. This

fact has become referred to as “Dale’s Principle:” that all projections from excitatory neurons

are excitatory, and all projections from inhibitory neurons are inhibitory, except in rare cases

(Strata and Harvey, 1999; Burnstock, 2004; Marty and Llano, 2005). Thus, there is seldom a

mix of excitation and inhibition resulting from a single neuron. This is in stark contrast to neu-

2

rons in top-down models. To “fix” these models, we need to find some transformation of their

connections such that all resulting neurons have either inhibitory or excitatory connections, and

all weights from a single neuron must be positive (so that inhibitory neurons inhibit, and ex-

citatory neurons excite). We refer to this problem of eliminating negative weights from such

model networks as the “negative weights problem.” Currently there exist no demonstrations of

a general, biologically plausible solution to this problem.

One simple and intuitive solution to the problem is to introduce an inhibitory interneuron

wherever a negative connection is needed, converting an excitatory signal into an inhibitory

signal of equal magnitude. This approach was used by Churchland in a model of stereoptic

vision (Churchland, 1995). However, this solution remains biologically unrealistic for two

reasons. Firstly, it assumes that there are as many inhibitory cells as there are inhibitorily

connected cells in the original model. Clearly, this will vary from model to model, but can be

as high as 50% of the neurons in the model (Pouget et al., 1998) despite the fact that only about

20% of neurons in cortex are inhibitory (Hendry and Jones, 1981; Gabbott and Somogyi, 1986).

Second, this solution assumes that inhibitory neurons either receive input from or send output

to a single excitatory cell, which is clearly not the typical case (Freund and Buzsáki, 1996).

A cross-inhibitory circuit (Kamps and Velde, 2001) provides a solution for artificial neural

networks, but it is both inefficient (introducing, at a minimum, a 600% increase in the number

of neurons) and violates known biological connection constraints (Somogyi et al., 1998).

Building on work presented in Eliasmith and Anderson (Eliasmith and Anderson, 2003),

we demonstrate that our general solution solves the negative weights problem for arbitrarily

connected feedforward or recurrent networks under linear decoding schemes. The result of our

proposed transformation consists of a functionally equivalent network with no negative weights,

whose proportion of inhibitory to excitatory neurons matches known constraints, and that results

in only a 20% increase (i.e. the added inhibitory neurons) in the number of cells in the original

3

network.

Correcting Negative Weights

The solution is a constructive transformation for a network with a set of mixed positive and

negative synaptic weights between two neural ensembles. The method makes all of the original

weights excitatory, and introduces a small population of inhibitory interneurons. The end result

provides two parallel pathways, direct (excitatory) and indirect (inhibitory), which together are

functionally equivalent to the original set of synapses.

To realize the solution, we take a population of neurons to encode the value of a higher-level

variable (e.g. stimulus parameter, behavioral parameter, internal state, etc.) in an ensemble

of spike trains. A particular neuron in such a population has its encoding determined by its

traditionally measured tuning curve (e.g., activity over a receptive field sensitive to a stimulus

parameter such as orientation). Mathematically, we can express any such encoding as

ai(x) = Gi

[
αi

〈
x · φ̃i

〉
n

+ J bg
i

]
(1)

where the activity ai (spike trains) of neuron i encode aspects of the higher-level variable x

as determined by its preferred direction vector φ̃ into a somatic current that includes a real-

valued bias current, J bg
i , to account for background activity, and a real-valued gain, αi, that

scales and converts units from the higher-level variable. The biophysical properties of the neu-

ron, captured by the nonlinear function Gi map this somatic current onto the neural activity as

usual (i.e., using a standard neuron model such as Hodgkin-Huxley, Rose-Hindmarsh, Leaky

Integrate-and-Fire, etc.)(Eliasmith and Anderson, 2003). The angle brackets denote an inner

product between the two vectors of dimension n. While we have expressed the neural activity

ai(x) as a real-valued function (i.e. a rate code) to simplify the analysis, all of the simula-

tions here are performed using spike trains. The methods used here are equivalent for both

4

rate and spiking neuron models (Eliasmith and Anderson, 2003). This model can be used to

match the experimentally observed behavior of populations of neurons. Typically, the preferred

direction vectors over the population are chosen to result in a statistically similar population of

bell-shaped (cosine or Gaussian) or monotonic tuning curves. However, a much wider variety

of tuning curves can be captured by this model.

Once the encoding is defined, it is possible to find an optimal linear decoder for estimating

the higher-level variable given the activities across the population of neurons. To determine the

contribution of a particular neuron to the representation, we use a least-squares optimal linear

regression method to find decoders φ that minimize the error between the original variable and

the estimate (Salinas and Abbott, 1994; Eliasmith and Anderson, 2003). This results in an

estimate of the form

x̂ =

N∑
i=1

ai(x)φi (2)

where N is the number of neurons in the population, ai(x) is the activity (i.e., spike train) from

neuron i and the φi, vectors of reals, are the optimal linear decoders (Eliasmith and Anderson,

2003). In combination, (2) and (1) define the neural representation of the variable x.

Given this encoding and decoding, we can determine the connection weights between two

populations, A and B, which have different tuning curves, but represent the same variable. We

assume that population A receives input of the current value of x and transmits this information

to B. The set of connection weights should give a linear transformation from the output activi-

ties of A to the input currents of B. The connection weights for this function (i.e., the identity

function b(x) = x) are

wji = αj

〈
φ̃jφi

〉
n

(3)

where φi is the decoding from a presynaptic neuron ai, φ̃j is the “preferred direction” tuning

for a postsynaptic neuron bj , and αj is the gain-and-conversion factor as defined above. These

weights can be found by simply substituting the decoding equation for population A (equation

5

(2)) into the encoding equation for population B (equation (1)). As a result, we can express the

activities of the bj neurons as

bj(x) = Gj

[
N∑

i=1

wjiai(x) + J bg
j

]
. (4)

This set of connection weights will “implicitly” decode the higher-level variable from the spikes

of one population of neurons and convert this to somatic currents for the next population. These

particular weights (Fig. 1B) effectively transfer the value of the higher-level variable from the

sending to receiving populations of neurons (Fig. 1C).

While this kind of “communication channel” is a useful example, it performs no interesting

function. It is more important to be able to perform arbitrary transformations on the encoded

variables. Conveniently, the same methods can be employed. Instead of finding decoders φ to

decode an estimate of x (i.e. computing the identity function), the same linear least-squares

method can be used to provide decoders φg(x) for some arbitrary function g(x). These new

decoders, placed into equation (3) then provide the synaptic weights needed to compute an

estimate of g(x) which is represented in the receiving population, B.

In either case, however, there are no constraints on the sign (positive or negative) of the

weights governing the projection from A to B. To remove the negative weights from such a

network, we can systematically manipulate the decoders and encoders. We present a two step

method for effecting this transformation. We begin by examining the feedforward network (Fig.

1A), although we eventually show that the method extends to recurrent connections as well (Fig.

2A).

Suppose that there is a connection from a neural ensemble A to an ensemble B that contains

a mixture of positive and negative synaptic weights. Suppose that A encodes a value of the

variable x, and transmits some function of x to B. To guarantee that all weights connecting A

and B are positive, we can add a bias to each of bj’s connections equal to the magnitude of its

6

0

10

20

0

10

-0.02

-0.01

0

0.01

0.02

a
bjai wji ai

bjωji ≥ 0

ωki ≥ 0 ωjk ≥ 0

ck

0

10

20

0

10

-0.02

-0.01

0

0.01

0.02

b

0 0.1 0.2 0.3 0.4 0.5
-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5
-1

-0.5

0

0.5

1

w
ji

W
e
ig

h
ts

ω
ji

W
e

ig
h

ts
Output - original circuit Output - new circuit

D
e

c
o

d
e

d

Time (s)

c

Time (s)

Figure 1: Feedforward networks computing the identity function (b(x) = x). A) Structure
of the networks before and after the elimination of negative weights. The neurons ai, bj , and
ck form the populations A, B, and C, respectively. B) Synaptic weights for an example with
20-neuron excitatory populations. C) Decoded output from the 20-neuron examples, stimulated
with 30Hz bandlimited white noise over 0.5 s. This demonstrates that the information passed is
largely unaffected by the change in network topologies.

largest negative weight (from A). Performing this step (step 1) systematically for each neuron

in B will make all of the connection weights positive. However, doing this will also result in

excess current flowing into neurons in B. That is, since we have only increased connection

7

weights in the circuit, we are guaranteed that there will be more current flowing into at least

some post-synaptic cells after this augmentation. However, our goal is to preserve the function

of the connection, so we must find a way to balance this excess current by using an appropriate

inhibitory input (step 2). To effect this balance, we first determine what new higher-level signal

(i.e. function of x) has been introduced by the weight augmentation. We then remove this

added bias by appropriately decoding, in population B, a set of inhibitory neurons which also

receives information about changes in x from population A. In short, determining the excitatory

bias that results from the weight augmentation (step 1) allows us to correct it with an ensemble

of inhibitory interneurons (step 2). What is unique, is that we are able to do this abstractly

with higher-level variables and so have great flexibility in relating the solution to specific neural

realizations (e.g. we can vary the number of inhibitory neurons, the response properties of the

various populations, the functions being computed in the circuit, etc.).

Step 1: Given a communication channel as defined above, the currents flowing into the bj

neurons are as follows:

Jj(x) =
N∑

i=1

ωorig
ji ai(x) + J bg

j , (5)

where ωorig
ji contain both positive and negative connection weights. We augment each of these

weights by a positive amount, equal in magnitude to the most negative weight entering b j :

ωji = ωorig
ji + ∆ωj (6)

∆ωj = −mini(ω
orig
ji). (7)

Now the current entering bj is given by

Jj(x) =

N∑
i=1

ωjiai(x) + J bg
j (8)

=
N∑

i=1

ωorig
ji ai(x) +

N∑
i=1

∆ωjai(x) + J bg
j , (9)

8

a

b

c

XY

w

Y X

Z

ω

Drift - new circuitDrift - original circuit

Time (s)

D
e

c
o

d
e

d

N
e

u
ro

n

X spikes - original

Time (s)

X spikes - new circuit

Z spikes

Time (s)

Time (s)

0 1 2 3
-1.2

-0.8

-0.4

0

0.4

0.8

1.2

0 1 2 3
-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.0 1.1 1.2
0

100

200

1.0 1.1 1.2
0

100

200

1.0 1.1 1.2
0

50

Figure 2: Recurrent networks acting as a neural integrator (ẋ = 0). A) Structure of the
networks before and after the elimination of negative weights. Neural ensembles are drawn as
single units for simplicity. The recurrent synapses ω are targeted by the transformation. B)
Decoded output from a neural integrator before and after the elimination of negative weights.
Inputs are 1-second square pulses at various levels and the networks are run for 3 s. The in-
dividual curves are from each of 10 distinct simulations. This demonstrates that the network
dynamics are largely unaffected by the change in network topologies. C) A section of spike
trains for the recurrent neurons and the interneurons, showing characteristic firing patterns.

where ωji are all non-negative. The bias term
∑N

i=1 ∆ωjai(x) results in a positive excess current

flowing into each bj neuron. We will introduce a population of inhibitory interneurons to correct

this bias.

Step 2: To define this inhibitory population, it is helpful to consider a higher-level signal rep-

9

resented by the bias current. Decomposing the bias term using the encoder-decoder relationship

of equation (3),

N∑
i=1

∆ωjai(x) =

N∑
i=1

αjφ̃
f
j φ

fai(x) (10)

= αjφ̃
f
j

N∑
i=1

φfai(x) (11)

= αjφ̃
f
j f(x), (12)

where φ̃f
j and φf , respectively, are the encoders and decoders for a scalar signal f(x). The φf

can be indexed by each input neuron ai, as in equation (3), but for simplicity we define each de-

coder to be a small, uniform positive constant. This choice of decoders is not important for our

exposition of the method. However, because this choice defines f(x), i.e., the “bias function,”

and because the bias function determines weights to and from the inhibitory population (as we

discuss shortly), our choice of decoders is important to the precise topology of the network. In

addition, an assumed bias function is empirically testable, thus connecting our method to exper-

imental evidence, as we describe further in the Discussion. This means that certain choices for

f(x) will be determined to be appropriate and others will not be. Indeed, it is quite likely that

f(x) varies with different kinds of inhibitory neurons, different transmitters, different anatomi-

cal regions, and so on. Thus, our purpose in having characterized the method in terms of a bias

function is to provide a degree of flexibility which allows its application across a wide variety

of circuits in an empirically relevant manner.

In this simple case, we scale φf so that f(x) remains within the range [0,1] to be consistent

with the range of the representation of x in the circuit (see figures 1 and 2). Having defined φf ,

we can solve for the function encoders:

φ̃f
j =

∆ωji

αjφf
. (13)

As a brief aside, note that in cases where the A population always has some neuron active for

10

a value of x (which we assume is the common case), the bias function will be non-zero for the

entire domain of x. Let us then break the bias function into a constant part (the minimum value)

and a variable part, so that f(x) = f1 + f2(x), where f1 = min(f(x)). We have found that

it is advisable to slightly underestimate this minimum to compensate for decoding errors and

noise in the circuit. Since only the variable component is dependent on x, the constant can be

absorbed into the background current of the B neurons. This reduces the amount of inhibitory

current that must be provided by the interneurons, which can prove useful for reducing the firing

rates of the inhibitory cells. Note, however, that splitting the bias function into two parts is not

essential to the method. Presumably, empirical evidence for a given circuit would determine

whether this variation is relevant or not.

Adopting this decomposition of the bias function, we can now express the bias current as

follows:

Jf
j (x) = αjφ̃

f
j f(x) (14)

= αjφ̃
f
j (f1 + f2(x)) (15)

= αjφ̃
f
j f1 + αjφ̃

f
j f2(x). (16)

The first component of (16) is constant, so it can be incorporated into the background current

of the bj neurons as suggested:

J bgnew

j = J bg
j − αjφ̃

f
j f1. (17)

The second part of (16) is dependent on x, and so must be corrected by an explicit input from

the inhibitory population C.

The first step in creating this inhibitory population is to define how the interneurons ck will

be tuned. Since the bias function f(x) is always positive, these neurons will only receive inputs

greater than zero. Specifically, recall that we have scaled φf to be in the range [0, 1]. We set all

11

Interneuron firing rates

fi
ri
n
g
 r

a
te

 (
H

z
)

0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

700

F2(x)

Figure 3: Sample tuning curves for an ensemble of 50 interneurons. The small negative
domain allows some neurons to show substantial minimal firing at low values of the positive-
only input.

of the encoders φ̃f
k in C to 1, giving only positively-sloped (‘on’) neurons. Since the decoders

φf are already positive, all of the connection weights from A to C will now be positive. To

determine appropriate thresholds for the inhibitory neurons, we can turn to experimental studies

of the tuning sensitivities of interneurons in the striate cortex (Azouz et al., 1997). In response

to a range of direct injected current, neurons showed near-zero firing at low current. However,

in response to visual stimuli some neurons showed a substantial minimal response (i.e., non-

zero firing to no stimulus, that is, at x = 0). We therefore allow firing thresholds in C to reach

-0.1 which results in neurons with similar minimal firing. Figure 3 shows a sample set of tuning

curves for ck neurons in our networks, illustrating this property. Functionally, minimal firing is

important as it allows greater neural activity at low magnitudes of x, substantially improving

the representational accuracy of f(x) in C.

12

We can now define the soma current delivered to the ck neurons:

Jk(x) = αkφ̃kf(x) + J bg
k (18)

= αk

∑
i

φfai(x) + J bg
k (19)

=
∑

i

ωkiai(x) + J bg
k , (20)

where ωki = αkφ
f are the positive input weights. Since we have corrected for the constant part

of f(x) in the background current of the bj neurons, we adjust the background current for each

ck:

J bgnew

k = J bg
k − αkf1. (21)

This way, C will only output the needed correction, i.e., the variable component of f(x), f2(x),

defined earlier.

We can now use C to estimate f2(x) by finding the appropriate decoders as in (2). Specifi-

cally, we find a set of positive decoders φk to decode the variable component:

f̂2(x) =
∑

k

φkck(f(x)). (22)

Importantly, our earlier choice of the bias function plays a critical role in determining the value

of these decoders. This is because these decoders are being found in order to estimate (part of)

that original bias function. If the bias function changes, so will the φk, and hence so will the

connection weights from C to B.

Note that even though some of the ck neurons may be sensitive to negative values, these

values never need to be represented since the bias function is defined to be always positive. We

can thus ignore negative values when solving for the φk, guaranteeing only positive decoders.

Note also that while larger populations of neurons improve the accuracy of the representation of

this function in C (Eliasmith and Anderson, 2003), a highly accurate representation is provided

by using 20% of the total number of cells in A and B (see Results), meeting the biological

13

constraint that originally motivated this method. In general, the proportion of inhibitory cells is

determined by our knowledge of the specific biological circuit being modelled.

We can now complete our circuit by incorporating the additional current from the inhibitory

neurons into B. The total current into the bj neurons is now given by the total from A and C:

Jj(x) =
∑

i

ωjiai(x) + J bgnew

j −
∑

k

ωjkck(f(x)), (23)

where ωjk = αjφ̃
f
j φk. The resulting network preserves the original transformation using only

positive synaptic weights as desired.

In the case of a recurrent circuit, we simply substitute bi neurons for the ai neurons in the

above derivation, so that we consider synapses from neurons bi to bj . Otherwise, the method is

identical. Note also that we made no limiting assumptions regarding the function of the original

weights, or the nature of the representation across the populations. As a result, the method is

generally applicable.

To summarize, the end result of the application of this method is the transformation of an

original mixed weight circuit to a new positive weight circuit with parallel pathways that per-

forms the same neural computation as the original circuit. A direct excitatory pathway computes

the intended function with an extra bias component resulting from a weight augmentation that

guarantees only positive connections. An inhibitory pathway comprised of interneurons cor-

rects for that bias also using only positive weights. The target neurons thus keep the same soma

current and the same representation that they had in the original network. This transformation is

clearly repeatable for multiple-layer or recurrent networks. The resulting circuits bear a strong

resemblance to biological networks since feedforward and feedback inhibition are common cor-

tical features, the proportion of inhibitory and excitatory connections can be made to reflect that

observed in cortical networks, and the structure as shown in Fig. 1A is consistent with highly

connected interneurons (Buzsáki, 1984; Freund and Buzsáki, 1996; Somogyi et al., 1998).

14

Network simulations

To demonstrate the solution, we apply the transformation to models of two typical network

structures, feedforward and recurrent. Both the original and transformed networks are run in the

Neural Engineering Simulator (NESim)1, which provides a MATLAB environment for develop-

ing and testing computational models under the framework described here and by Eliasmith and

Anderson (Eliasmith and Anderson, 2003). All simulations use leaky integrate-and-fire (LIF)

neurons (Koch, 1999) with 10% background noise and realistic post-synaptic currents (PSCs;

see below).

Feedforward networks

The feedforward networks are an implementation of the general structure defined in equations

(1) through (4), and corrected using the method defined above. While the simulations use LIF

neurons, the construction method itself is independent of the LIF model, and requires no addi-

tional considerations to account for its temporal aspects. We aim to demonstrate that network

performance is robust to the temporal changes introduced by the inhibitory pathway.

The feedforward networks consist of two populations, A and B, of 200 leaky integrate-and-

fire (LIF) neurons each, or 300 each in the case of vector representation. A encodes the input

signal, which it passes on to B. To determine the relevant biophysical parameters, we simulate

hippocampal principal neurons with AMPA-mediated PSCs with decay constants of τ = 5 ms

(Jonas et al., 1993). The transformation introduces a population of either 50 or 75 fast-spiking

(FS) inhibitory interneurons, to match the 20% proportion found in cortex (Hendry and Jones,

1981; Gabbott and Somogyi, 1986). Hippocampal AMPA-mediated synapses on inhibitory

interneurons are fast (Geiger et al., 1997; Carter and Regehr, 2002; Walker et al., 2002), being

1NESim may be found at http://compneuro.uwaterloo.ca/. The method to correct negative weights has been
added to NESim as an automated process.

15

well modeled by PSCs with τ = 1 ms for these synapses. Slower GABA-mediated inhibitory

synapses with τ = 4 ms project onto the B neurons (Bartos et al., 2001, 2002). Thus signals

from both pathways arrive with similar amounts of delay at target cells. The parameters for the

LIF neuron models are as follows: membrane time constant τRC = 10 ms; refractory period τref

= 1 ms; peak firing rates over the represented range are chosen from a uniform distribution over

200 to 400 Hz. Inhibitory interneurons are similarly modeled, except that their firing saturates

at a higher rate: between 500 and 700 Hz (Azouz et al., 1997).

For the scalar communication channel, neurons respond to values within the range [-1, 1]. In

the vector example, neurons are tuned to magnitudes less than or equal to 2. In the polynomial

transformation, A neurons respond over [-1 to 1], and B neurons respond over [-1.5 to 1.5]. The

inhibitory neurons in C always respond over the range [-.1,1] as discussed earlier. In all cases,

the thresholds at which neurons begin to fire are chosen from a uniform distribution over the

relevant range.

Two of the feedforward networks represent scalars in both ensembles, and one network

represents a 3-dimensional vector. Connection weights between these ensembles are found by

least-squares optimization (Eliasmith and Anderson, 2003), depending on the transformation

desired. For the simple communication channel we let g(x) = x as discussed in the previous

section, and for the polynomial transformation we let g(x) = 0.5x2 − x.

In the subsequent simulations, we generate 10 networks to determine the systematic effects

of the network transformation. For each of the 10 networks we independently transform the

network to remove negative weights, and then simulate it over a 1 second period. We use 30

Hz bandlimited white noise signals to test the scalar networks. For the vector networks, the

3-dimensional vector input follows a helical path, (sin(40t), cos(40t), sin(10t)).

16

a b
Normalized PSC PSC

Time (s) Frequency (Hz)
0 0.01 0.02 0.03 0.04

0

20

40

60

80

100

120

140

-200 -100 0 100 200
0

400

800

1200

1600

2000

P
ow

er

Figure 4: Post-synaptic current. A) A 5 ms PSC in the time domain. The double filter gives
the PSC a non-instantaneous rise time. B) Frequency response of the PSC.

Post-synaptic currents and temporal decoding

Spikes in the network simulation produce PSCs in post-synpatic cells with exponential decay.

A model of a simple exponential PSC is given by

h′(t) =
1

τ
e−t/τ , (24)

where τ is the synaptic time constant. However, this model results in instantaneous rise times

in the PSC. For the simulations in the present work we use a more realistic PSC, defined as the

application of two such exponentials. Specifically, this PSC model is the convolution of two of

the above exponential filters, h′
1(t) ∗ h′

2(t), where h′
1(t) and h′

2(t) have different time constants.

We set the constant for the first filter to be the primary decay constant, and we set the second

at 20% of this. As shown in Figure 4, the PSC now has a non-instantaneous rise time, more

typical of PSCs observed in vivo (Jonas et al., 1993). The additional filtering of the PSC does

not substantially change the dynamics described for the recurrent networks.

Given the expression for the PSC, h(t), we can decode an estimate for a temporal signal

17

x(t) from a population of spiking neurons using the following:

x̂(t) =
∑
i,n

φih(t − tin), (25)

where tin give the spike time occurrences from neuron i. Temporal decoding, then, is the

summation of individual PSCs over time using the same decoders φi found earlier. We introduce

noise into the simulations using Gaussian spike-time jitter with zero mean. This equation is

analogous to equation (2), and does not change the rest of the derivations. Input to the first

layer of neurons (here, layer A) is given by multiplying the signal x(t) by the encoders φ̃i and

directly injecting the current into the neuron somas as in equation (1).

Recurrent networks

To implement a network with recurrent connections within an ensemble, we use an adaptation

of modern control theory to neural dynamics as described in (Eliasmith and Anderson, 2003).

There it is shown that the state equation for a linear dynamical system implemented in a bio-

logically plausible network can be written as

x(t) = h′(t) ∗ [A′x(t) + B′u(t)] , (26)

for the state variables x(t), input u(t), post-synaptic current response h′(t), neural dynamics

matrix A′ = τsynapseA + I and neural input matrix B′ = τsynapseB, where A and B are the

dynamics and input matrices for any linear dynamical system in standard form (the dimensions

of the matrices reflect the dimension of the represented signal). Applying this characterization

to a scalar integrator (i.e., where A = [0] and B = [1]) results in A′ = [1] and B′ = [τsynapse]

defining the neural circuit (Eliasmith and Anderson, 2003). This circuit is shown in Figure 5.

To explicitly implement this circuit, we define two neural ensembles, H and G, to represent

the two state variables u(t) and x(t), respectively. For this simulation, H has 100 LIF neurons,

18

u(t) x(t)B'

A'

Figure 5: Higher-level block diagram for the neural integrator. The boxes denote the input
and state variables, and the circles denote the input and dynamics matrices. For clarity, we use
the state variable, x(t), in place of the transfer function h′(t) to designate the population.

and G has 200 neurons. We find the connection weights by substituting (26) into the encoding

equation (1) for G, giving:

gi(x(t)) = Gi

[
αi

〈
x(t) · φ̃i

〉
+ J bg

i

]
= Gi

[
αi

〈
h′(t) ∗ [A′x(t) + B′u(t)] φ̃i

〉
+ J bg

i

]
= Gi

[∑
i

ωjigi(x(t)) +
∑

i

ωilhl(u(t)) + J bg
i

]
where the recurrent connection weights ωji = αiφ̃iφjA

′ and the weights from H to G are

ωil = αiφ̃iφlB
′. The resulting network contains fully recurrent connections among the neurons

of G.

We run this simulation using recurrent NMDA-mediated synapses with τ = 150 ms as is

common (Kinney et al., 1994; Seung, 1996). In keeping with the previous method, we introduce

a population of 40 inhibitory interneurons I into the recurrent connections. We do not modify

the input connections, so all changes in network function are attributable to the transformed

recurrent weights. Synapses from G to I are NMDA-mediated, with τ = 150 ms. Synapses

from I to G are GABA-mediated, with τ = 4 ms. The LIF neuron parameters for the integrator

network are otherwise the same as for the neurons of the feedforward networks.

For each of 10 networks generated of this type, we independently transform the network

to correct negative weights, and test each version with square-pulse input signals. We test 10

pulses of amplitudes from -1 to 1 at intervals of 0.2 (omitting 0). We test each pulse for one

19

second and observe the drift of the signals for two seconds after the pulse.

Results

We determine the effectiveness of the method by generating a variety of network types. We

investigate linear, nonlinear and multidimensional transformations in feedforward networks,

as well as recurrent networks simulating a neural integrator. The results shown here examine

changes in the accuracy and dynamics of the networks as a result of correcting negative synap-

tic weights. These results demonstrate that the method is effective in preserving the intended

functionality of the networks.

We first consider a feedforward network that acts as a simple communication channel, which

sends a scalar time-varying signal between two 200-neuron populations A and B. The trans-

formation introduces a population of inhibitory interneurons, as demonstrated in Fig. 1A. We

simulate with parameters based on hippocampal networks by using fast AMPA-mediated PSCs

(Jonas et al., 1993). Fig. 1B demonstrates that all negative connection weights are eliminated

with this method. Fig. 1C shows the results of using a scalar input defined by 30Hz bandlimited

white noise with root-mean-square (RMS) = 0.5 on both the original and transformed networks.

Table 1 summarizes the effects of the transformation on the error in various representations

and computations averaged over 10 different networks (i.e., networks with independently and

randomly chosen neuron response functions) of each type. As demonstrated there, the transfor-

mation is both effective, with differences in RMS error below 0.25%, and general, being robust

to the dimension of the represented signal or the linearity of the computation performed by the

network. While the behaviour of the transformed network does not perfectly match that of the

original, the differences are reasonable and maintain the intended behaviour of the network.

Recurrent networks present unique challenges for introducing inhibition. If the inhibitory

pathway is too slow, unbalanced excitatory feedback could cause instability. As well, errors

20

introduced by the additional pathway could substantially change the dynamics of the system.

To test the response of such a network, we examine a model of the scalar neural integrator

described above, which has been implicated in eye control in the oculomotor system (Robinson,

1989; Fukushima et al., 1992; Moschovakis, 1997; Eliasmith and Anderson, 2003). A side-by-

side comparison between the integration of input signals before and after this transformation is

shown in Fig. 2B. Table 1 summarizes the average drift speed time constant difference between

10 sets of original and transformed networks. The transformed networks largely preserve the

dynamics of the original networks. We do see some adverse effects, as the drift rate increases

by 21.1% on average, and the standard deviation of 1/τ increases significantly from 0.0416

to 0.0557. However, the networks still provide a reasonable approximation to the intended

behaviour.

Network type Original RMS error Corrected RMS error
(% of magnitude) (% of magnitude)

Scalar 2.68 2.68
Vector 5.61 5.85
Polynomial transformation 3.49 3.46
Learned weights 4.35 4.23

Original drift τ (s) Corrected drift τ (s)
Integrator 34.6 27.3

Table 1. Network simulation results. The RMS error is in the signals represented by 10 net-

works before and after the weight correction. The error is given as the difference in magnitude

of the represented value from the ideal result. The integrator drift is the average time constant

for an exponential drift in the signal.

Arbitrary weight structures

While general, the example networks we have considered so far are generated by the analytic

methods described by Eliasmith and Anderson (Eliasmith and Anderson, 2003). In particular,

21

we have expressed the synaptic weights as the product of decoding and encoding components,

and the relevant dynamics and input matrices. Since this is a new method, the majority of mod-

els do not use it. As a result, for the solution to be usable in general, it must be possible to take

an arbitrary mixed-sign connection matrix and transform it into a biologically plausible circuit.

Conveniently, the method described earlier extends to models with experimentally determined,

prespecified, or learned weights. In these cases, the encoding-decoding abstraction defined here

has not been used; it is not possible to decompose the weights into separate encoding and de-

coding components. Notice, however, that the original weights wji = αj

〈
φ̃

y

j φx
i

〉
n

only need

to be decomposed for the encoder/decoder relationship of the bias function in (13). Thus, it is

sufficient to know only the gain-and-conversion factor αj to decompose the weights as needed.

To find αj , we can simply fit the neural nonlinearity Gj [·] to the neural responses assumed in

the original model (many models will, in fact, already have defined an equivalent parameter).

Once αj is determined, we can correct negative weights for an arbitrary circuit.

To demonstrate this method, we use a Hebbian rule to learn a communication channel like

that shown in Fig. 1A (Eliasmith and Anderson, 2003). As in the earlier example, we connect

two populations of 200 LIF neurons each, except that the initial connection weights ωji are

chosen from a uniform distribution over the same range as found in one of the existing networks.

We update the connection weights using a standard delta rule, seeking to minimize the variance

in the neural responses:

∆ωji = −κ(bj(x) > 0)ai(x)(bj(x) − b̄j(x)), (27)

where κ is the learning rate, and b̄j(x) is a running mean of the activity. Once the weight updates

stabilize, we perform the transformation on the network.

Table 1 shows the RMS error averaged over 10 learned networks before and after the trans-

formation tested on 30Hz bandlimited white noise. As with the analytic circuits, the RMS

22

difference between the mixed-weight and positive weight circuits is small and remains below

0.15%.

Discussion

Both feedforward and recurrent networks, and both analytic and learned circuits can be effec-

tively transformed with this method. In each of the feedforward cases, the circuits demonstrate

only minor changes in performance as measured by RMS error, indicating that the method is

robust and largely insensitive to the computation performed. It is notable that the dynamics of

the neural integrators changes, as shown by a slightly faster mean drift rate. This is expected,

since the transformed network is subject to a small delay and extra noise in the inhibitory path.

Practically speaking, this suggests that models that allow the presence of negative weights (i.e.

ignore interneurons) may systematically overestimate network performance for a given num-

ber of neurons. However, the intended dynamics remain highly similar, preserving the overall

function of the network.

Importantly, the synaptic organization required by this method is strongly similar to that

found in cortical networks. Depending on the type of network transformed, we introduce ei-

ther feedforward or feedback inhibition (Buzsáki, 1984; Somogyi et al., 1998). Since the in-

hibitory neurons are connected as an ensemble, each neuron receives a large number of inputs

and projects a large number of outputs (on the order of the connected populations). Again, this

matches cortical observations (Freund and Buzsáki, 1996), eliminating a central shortcoming of

past solutions, as outlined in the introduction. The resulting inhibitory circuits are also robust;

in virtue of our high-level solution to the problem (i.e., having adopted a population coding

approach), the loss of a small number of neurons or connections will not dramatically affect the

overall accuracy of the network (Eliasmith and Anderson, 2003). For similar reasons, there are

no constraints on how many inhibitory neurons must be used. Although more neurons result

23

in a better correction of the bias, this is a parameter than can be experimentally informed. In

short, unlike previous techniques, this method can be applied to a variety of networks while

maintaining biological plausibility.

Predictions

As noted during the description of the method, there are some steps in the transformation that

are subject to experimental tests. Recall that in the network transformation, we add a bias to

each of the synaptic weights in order to make them positive (i.e., all excitatory). For each

postsynaptic neuron bj , we add a bias to all of its incoming weights equal to the magnitude

of its largest negative weight. These augmented weights increase the level of current flowing

into the postsynaptic neurons, which is then corrected by the new inhibitory interneurons. As

explained earlier, the weight bias computes some additional function of the higher-level values

represented by the neurons. We let this function, which we call the “bias function,” take on

an arbitrary form by defining a set of linear decoding weights for the function to be uniform

positive constants. As an example, given monotonic response functions, this bias function

will take on an approximately parabolic shape, where the decoded value increases with the

magnitude of the input. This is an interesting prediction about the response properties of the

neurons involved: while the excitatory neurons are tuned to the time-dependent signal (x(t)),

the inhibitory neurons are tuned to the sum of their inputs.

While the bias function is an abstract computation, the resulting current must be explicitly

processed by the inhibitory interneurons, and as such will determine their firing patterns. It is

here that this solution can be informed by experimental results. We have let the bias function

take a form that is effective, but which is not based on the observed effects of neural inhibition

in a circuit. As a result, we can consider the effects of removing inhibition from this model

circuit (Fig. 6). Specifically, we can predict that if this is the correct biasing current, a GABAA-

24

Linearity of inhibition

Full inhibition
No inhibition

x

D
e

c
o

d
e

d
 v

a
lu

e

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6: The effects of removing inhibition in a feedforward network. The x-axis is the
input to the network and the y-axis is the decoded output for that input. As shown, removing
inhibition from the modified network retains good representation at low magnitudes, suggesting
that the inhibition primarily linearizes the response at higher magnitudes.

receptor antagonist bicuculline experiment which blocks inhibition should result in deviations

like those shown in Fig. 6. Such an experiment, even if it contradicts this specific prediction

would provide valuable information as to the precise form of the bias function.

It is an open problem as to how the inhibitory weights in these networks may be learned.

While in this description the inhibitory weights are dependent on the most negative weight in

the initial network, in reality there would be no initial network. It may be possible to pose

an optimization problem related to Fig. 6, where the inhibition linearizes the response at high

magnitudes. Such an optimization must be solved by a plausible local learning rule. We leave

exploration of such rules as an important future challenge.

Conclusion

In general, this method can be taken to show that biologically implausible models which assume

mixed-weights do not, in principle, perform functions that cannot be performed by the brain.

25

However, it is clear that direct comparisons between mixed-weight models and the mechanisms

found in biological systems may be misleading. In particular, the magnitude and distribution of

weights, and the kinds of currents observed within cells will be different in the models before

and after employing this transformation. As a result, we expect the method to be particularly

relevant for more explicit comparisons of models to experimental results.

Acknowledgements

We are grateful to Bryan Tripp, Ray Singh, and the anonymous reviewers for their helpful

discussions and comments. This work is supported by the National Science and Engineering

Research Council of Canada (261453-05), the Canadian Foundation for Innovation (3358401),

and the Ontario Innovation Trust (3358501).

References

Aamodt, S. (Ed.). (2000). Computational approaches to brain function [Special issue]. Nature
Neurosci., 3(11s).

Azouz, R., Gray, C. M., Nowak, L. G., and McCormick, D. A. (1997). Physiological properties
of inhibitory interneurons in cat striate cortex. Cereb. Cortex, 7, 534–545.

Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P., and Jonas, P. (2001). Rapid signaling at
inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci., 21(8), 2687–
2698.

Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J. R. P., et al. (2002). Fast
synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneu-
ron networks. Proc. Natl. Acad. Sci. U.S.A., 99(20), 13222–13227.

Burnstock, G. (2004). Cotransmission. Curr. Opin. Pharmacol., 4, 47-52.
Buzsáki, G. (1984). Feed-forward inhibition in the hippocampal formation. Prog. Neurobiol.,

22, 131–153.
Carter, A. G., and Regehr, W. G. (2002). Quantal events shape cerebellar interneuron firing.

Nature Neurosci., 5, 1309–1318.
Churchland, P. M. (1995). The engine of reason, the seat of the soul: A philosophical journey

into the brain. Cambridge, MA: MIT Press.
Conklin, J., and Eliasmith, C. (2005). A controlled attractor network model of path integration

in the rat. J. Comput. Neurosci., 18(2), 183–203.

26

Deneve, S., and Pouget, A. (2003). Basis functions for object-centered representations. Neuron,
37, 347–359.

Ekeberg, O., Lansner, A., and Grillner, S. (1995). The neural control of fish swimming studied
through numerical simulations. Adapt. Beh., 3(4), 363–384.

Eliasmith, C., and Anderson, C. H. (2003). Neural engineering: Computation, representation
and dynamics in neurobiological systems. Cambridge, MA: MIT Press.

Freund, T., and Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 637–
470.

Fukushima, K., Kaneko, C. R. S., and Fuchs, A. F. (1992). The neuronal substrate of integration
in the oculomotor system. Prog. Neurobiol., 39, 609–639.

Gabbott, P. L., and Somogyi, P. (1986). Quantitative distribution of GABA-immunoreactive
neurons in the visual cortex (area 17) of the cat. Exp. Brain Res., 61(2), 323–331.

Geiger, J. R. P., Lübke, J., Roth, A., Frotscher, M., and Jonas, P. (1997). Submillisecond
AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron,
18, 1009–1023.

Hendry, S. H., and Jones, E. G. (1981). Sizes and distributions of intrinsic neurons incorporating
tritiated GABA in monkey sensory-motor cortex. J. Neurosci., 1(4), 390–408.

Jonas, P., Major, G., and Sakmann, B. (1993). Quantal components of unitary EPSCs at the
mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (London),
472, 615–663.

Kamps, M. de, and Velde, F. van der. (2001). From artificial neural networks to spiking neuron
populations and back again. Neural Networks, 14, 941–953.

Kinney, G. A., Peterson, B. W., and Slater, N. T. (1994). The synaptic activation of IV-
methyl-d-aspartate receptors in the rat medial vestibular nucleus. J. Neurophysiol., 72(4),
1588–1595.

Koch, C. (1999). Biophysics of computation: Information processing in single neurons (1 ed.).
New York, NY: Oxford University Press.

Kuo, P. D., and Eliasmith, C. (2005). Integrating behavioral and neural data in a model of
zebrafish network interaction. Biol. Cybern., 93(3), 178–187.

Marty, A., and Llano, I. (2005). Excitatory effects of GABA in established brain networks.
Trends Neurosci., 28(6), 284–289.

McAlpine, D., and Grothe, B. (2003). Sound localization and delay lines - do mammals fit the
model? Trends Neurosci., 26(7), 347–350.

Menschik, E. D., and Finkel, L. H. (1999). Cholinergic neuromodulation and alzheimer’s
disease: from single cells to network simulations. Prog. Brain Res., 121, 19–45.

Moschovakis, A. K. (1997). The neural integrators of the mammalian saccadic system. Front.
Biosci., 2, d552–577.

Pouget, A., Zhang, K., Deneve, S., and Latham, P. E. (1998). Statistically efficient estimation
using population coding. Neural Comput., 10, 373–401.

Robinson, D. A. (1989). Integrating with neurons. Annu. Rev. Neurosci., 12, 33–45.
Salinas, E., and Abbott, L. F. (1994). Vector reconstruction from firing rates. J. Comput.

27

Neurosci., 1, 89–107.
Selverston, A. I., and Miller, J. P. (1980). Mechanisms underlying pattern generation in lobster

stomatogastric ganglion as determined by selective inactivation of identified neurons. I.
Pyloric system. J. Neurophysiol., 44(6), 1102–1121.

Seung, H. S. (1996). How the brain keeps the eyes still. Proc. Natl. Acad. Sci. U.S.A., 93,
13339–13344.

Seung, H. S., Lee, D. D., Reis, B. Y., and Tank, D. W. (2000). Stability of the memory of
eye position in a recurrent network of conductance-based model neurons. Neuron, 26,
259–271.

Somogyi, P., Tamás, G., Lujan, R., and Buhl, E. H. (1998). Salient features of synaptic organi-
sation in the cerebral cortex. Brain Res. Rev., 26, 113–135.

Strata, P., and Harvey, R. (1999). Dale’s principle. Brain Res. Bull., 50(5/6), 349–350.
Walker, H. C., Lawrence, J. J., and McBain, C. J. (2002). Activation of kinetically distinct

synaptic conductances on inhibitory interneurons by electrotonically overlapping affer-
ents. Neuron, 35, 161–171.

Xie, X., Hahnloser, R. H. R., and Seung, H. S. (1996). Double-ring network model of the
head-direction system. Phys. Rev. E, 66, 041902.

Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-
direction cell ensemble: A theory. J. Neurosci., 16(6), 2112–2126.

Zipser, D., and Andersen, R. A. (1988). A back-propagation programmed network that simu-
lates response properties of a subset of posterior parietal neurons. Nature, 331, 679–684.

28

