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Abstract

In 2005, Hafting et al. reported that some neurons
in the entorhinal cortex (EC) fire bursts when the
animal occupies locations oraganized in a hexagonal
grid pattern in their spatial environment. Previous
to that, place cells had been observed, firing bursts
only when the animal occupied a particular region of
the environment. Both of these types of cells exhibit
theta-cycle modulation, firing bursts in the 4-12Hz
range. In particular, grid cells fire bursts of action po-
tentials that precess with respect to the theta cycle, a
phenomenon dubbed “theta precession”. Since then,
various models have been proposed to explain the re-
lationship between grid cells, place cells, and theta
precession. However, most models have lacked a fun-
damental, overarching framework. As a reformula-
tion of the pioneering work of Welday et al. (2011),
we propose that the EC is implementing its spatial
coding using the Fourier Transform. We show how
the Fourier Shift Theorem relates to the phases of
velocity-controlled oscillators (VCOs), and propose a
model for how various other spatial maps might be
implemented (eg. border cells). Our model exhibits
the standard EC behaviours: grid cells, place cells,
and phase precession, as bourne out by theoretical
computations and spiking-neuron simulations. We
hope that framing this constellation of phenomena in
Fourier Theory will accelerate our understanding of
how the EC – and perhaps the hippocampus – en-
codes spatial information.
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1 Introduction

Some neurons in the entorhinal cortex (EC) exhibit
spatial firing patterns (Hafting et al., 2005). These
neurons, called “grid cells”, spike preferentially when
the animal is at points arranged in a hexagonal grid
pattern. Before that, neurons in the hippocampus
were found to activate when the animal was in a par-
ticular location in the environment. These neurons
are called “place cells”.

Both types of cells, place cells and grid cells, are
modulated by the theta rhythm, a pattern of activity
that oscillates at between 4 and 12 Hz. Moreover,
the frequency at which gridcells oscillate is also in-
fluenced by the animal’s movement. As the animal
is moving, the frequencies increase slightly. But run-
ning direction is also a factor, and frequency increases
also depend on how close the animal’s velocity vector
is to a particular grid cell’s preferred direction vector.
If the animal moves in the preferred direction, the
frequency increases more, whereas in the opposite di-
rection, the frequency increases only marginally. The
term “velocity-controlled oscillator”, or VCO, denotes
a neuron or population of neurons whose activity os-
cillates, but at a frequency that is modulated by ve-
locity.

Combining the ideas of VCOs and grid cells, re-
searchers proposed that the grid patterns might arise
from an interference pattern between VCOs. As the
animal moves, these VCOs take on slightly different
frequencies, and hence their relative phases change.

Phase is the time integral of frequency. Moreover,
the phase difference, φ, between two oscillators is the
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integral of their frequency difference,

φ(t) =

ˆ t

0

(ω1(τ)− ω2(τ)) dτ ,

where ω1 and ω2 are the freqeuncies of the two VCOs.
If the frequency of the VCOs are linear functions of
velocity, then as the animal moves the phase of the
VCO can be written

φ(t) =

ˆ t

0

c1v(τ)− c2v(τ)dτ

= (c1 − c2)

ˆ t

0

v(τ)dτ

= (c1 − c2)x(t) ,

where c1 and c2 are scalar constants. Hence the phase
difference φ(t) is proportional to total displacement
x(t).

By combining (adding) two VCOs with different
frequencies, the result is a beat interference pattern
that generates periods of constructive and destructive
interference as their phase difference evolves (Blair
et al., 2008). Since phase and postion are linked, this
inteference pattern overlays the animal’s spatial envi-
ronment. Combining three VCOs (that differ in pre-
ferred direction by multiples of 60◦) tends to create
a hexagonal grid interference pattern (Burgess et al.,
2007).

A satisfactory explanation of the relationship be-
tween grid cells and place cells remained unclear. As
recently as 2008, researchers had only a handful of
ideas of how grid cells might combine to produce
place cells (Moser et al., 2008). Some have exper-
imented with combining a random selection of grid
cells to produce place-cell like behaviour (Fuhs and
Touretzky, 2006; Solstad et al., 2006). Others sug-
gested that a sum of grid cells could create place
cells, but offered only vague justification (O’Keefe
and Burgess, 2005; McNaughton et al., 2006). A
more detailed proposal argued that place cells re-
sulted from the Moiré interference patterns between
small-scale grid patterns (Blair et al., 2007). How-
ever, their method involves intricate rescaling of so-
called “theta cell” grids, which the authors point
out as “potentially a serious limitation” (Blair et al.,

2007). The method seems overly complicated consid-
ering it comprises a linear sum of periodic functions.
In our opinion, Fourier Theory is a better choice than
Moiré interference patterns.

A recent study concluded that the distributed en-
coding of grid cells formed a more efficient represen-
tation than the same number of place cells (Mathis
and Herz, 2012). That work is interesting, but does
not discuss the mechanisms underpinning these vari-
ous cell types. A comprehensive review of the various
proposed models can be found in (Zilli, 2012).

A spiking-neuron based model of path integration
used Gaussian surfaces to represent place cells, but
encoded these Gaussians by their Fourier coefficients
(Conklin and Eliasmith, 2005). This implementation
takes advantage of the Fourier Shift Theorem (dis-
cussed later), moving the Gaussian pattern of excita-
tion around by applying phase shifts to the Fourier
coefficients. However, their model does not address
grid cells. Can the Fourier Shift Theorem be used in
conjunction with grid cells?

In 2011, Welday et al. proposed a more complete
theory of the mechanisms combining grid cells, place
cells, and phase precession (Welday et al., 2011).
Their model involves a bank of VCOs arranged in a 2-
dimensional (2-D) array, where one dimension spans
a variety of preferred directions, and the other di-
mension represents the degree to which frequency is
increased by movement. The left pane of Fig. 1 is a
recreation of a portion of Fig. 7 from their paper.

In their firing-rate model, each VCO is modelled
as a ring oscillator with a wave of activity that cy-
cles around at (or near) theta frequency. Hence, each
neuron on the ring activates at a particular phase.
According to their paper, connecting a read-out neu-
ron to all the phase-matched neurons of a given row
produces a place cell. Similarly, choosing only three
phase-matched neurons from a row, but with pre-
ferred directions separated by 120◦, yields a grid cell.
Finally, choosing all the phase-matched neurons from
rings with the same preferred direction vector can
generate a border cell.

While the ideas presented in that paper have merit,
the authors’ explanations for their claims are some-
what disconnected and hard to follow. In this paper,
we build on their model, but re-formulate it into a
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coherent and elegant framework using Fourier The-
ory.

2 Fourier Model

The bank-of-oscillators model states that a VCO’s
frequency depends on two parameters: the speed of
the animal, and the cosine of the animal’s velocity
vector with the VCO’s preferred direction. These
VCOs can be organized into a 2-D space in which one
axis enumerates preferred directions, and the other
axis represents the influence of speed (labeled “slope
of speed modulation” in Fig. 1A).

Another, perhaps more intuitive way of presenting
the same 2-D parameter space is to use polar coor-
dinates, as shown in Fig. 1B. In this view, the di-
rection of displacement from the origin indicates the
preferred direction, and the distance from the origin
multiplies that effect. In addition, we will think of
each VCO as a small vector that oscillates about its
centre point. Usually, we will consider these oscilla-
tors to be unit-vectors, and focus our attention on
their phase.

Consider the VCO located at A in Fig. 2A, 4 units
from the origin, in the direction of 30◦. If the ani-
mal moves in that direction, the VCO will experience
an increased frequency compared to the VCO at the
origin. More precisely, the VCO’s frequency will in-
crease by an amount proportional to v ·A, the dot-
product of A and v. After a time t, the difference in
phase will be

φ(t) =

ˆ t

0

A ·v(τ) dτ = A ·
ˆ t

0

v(τ) dτ = A ·x(t) .

That is, the phase difference will be A ·x(t). Since φ
is an angle, it is convenient to depict it as a vector on
the unit circle. Then we can write this “phase vector”
using Euler’s formula,

(cosφ, sinφ) ≡ cosφ+ i sinφ = exp (iφ) ,

where i =
√
−1. Thus, we can represent our phase

difference as

(cosφ, sinφ) = exp (iA · x) .

A
B

A B

Figure 2: Trigonometric wave fronts. The bottow
row shows the real part of the Fourier basis function
corresponding to a single non-zero Fouerier coefficient
set to 1.

As we can see, the components of the phase vector
trace out sine and cosine wave fronts that are fixed in
the animal’s environment. The bottom row of Fig. 2A
shows the wave front corresponding to the VCO lo-
cated at A. A different VCO at location B traces out
a different wave front, as shown in Fig. 2B.

Considering that the animal has many such VCOs,
what happens if we combine them all into a sum,
as if a single read-out node was receiving the phase
vectors from all the VCOs and adding them toether?
The value of the read-out node would be

p(x) =
∑
k,`

exp (idk,` · x) , (1)

where dk,` is the location of a VCO, and the sub-
scripts k and ` index distance from the origin and
orientation, respectively. An image created using this
simple method is shown in Fig. 3. The activity of this
read-out node corresponds to a spatial map akin to a
place cell. Why is that? The answer has to do with
the fact that (1) almost looks like an inverse Discrete
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Figure 1: Cartesian versus polar representation of VCOs. The Cartesian arrangement is a derived from part
of Fig. 7 in (Welday et al., 2011). The polar arrangement consists of a number of “propellors”, lines of VCOs
that pass through the origin.

Figure 3: The spatial function traced out by adding
together the whole bank of VCOs.

Fourier Transform1. In the following sections, we re-
view the Fourier Transform and outline the benefits
of thinking about the EC in terms of the this powerful
mathematical tool.

1It would be the IDFT, except that the summation indices
correspond to polar coordinates, whereas the IDFT indeces use
rectangular spacing.

2.1 Fourier Theory Basics

We will develop our argument using the Discrete
Fourier Transform (DFT), but we point out that
analagous properties exist for the continuous-domain
Fourier Transform (Oppenheim and Schafer, 1999).

An efficient way to write the Fourier Transform
is to use complex numbers. Recall that we have two
ways of denoting a complex number: using the Carte-
sian for a + ib, or the polar form r exp(iφ). In the
Cartesian form, we refer to a as the real part, and b
as the imaginary part. In the polar (or exponental)
form, we call r the modulus, and φ the phase an-
gle. This notation carries with it several advantages.
The product of two complex numbers has a simple al-
gebraic analog when using the polar representation.
In particular, multiplying r1 exp(iφ1) and r2 exp(iφ2)
is consistent with the algebraic rules for exponential
functions, giving r1r2 exp (i(φ1 + φ2)). In words, you
multiply their moduli, and add their phases.

We will start out with a 1-D function. Consider
a sampled function f with N samples indexed n =
0, . . . , N − 1,

f = [f0, f1, · · · , fN−2, fN−1] .
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The DFT of f is

Fk =

N−1∑
n=0

fn exp

(
−2πi

nk

N

)
, k = 0, . . . , N − 1 .

Each complex number Fk is called a Fourier coef-
ficient. We can also denote the transform using
F = DFT(f). In essence, the DFT is a frequency
decomposition; it takes a spatial signal and repre-
sents it as a sum of wave fronts of various frequen-
cies (and orientations, in higher dimensions). Each
Fourier coefficient occupies a different location in the
frequency domain. Each location in the frequency
domain represents a different wave front. The value
of a Fourier coefficient, Fk, represents the contribu-
tion of its wave front. The coefficient F0 has a special
name; it is called the DC, and it always corresponds
to the zero frequency and is located at the origin of
the frequency domain. It is important to understand
that the Fourier basis functions are N -periodic. That
is,

exp

(
−2πi

(n+N)k

N

)
= exp

(
−2πi

nk

N

)
.

In other words, it is perfectly valid to refer to F−1,
since F−1 = FN−1. Because of this periodicity, we
can shift our array of Fourier coefficients and visual-
ize them as being centred on the DC. For example,
if N is 33, then we list our Fourier coefficients us-
ing [F−16, . . . , F−1, F0, F1, . . . , F16]. Likewise, use of
the DFT implicitly assumes that f is also periodic
and can be indexed in the same manner. Thus, an
equivalent formulation of the DFT is

Fk =

Ñ∑
n=−Ñ

fn exp

(
−2πi

nk

N

)
, k = −Ñ , . . . , Ñ ,

where we assume for simplicity that N is odd2 and
use the symbol Ñ to represent

⌊
N
2

⌋
, where the de-

limiters b·c denote rounding toward zero. We will use
this equivalent, centred version of the DFT through-
out this paper.

2We could remove the assumption that N is odd, and sum
over n = −Ñ, . . . , Ñ − 1.

The Fourier Shift Theorem tells us how shifting
(translating) a signal influences its Fourier coeffi-
cients. Suppose that Fk are the Fourier coefficients
of a signal fn. Consider a shifted version, fn−d, and
its Fourier coefficients, Gk. What is the relationship
between Gk and Fk? The Fourier transform of fn−d
can be written

Gk =

Ñ∑
n=−Ñ

fn−d exp

(
−2πi

nk

N

)
.

Using the change of variables m = n− d, we get

Gk =

Ñ−d∑
m=−Ñ−d

fm exp

(
−2πi

(m+ d)k

N

)
.

Both exp(·) and f are periodic (by assumption, for f),
so we can shift the summation range without chang-
ing its value. Moreover, the exponential function can
be split into two components, one containingm, while
the other can be pulled out of the summation,

Gk = exp

(
−2πi

dk

N

) Ñ∑
m=−Ñ

fm exp

(
−2πi

mk

N

)

Gk = exp

(
−2πi

dk

N

)
Fk , k = −Ñ , . . . , Ñ .

This is the Fourier Shift Theorem, and it tells
us that the Fourier coefficients of the shifted signal,
fn−d, can be derived from the coefficients of the orig-
inal signal by simply multiplying each coefficient by
a phase-shift, where the amount of the phase-shift is
a linear function of the frequency index k. We will
unpack this theorem more as we progress.

As an example relevant to our purposes, suppose
we have a rat that moves along a small corridor, and
that we have broken the corridor into N blocks, in-
dexed n = −Ñ , . . . , Ñ . We can represent the location
of the rat using an array, δ, indicating where the rat
is by placing a 1 in the element corresponding to the
rat’s location, and setting all the other elements to
zero. As the rat moves along the corridor, the array
δ changes so that the location of the 1 reflects which
block the rat occupies. By this definition, δ is the
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Kronecker Delta,

δmn =

{
1 if n = m

0 if n 6= m

where the subscript m represents the index of the
block containing the rat, and the subscript n indexes
the elements of the array δm.

The DFT of δ has special properties. When the rat
is a position m, the DFT of δm is,

Gk =

Ñ∑
n=−Ñ

δmn exp

(
−2πi

nk

N

)

= exp

(
−2πi

mk

N

)
.

These Fourier coefficients all have a modulus of 1,
and their phases vary linearly with k (the frequency
index). That is, if Gk = rk exp(iφk), then rk = 1 and

φk = −2π
mk

N
.

The modulus and phase of δ2 are shown in Fig. 4. No-
tice that the phases in Fig. 4 form a line (or ramp)
as you move along the frequency axis, although the
phases are wrapped into the range [−π, π]. The
slope of the line is (−2πm/N), so the larger m is,
the steeper the slope. The sign of the slope reflects
whether m is positive or negative (which direction
the rat moved along the corridor).

This property of the DFT is similar to a more
general concept known as the Fourier Shift Theo-
rem, in which a function can be shifted by sim-
ply multiplying its Fourier coefficients by a linear
phase function (or “phase ramp”) like that depicted
in Fig. 4. If we start with the Fourier coefficients
of δ0, denoted Fk, then we can get the Fourier co-
efficients of δm, denoted Gk, by multiplying Fk by
the phase ramp exp (−2πimk/N). That is, Gk =
exp (−2πimk/N)Fk. Applying such a phase ramp
can shift any function, not just our δ functions.

The DFT is an invertible transform, and the in-
verse DFT (IDFT) yields back the original function.
For example, IDFT (DFT (δm)) = δm. With this in
mind, we can represent any shifted version of δ0 by
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Figure 5: Fourier interpolation of δ0 shifted to the
right by 3.2 units. The dotted red line shows the
continuous-domain reconstruction from the phase-
shifted Fourier coefficients. The blue circles show the
samples produced using the IDFT.

multiplying its Fourier coefficients by a phase ramp
of the desired slope. In other words, the slope of the
phase ramp in the Fourier coefficients indicates the
shift applied to δ0. In this way, the phases of the
Fourier coefficients encode the position of the rat.

What if the slope (−2πm/N) of the phase ramp
along k corresponds to a value of m that is not an
integer? We cannot expect the IDFT to give us δm
exactly, since that is only defined for integer values of
m. As it turns out, non-integer values of m yield δ-
like signals. The operation is called “Fourier interpo-
lation”, and corresponds to summing the continuous-
domain wave fronts and sampling the resulting func-
tion. Figure 5 illustrates a non-integer shift, and how
the samples computed by the IDFT relate to the un-
derlying continuous-domain Fourier reconstruction.

All of this theory extends trivially to 2-D domains
(and higher). A Kronecker delta (or any function,
for that matter) on a 2-D domain can be shifted by
multiplying its Fourier coeffients by a phase ramp in
2-D.

2.2 Entorhinal Cortex

Here we outline our model of how the Fourier Trans-
form relates to the navigational function of the en-
torhinal cortex (EC).

We propose that each VCO in the polar arrange-
ment corresponds to a Fourier coefficient in a 2-D
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Figure 4: Fourier Transform of δ2. The moduli (left) of the 33 Fourier coefficients are all 1. The phase
(right) is linear; the dashed red line shows a linear function, while the blue dots show the same linear
function wrapped into the range [−π, π].

frequency domain, and is used to modulate its corre-
sponding wave front to build spatial maps like grid
cells and place cells.

Why? As the animal moves around, the evolving
phase differenes between the DC and the other VCOs
encode the animal’s location in a manner convenient
for applying the same positional shift to any spatial
map using the Fourier Shift Theorem. The key idea
is that if spatial maps of the hippocampus and EC
are encoded using a Fourier representation, then the
activity at the animal’s location in each map can be
extracted by rotating the phase of each Fourier coef-
ficient by the corresponding VCO phase.

But where are the Fourier coefficients that make up
these spatial maps? They manifest in the connections
to the VCOs.

Let’s be more concrete. Figure 6 shows a number
of spatial maps similar to those elicited by place cells,
grid cells, and “border” cells. Consider two neurons,
one is a place cell with its spatial activity map shown
in A, and the other is a grid cell, its spatial activity
map shown in B. As the animal moves throughout its
environment, the place cell and grid cell change their
activity according to where the animal is in those two
maps. Each of those spatial maps has a very simple
Fourier transform, shown above it in the figure. The
shaded Fourier coefficients all have a value of 1, while

all the others are zero (Fig. 6D is an exception to
that, discussed later). However, the shaded nodes in
the figure actually represent connections to VCOs.
That is, the connections to the VCOs are the Fourier
coefficients of the spatial map.

In the case of our place cell, all of its Fourier coef-
ficients are 1, so it is connected to all the VCOs and
simply adds all their phase vectors together. This is
the same operation described in equation (1). For
the grid cell, only three of its Fourier coefficients are
1, so it adds together the phase vectors from those
three VCOs. Again, the connections to the bank of
VCOs dictate the contents of the spatial map.

Movement throughout those maps is represented
by the phase state of the VCOs. As we already dis-
cussed, animal motion causes the VCO frequencies to
change in a way that induces a phase ramp. Those
ramped phase vectors get multiplied by the connec-
tion strengths on their way to the place cell (or grid
cell). Hence, the place cell (or grid cell) in essence
adds up a set of Fourier components each modu-
lated by a phase ramp. The place cell and grid cell
have fixed connections to the VCOs, yet their activ-
ity changes as the animal moves because the phase
state of the VCO bank shifts the spatial map using
the Fourier Shift Theorem.

The “border” cell shown in Fig. 6D follows the same
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Place Cell Grid Cell "Place" Cell "Border" Cell

A B C D

Figure 6: Sample spatial maps (bottom row) and the VCOs used to generate them (top row).

rationale, but its Fourier coefficients are not all 1s. If
the shaded coefficients were all 1s, then the vertical
line of activity would be centred in the spatial map.
For the sake of comparison to (Welday et al., 2011),
we shifted the spatial map to the edge of the field.
We did so by including a phase ramp in the Fourier
coefficients. In other words, the connections from
the VCOs to the “border” cell induced an additional
phase shift. The phase ramp of the connections relate
to the location of the bar in the spatial map, while
the phase ramp in the VCOs relate to the animal’s
location.

For the sake of comparison, we included Figure 6C
to show the “place” cell that was proposed in (Welday
et al., 2011), using only the VCOs from a given spatial
frequency (but all orientations).

Again, each VCO can be thought of as a phase-
shift coefficient for a 2-D frequency phase ramp. The
animal maintains a number of spatial maps of their
environment, such as place fields, grid fields, and even
more elaborate fields like boundary fields, etc. The
actual form of the spatial map is determined by the
connection weights that connect the VCO nodes to
the map cells. Each map cell (eg. place cell, grid cell,

A B

Figure 7: Example of a general spatial map. The
Fourier coefficients of the ideal spatial map in A
where used to set connection weights from a bank
of VCOs (18 propellors, 9 rings) to a readout node.
The spatial map of the virtual readout node is shown
in B.

etc.) can have a different pattern of activity. As an
example, consider the spatial map (image) shown in
Fig. 7. The ideal map shown in A was encoded in the
connection weights to a bank of VCOs consisting of
18 propellors and 9 rings, like those shown in the top
row of Fig. (6). The image in B is a reconstruction
of that neuron’s activity as a function of location in
the animal’s environment.
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Interestingly, grid cells might be a byproduct of the
computation of place cells. All the VCOs in Fig. 6a
are added together to get the place cell. However,
that sum could be done in pieces, one triad of VCOs
at a time. As an intermediate step to adding all the
VCOs together, all possible triads could be added
together to form a bank of grid cells. Then, those
grid cells could be added together to form the place
cell. We know this two-part process is equivalent to
adding the VCOs together all at once because all the
processes are linear operations. In fact, the Fourier
Transform is a linear operation.

3 Material and Methods

The results shown thus far are from an idealized im-
plementation of the EC and its bank of VCOs. How-
ever, we also implemented a partial version of the EC
Fourier model using spiking leaky integrate-and-fire
(LIF) neurons (Koch, 1999). Here we describe our
implementation of the model, outline the challenges,
and display results from simulation experiments.

3.1 Neural Engineering Framework

To build our neural network, we used the Neural En-
gineering Framework (NEF) (Eliasmith and Ander-
son, 2003), a powerful and versatile platform that has
proven useful for large-scale cognitive modeling (Elia-
smith et al., 2013). In this framework, data is stored
using population coding. A node is a population of
LIF neurons with varying parameters so that their
tuning curves span a wide range of possibilities. The
population of N neurons can encode a value x in its
neural activities using

an(t) = Gn (x(t) · enαn + βn) (2)

where en is the encoding vector (preferred direction
vector), and αn and βn are scalar gain and bias terms
that account for the neural climate of the neuron.
The input to the function Gn(·) can be thought of as
the input current driving neuron n. The function Gn
translates the input current to neural activity, either
in the form of a firing rate or a series of spikes. In the

case of firing rate, Gn is the steady-state LIF tuning
curve,

Gn(J) =


1

τref−τm ln
(
1− Jth

J

) for J > Jth

0 otherwise

where τref is the refractory period, τm is the mem-
brane time constant, and Jth is the threshold current,
below which the neuron has a firing rate of zero. On
the other hand, if using spikes, then the output of Gn
is represented as a sum of time-shifted Dirac delta
functions (Oppenheim and Schafer, 1999),

Gn(Jn(t)) =
∑
p

δ(t− tnp) ,

where tnp is the time of the pth spike from neuron n.
When a spike arrives at a synapse, we model the

dynamic process of the induced post-synaptic current
using an exponential decay. We convolve the incom-
ing spike trains with the post-synaptic filter, h(t),

h(t) =
1

τs
exp

(
−t
τs

)
(3)

and take a weighted sum over all the incoming con-
nections so that the input current arriving at neuron
m is

Jm(t) = h(t) ?

[∑
n

wnm
∑
p

δ(t− tnp)

]
,

where ? represents convolution, and ωnm is the con-
nection weight from neuron n to neuron m.

If we wish to decode the neural activities of a popu-
lation of neurons, we can compute the optimal linear
decoders. We do this by collecting a sampling of in-
puts, X, and corresponding neural activites, A. That
is, each row of X stores a sample input, and each row
of A stores the corresponding neural activities for all
N neurons (usually stored as firing rates). To decode
from our population, we seek the linear weights D
that solves

min
D
‖AD −X‖22 .

Thus, the weights in D perform a linear transforma-
tion from the space of neural activities to the space of
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input values. This is a linear least-squares problem,
and there are multiple ways to compute D. Once
we have D, we can decode neural activities to get an
estimate of the value being encoded. Moreover, we
can decode arbitrary functions of our encoded data
by finding the decoders that solve

min
D
‖AD − f(X)‖22

where f(X) is a function of the encoded values.
With the encoders and decoders, we can transform

data from one population P , to another population
Q. To do this, we essentially decode the desired func-
tion from P and re-encode the result into Q. Collaps-
ing those processes together gives the N ×M weight
matrix

W = DPEQαQ

whereDP is the matrix that decodes the neural activ-
ities from the N neurons in P , and EQαQ stores the
scaled preferred direction vectors for all M neurons
in Q.

3.2 Oscillators
A recurrently-connected population of neurons can
implement a dynamic model of the form

dx

dt
= f(x)

by choosing the recurrent connection weights so that
they decode and feed back τsf(x) + x (see Eliasmith
and Anderson, 2003).

A pertinent example for our purposes is the simple
harmonic oscillator,

dx

dt
= cy

dy

dt
= −cx

where c is a scalar. Solutions to this dynamical sys-
tem include all circular orbits around the origin in the
(x, y)-plane. The frequency of oscillation is propor-
tional to c. To implement this behaviour in neurons,
we compute the decoders D that decode

f(x, y) = [x+ τscy, y − τscx] .
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Figure 8: Decoded state of a simple harmonic oscilla-
tor implemented using 200 spiking LIF neurons. The
plot on the left shows the x and y components over 1
second of time, while the graph on the right plots the
phase portrait of x vs. y over the same time frame.

The decoded state is immediately fed back into the
population, leading to the trajectory shown in Fig. 8.

A VCO can be constructed by making the popula-
tion encode a 3-D vector of the form (x, y, θ), where
the x and y components oscillate at frequency (in ra-
dians per second) specified by θ. In this case, the
decoder would be designed to decode

f(x, y, θ) = [x+ τsθy, y − τsθx]

We used a stabilized version of the simple harmonic
oscillator by incorporating a unit-vector constraint
into the decoder,

f(x, y, θ) =
[x+ τsθy, y − τsθx]∥∥∥[x+ τsθy, y − τsθx]

∥∥∥
2

.

In our model, the VCOs were modeled using a pop-
ulations of 300 LIF neurons. We constructed arrays
of 17 VCOs to form the propellors seen in the polar
arrangement in Fig. 6. As the arrangement dictates,
the degree to which the animal’s velocity vector in-
fluences the frequency of the oscillators depends on
where the VCO sits in the plane. Given a velocity
vector of v ∈ [−1, 1]2, the frequency of VCO at loca-
tion dn is

θn = 8 + 1.6 ‖v‖2 − 1.272 dn · v (4)

where the distance from the origin, ‖dn‖, ranges from
-1 at one end of a propellor to 1 at the other end. Fig-
ure 9 shows how the frequencies vary across a spoke,
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Figure 9: Frequency modulation for VCOs with pre-
ferred direction sn = [1, 0] and v either [1, 0] or [-1, 0].
The dotted line shows the baseline theta-frequency of
8 Hz. Notice that all VCOs have a frequency above
the baseline 8 Hz, no matter which way the rat is
running.

and that the frequencies are always above the base-
line theta-rhythm of 8 Hz no matter which direction
the rat is moving.

3.3 Phase Coupling

The stochastic nature of spiking neurons causes im-
perfect behaviour of the oscillators. If set to the same
frequency and started in phase, perfect oscillators will
remain in phase. However, slight errors in frequen-
cies will cause them to drift out of phase as time
progresses. This random dephasing can disrupt the
phases of the oscillators to the point that the linear
trend along k is overwhelmed by noise.

This issue shows up a number of times in the design
of this network. For brevity, we outline our solution
in detail for one such phase coupling, and include less
detail for others.

The absolute phase of the oscillators does not mat-
ter. What matters is the phase differences between
VCOs. In particular, the phases should follow a lin-
ear phase ramp across each propellor. The phases can
drift, as long as they maintain their relative phases,
maintaining a linear trend across the array.

One way to stabilize the relative phases is to couple
the oscillators to each other. We reasoned that the
system should be free to allow any linear slope in

Random Connections

Velocity-

Controlled

Oscillators

Phase-

Step

Nodes

DC

Figure 10: Array of velocity-controlled oscillators.
Each adjacent pair of VCOs is coupled by a phase-
step node. The phase-step nodes are randomly con-
nected to each other to arrive at a concensus for
what the phase difference should be between adja-
cent VCOs.

phase, but discourage other phase differences.
We introduced an array of neural populations to

couple the oscillators. We call these nodes “phase
step” nodes. Figure 10 shows the array of oscillators,
and their connections to an array of phase-step cou-
pling nodes. Each adjacent pair of oscillators is con-
nected to the same phase-step node. Each phase-step
node contains 500 LIF neurons, and represents a 6-
dimensional vector of the form (a, b, α, β, c, s), where
(a, b) and (α, β) are the states of the two connecting
oscillators, and (c, s) represents a phase difference of
φ, where c = cosφ and s = sinφ.

Since the phase should change linearly, each pair of
adjacent oscillators should have the same phase dif-
ference, or phase step. The phase-step array creates
a consensus for this phase difference. Each coupling
node decodes the phase difference, (c̃, s̃), between its
afferent VCOs using

(c̃, s̃) = (a, b) · (α, β) ,

where (a, b) and (α, β) are the oscillator states, and
(α, β) is the conjugate of (α, β). If a+ ib = exp(iφk)
and α+ iβ = exp (iφk+1), then

c̃+ is̃ = exp (iφk) exp (−iφk+1)

= exp (i (φk − φk+1))

represents the phase difference between the oscilla-
tors.
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Note, however, that the computation is done by
the network entirely in Cartesian coordinates, using

c̃+ is̃ = (a+ ib) · (α− iβ)

= (aα+ bβ) + i (−aβ + bα) .

Each phase-step node decodes (c̃, s̃) and projects it
out to a random subset of other phase-step nodes (in-
cluding itself). Thus, each phase-step node receives
(c̃, s̃) from a number of other nodes, each equally
weighted with all the weights adding to 1. This
weighted-average consensus gets stored in the (c, s)-
components of each phase-step node’s state.

Recall that our phase-step nodes store vectors of
the form (a, b, α, β, c, s). In a perfect world, the VCO
states (a, b) and (α, β) would differ in phase by ex-
actly (c, s). However, there is always some error. To
reduce the error, each phase-step node projects phase
adjustments back to their connected VCOs. Given
the consensus phase difference (c, s), we can estimate
(a, b) and (α, β) using(

ã, b̃
)
≈ (α, β) · (c, s)(

α̃, β̃
)
≈ (a, b) · (c, s) .

In other words, we rotate (a, b) clockwise to get(
α̃, β̃

)
, an approximation of (α, β). Then we can

compute a phase correction,

(∆α,∆β) =
(
α̃, β̃

)
− (α, β) .

Likewise , we rotate (α, β) counter-clockwise to get(
ã, b̃
)
, and compute a phase correction,

(∆a,∆b) =
(
ã, b̃
)
− (a, b) .

This process is illustrated in Fig. 11.
Only half of each correction needs to be incorpo-

rated to bring the two oscillators into the correct
phase relationship. In our implementation, we di-
vide the corrections by 5 and feed them back into the
(x, y) components of the corresponding VCOs. The
divisor of 5 was chosen instead of 2 for stability rea-
sons. In our experience, a wide range of divisors work
equally well.

Phase difference = 60◦

(a, b)

(
ã, b̃
)

(
α̃, β̃
)

(α, β)

R
otate

counter
clockw

ise

R
ot

at
e

cl
oc

kw
ise

(
α̃, β̃
)
− (α, β)

(
ã, b̃
)
− (a, b)

Figure 11: Calculation for coupling VCOs using
phase-step nodes. In this figure, the consensus phase
difference is 60◦, as indicated in the centre of the fig-
ure. The VCO states are shown in the boxes labeled
(a, b) and (α, β). Each VCO is rotated into alignment
(nominally) with the other VCO. The error vectors
are fed back as corrections to the VCOs.

This phase-coupling method maintains a linear
progression in phase across each propellor array of
VCOs. However, there is nothing keeping the propel-
lors in phase with each other. There are two forms
of phase locking required to keep all the propellors
consistent. Notice that all DC nodes should be in
phase with each other since there is no direction-
dependent frequency modulation on the DC nodes;
only the speed affects their frequency. Hence, we need
to make sure the DC components match across all the
propellors. We achieved this by adding a single 6-D
node to perform a coupling similar in nature to the
phase-step coupling described above. This DC cou-
pling node acts as a mechanism for finding a consen-
sus phase among the DC nodes. This function could
also be accomplished using random connections be-
tween DC nodes, similar to how the phase-step nodes
arrive at a consensus.

A more complex form of coupling is required to
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keep the 1-D phase ramps from the individual propel-
lors coplanar with each other. While the phase-step
nodes keep the phase linear within a 1-D propellor, we
still need a way to ensure that the VCO phases form
a linear function (a plane) in 2-D that passes through
the origin. For example, drift could cause one pro-
pellor to attain a dispropotionately steep slope that
makes it tilt out of the plane delineated by the other
propellors.

In order to ensure that the 1-D phase ramps stay
linearly consistent, we need to couple together three
phase-step nodes (from three different propellors).
The resulting phase adjustments are fed back to the
phase-step nodes.

3.4 Simulation of Rat Motion

We created our netowrk model to test some spe-
cific aspects of the Fourier model. In particular,
we wanted to see if we would find grid cells that
fired spikes on a hexagonal grid of locations. We
also wanted to see if these grid cells would exhibit
phase precession compared to a global theta cycle.
We added a 2-D VCO node that oscillates at approx-
imately 8 Hz, and used this node’s state as the au-
thoritative theta cycle.

To simulate the movement of a rat in a circular
environment, we added to our model a random-walk
function that adjusts the velocity vector smoothly.
The resulting simulated rat trajectories are shown
later. One could predict the rat’s location by nu-
merically integrating the rat’s velocity. However, the
rat’s own perceived location (as encoded in the phase
ramp of the EC VCOs) soon drifted away from the
computed position. This drift phenomenon has been
observed before (Zilli and Hasselmo, 2010) and is
probably due to temporal delays in network activity,
network transients caused by suddent input changes,
and inaccuracies in the frequencies of the VCOs3. A
real rat seems to avoid this problem by updating its
perceived location with sensory information (Burgess
et al., 2007). Our model has no sensory input (though

3We did not assess the accuracy of the VCO frequencies
after implementing the various couplings, though it would be
an interesting study.

we would consider it for future work). In terms of as-
sessing the spatial maps of the rat’s EC neurons, what
is important is where the rat believes it is, not nec-
essarily where the rat actually is (Blair et al., 2007;
Barry et al., 2007). We determine the rat’s perceived
location from the slopes of the phase ramps of the
three propellors. In particular, the phase-step nodes
encode the slope that we need4. Each propellor gives
us a projection of the rat’s position onto the pro-
pellor. Combining the three projections gives us an
over-determined system; we find the least-squares so-
lution to get a good estimate of the rat’s perceived
location.

3.5 Network Architecture

As shown in Fig. 12, the network consists of three
“wheels” of nodes, along with a velocity node, DC
phase-coupling node, a theta-cycle node, and an ar-
ray of grid-cell nodes. Each wheel has three propel-
lors at angles 0◦, 120◦, and 240◦ (though a full model
would include more propellors per wheel). The first
wheel contains 17 VCO populations per propellor.
Each population has 300 LIF neurons and encodes a
3-D vector. The recurrent connections of these oscil-
lating populations have a synaptic time constant (τs
in (3)) of 10 ms.

The phase-step wheel also has 3 propellors, but
with 16 nodes per propellor (since they model the
phase differences between the VCO nodes). Each
phase-step population has 500 LIF neurons and en-
codes a 6-D vector as described in the last section.
The coplanar coupling wheel mirrors the phase-step
wheel, with each coplanar coupling node having 500
LIF neurons and encoding a 6-D vector.

The grid-cell array has 17 nodes, mirroring the 17
nodes in each of the VCO propellors. Each grid node
contains 200 LIF neurons and encodes a 2-D vector
of the sum of the phase states from the three corre-
sponding VCOs. That is, each grid node receives the
phase state from a triad of VCOs and simply adds

4Proof that the rat’s location is projected onto each propel-
lor comes from yet another fascinating and useful property of
the Fourier Transform, the Fourier Projection Theorem. This
property is used heavily in computed tomography reconstruc-
tion.
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them together.
The DC phase-coupler node has 500 LIF neurons

and encodes a 6-D vector that duplicates the phases
of the three DC nodes. The velocity node has 100 LIF
neurons and encodes a 2-D vector. Finally, the theta-
cycle node contains 500 LIF neurons and encodes a
2-D vector that oscillates at approximately 8 Hz. The
recurrent connections of the theta-cycle population
use a synaptic time constant of τs = 5 ms.

Unless otherwise specified, we used the following
parameter values for all neurons: synaptic time con-
stant τs = 5 ms, refractory period τref = 2 ms, mem-
brane time constant τm = 20 ms, spiking threshold
Jth = 1, encoding vectors (en from (2)) selected ran-
domly (uniformly) from the unit hyper-sphere, neu-
ral gain and bias (αn and βn from (2)) chosen to
randomly (uniformly) sample the unit hyper-sphere
of the representational space, with a maximum firing
rate in the range 200-400 Hz.

4 Results

The simulations were run using the Nengo software
package (nengo.ca). The whole model includes 119
nodes, for a total of 68,700 LIF neurons. We ran the
model for 300 seconds simulation time. The execu-
tion of the model took about 110 minutes to run on
a laptop with a 2.9GHz Intel Core i7 processor and
8GB of RAM.

4.1 Grid Cells

Figure 13 shows a sampling of grid cells, with their
spikes superimposed overtop of the rat’s trajectory.
In the figure, the Fourier frequency of the grid-cell
triad increases from left to right. The red dots of
spikes clearly occur on a hexagonal grid with different
scales. Not all neurons in the grid nodes exhibited
grid firing patterns. However, about 10% did.

4.2 Theta-Phase Precession

If we focus on the timing of the grid-cell spike bursts,
we can see that the start of the bursts precess through
the theta cycle. Figure 14 plots the spikes as red lines

A B

DC

Figure 13: Spikes from grid cells superimposed on the
rat’s trajectory. All the grid cells were taken from
triads with an orientation of 0◦. The neuron in A is
from a grid-cell node at position 2 (where the cen-
tral, or DC, grid-cell node is index 0). The neurons
in B, C and D are from grid-cell nodes 3, 4 and 6,
respectively.

over the theta cycle produced by the “theta” node.
As Fig. 9 implies, the frequency of oscillation for the
VCOs – and hence the grid cells – is higher than the
nominal 8Hz theta cycle. Thus, we see the bursts of
grid-cell activity precess through the lower-frequency
theta cycle.

100 ms

Figure 14: Theta-phase precession of grid-cell spikes.
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Figure 12: Network overview. The velocity node modulates the frequency of the VCOs (see equation (4)).
The phase-step nodes couple the VCOs to maintain a 1-D phase ramp within each propellor. The coplanar
coupling nodes further keep the phase slopes of the different propellors linearly consistent (so that they all
rest in a common plane). The DC phase coupler node keeps the absolute phase of the propellors in sync. The
grid cells sum triads of VCOs. The theta cycle node is a stand-alone oscillator that maintains a frequency
of approximately 8Hz.

5 Discussion

The model proposed in this paper is similar to that
proposed by Welday et al. (2011). However, our con-
tribution is to re-formulate the pieces into a coherent
and over-arching framework that allows for further
analysis and deeper understanding. We propose that
the EC acts as a bank of VCOs, organized in a polar
fashion throughout the frequency domain. Movement
of the animal induces frequency modulation of those
VCOs according to where they rest in the frequency
domain.

These VCOs project to spatial-map cells, such as
place cells, grid cells, etc. The VCOs oscillate, so
various combinations of them can result in complex
interference patterns. Fourier Theory is the right
tool to understanding these interference patterns. We
propose that the connection strengths constitute the
Fourier coefficients of the spatial map for the cell they
project to. Each Fourier Transform implemented by
the connections is modulated by the phase state of

the VCOs. Since the VCOs are constrained to main-
tain a linear phase ramp, the spatial maps get shifted.
The slope of the phase ramp encodes the animal’s po-
sition in its environment, so the spatial maps are all
shifted in concert with the animal’s motion. This
framework makes it easy to understand the relation-
ship between the VCOs and cells that exhibit spatial
maps.

Grid cells might emerge as a by-product of a phase
coupling mechanism. Some research has shown that
the distributed nature of grid-cell encoding offers bet-
ter accuracy than the same number of sparse place
cells (Mathis and Herz, 2012). But this theory still
does not address why grid cells appear, since the bank
of VCOs also offers a distributed representation of
location. Another theory, and one that we plan to
investigate, is that grid cells are a by-product of the
coupling mechanisms that maintain the phase rela-
tionships within the bank of VCOs. It seems intuitive
that place cells could offer a stable and accurate rep-
resentation of location as long as the underlying net-
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work that feeds into the place cells encodes location
in a stable and accurate manner. Coupling between
nodes harnesses the redundancy in the network and
enables resources to be focussed on lower-dimensional
data, such as location. The coplanar-coupling nodes
assess the linear consistency among three or more
other nodes. In general, a linearity constraint in 2-D
will always require input from at least three VCOs
(in addition to the implicitly included DC node). We
plan to investigate more general implementations of
the coplanar constraint and observe whether these
mechanisms inherently generate grid-cell behaviours.

Couching the behaviour of the EC in terms of
Fourier Theory opens up a new vista of interpreta-
tions and predictions. It gives us the mathemati-
cal machinery to contemplate other neurophysiolog-
ical observations. For example, how might sensory
feedback be incorporated into the EC? If an ani-
mal is given a visual cue of its location, that sensory
data might excite the corresponding place cell, which
– in turn – could feed back through to the phase-
step nodes to adjust the slope of the phase ramp
so that it matches the animal’s location. It would
seem that this feature would be accompanied by a
phase-resetting mechanism that allowed the VCOs to
rapidly realign their phases (or take on some other
phase-ramp state).

The network we have built involves 119 popula-
tions, and contains a total of 67,800 LIF neurons.
Our implementation is an important step in demon-
strating the capabilities and behaviours of our model.
However, an obvious question remains, how might
such a system get established? What self-organizing
principles might apply, and where? Spatial maps of
place cells have been learned using Hebbian learn-
ing (Rolls et al., 2006). Grid cells can emerge spon-
taneously in a topographically connected network
with local excitation and lateral inhibition (Fuhs and
Touretzky, 2006; McNaughton et al., 2006). How-
ever, these “Turing grids” are not found in adults,
leading researchers to suggest that they form during
a developmental stage and are used to guide the for-
mation of grid cells in the non-topographical, adult
EC network. Even a random selection of grid cells can
produce place cells (Solstad et al., 2006; de Almeida
et al., 2009). We plan to investigate unsupervised

and supervised learning algorithms to derive neural
oscillators. One could also look at how such oscilla-
tors could take on the proper phase coupling.

The concept of using frequency modulation to en-
code spatial information is used in magnetic reso-
nance imaging (MRI). MRI is a medical imaging
modality that causes nuclear dipoles in tissues to pre-
cess, or oscillate. The MRI scanner is only capable
of sensing the sum of these spinning dipoles, so one
might think that there is no way to get spatial in-
formation from this sum. However, the scanner can
cause linear gradients in the oscillation frequency,
causing a phase ramp in the dipoles. In essence,
MRI raw data is encoded in the frequency domain.
These phase ramps allow the scanner to sample dif-
ferent Fourier coefficients, and build a picture of the
anatomy by taking the IDFT of that data.5 This
process is often called “spatial coding” or “phase en-
coding”.

6 Conclusion

Although a number of theories have been forwarded
regarding the relationships between place cells, grid
cells, phase precession, and other spatial-map cells,
none have explained all the components with a sin-
gle overarching framework. Our Fourier model of
the entorhinal cortex path integration system orga-
nizes the pieces into an architecture with a rich and
well-understood foundation. Knowledge about other
properties of the Fourier Transform can help to guide
further development of the model, and assess how it
may (or may not) be extended to explain or predict
other observations.
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