

How to build a brain Cognitive Modelling

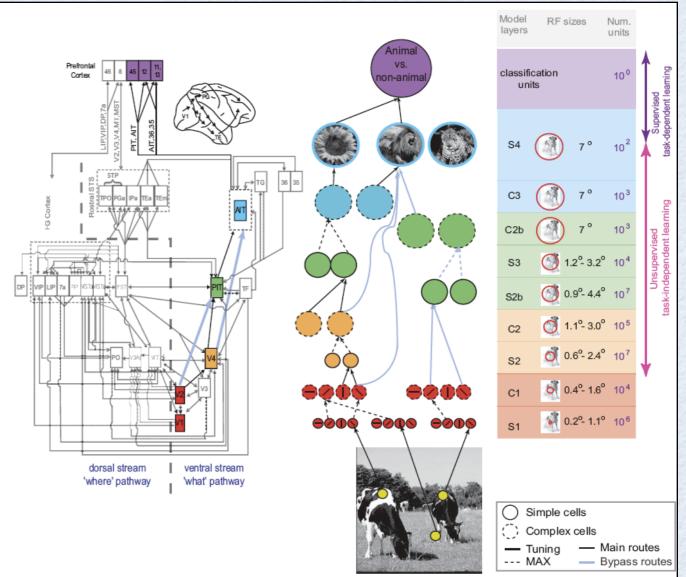
Terry & Chris Centre for Theoretical Neuroscience University of Waterloo

Sofar...

- We have learned how to implement
 - high-dimensional vector representations
 - linear transformations
 - nonlinear transformations
 - recurrent, dynamic networks

Semantic pointer architecture

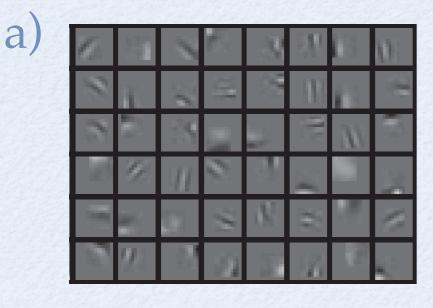
• The semantic pointer architecture uses these building blocks to construct cognitive models

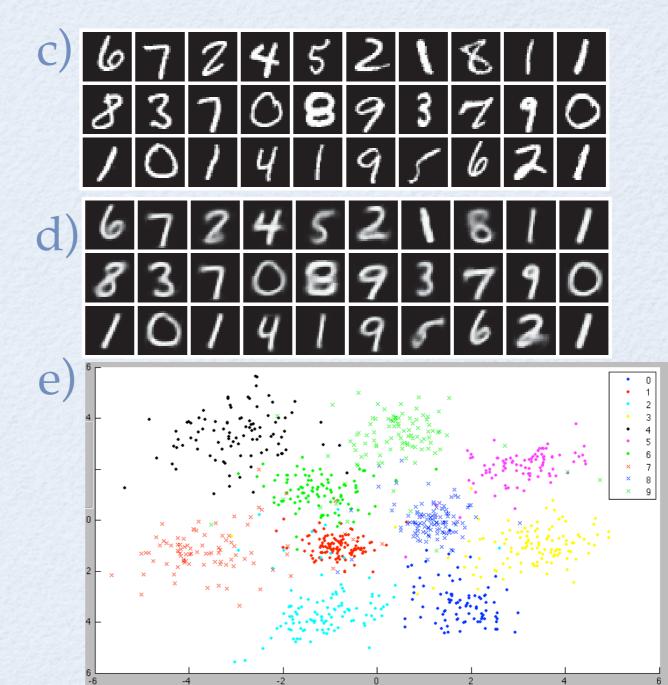

- Three things to outline:
 - Semantics
 - Syntax
 - Control

SPA: Semantics

- Semantic pointers are: Compressed, content-based 'addresses' to information in association cortices
- 'Pointer' because they are used to recall 'deep' semantic information (content-based pointer)
- 'Semantic' because they themselves define a 'surface' semantic space

SPA: Semantics


- E.g. The pointer would be the activity of the top level of a standard hierarchical visual model for object recognition
- This pointer can then support 'symbol' manipulation
- It can also be used to reactivate a full visual representation


Serre et al., 2007 PNAS

SPA: Surface/deep semantics

• Applied to numbers: a) neuron tuning; b) generic SPs; c) input; d) reconstruction; e) surface semantics

SPA: Surface/deep semantics

- Solomon & Barsalou (2004) showed that false pairings that were lexically associated take longer to process (e.g. dog-card 100ms quicker than bananamonkey)
- Kan et al. (2003) fMRI observed activation in perceptual systems only in the difficult cases
- Deep processing is not needed when a simple lexically-based strategy is sufficient to complete the task

SPA: Syntax

- Vector Symbolic Architectures (VSAs)
- Smolensky's Tensor Products
- Kanerva's Spatter Codes
- Gayler's Multiply, Add, Permute (MAP) method
- Plate's Holographic Reduced Representations (HRRs)

Structure representations

• All VSAs have some combination of 3 operations

- Multiply (bind)
- Add (compose)
- Hide (protect from other vectors)
- Chosen VSA: HRRs
 - Constant vector length
 - Protect and bind happen in 1 step
 - Real valued

Structured representations

• HRRs (Plate, 1991; circular convolution)

Circular convolution (binding)

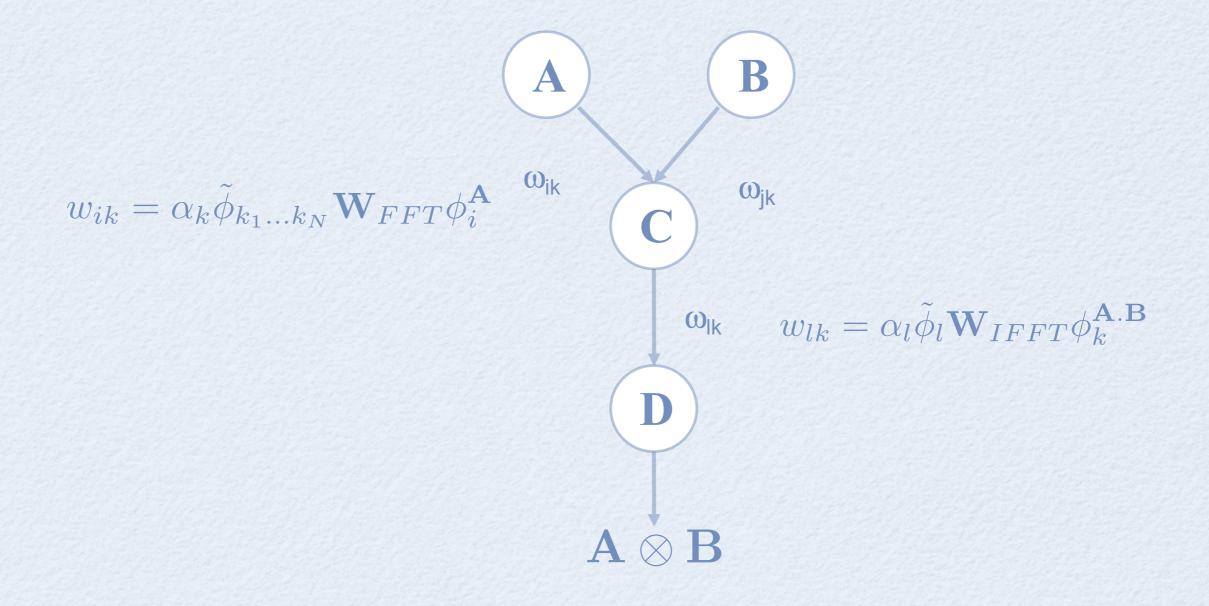
$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B}$$
$$c_j = \sum_{k=0}^{n-1} a_k b_{j-k}$$

• Circular correlation (unbinding)

$$\mathbf{B} \approx \mathbf{A} \oplus \mathbf{C}$$
$$b_j = \sum_{k=0}^{n-1} a_k c_{j+k}$$

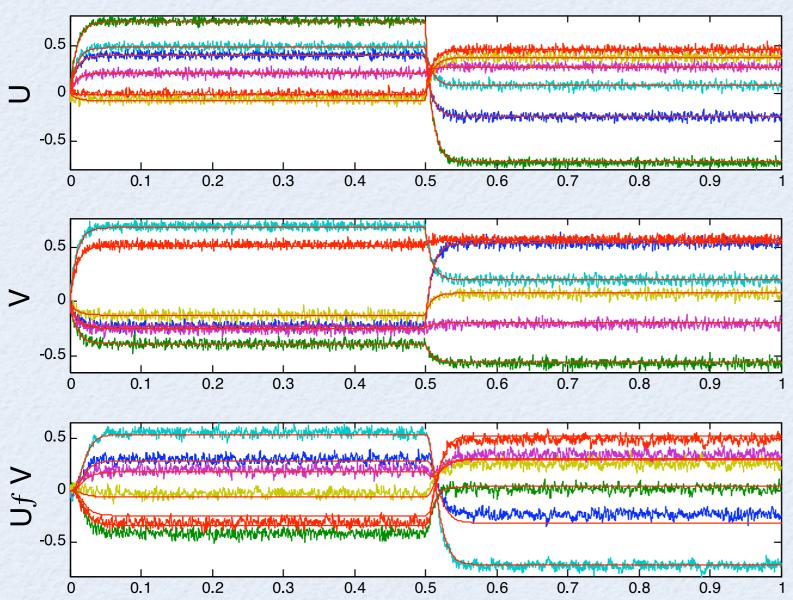
 $\mathbf{A} \oplus \mathbf{C} \approx \mathbf{A}' \otimes \mathbf{C}$

Circular convolution

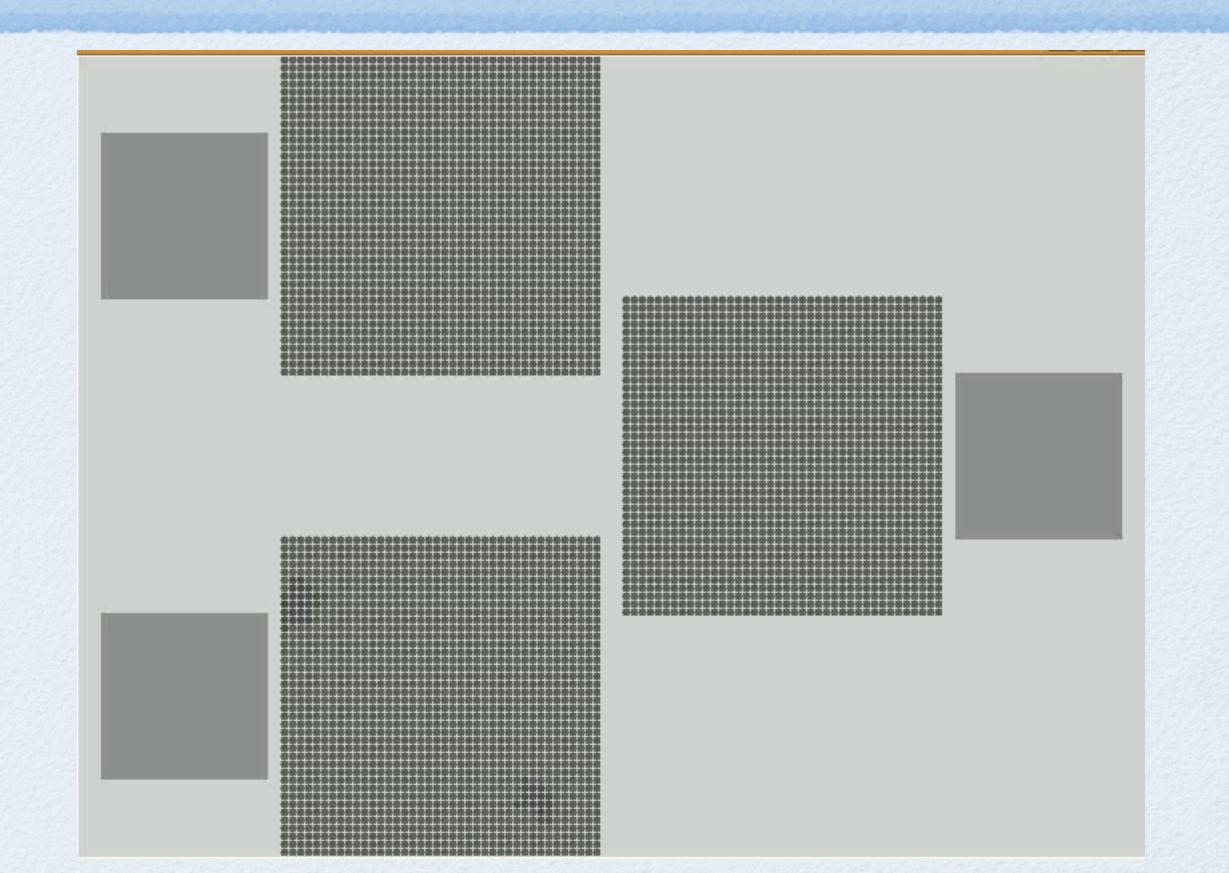

 Circular convolution in the frequency space is piecewise multiplication:
 FFT(**A** \otimes **B**) = *FFT*(**A**).*FFT*(**B**)

• Must use complex numbers, where

 $a * b = (a_1 + a_2 i) * (b_1 + b_2 i)$


Neural implementation

• Note first $\mathbf{A} \otimes \mathbf{B} = \mathbf{W}_{IFFT}(\mathbf{W}_{FFT}\mathbf{A}.\mathbf{W}_{FFT}\mathbf{B})$

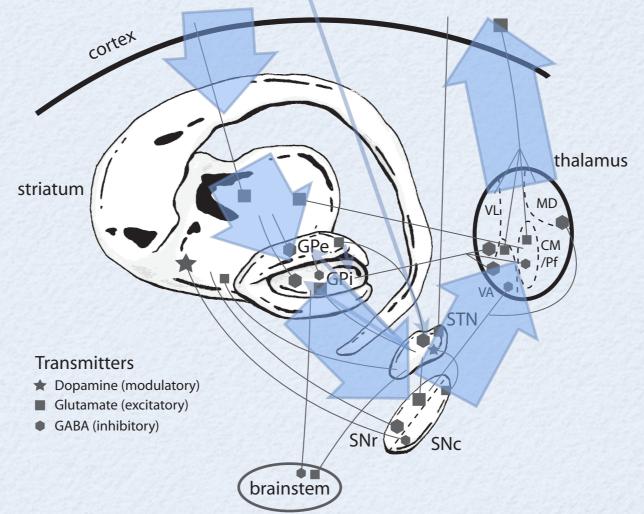

Circular convolution results

Circular Convolution for 6D Vectors

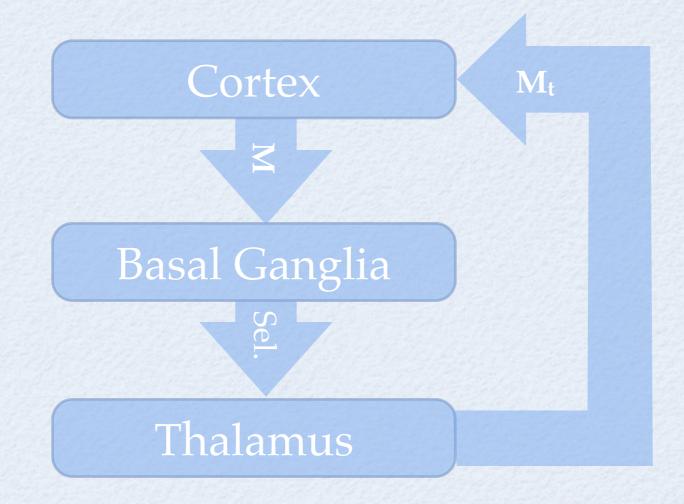
`																
)			I		1		1	I		1		1	1			
· · · ·							••••••									
·																
) =====															•••••	*****
								•••	••••••	•••••••	•••••	•• • • • • • •	•••••		••••	• • • • • • • •
1																
										••••••••	·····	·····				······································
) ==								······								
<u></u>																
														•		•
) 	** ** * * *					:	: • • • • • • • •									
·																
·		<u>· · ·</u>	· ·	·	<u>· · ·</u>	•	·	<u></u>								
										•••••						
·····										•••••						
) <u>E</u>																
.										•••••				•••••	•••••	
) 										*****						
'																
								•••	•••••	• • • • • • • • •	• • • • • • • •	•••••	•••••	••••	•••••	•••••
) <u>i</u> (
												• • • • •				
1::::			:::::::													
														• •		
															•••••	••••••
)							*****									
	•	• •		•	•	•	•									
	••••••															

Circular convolution

Clean-up memory*

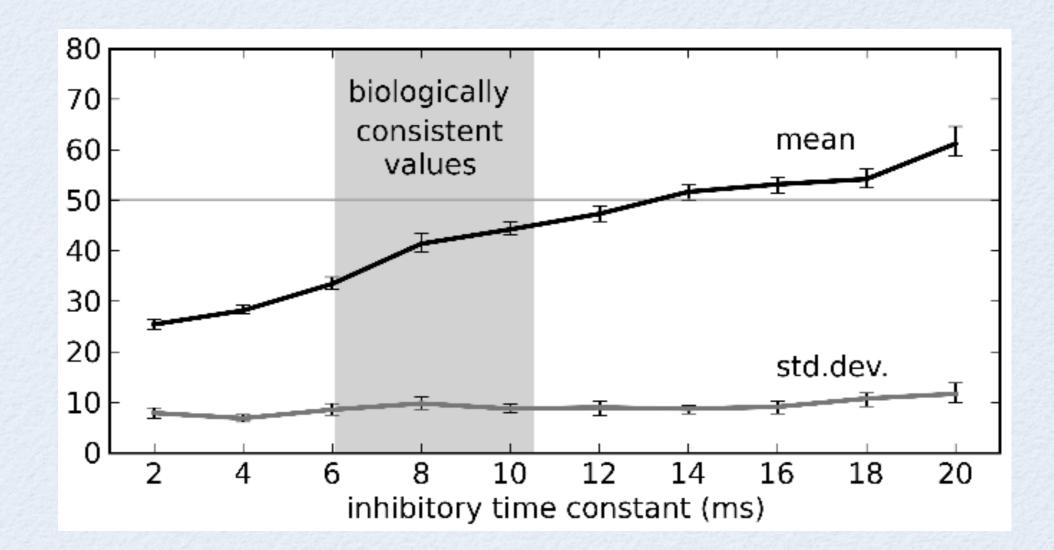

- To perform simple lexical processing, we need to ensure the result is a valid semantic pointer
- Because our chosen VSA is 'reduced', the output is typically not identical to a valid 'answer,' so we need to 'clean up' the results
- Elsewhere we have presented a fast spiking network solution to this (Stewart et al., 2010)
- Nengo includes an idealization of this to help build models

SPA: Control


- Two main control issues in the brain:
 - Choosing the next best thing to do (action selection)
 - Applying the action to control the flow of information (routing)

SPA: Action selection

• The basal ganglia has been implicated in action selection


SPA: Action selection

M compares the cortical state with known SPs
M_t maps selected action to cortical control states

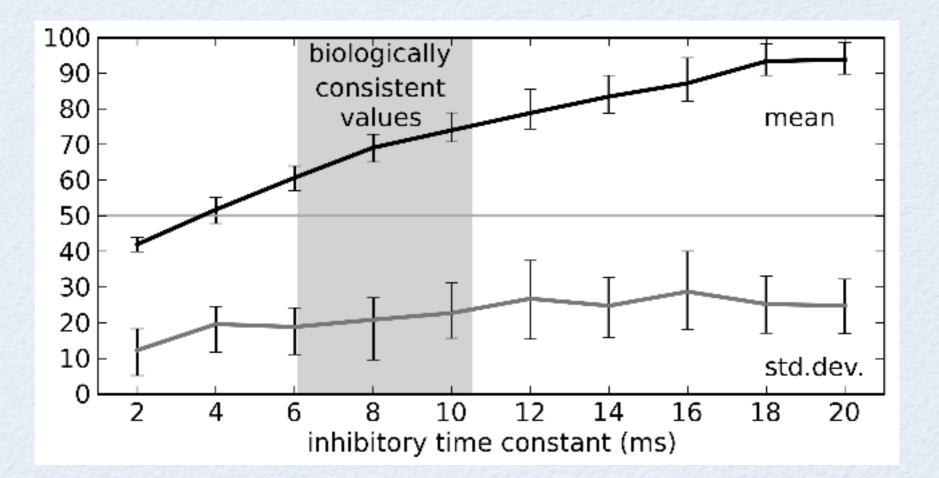
SPA: Action selection*

 Timing predictions based on GABA neurotransmitter time constant (simple actions)

SPA: Control states

- Simple action selection isn't enough, we need to control the flow of information through the system
- A 'gating' operation is ubiquitous (e.g. attention, sequencing, prioritizing, etc.)
- The controlled integrator is a simple 1D example (when A is zero and 1)
- We can add content to the control signal with a convolution network

SPA: Question answering


Sentence: "There is a red circle and blue triangle"
S = sentence + red ⊗ circle + blue ⊗ triangle
What is red?

 $\mathbf{Ans} \approx \mathbf{red}' \otimes \mathbf{S}$

- Transformation: make the red thing a square
- $\mathbf{convert} = \mathbf{square} \otimes (\mathbf{red}' \otimes \mathbf{S})'$
 - Ans \approx convert \otimes S
 - \approx sentence + red \otimes square + blue \otimes triangle

SPA: Control states*

• Timing predictions based on GABA neurotransmitter time constant (complex actions)

Conclusion

- The SPA/NEF addresses several neurally realistic cognitive modelling challenges
 - High-dimensional processing, control, syntax, semantics, statistical inference, relation to single cell models, network and cellular dynamics, etc.
 - Scales very well (Stewart & Eliasmith, 2010)
- A nascent research approach that is flexible and unifying