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Abstract. We use neuromorphic chips to perform arbitrary mathemat-
ical computations for the first time. Static and dynamic computations
are realized with heterogeneous spiking silicon neurons by programming
their weighted connections. Using 4K neurons with 16M feed-forward or
recurrent synaptic connections, formed by 256K local arbors, we com-
municate a scalar stimulus, quadratically transform its value, and com-
pute its time integral. Our approach provides a promising alternative
for extremely power-constrained embedded controllers, such as fully im-
plantable neuroprosthetic decoders.
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1 Brain-Inspired Analog–Digital Systems

Analog computation promises extreme energy-efficiency by operating close to
the shot-noise limit [1]. By exploiting physical laws (e.g., conservation of charge
for summation), a handful of analog devices is sufficient to perform computation.
In contrast, digital computation relies on abstractions that require many more
devices to achieve the same function (e.g., hundreds of transistors to add two
8-bit numbers). Furthermore, these abstractions break when noise exceeds a
critical level, requiring enormous noise margins to avoid catastrophic failures. In
contrast, analog degrades gracefully, allowing for operation at low noise margins,
thereby saving power.

However, robust and programmable computation using noisy analog circuits
is challenging. Robust computation requires a distributed approach, but this is
difficult because analog communication is susceptible to heterogeneity and noise.
Programmable computation requires flexibility, but this is also difficult because
analog computation exploits the underlying devices’ fixed physical properties.

In this paper, we realize robust and programmable mathematical compu-
tations with noisy and heterogeneous components using a framework inspired
by the brain [2]. The brain uses graded dendritic potentials (cf. analog compu-
tation), all-or-none axonal spikes (cf. digital communication) and probabilistic
synapses (cf. weighted connections). Our analog computational units are spik-
ing silicon neurons [5]; our digital communication fabric is a packet-switched
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network [3]; and our weighted connections are packet-delivery probabilities [8].
While neuromorphic systems that combine some or all of these features of the
brain have been built previously, they only performed specific computations. In
contrast, we realize any desired mathematical computation by programming the
connections’ weights to exploit the silicon neurons’ heterogeneity.

Section 2 reviews a theoretical framework for mapping computations onto
heterogeneous populations of spiking neurons. Section 3 presents hardware el-
ements that support this framework. Section 4 describes Neurogrid, a sixteen-
chip, million-neuron neuromorphic system used as a testbed (proposed in [4]).
Section 5 presents implementations of static and dynamic computations. Section
6 discusses possible applications.

2 The Neural Engineering Framework

To program the connection weights among heterogeneous spiking neurons (in-
dexed by i), NEF follows three principles [2] (Figure 1):

Representation: Amulti-dimensional stimulus x(t) is nonlinearly encoded as a
spike rate ai(x(t))—represented by the neuron tuning curve—that is linearly
decoded to recover an estimate of x(t), x̂(t) =

∑

i ai(x(t))φ
x

i , where φx

i are
the decoding weights.

Transformation: Transformations of x(t) into y(t) are mapped directly to
transformations of ai(x(t)) into bj(y(t)) using alternate decoding weights.
For example, y(t) = Ax(t) is represented by the spike rates bj(Ax̂(t)),
where neuron j’s input is computed directly from neuron i’s output using
Ax̂(t) =

∑

i ai(x(t))Aφx

i , an alternative linear weighting.
Dynamics: Dynamics are realized using the synapses’ spike response h(t). This

principle brings together the first two principles and adds the time dimension.
For example, for h(t) = τ−1e−t/τ , ẋ = Ax(t) + By(t) is realized as the
equivalent, neurally plausible dynamical system: x(t) = h(t) ∗ (A′x(t) +
B′y(t)), where convolution replaces integration, A′ = τA+ I, and B′ = τB.

The first principle is realized by assigning neuron i a randomly chosen pre-
ferred direction in the stimulus space, φ̃i:

ai(x(t)) = G(Ji(x(t))) where Ji(x(t)) = αi〈φ̃i · x(t)〉+ Jbias
i (1)

Here G is the neurons’ nonlinear current-to-spike-rate function. The dot prod-
uct converts the multi-dimensional stimulus, x(t), to a one-dimensional soma
current, Ji. αi is a gain or conversion factor and Jbias

i is a bias current. These
two parameters are chosen to uniformly distribute firing thresholds and maxi-
mum firing rates within specified ranges (Figure 1, left). For a one-dimensional
(1D) stimulus space, φ̃i = ±1 . In contrast, the linear decoding weights, φx

i ,
are obtained by minimizing the mean square error. This error may be computed
relative to the original stimulus x(t) or some nonlinear function thereof, f(x(t)),

yielding f̂(x(t)) =
∑

i ai(x(t))φ
f(x)
i .
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Fig. 1. NEF’s three principles. Representation: Tuning curves map stimuli (x(t))
to spike rates (ai(x(t))). Transformation: Populations ai(t) and bj(t) connected by
weights wij transform x(t)’s representation into y(t)’s. Dynamics: Synapses’ spike
response, h(t), implement dynamics using neurally plausible matrices A′ and B′.

The second and third principles are realized by using the matrix A that
describes x(t)’s transformation or dynamics to specify the weight wij connecting
neuron i to neuron j [2]:

wij = 〈φ̃j ·Aφ
f(x)
i 〉 ⇒ Jj = αj

∑

i

wijai(x(t))+Jbias
j = 〈φ̃j ·Af̂(x(t))〉+Jbias

j (2)

where φ
f(x)
i is neuron i’s decoding vector and φ̃j is neuron j’s encoding vector

(Figure 1, middle, right). Neuron j will fire as if it received an input of y(t) =
Af̂(x(t)); hence decoding its firing rate will yield the desired result. This recipe
enables a computation specified in a low-dimensional space (A) to be solved in
a high-dimensional space (wij) using lower precision elements.

3 Hardware Elements

To support NEF in hardware, we need spiking silicon neurons, exponentially
decaying synapses and programmable interconnection weights. Neurogrid imple-
ments these elements as follows.

Silicon neurons are implemented with quadratic integrate-and-fire dynamics:

τmv̇ = −v + v2/2 + gsyn(erev − v) (3)

where τm is the membrane time-constant, v is the membrane potential (normal-
ized by the threshold voltage), gsyn is the total synaptic conductance (normalized
by the leak conductance), and erev is the reversal potential (also normalized by
the threshold voltage); v is reset to 0 when it exceeds 10. Integration yields the
inter-spike intervals and inversion yields the conductance-to-spike-rate function:

G(gsyn) =

(

τm
π + 2arccot(

√

2erev gsyn/(1 + gsyn)2 − 1)

(1 + gsyn)
√

2erev gsyn/(1 + gsyn)2 − 1
+ tref

)−1

(4)
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where tref is the refractory period [6]. This nonlinear function is appropriate as
NEF does not favor any particular neuron model.

Silicon synapses are implemented by low-pass filtering unit-amplitude digital
pulses, prise(t), of width trise [7]:

τsyn ġsyn = −gsyn + gsat min(
∑

iprise(t− ti), 1) (5)

where τsyn is the exponential decay constant, gsat is the saturation conduc-
tance value and ti are the spike times. prise(t) is triggered for every presynap-
tic spike that the neuron receives. Longer trise will result in longer exponential
rise and thus a higher peak. Minimizing trise avoids saturation and matches
h(t) = τ−1e−t/τ more closely.

These synapses’ programmable reversal potential (erev) supports positive and
negative weights. An input spike causes the synapse to drive the membrane
potential to erev. If erev is greater than the membrane’s resting potential, the
membrane depolarizes, realizing a positive weight (excitatory synapse). If erev
is lower than the membrane’s resting potential, the membrane hyperpolarizes
realizing a negative weight (inhibitory synapse). These two effects are not nec-
essarily balanced because their driving forces change in opposite ways with the
membrane potential. This imbalance is minimized by setting erev much higher
or much lower than v, such that their difference is much larger than v’s changes.

Programmable interconnection weights are implemented probabilistically. In
NEF, wij specifies the amplitude of the synaptic current (i.e., gsat) that is fed as
input to postsynaptic neuron j when presynaptic neuron i spikes. In our proba-
bilistic implementation, the input strength does not vary. Instead, wij specifies
the fraction of presynaptic neuron i’s spikes that reach postsynaptic neuron
j [8]. This approach eliminates the need for a digital-to-analog converter (as-
suming that the weights are stored digitally) and an analog multiplier. It also
reduces bandwidth requirements, since the probabilities are usually very low
(small weights).

The ability to utilize the fabrication process’ imperfections (i.e., transistor
mismatch) is one of NEF’s attractions. The silicon neuron’s properties (thresh-
old voltage and leakage conductance) are determined by its transistors’ physical
properties (width, length and doping). Variations in these properties cause nor-
malization factors to vary from one neuron to another, resulting in a distribution
of bias and gain parameter values [5]. As a result, identically designed neurons
have different conductance-to-spike-rate functions, and hence we do not need to
set different bias currents and gains for each neuron. However, mismatch in the
silicon synapse’s properties (gsat, erev, trise τsyn) is detrimental because it imbal-
ances excitation and inhibition, as the same circuit is used for all the synapses
(of a given type) a particular neuron receives. We mitigated this by modifying
the algorithm that finds the decoding weights (see Section 5).

4 System Description

We use Neurogrid, a neumorphic system with one million spiking neurons, for
analog computation and a daughterboard, with an FPGA and a bank of SRAMs,
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Fig. 2. Neurogrid. Spiking neural networks with up to 16 layers, each with up to
256×256 neurons, are modeled with sixteen 12×14 sq-mm Neurocores (left) assembled
on a 6.5×7.5 sq-in circuit board (center, main board). Neurocores, connected in a binary
tree with 91M spikes/s links (peak rate), relay their spikes to a routing table (center,
daughterboard) that supports programmable weighted connections. Spike activity is
visualized in real time (right). The entire 1M-neuron system consumes 3.1W.

for digital communication (Figure 2). Layers are mapped onto Neurogrid’s 180
nm CMOS chips (Neurocores) and connected by relaying packets.

The daughterboard implements our probabilistic connection scheme. The
SRAMs (Cypress Semiconductor CY7C1071DV33) store 32 MBytes with a 50
ns access time. The FPGA (Xilinx Spartan-3E, 100MHz clock) parses incom-
ing packets to identify the source neuron’s chip, row, and column address. This
information is used to calculate a base address from which to begin reading
SRAM entries. Each 32-bit entry specifies four weights (6-bit value, a sign bit
and a control bit). A Bernoulli trial is performed by comparing a 7-bit random
number with the 6-bit value, padded with one zero to yield a maximum prob-
ability of 0.5. If the random number is less than the weight, a packet is output
that specifies the route to the corresponding target neuron’s Neurocore as well
as its row and column address. The synapse type is also included—excitatory
or inhibitory—determined by the weight’s sign. If the random number is more
than the weight, the connection is ignored and the next entry is read.

With all-to-all connectivity, the FPGA can support NL = 2175 neurons per
layer firing at an peak mean rate of favg = 16.9 spikes/s, a total of N2

Lfavg = 80M
connections per second. Four weights are delivered every 50 ns, and thus each
connection is processed in twgt = 12.5 ns. Hence,NL cannot exceed 1/

√

favgtwgt =
2175. Since the average weight is less than 1/16 in practice, no more than 5M
packets per second are sent to Neurogrid. Thus, the 200 ns it takes to output a
packet—four clock cycles per word—does not limit performance.

Larger networks can be supported by exploiting Neurogrid’s local arbor
mechanism, which efficiently distributes synaptic input by relaying analog sig-
nals between neighboring neurons [9]. A neuron r neurons away from the arbor’s
center receives a synaptic input that decays as λr/

√
r (λ is programmable for

each synapse type). This method enables us to increase connections by a factor
of d2, where d is the arbor’s diameter, defined as 2/ lnλ—twice the distance at
which the current decays by a factor of e. It also produces distributions of bias
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Fig. 3. Representation and Transformation. First (left) and second (right) layers
accurately represent and transform static (left) and time-varying (right) values of
f± = max (±x, 0) and max (±x2, 0), decoded with 0.1 s time-bins. NL = 4K, m = 50
(an additional 50 distinct stimulus values were used for testing), fmax = 4000 spikes/s,
τm = 6 ms, tref = 1 ms, τsyn = 0.1 s, trise = 0.2 ms, gsat = 600, erev = 4 or 0.2, λ = 0.45
or 0.5, and d = 8. The linear and quadratic network’s 1356 and 2927 neurons with
non-zero weights fired 3.56 and 2.75 spikes/s/neuron, respectively, on average.

currents and gains larger than those provided by transistor mismatch, which is
desirable for NEF. Using arbors yields NL = d/

√

favgtwgt = 17400 for d = 8.
This structured synaptic organization, whereby neighboring neurons receive sim-
ilar inputs, is akin to the cortex’s columnar organization.

5 Implementation Results

We demonstrated NEF’s three principles in Neurogrid by communicating a scalar
stimulus, quadratically transforming its value, and computing its time integral.
We deliver the scalar stimulus (−1 ≤ x ≤ +1) in the form of Poisson spike trains
(f±) to the excitatory and inhibitory synapses.

To represent the scalar x, encoding vectors, φ̃i = ±1, are randomly assigned
to the NL/d

2 arbor centers where f± = fmax max (±x, 0) are applied. For x =
−1, neurons with φ̃i = +1 receive 0 and fmax spikes/s at their excitatory and
inhibitory synapses, respectively. For x = +1, the synapses receive fmax and 0
spikes/s, respectively. For x = 0, both synapses receive 0 spikes/s. The reverse
is true for φ̃i = −1.

We compute decoders to recreate f± using convex optimization (CVX package
in MATLAB), constraining the decoding weights to be non-negative (the next
paragraph explains why) and to not exceed the FPGA’s maximum probability.

The NL decoding weights, Φf± = [φ
f±

1 , . . . , φ
f±

NL
]T , satisfy:

minimize ||MΦf± − f±||2 subject to 0 ≤ φ
f±

i ≤ 0.5 (6)

where M is a m ×NL matrix of measured spike rates, with NL columns corre-
sponding to the neurons and m rows corresponding to the applied spike input
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Fig. 4. Dynamics. Left: Spike rasters of 1237 neurons that had non-zero recurrent
weights (top) in response to a train of 0.2 s long stimuli (bottom) presented every second
with amplitudes of +1, +1, +1, −4, −1, −1 and +3. The banded structure results
from local arbors. Right: Decoded integral of the stimuli (30 trials) reveal random
walks that converge and diverge near particular values—evidence of local stable and
unstable points. Parameters same as in Figure 3.

rates, which are specified by f±, a m × 1 vector. We build decoders to obtain

fx2

± = fmax max (±x2, 0) using the same approach (Figure 3, left).
To communicate the scalar (y = x) or transform it quadratically (y = x2),

we use the previously computed decoding weights to program the weight that
connects source layer neuron i to target layer arbor center j. Specifically, we

program the excitatory and inhibitory weights to w±

ij = max(〈φ̃j · φf±

i 〉, 0) −
min(〈φ̃j ·φf∓

i 〉, 0), such that wij = w+
ij−w−

ij . This formulation delivers an estimate
of f± to the target layer, except that it will use the opposite synapse type

if φ
f±

i < 0. For instance, if f± both have 10 negatively weighted spikes per
second, then instead of receiving 40 (= 50−10) and 10 (= 20−10) spikes/s, the
excitatory and inhibitory synapses would receive 60 and 30 spikes/s. If mismatch
(see Section 3) makes the excitatory synapse stronger, these additional spikes
will have a net excitatory effect. This bias would make the target neuron spike
at a higher rate, which would lead to a decoding error. Non-negative decoding
weights avoid this error and yields accurate communication and transformation
(Figure 3, right).

To integrate the scalar (ẋ = u), we use the decoding weights for f± =
fmax max (±x, 0) to program the weight wij that connects neuron i to arbor
center j within the same layer (A′ = I) and apply input spike rates scaled by
τsyn (B′ = τsynI). At 2 s, the integrator’s time constant is over an order of mag-
nitude greater than τsyn = 0.1 s (Figure 4). Over multiple trials, the mean and
variance of the integrator’s value change with a time constant of 2.0 s (drift)
and a rate of 4.9× 10−4/s (diffusion), respectively. These values can be reduced
by increasing fmax or τsyn, as each neuron estimates f± using the τsynf± spikes
it received in the last τsyn seconds. The signal-to-noise ratio should improve as
√

τsynfmax (assuming Poisson statistics). However, the hardware’s minimum trise
(0.2 ms) limited fmax to 4000 spikes/s, compared to 80× 4096 = 320K for NEF.
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6 Conclusion

We have demonstrated NEF’s three principles on neuromorphic hardware, suc-
cessfully performing arbitrary mathematical computations using silicon neu-
rons. Unlike NEF’s deterministic weights, we used probabilistic weights and
still achieved accurate results. Our results readily extend to multiple dimen-
sions, thus supporting any control-theoretic algorithm. One example is a Kalman
filter-based decoder for brain-machine interfaces [10], and we can now envision
a low-power, fully implantable neuromorphic chip to implement it.
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