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ABSTRACT
We present a theory and neurocomputational modebwfspecific brain operations produce
complex decision and preference phenomena, ingutiose explored in prospect theory and
decision affect theory. We propose that valuatioth @ecision making are emotional processes,
involving interacting brain areas that include t@xpectation-discrepancy subsystems: a
dopamine-encoded system for positive events ardodain-encoded system for negative ones.
The model provides a rigorous account of loss ame@nd the shape of the value function from
prospect theory. It also suggests multiple distimairological mechanisms by which information
framing may affect choices, including ones invotyamticipated pleasure. It further offers a
neural basis for the interactions among affecgrpgkpectations and counterfactual comparisons
explored in decision affect theory. Along with pictohg the effects of particular brain
disturbances and damage, the model suggests spaaifiological explanations for individual
differences observed in choice and valuation beiravi
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How do people decide what clothes to wear, whaatdor dinner, what car to buy, or
what kind of career to pursue? In traditional ecoins, the standard answer is that people decide
by maximizing expected utility, but psychologists/b found many problems with this kind of
decision theory as a description of human behgeigr., Camerer, 2000; Kahneman & Tversky,
2000; Koehler, Brenner, & Tversky, 1997; Rottenstr&& Hsee, 2001; Tversky & Kahneman,
1991). Economists commonly take preferences asgiug from a psychological point of view
it should be possible to explain how preferencesedrom cognitive and affective processes.
Work in this spirit has made tremendous progressvealing key features and dynamics missed
by theories disconnected from the study of cogaejtemotional and socially motivated
phenomena, such as a common hypersensitivity se$ogver equivalent gains (Kahneman &
Tversky, 1979) and the affective influence of peapectations and counterfactual comparisons
on preference judgments (Mellers, 2000). Moreowh the rise of cognitive and affective
neuroscience, it should be possible to identifcig@neural mechanisms underlying these
behavioral-level explanations of why people maledhoices that they do.

We proposeneural affective decision theoag a psychologically and neurologically
realistic account of specific brain mechanisms dyde human preference and decision. The
theory consists of four principles, which we sligl here and describe in detail later:

1. Affect.Decision making is a cognitive-affective processicially dependent on emotional
evaluation of potential actions.

2. Brain.Decision making is a neural process driven by dimated dynamic interactions among
multiple brain areas, including parts of prefrordaitex as well as major subcortical systems.
3. Valuation.The brain forms preferences via interacting bstidict mechanisms for positive

and negative outcomes, encoded primarily by dopamm serotonin, respectively.



4. Framing.Judgments and decisions vary depending on howathiext and manner of the
presentation of information initiate different naliactivation patterns.

There is substantial empirical evidence for eacthege principles, and when integrated in the
precise manner we outline they can explain tharigglof a wide range of psychological and
neurological phenomena.

In order to connect these principles with experitakresults in a mathematically and
neurologically rigorous fashion, we have developeturocomputational model called
ANDREA (Affective Neuroscience of Decision throuBleward-based Evaluation of
Alternatives). It operates within the Neural Engineg Framework (NEF) developed by
Eliasmith and Anderson (2003), using biologica#listic populations of neurons to encode and
transform complex representations of relevant mitton. ANDREA simulates computations
among several thousand neurons to model coordiatedties in seven major brain areas that
contribute to valuation and decision making: theygdala, orbitofrontal cortex, anterior
cingulate cortex, dorsolateral prefrontal cortére ventral striatum, midbrain dopaminergic
neurons, and serotonergic neurons centered indisaldaphe nucleus of the brainstem.

ANDREA successfully produces detailed neural-lesmelulations of behavioral findings
explored in prospect theory (Kahneman & Tverskyy9)%and the decision affect theory of
Mellers and colleagues (1997). It shows how speaiéiural processes can produce behaviors
observed in both psychological experiments andweald scenarios that have provided
compelling evidence for these preference and chtbmeries. In particular, ANDREA provides
neurological explanations for the major hypothesigrospect theory that losses have greater
psychological force than gains, as well as forftimelamental claim of decision affect theory that

the evaluation (and subsequent potential choicahafption is strongly influenced by its



perceivedelative pleasurean emotional determinant that is dependant oeeafons and
counterfactual comparisons. In our concluding dis@n, we compare ANDREA to other
models in decision neuroscience, describe promevwagues of expansion for ANDREA and
neural affective decision theory, and suggest aidit psychological phenomena that are likely
to fall within the scope of our theory.

NEURAL AFFECTIVE DECISION THEORY

We now examine in detail the four guiding princgtd neural affective decision theory,
including connections to and supporting evidene¥idied by a diverse array of research in both
psychology and neuroscience. The ANDREA implemematf the theory we describe later
provides the formal integration of these ideas sga®y for our detailed simulation experiments.
Principle 1. Affect.

According to our first principle, decision makirgga cognitive-affective process,
crucially dependent on emotional evaluation of pbét actions. This claim rejects the
assumption of traditional mathematical decisiorotlighat choice is a ‘cold’ process involving
the calculation of expected values and utilitiesefys, 1990; von Neumann and Morgenstern,
1947). The original nineteenth-century concepttdityiwas a psychologically rich, affective
one based on pleasure and pain (Kahneman, WakiegkGarin, 1997). In contrast, twentieth-
century economics adopted the behaviorist viewuhhties are mathematical constructions
based on preferences revealed purely by behavi@relis no room in this view for findings
observed in both psychological experiments andyehasr life that people’s decisions are often
highly emotional, with preferences arising from imgvpositive feelings for some options and
negative ones for others. While psychology hasthiced a more complex characterization of

the cognitive processes underlying decision makimg specific influence of affect on behavior



has frequently been ignored. Rottenstreich and(30@4) argue that this neglect of affect may
stem from an original desire of psychological detisesearchers to minimize differences with
the terminology and general themes of classicahative decision theories.

But there is increasing appreciation in cognitigeesce that emotions are an integral part
of decision making (e.g. Bechara, Damasio, & Dam&000, 2003; Churchland, 1996; Lerner
& Keltner, 2000; Loewenstein, Weber, Hsee, & WelkbB01; Sanfey, Loewenstein, McClure, &
Cohen, 2006; Slovic, 2002; Wagar & Thagard, 20B4hneman (2003, p. 710) argues that
“there is compelling evidence for the propositibattevery stimulus evokes an affective
evaluation.” Common experience suggests that em®aoe both inputs and outputs of decision
making. Preference for one option over another n@épstrongly on their relative emotional
interpretations, and the process of decision magamgitself generate emotions such as anxiety
or relief. The relevance of emotion to decision mgks consistent with physiological theories
that regard emotions as reactions to somatic clsafdgenes, 1894; Damasio, 1994). It also fits
with some cognitive theories of emotions, whicharelgthem as judgments about the extent to
which ones goals are being satisfied (Oatley, 199@)m a neurological perspective, it is easy to
see how emotions can be both cognitive and phygicdf as there are numerous
interconnections among the relevant brain areas.

Principle 2. Brains.

According to our second principle, decision makig neural process driven by
coordinated dynamic interactions among multiplerbeseas, including parts of prefrontal cortex
as well as major subcortical systems. In parti¢w@dativity in brain regions involved in assessing
and acting upon the appetitive or aversive nat@istimuli (commonly conceptualized as part of

the brain’sreward systeinseems most crucial to understanding judgmenthndte behavior



(for a review, see Sanfey, Loewenstein, McClur&éhen, 2006). Empirical neuroscientific
investigation of the nature of preference and decikas been developing rapidly, and much
work today is identifying specific brain areas itwed in producing decision-related behaviors
(e.g., Bayer & Glimcher, 2005; Breiter, Aharon, Kaman, Dale, & Shizgal, 2001; Knutson et
al, 2005; McClure, York & Montague, 2004; Montagu®erns, 2002). This nascent field of
decision neuroscienaepresents an exciting frontier of deep explorairdo how and why
people act, think and feel as they do in choicejaddment scenarios (Shiv et al., 2005).

But taking a neural approach to decision makingveadl for much more than simply
identifying brain areas activated in the subjectisehavioral studies. The development of
biologically plausible theories diowbrain areas interact to produce preferences andehoan
provide more refined mechanistic explanations aisien behaviors. Moreover, investigation at
the neural level can suggest novel experimentsexXample the recent discovery that an odorless
nasal spray preparation of the neuropeptide oxytimcireases trust in risky choice scenarios,
including those involving monetary transactions ¢kabd, Heinrichs, Zak, Fischbacher, & Fehr,
2005). Such a finding is one that decision neusys® can reveal, but that would be missed by
higher level psychological study alone. Neurosageren thus inform the development of more
detailed predictions and richer understandingsebialioral-level observations.

Principle 3. Valuation.

Our third principle states that the brain formsf@rences via interacting but distinct
mechanisms for positive and negative outcomes,dattprimarily by dopamine and serotonin,
respectively. There is extensive evidence that naidldopamine neurons, such as those in the
ventral tegmental area and nucleus accumbens)ak/éd in the computation of a discrepancy

between the expected and actual rewarding natusa otitcome (e.g., Schultz 1998, 2000; Suri



2002; Knutson et al. 2005), although recent evidesuggests that this activity is only involved
in the encoding gbositivedeviations from expectations, that is, getting ntben one expected.
(Bayer & Glimcher, 2005). Daw, Kakade, and Daydd0@) describe a plausible alternative
brain mechanism for situations in which one receiess than expected, arguing that serotonin
innervation from the dorsal raphe nucleus of therstem is crucial for producing characteristic
reactions to negatively valued stimuli and matbsinig considered (e.g., options in a choice
scenario). There are thus neurobiological reasongiéwing gains and losses as being encoded
and subsequently assessed in a fundamentallyeafitfenanner by the brain, involving distinct
neural circuits and activation patterns. This pdegithe basis for our explanation of the central
finding of prospect theory that losses loom latf@n gains. Our neurocomputational model
ANDREA simulates how interactions of the dopamind aerotonin systems with the amygdala
and other brain areas may enable this asymmeseasament of positive and negative outcomes.
Principle 4. Framing.

The last principle states that judgments and datssvary depending on how the context
and manner of the presentation of informationatgidifferent neural activation patterns. The
importance of framing is evident from the long argtof influential work by Kahneman and
Tversky (1981, 1986, 2000). They demonstratedftaating a decision in terms of either losses
or gains can substantially affect the choices pleaple make, and related phenomena have been
observed in many real-life arenas such as the st@gket and consumer choice (Camerer,
2000). We contend that framing can be understoed ewre deeply from the neural-affective
perspective we propose in our first two principlBse simulation results we describe later show
how this enriched conception of framing allowstloe integration of diverse lines of behavioral

decision research, as well as the postulation pbimant new predictions and hypotheses.



We take the concept of framing to encompass amgnpiat effects of the manner or
context of presentation on decisions and judgmé&midowing this characterization, such
findings as preference reversals when outcomesvaleated jointly versus separately (e.qg.,
Hsee, Loewenstein, Blount, & Bazerman, 1999) madbd be considered to be framing results.
Another such framing effect is illustrated by tiv@liey-footbridge’ dilemma (e.g., Greene et al.,
2001): most people consider flipping a switch tbdme person instead of five morally justified,
but consider it immoral to personally push a pelstmthe path of an oncoming trolley, killing
that person but preventing the trolley from killifige others. We will also explain some of the
findings of the decision affect theory of Mellersdecolleagues (1997) as framing effects that
differentially activate specific neural systems.

These four principles make strong claims abouptieeesses that constitute human
decision making, but alone they are not sufficieptiecise to explain particular experimental
results. We now describe a rigorously defined,dgaally realistic neurocomputational model
that specifies how different brain areas mightraxtéin a manner consistent with neural
affective decision theory to produce observed benalphenomena.

THE ANDREA MODEL

A neuropsychological theory consists of a set gidtlgeses about how specific brain
operations produce observed behaviors. Because aoimplexity of the brain, computational
models are indispensable for theoretical neuroseidooth for precisely specifying relevant
neural structures and activities and for examirivegr implications through appropriate
simulation experiments. Litt, Eliasmith, and Thabé006) proposed a biologically detailed
neural model of reward system substrates of valoatnd decision. We describe here the

primary functional components of this model, andaduce several explanatorily valuable



additions regarding neural response characteriatidthe complexity of emotional arousal
encoding. This version of the model we call ANDREgY, Affective Neuroscience of Decision
through Reward-based Evaluation of Alternatives.

Our model applies the Neural Engineering FrameWNEF) developed by Eliasmith
and Anderson (2003), and has been implemented i IM¥ using the NEF simulation
softwareNESim(see Appendix A). Neural populations (‘ensemblas{l their firing activities
are described in the NEF in terms of mathematiqakcise representations and transformations,
with the dynamic characteristics of neural compatet characterized using the tools of modern
control theory. Appendix B outlines the exact math&cal nature of representation,
transformation and dynamics as defined by the NS rigorous, generalized mapping of
high-level mathematical entities and transformagionto biophysical phenomena such as spike
patterns and currents allows for biologically coaisted computations and dynamics to be
implemented in physiologically realistic neural péagions, and has proven successful in
modeling phenomena ranging from the swimming ofdesw fish (Eliasmith & Anderson, 2000)
to the Wason card task from cognitive psycholodia@inith, 2005b).

Figure 1 shows the connectivity structure betwéendifferent brain regions we have
modeled. A comprehensive examination of afferedtefferent transmission among these
regions would feature many more connections thahawve included. The interactions shown
represent particular paths of coordinated actiit contribute to observed behaviors, rather
than a full characterization of all relevant newetivity. Appendix A provides details regarding
the specific numbers of neurons used to model eatltese brain areas, as well as the
physiological parameters used to model individ@alrons in each of these populations. Each

input-output relation symbolized by a connectiorelin Figure 1 maps onto one or more specific



mathematical transformations, as summarized in AgpeC. We now describe these

coordinated neural computations as they are retdoagxplaining decisions and valuations.
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Figure 1: Basic connectivity framework. Dotted arrows représexternal inputs to the model.
Abbreviations: 5-HT, dorsal raphe serotonergic nasy ACC, anterior cingulate cortex;
AMYG, amygdala; DA, midbrain dopaminergic neuroB$;PFC, dorsolateral prefrontal cortex;
OFC, orbitofrontal cortex; VS, ventral striatum.
Subjective Valuation by Emotional Modulation

Valuation of alternatives and other informatiorarsessential part of decision making.
Central to the performance of this task by ANDREAN interaction between the amygdala and
orbitofrontal cortex (Fig. 1). Much research haglicated orbitofrontal cortex in the valuation
of stimuli (e.g., Rolls, 2000; Thorpe, Rolls & Maddn, 1983), particularly in light of its
extensive connections with sensory processing arfei® brain. Several recent studies have
indicated an important role for orbitofrontal neasan providing a sort of “common neural
currency” (Montague & Berns, 2002) which allows foe evaluation and comparison of
figurative (or even literal) apples and orangesi(RaSchioppa & Assad, 2006). Recent studies
of the amygdala have challenged its traditionabeission with mainly aversive stimulus

processing, showing instead activation based odélgeee to which stimuli are salient or

arousing, rather than a specific valence typedfoaview, see McClure, York & Montague,
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2004). This has inspired a reinterpretation ofsitasesults as indicating that negatively
appraised events may be in general more emotioasllysing than positive outcomes, perhaps
because of a need to alter current behavior irorespto aversive feedback. In accord with
research on the role of the amygdala in emotiott@hon (Adolphs et al., 2005) and
multiplicative scaling observations for visual atien (e.g., Treue, 2001), ANDREA performs a
multiplicative modulation by amygdala-encoded e arousal of the valuation computation
performed in orbitofrontal cortex (Fig. 2). That @bitofrontal valuations are modeled as being
multiplicatively dampened or intensified, dependargwhether the individual is in a lowered or
heightened state of affective arousal, respectively

LetV represent baseline orbitofrontal stimulus valuatimased on initial sensory and
cognitive processing and provided as an input mnoodel. TakingA to represent amygdala-
encoded emotional arousal, we characterize theubsitipjectivevaluationS at timet as:

S(t) = AMM(1). [1]

Thus, increased levels of emotional arousal wilphliythe subjective valuation of stimuli by
orbitofrontal cortex, while lower arousal leveladeto valuation attenuation. As we discuss in
our later account of prospect theory, ANDREA alsinaduces realistic biological constraints
imposed by neural firing saturation that help tplai valuation behaviors observed in humans,
an advancement over our earlier reward system nibdelEliasmith, & Thagard, 2006).
Surprise as Deviation from Expectations

Figure 2 shows that our model generates amygdéiatpaipsurges accompanying
changes in the valuation input to orbitofrontaltesr and that these upsurges are valence-
asymmetric: negative changes in valuation (logsexjuce greater affective arousal increases

than equivalent positive changes (gains). Thisalegical behavior is produced mainly through
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a modulation of amygdala-encoded emotional ardmgalreward prediction errorsignal. This
is simply the discrepancy between expected andbstimulus valuation, and as such represents

the effect of the surprising nature of a stimulashow emotionally arousing it is.
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Figure 2: Arousal modulation of valuatiom) The “emotionless” input signal to orbitofrontal
cortex consists here of positive and negative Yenahanges of varying magnitude. The
vertical axis can be interpreted as a sort of Hewnaency scale: upward steps in the graph thus
represent gains, while stepping down indicatess. IBositive/negative sign corresponds to
appetitive/aversive valencle) Emotional arousal reflected in amygdala activdgcoded output
from spiking neuron populations (see Appendix B)surges correspond to arousal increases
coinciding with changes in the externally providgienulus value signal in a), demonstrating the
role such changes play in influencing emotionalagggnentc) Multiplicative modulation of the
activity presented in a) by that shown in b). Emeél arousal can induce significant changes in
valuation from the baseline input signal.

For this computation we employ the temporal diffexe (TD) model (Sutton & Barto,

1998), due to its simple mathematical structurerabdst correspondence with experimental
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neural activity observations (e.g., Schultz, 2000@).computes reward prediction erré&) pased
on the difference between the latest reward valnand a weighted sum of all previous rewards
(P). Using our arousal-modulated sigisss the input regarding current stimulus valuatibis,
leads to the modeled recurrent equations

E(t)=S(t) - P(t-1) [2]

P(t)=P(t-1) +a E(t) [3]
wherea is a learning rate constant between 0 and 1. ddtisity has typically been modeled by
increased midbrain dopamine firing with positivedliction errors (that is, getting more than
expected) and firing rate depression for negativere (getting less than expected) (Schultz,
1998, 2000; Suri, 2002).While this approach seeatid Yor particular ranges, recent work has
called into question the feasibility of midbrainpdenine acting alone to perform this
computation (Daw, Kakade, & Dayan, 2002; Dayan &8idiae, 2002). In particular, such
physiological constraints as low baseline firintesamake it difficult to envision how activity
depression could be used to well encode highlythegprediction errors, a concern supported
by recent experimental findings (Bayer & Glimch2005).

Accordingly, we adopt an interacting opponent enogof positive prediction errors by
midbrain dopamine and negative errors by serotan@epurons in the dorsal raphe nucleus of
the brainstem. This is supported by a variety @egxnental studies in humans and other
animals (Deakin, 1983; Evenden & Ryan, 1996; Mobiral., 2000; Soubrié, 1986; Vertes,
1991; for a review, see Daw, Kakade, & Dayan, 20Bg)separating the encodings of losses
and gains, we are abledgastinctly calibratethe modulatory effects of positive and negative
valuation changes to provide a plausible neuralhaeism for loss aversion (Appendix C). That

is, asymmetries in loss-gain valuation can be nmemtlela differing amygdala sensitivity to
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inputs from dorsal raphe or midbrain areas, perh@glszed in actual brains through differences
in specific neurotransmitter receptor concentrationthe amygdala, or similar mechanisms of
connectivity strength variation (e.qg., receptorssivity differences).
I ncreased Behavioral Saliency of Negative Outcomes

Valence-asymmetry in emotional arousal is furthiergthened in our model through
the activities we have assigned to the anteriaggudate and dorsolateral prefrontal cortices,
specifically via a proposed dissimilarity in thélirences of losses and gains on required
behavioral planning. Much evidence supports theom@mce of dorsolateral prefrontal cortex in
the planning, representation and selection of goakted behaviors (e.g., Owen, 1997), and the
anterior cingulate cortex in the detection of cmtdl between current behavior and desired or
expected results, interfacing appropriately witihsdtateral prefrontal in the process (e.g., Bush,
Luu, & Posner, 2002). We hypothesize an increasddvioral saliency afegativereward
prediction errors, as such results may indicatedhaent behavior needs to be modified, rather
than be simply maintained or strengthened as d@ip®&rror would indicate. Such a situation
would introduce the attendant cognitive resourcgiirements of new action plan formation and
execution in response to the displeasing outcome/edl as potential environmental risks
stemming from altering current behavior. We modd increased behavioral saliency through a
corresponding increase in emotional arousal (Appe@il Thus, feedback from dorsolateral
prefrontal cortex and the anterior cingulate toaheygdala in our model further increases the
affective influence of losses over similarly sizgins.

In combination with the previously discussed raédopamine and serotonin in

influencing the amygdala, we arrive at our finahidcterization of how emotional arougak
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influenced by the saliency of unexpected gainslassks, as well as potential behavioral
modification costs associated with the latter:
A(t) = Aq(t) + B-DA(t) + y-5-HT(t) + C(t) [4]
A; represents a degree of emotional arousal detednbypexternal factors unrelated to reward
prediction error or the described dorsolateral-glatg contribution. In previous work we have
provided this as a straightforward input signah® model (Litt, Eliasmith, & Thagard, 2006).
We shall describe later how ANDREA expamdsarousal by incorporating prior expectations
regarding valuation targets, which allows for anobinlogical explanation of decision affect
theory (Mellers, Schwartz, Ho, & Ritov, 199DA and5-HT are the opponent encodings of
positive and negative reward prediction error, eeipely, with ychosen to be a connection-
strength constant greater th@to simulate an increased influence of serotonitedad losses
over dopamine-encoded gains on emotional statall¥iiC represents the additional costs
associated with losses that increase their betal\satiency, and hence emotional import, as
determined by activity in the anterior cingulatel alorsolateral prefrontal cortices.
A NEURAL ACCOUNT OF PROSPECT THEORY

Prospect theory, a theoretical framework for uni@eding risky choice developed by
Kahneman and Tversky (1979, 1982, 2000), has bgglred to many preference and choice
behaviors commonly exhibited by people. The masioias such phenomenon is loss aversion,
whereby people behave asymmetrically in their pgabwaluations of objectively equivalent
losses and gains. Central to prospect theory’dutiso of this and other inconsistencies between
classical decision research and actual behavereslefined characterization of the nature of
subjective evaluations of decision outcomes. Thaltiagvalue functiorproposed by the theory

has the following essential characteristics (Kahae® Tversky, 1979; Tversky & Kahneman,
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1984): i) subjective value is defined on gains sdes—that is, deviations from a neutral
reference point—rather than on total wealth, dgp&al of expected utility theory; ii) the value
function is concave for gains and convex for losaed iii) the curve is steeper for losses than

gains. Taken together, an asymmetric sigmoid Vviloetion is the well-known result (Fig. 3).

VALUE

LOSSES GAINS

Figure 3: A hypothetical prospect theory value functioryslirating subjective valuation
commonalities observed in tests of numerous subject

Loss Aversion

Neural affective decision theory, via the ANDREA aet provides a compelling
explanation of loss aversion. The combination ofiaal modulation of subjective valuation and
the increased affective import of losses producestienally-influenced orbitofrontal valuations
that overweight losses. This can be seen in Figuaad even more vividly in the simplified
simulation of Figure 4. The resulting effects omking and behavior would produce the
asymmetries in peoples’ evaluations of and respottsgains and losses that have been

documented and explained by prospect theory.
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Figure 4: Unbalanced evaluation of gains and losag3he input signal to orbitofrontal cortex
consists of positive and negative changes in valiegual magnitudea) Arousal level
modulated by prediction error and likely behaviaaliency of stimuli. The loss induces a much
greater arousal increase than the equal gaifhe outcome of the unevenness displayed in b).
Reductions in stimulus valuation (losses) are digprtionately amplified compared to gains.
We turn now to extending this neural account of lagersion into a detailed biological
explanation for the specific shape of prospectryissigmoid value function.
The Value Function of Prospect Theory
In developing a neural theory of preference thathme with the behaviorally inspired
prospect theory value function, the first stemigdentify brain regions that should be expected
to produce responses corresponding to the solsl@viors monitored in psychological studies
of preference and valuation. As discussed eaitiseems natural to look to orbitofrontal cortex
as the site of activity mapping directly onto pedplsubjective valuations of gains and losses. It
has been implicated strongly in tasks related toateon and comparison of outcomes, events

and perceived stimuli in general, and we have destra fundamental affective modulation of

this encoding that may form the basis of the subjemature of ultimate outcome valuation.
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The next step is to identify features of the ANDRBBAdel that might explain the
specific nature of the sigmoid value function, asaibed previously in terms of three primary
characteristics (Fig. 3). Feature i) of the cumaduation in terms of reference point deviation,
identifies the sort of input signal to be modulatedrbitofrontal cortex. Since the degree to
which a stimulus is considered a loss or a gamrepresentation of its divergence from a neutral
reference, evaluating such changes in value aalla §tep-style input, similar to those shown in
Figures 2 and 4, where the subjective valuatioa déviation of siz& will be determined by the
emotional modulation produced by an input valuastap from 0 taX. For example, to produce
orbitofrontal activity corresponding to the subjeetvaluation of a loss of $200, we measure the
emotionally modulated output from orbitofrontal o to a step input that moves from 0 (the
reference point) to our target value (-200). Leg\aside feature ii) for a moment, the third
aspect of the prospect theory value curve, a stestee for losses than gains, is simply loss
aversion (Kahneman & Tversky, 1979). The biologaatount of loss aversion we previously
described will thus serve as a critical componémiun neural explanation of the S-curve.

The second feature of the sigmoid value functiba,léveling off of loss and gain
valuations at the extremes, requires appeal tdiaddl neurological mechanisms. In particular,
we introduce the notion efeural saturation Any type of neuron has hard biological constsaint
on how fast it can fire. Each action potentialaddwed by a refractory period of repolarization
during which the neuron cannot fire, and issue sisccellular respiration requirements and
local neurotransmitter depletion introduce unavbiddimitations on spike rates. In the context
of neurocomputation in the NEF (and hence ANDREA) means that the range of values that
can be encoded by any neural population is limitdxs inherent restriction can actually serve

an explanatory purpose in the case of the progpeoty value function. To explain how
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ANDREA could produce leveling-off valuations at tyeremes, note that we encode values
through increasing neural spike rates in the emgpdopulation as these values become larger
(in either the positive or negative direction). $hin attempting to provide subjective valuations
for very large gains or losses, neurons in orbmtatal cortex will begin to saturate, as they
simply cannot fire fast enough to produce linedistinctive affective responses to increasingly
large value deviations.

An alternative encoding of value magnitude throagtivated populatiosize rather than
the firing levels of a fixed population, would se&deny this saturation-based account of
diminishing marginal sensitivity. Such a schemehlge akin to accumulator models that have
been applied to numerosity encoding in intrapalrretgions (Roitman, Brannon, & Platt, 2007).
However, applying this approach to valuation encgdieems less plausible from a
neurophysiological resources perspective; whilestdgent brain areas do have millions of
neurons, all of these would require direct connvégtio areas interpreting magnitude
information in order to impart the same informatasnaturally rate-tuned transmitter release by
a population which encodes magnitude via firingsatndeed, accumulator models generally
allow for cardinal value encodings on restrictet@ger scales such as 2-to-32, rather than the
potentially arbitrary and quasi-analog scale onclvialuations often lie.

Figure 5 illustrates the results of running simolas based on the preceding description.
Each data point & along the horizontal axes of 5b and 5c is theltesumeasuring a
modulated orbitofrontal valuation output in a siatidn providing orbitofrontal cortex a step
input from 0O toX, in accord with the reference-deviation charaztgion of value in prospect
theory. As expected, the effects of loss aversrerckear, with the slope differential indicating a

greater affective impact of losses over equivadams. The 2:1 slope ratio observed here for
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moderate losses and gains mirrors behavioral egedenthe decision literature (e.g., Kahneman,
Knetsch, & Thaler, 1991). Finally, the concavitatigres of the value function have been
successfully replicated in these simulations. Fegushows the specific role of neural saturation

in this regard. Each row in these spike rasterseggmts an individual orbitofrontal cortex

neuron, and each point represents a single actitampal at a specific point in time produced by
the neuron in question. Clearly, equal changekarsize of a loss or gain do not necessarily
produce similar changes in neural spiking, paréidylas neurons begin to saturate. This causes a
decreasing distinctness in firing response at xtiemes, which we propose as the neurological
basis for the leveling-off in loss and gain valaatobserved in behavioral studies. Overall, the
mechanisms we have outlined combine to produceaael#, biologically plausible neural

explanation of the nature of the value functioncdiéed by prospect theory.
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Figure5: Value function simulation resulta) A typical prospect theory value functidm.
Subjective valuation outputs from orbitofrontal teor. Each data point represents the
emotionally modulated valuation of the loss or gaatue chosen along the horizontal axjs.
Close-up of the central portion of b), showing thféering slopes for loss and gain valuations.
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Figure 6: Orbitofrontal cortex spike rasters. Note the cltiference in activity between a) and
b) (a 52% increase in immediate post-event spikifiis is in contrast to the relative similarity
in spiking in b) and c) forced by neural saturatias the $50 change moves farther away from
the reference value of 0. This response charatteitsms the basis of our neural explanation
for the concavity features of the prospect the@iy® function.
Framing through Reference Value Manipulation

Understanding how individuals respond differentypdnding on the manner in which
information regarding a situation is presentedissidered to be one of the primary explanatory
successes of prospect theory. A famous illustraifdhe power of framing is the presentation of
two different choice-sets to subjects regardingcibresequences of different plans to handle the
outbreak of a disease expected to kill 600 peoplersky & Kahneman, 1981, 1986):

Problem 1:  Program A — 200 people will be saved.

Program B — 1/3 probability 600 are saved, 2®pbility nobody is saved.
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Problem 2:  Program C — 400 people will die.

Program D — 1/3 probability nobody will die, Zi®bability 600 will die.
Faced with the choice in Problem 1, 72 percenubfexts chose Program A over B, whereas
only 22 percent of subjects chose Program C owehén faced with Problem 2. Clearly,
though, Programs A and C are objectively equivalesre their respective alternatives. The
framing of situations in terms of losses or gairag/rthus cause dramatic reversals of preference
in decision scenarios.

The mechanisms implemented in the ANDREA model jol@a realistic neural basis for
such framing effects. We describe means by whigbatibely equivalent outcomes can produce
markedly different subjective valuations in orbrtwital cortex, depending on the manner in
which each is framed. In particular, note thatdeat) of the prospect theory value function, the
definition of subjective valuation on deviationsrr some neutral reference value, points
towards an obvious mechanism for the framing ofgleas:variation of the reference value
itself. In the disease example, Problem 1 is framedrindef lives saved rather than lives lost,
while the reverse is true for Problem 2. Thus, dhog“zero” reference points from which
subjective valuations shall deviate in each caseldhead to different values for each problem.
For Problem 1, “zero lives saved” would indeed espond to 0 on a scale measuring the total
number of people of our original 600 who are expedd be left alive after the choice of a given
program for combating the disease. Crucially, havgethe “zero lives lost” reference point for
Problem 2 would correspond to the vaG@® when measured on this same scale, since 600 out
of 600 people alive indicates that no lives haverdest, as required.

Thus, in the case of the Program A option in Proble a subjective valuation deviation

described as “200 people out of 600 will be savegitesents positive-directiondeviation from
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0 lives saved to 200 lives saved. In contrastpttjectively equivalent Program C option in
Problem 2, described as “400 people out of 600didl, represents aegative-direction

deviation from O lives lost to 400 lives lost, thgtfrom 600 left alive down to 200 left alive.
Note that both deviation construals end at theesal0 on the scale of people still alive, since
they are objectively equivalent outcomes. Neveedslbecause of our multiplicative modulation
of valuation deviations by emotional arousal, ofjgeodirections of deviation will produce
subjective valuations that are emotionally ampdifie opposite directions. Figure 7 illustrates
the results of characterizing this type of fram@sga manipulation of the deviation reference
point. We obtain a subjective valuation of orbitoftal step-input corresponding to Program A
that is much more positive than that of a step4imouresponding to Program C, simply because
of opposite directions of emotional modulation.Svould explain the preference reversal that
occurs upon switching decision frames, as whatsgas as a gain in comparison to one
reference value is suddenly evaluated as a lossmparison to a different referent. Later we
will discuss framing effects that operate in watseo than varying reference values, and how
these different sorts of framing can in combinagaplain the observed interactions between

affect, prior expectations and counterfactual camspas explored in decision affect theory.
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Figure 7: Simulation results for framing in terms of gaimgldossesa) Objectively equivalent
outcomes (ending up with 200 people alive) evalllatedeviations from different reference
points. The thin-lined step input represents PmokléProgram A, and the heavy line Problem
2/Program C (Tversky & Kahneman, 1984).Opposite directions of deviation produce
opposite directions of emotional amplification wrbgective valuation, leading to more a positive
outlook towards Program A than Program C.
Predictions

Our neurological explanation of prospect theorygasgs a range of testable neural-level
predictions and hypotheses. Litt, Eliasmith andgémrd (2006) outline several such predictions
in relation to loss aversion and the behaviordlgrice of serotonin. For example, the extent of a
particular individual’'s hypersensitivity to losseshypothesized to be correlated with the
concentration in the amygdala of a specific senotoeceptor subtype, which would influence
the degree to which negative reward predictionreraffect amygdala activity. As well,
degraded connectivity between midbrain dopamineamsuand the raphe serotonin system is
predicted to increase emotionally influenced ovieration ofboth gains and losses, due to
mutual attenuation effects that we have modeleddxt these systems. Such correlation

between loss and gain sensitivity has indeed bleewrsin recent work .by Tom and colleagues

(2007). The particular neural activity they desersuggests the mechanism underlying this
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relationship may involve important additions to tmnputations captured in the ANDREA
model, such as the effects of noradrenergic cscuit

Further empirical investigation of the neural ctates of loss aversion can provide more
such tests and potential falsifications of thetrefeships proposed in ANDREA, although
practical barriers to imaging brain stem serotoigeagtivity limit the capacity of the approach of
the Tom et al. study in this respect. Additionalhis work and other explorations of “prospect
theory on the brain” by this team did not show amgificant amygdala activity relevant to loss
aversion (Tom, Fox, Trepel, & Poldrack, 2007; Ttepex, & Poldrack, 2005). Besides the
studies we have previously cited that indicatenapartant role for the amygdala in emotional
valuation, significant amygdala activity directlgreesponding to loss aversion has contrastingly
been directly observed in other fMRI experimentg.(éNeber et al., 2007). Such discrepancies
and limitations might be resolved by employing ralégive experimental techniques; for
instance, it is possible to temporarily diminisheteal serotonin levels by an ingestion of a
tryptophan depleting drink (Cools et al., 2005)jakhour model suggests would specifically
diminish loss aversion. Depletion studies of decigielated phenomena hold much promise for
testing the validity of neurocomputational modéte IANDREA, as well as advancing our
understanding of the biological bases of compléhab®rs and cognitions. Various other
anomalous choice-related behaviors arising fronsiipelisconnections and damage patterns
are also described by Litt, Eliasmith and Thag&@DE). The enriched conceptions of decision
phenomena provided by neural-level exploratiorvalior postulation of potential influences on
behavior that would be missed by studies restritaegkamining higher-level psychological

processing.
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A straightforward set of additional predictionsigarg from our ANDREA simulations
would be expectations of activation of the braigioas described in our model (Fig. 1) to be
observed in imaging experiments involving peopldgrening preference and choice tasks. But a
more interesting explanatory and predictive utiifythe model involves the study iodividual
differencesn value functions. While the general featurethefcurve have been reproduced by
many different experiments and in large numbenseaiple, the specific functions of different
individuals are known to vary widely (e.g., Kahnené&aTversky, 1982). Because our
simulations essentially represent the value fungbioduced by a single brain (to which we have
complete access, as its designers and buildershdlel offers biological reasons for why and
how individual value functions vary, while preseryisome common general features. As
discussed previously, connectivity strength betwdasal raphe serotonin and the amygdala can
influence loss aversion, and thus the nature ostitgective valuations performed in
orbitofrontal cortex. In persons with heightenecbsanin sensitivity in the amygdala, we would
expect to see a value function with an even stedppe for losses than that of gains. The
opposite also holds, in terms of lessened serogan@fluence or stronger midbrain
dopaminergic connectivity, with either of theseasapredictive ofessdiscrepancy in slope
between losses and gains (i.e., reduced loss aagr3ihe damaged innervation between the
raphe and midbrain mentioned earlier would haveetfext of steepening both the loss and gain
portions of the curve, although the slope ratiohhlge unaffected. These connectivity
manipulations can be understood psychologicallgli@sing the extent to which one is
emotionally aroused by losses and gains, withaffective influence central to producing

subjective valuations of these deviations fromfarence point.
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We also predict that specific neural saturatiorgeadifferences between brains may
underlie individual differences in value functidmape, with more readily saturating orbitofrontal
populations prone to producing curves that levebafcker and more markedly. In the NEF, this
saturation can itself be modeled asymmetricallpadoO, so we can readily create a neural
system of specific architecture and connectivigt tields significant leveling-off for losses but
much less so for gains, or vice versa. In suUmAIKBREA model allows for numerous
experimentally testable neural-level predictiorgareling prospect theoretic behavior.

A NEURAL ACCOUNT OF DECISION AFFECT THEORY

The hedonic influence of prior expectations andteriactual comparisons on the
subjective valuation of outcomes is characterizgthk work of Mellers and colleagues on what
they call decision affect theory (Mellers & McGra2Q01; Mellers, Schwartz, Ho, & Ritov,
1997; Mellers, Schwartz, & Ritov, 1999). Its fundamal claim is that evaluation by an
individual of an outcome, event or decision opi®strongly influenced by the “relative
pleasure” it is considered to provide (Mellers, @0 his relativity derives in part from the
effects of counterfactual comparisons, as illusttdiy the finding that Olympic silver medalists
are more likely to feel disappointed than bronzelatists because of generally higher personal
expectations (McGraw, Mellers, & Tetlock, 2005).c4mer factor is the degree to which an
obtained outcome is considered surprising, witlagreemotional impact for unexpected results
(either good or bad) than for expected outcomes.mathematical expression of decision affect
theory is

Ro = J[uo + d(Uo — ) U (1 -0)] [3]
(cf. equation [1] in McGraw, Mellers, & Tetlock, @8). Ry is the emotional feeling associated

with the obtained outcome adds a linear function relating the felt pleasuratspecific
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numerical responseo andug are the respective utilities of the obtained axyoketed outcomes,
andd(uo — Ug) is a disappointment function that models howdh&ined outcome is compared
to the alternative expected outcorsgis the subjectively judged probability of the dbtal
outcome actually occurring, so the weighting by¢bmplementary (*+ so) term models the
degree to which the obtained outcome was not eggdce., the subjective probability that
something else would occur). The importance of @nat influence becomes clear with the
finding that people will choose whegelsbest—that is, make decisions in such a manner as t
maximize average positive emotional experience Mgl Schwartz, Ho, & Ritov, 1997).

Thus feelings about outcomes and choices, and libaaecisions people may be
expected to make, are greatly influenced by the @i valence of the discrepancy between
anticipated and actual results. The expected emati@action to gaining $20 will be vastly
different if the prior expectation is gaining $10@rsus the case where the expected yield is only
$1. Indeed, the degree of influence of this disaney from anticipated results is such that an
objectively worse outcome can sometimesrogepleasurableéhan one which is better.

Consider the easily imaginable experience of fgdhappier in stumbling across a twenty-dollar
bill while walking home from work than from recemg an underwhelming one percent raise the
same day, despite the monetary value of the raswgIsignificantly higher than that of the

found note. Decision affect theory thus descripes ievealing and systematic fashion the nature
of certain situations in which less can actuallgl i&ke more. In describing a neural basis for the
theory suggested by ANDREA, we shall draw uponnéegration of the sort of framing

discussed in our examination of prospect theori the effects of the emotional context of

information presentation on valuation and choicleiclv we now explore in depth.
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Framing through Direct Emotional Arousal Influence

Our earlier discussion of framing effects focusadiee type most discussed in prospect
theory, concerning alternative descriptions oféssand gains. However, framing can affect
decisions in other ways, as in the trolley-footgadexperiments of Greene and colleagues
(2001). These experiments are not reference vaarepulations, and are therefore not
explainable by the neural mechanisms that we de=tifior prospect theory. The judgment of
morality reversal occurs between two outcomesdhatbothdescribed as killing one person to
save five others. The manipulation involved heneatsone of reference point, but rather the
personal or impersonal nature of the specific aghierformed that leads to the described
outcome. It is thus differing contexts of choicegentation (i.e., the nature of the situation 3tory
that produce the change in situational evaluatather than any suggestive presentation of
choices in terms of either losses or gains. Weaaill thisemotional-contexframing, in contrast
to thereference-valuédraming we discussed in relation to prospect theory

We propose that emotional-context framing in tlodley-footbridge dilemma occurs
through increased arousal associated with thetdpecsonalized action of pushing a person to
their death, compared to the more detached andrsmpal act of flipping a switch that will
cause a trolley to divert from hitting five peopdsvards hitting a single person. Such an increase
in emotional engagement induces greater ampliboati the subjective evaluation of causing a
death in the personal case, which would providewalogical basis for the reversal in typical
judgments of the morality of the actions in questidMRI experiments by Greene and
colleagues seem to support this neural accouteotfrolley-footbridge dilemma, showing
increased amygdala and orbitofrontal activity isesaof highly personal characterizations of

morally debatable actions (Greene & Haidt, 200ZeBe et al., 2004).

30



Figure 8 illustrates the neural explanation we hdegcribed for the type of framing
produced by changing the emotional context of fiesgnted information. Just as for reference-
value framing, we get different subjective valuaidor scenarios that have identical objective
values, which would allow for preference reversaleccur when the decision frame is altered.
The primary difference is that this mechanism eyppladirect manipulation of emotional
arousal state, whereas our neural basis for tleeeete-value framing caused emotional

modulation changeasdirectly though manipulation of valuation-deviation refareipoints.
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Figure 8: Simulation results for framing that changes emmati@contexta) A step input to
orbitofrontal cortex indicating a negative changealue, such as the consideration of a situation
in which one’s actions cause the death anotheopen3 Two different base arousal inputs to

the amygdala, corresponding to differing levelsarftext-produced emotional engagemet.
Because of differing base arousal levels, aroyssiitges corresponding to the negative
valuation deviation differ as welll) Higher context-motivated base arousal leads tatgre
amplification of the subjective valuation changed #hus a belief that the more arousing
scenario is actually worse than the objectivelyiegjant but less arousing scenario.
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Decision Affect Theory as an Integrated Framing Phenomenon

Explanation of the experimental results examinedeicision affect theory requires both
reference-value framing and emotional-context fragyniThe hedonic impact of counterfactual
comparisons can be produced by setting the refengoinit of the valuation deviation for an
obtained outcome to the value of the unobtainedt@stactual result, which is exactly
reference-value framing. Then winning $20 whendhenterfactual comparison is a $100 win
would be construed as a loss, whereas a countgafaimparison to winning only $1 would
reframe the $20 win as a gain. In addition, theréego which the obtained outcome was
unexpected can have the effect of emotional-coritarting. We formally model this in
ANDREA by having emotional context influence neusahavior through the arousal ingAit
(see equation [4]) in a manner that takes into @etcthe perceived probability of the obtained
outcomeX actually occurring:

Ag(t) = Ag(t) + A -(1 - P[outcomeX]). [6]

In this enriched conception of emotional aroudalfills the previous role of; as a base arousal
level determined by external factors and providedrainput to the modeh; emotional arousal
is now explicitly increased in inverse proportiontte expected probability of obtaining the
outcome under consideration. Surprising, low-prdigtmutcomes produce higher arousal than
unsurprising outcomes, where 1 -XPis closer to 0. The constant multipliégmay be related to
the relativeaffect-richnes®f the outcome in question, as this variable segnasgly related to
the degree to which uncertainty affects valuatigattenstreich & Hsee, 2001).

This direct manipulation of base emotional arousal formalization of emotional-
context framing, in this case a context relatedutzome uncertainty. It and reference-value

framing, implemented in ANDREA by the mechanismsatlibed earlier, together produce the
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canonical finding of decision affect theory thajemitively worse outcomes can sometimes feel
better than more advantageous alternatives (Fig.H#® mechanisms described above and
illustrated in Figure 9 allow us to map the staddaathematical model of decision affect theory
(equation [5]) onto specific neural structures aathputations. The calculation of subjective
utilities and their subsequent comparison, as emeldad thed(uo — Ue) term in equation [5], are
performed neurologically through step-functionalidéon in orbitofrontal cortex exactly as we
modeled for prospect theoretic subjective valuatidre ‘disappointment’ effects of comparing
obtained and expected outcome valuations resutt fiediction error computations by
dopamine and serotonin networks feeding back taente emotional arousal encoded in the
amygdala, which in turn modulates orbitofrontalualons. The subjective probability
augmentation to our arousal representation (equip is identical to the (% o) surprise term
in the decision affect theory model of Mellers aatleagues. In combination with our
multiplicative modulation of valuation by affectiagousal (equation [1]), it is clear that this

enhancement also has similar mathematical effedtsat of for the surprise term in equation [5].
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Figure 9: Decision affect theory as an integration of fragnitleasa) Counterfactual

comparisons between obtained and unobtained outcareeencoded through appropriate setting
of valuation deviation reference points, as inn&fiee-value framind) The surprising natures

of obtained outcomes are encoded through directpukation of base emotional arousal input,
as in emotional-context framing (equation [&)) The effect of surprise can outweigh an
objectively larger valuation deviation, producingater hedonic intensity for a surprising
smaller gain than an unsurprising larger one is thised) The subjective valuation of an
objectively worse outcome is greater than thaheflietter outcome, because of the added
pleasure of being surprised by the smaller gaie.her

Figures 10 and 11 show the results of more compsfe simulations of the behavioral
findings of Mellers and colleagues (Mellers, Schwalo, & Ritov, 1997). In Figure 10, the
value of the unobtained counterfactual compariagoname is held constant at $0 (i.e., neither

losing nor gaining money) while the obtained outeoralue and the expected probability of
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obtaining that outcome are varied. Figure 11 dbssran opposing experiment where the $0 is
the unvaryingobtainedoutcome—that is, subjects neither lose nor gajnmaoney. What is
instead varied is the expected probability of abitaj this $0 outcome and the value of the
unobtainedoutcome used as a counterfactual comparison.timflgures and in both the
behavioral and ANDREA simulation results, lowerdpability curves (corresponding to
surprising obtained outcomes) produce more intaffeetive experiences, as reflected by more
extreme emotional response ratings. As well, taeeecases in both the behavioral findings and
our simulation data where an objectively worse onrte produces a more positive emotional
response than one which is objectively greater.ifsiance, both Figures 10a and 10b show
more elation from winning $17.50 instead of $0 vdthexpected probability of such a win of
only 0.09 than for winning $31.50 instead of $0 wiige anticipated probability of this outcome
is 0.94. The surprising smaller gain feels bettantthe unexpected larger gain. Our proposed
neural basis for decision affect theory thus presid plausible and thorough biological

characterization of the phenomenon.
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Figure 10: Comparing behavioral and simulation results inglen affect theorya) Behavioral
findings of Mellers et al., 1997, for lotteries i constant $0 unobtained counterfactual
comparison and varyingbtainedoutcomes and expected obtained outcome probability
Emotional response was reported by subjects bygmbf feelings on a scale of 50 (extreme
elation) to -50 (extreme disappointmen})Results of model simulations of the Mellers et al.
experiment in a), with data points determined tigrosimulations in line with our proposed
neural basis for decision affect theory (Fig. 9).
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Figure 11: Comparing behavioral and simulation results inglen affect theory, opposite
experiment to that described in Figure apBehavioral findings of Mellers et al., 1997, for
lotteries with constant $0 obtained outcome angimgrunobtaineccounterfactual comparison
outcome value and expected obtained outcome pidlgab) Model simulation of the
experiment in a), with data points determined tigfosimulations in line with our proposed
neural basis for decision affect theory (Fig. 9).
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We have been able to explain the central findirfgtecision affect theory using the same
mechanisms that we applied to the phenomena expldin prospect theory, with the addition of
framing by emotional context. A major motivatingtar for the exploration of any subject at
more basic levels of explanation is the desireniteufindings that are disconnected at higher
levels of study through a set of shared lower-lemethanisms. In this vein, an important
undertaking in the neuroscientific exploration led psychology of preference and choice is to
uncover shared underpinnings for phenomena that yetvto be rigorously tied together at the
behavioral level. ANDREA demonstrates such a méaesnnect decision affect theory and
prospect theory via the two neural mechanismsréoning we have outlined.

Predictions

There are undoubtedly other kinds of framing besitie reference-value and emotional-
context types that we have discussed. Additioreihbmechanisms may be required to explain
other cases in which differing modes of identicdbrmation presentation produce divergent
results, such as the case of reversals in prefenghen options are considered jointly versus
separately (e.g., Hsee, Loewenstein, Blount, & Baaa, 1999). Emotional-context framing
could also be relevant to explaining a prominestiitan constructive memory research. In the
car accident study by Loftus and Palmer (1974)y tescribe significant effects on speed-of-
impact memory judgments by subjects based simpthermotiveness of the action verb used
to describe the collision between two cars (“cor@d@ach other” producing lower remembered
speed judgments than “smashed into each otheri$.Se6ems analogous to the baseline
emotional arousal manipulation inherent in our selceeural framing mechanism, which in turn
causes increasingly amplified subjective valuatitras would correspond to inflated speed

judgments by subjects when asked more emotivelgdthquestions by Loftus and Palmer.
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Further predictions arising from the framing medbars we have described relate to
how the neural activity making up these mechanismd,hence the effects of framing, could be
induced without performing explicit decision frargirFor instance, it might be possible to
manipulate default subjective valuation referena@ats either upwards or downwards via
positive or negative priming, or perhaps even tghodirect neuropharmacological intervention
to influence orbitofrontal activity. This could mottially produce effects similar to reference-
value framing in a less conspicuous manner. Sifgifar emotional-context framing,
manipulation of affective arousal in a manner wjaihrelated to situation context could cause
“bleed-over” effects identical to those producedshiyation-related arousal modulation.
Methods of manipulation include prior exposure itment or sexual imagery, relaxing or
stressful preceding tasks, and direct pharmacabgiodulation of amygdala activity. There is a
wide variety of means by which brain activity siamibr identical to our mechanisms of framing
can be induced either behaviorally or neurochertyicahd we predict that such alternative
routes should produce behaviors in people similaxplicit framing effects, regardless of
whether or not they are aware of how they are bigfigenced.

GENERAL DISCUSSION

We have shown how neural affective decision theasystated in our four principles and
as implemented in the ANDREA model, can accounthercentral phenomena described by
prospect theory and decision affect theory. Ouwwié the general process of decision making is
summarized in Figure 12. People are presentedandgcision problem by verbal or perceptually
experienced descriptions which they must interpased on the context in which the decision is
being made, resulting in an overall representaticthe problem that is both cognitive and

emotional. Options, outcomes, and goals can bedeacby verbal and other cognitive

39



representations, but with an ineliminable emotiamadtent; in particular, goals are emotionally
tagged. The translation of the presentation ofodlem and its context into an internal cognitive-
emotional representation produces framing effdsause different representations will invoke
different neural-affective evaluations. ANDREA stolow these evaluations can be computed
by coordinated activity among multiple brain aresspecially the orbitofrontal cortex, the
amygdala, and dopamine and serotonin systems iegtatvencoding positive and negative
changes in valuation. The result is decisionssbbgct options inducing the highest emotional

subjective valuations.

Prasantation
of problem

Cognitive- ;;;"éﬁ:'e
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Figure 12. Overview of neural affective decision theory.

ANDREA has greater explanatory scope than otheraoeunputational models of
decision and reward that have focused on in-deithetimg of more restricted subsystems of the
brain, and accordingly limited ranges of behaviptatnomena. Two such examples are the
model of reward association reversal in orbitofabebrtex by Deco and Rolls (2005) and the
GAGE model of cognitive-affective integration iretlowa gambling task and self-evaluations of
physiologically ambiguous emotional states (Wagarh&agard, 2004). Additionally, a
straightforward diffusion decision process impleteenn superior colliculus cells seems able to
accurately characterize accuracy and reactionitinsenple two-choice decision tasks (Ratcliff,
Cherian, & Segraves, 2003). Task modeling of tarsis important for exploring basic details of

neural mechanisms for specific phenomena, but exambrain processes on a larger scale is
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required for explaining more complex and wide-raggosychological findings, such as prospect
theory and decision affect theory. Busemeyer ahtiskan (2004) describe a connectionist model
that they apply to a range of behaviors as divassihose explored by ANDREA, including
preference reversal effects and loss aversionnéhgork model called affective balance theory
(Grossberg & Gutowski, 1987) also explores a watege of risky decision phenomena in a
mathematically sophisticated fashion, and propeffests of emotional context on cognitive
processing that are largely consistent with thoggemented in ANDREA. The main
improvement that our approach offers over thesemwdels is in neurological realism, as
reflected by modeled characteristics of individocessing units (‘neurons’) and the mapping
of proposed computations onto specific brain regjiamd interactions supported by empirical
findings. The models of Grossberg and Gutowski 125d Busemeyer and Johnson (2004) are
not comparable in this respect to either ANDREAhar previously mentioned works of Deco
and Rolls (2005) and Wagar and Thagard (2004). dihtsurse is not a criticism of such
methods of modeling. Rather, it is more of an iatan of the different levels at which
theoreticians can formulate explanations of behallystudied psychological phenomena.
While the proposed mechanisms are interesting trentarger perspective of computational
models of decision making, these artificial neuetworks are of a fundamentally different
nature than ANDREA and similar models in computaiacognitive neuroscience.

A recent model of decision-related interactionsuMaein basal ganglia and orbitofrontal
cortex by Frank and Claus (2006) recognizes tHigyutif taking the sort of broad-scale
approach we employ in our design of ANDREA, andntans a similar level of neurological
realism and detail. Despite certain similaritiegaigling modeled brain regions and proposed

computations, this model diverges from ANDREA irnesal fundamental ways, leading to both
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different mechanisms and different explanatorydtsdor each of our models. After briefly
describing the structure of the Frank and Clau§¢2@odel, we compare it in detail with our
own model of valuation and choice phenomena.

The main focus of the Frank and Claus model isrieans by which basal ganglia
dopaminergic activity and orbitofrontal computas@nable adaptive decision making
responsive to contextual information. Computatiod eepresentation of expected decision value
information is accomplished through a divisionalidr between subcortical dopamine and
prefrontal networks. A basal ganglia dopaminergitwork learns to make decisions based on
the relative probability of such decisions leadiagositive outcomes. This process is
augmented by orbitofrontal circuits that provide@king memory representation of associated
reinforcer value magnitudes that exercises top-doavrirol on the basal ganglia activity, which
allows more flexible response to rapidly changimguits. The proposed computations are
detailed, elegant and well-supported by empirieaadand the model is effective in explaining
decision-related behaviors as diverse as risk en#seeking, reversal learning, and peoples’
performance in a variant of the lowa gambling taskoth normal and brain-damaged scenarios.

While ANDREA does not implement the specific congtians proposed by Frank and
Claus (2006), this is due more to differing targdtexplanation than to any major
inconsistencies in our respective conceptions @fttes of various brain regions in decision
making. Both models describe important functiontiecences between orbitofrontal-amygdala
networks and dopaminergic activity in line with angal findings demonstrating the
involvement of orbitofrontal cortex in valuationdadopaminergic encoding of reward prediction
error. How these subsystems might interact is atgqurethat both ANDREA and Frank and

Claus (2006) address, and one that has been rnegjiegbrevious theoretical modeling of the
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neurobiology of reward. Nevertheless, whereas FaatkClaus develop a comprehensive
characterization of how orbitofrontal cortex leaam&l represents reinforcer value, our goal is to
describe how specific external influenaciferentially alterthe magnitudes of these
orbitofrontal-encoded values, such as via the asgtmeremotional modulation by losses and
gains on valuations that we describe as the basis®aversion in prospect theory. As a result,
the models are best suited to providing neuralangtions of different psychological
phenomena, and where they address similar phenotinepao so with contrasting emphases on
specific relevant brain mechanisms.

The most prominent difference is that of repreg@nal complexity of amygdala
activity. In both models, the amygdala encodesnhgnitude of losses and gains in proportion
to overall activity level, which then influencesdofrontal representations of reward values.
Frank and Claus (2006) do not explore how the amalgfibrms such representations of
reinforcer magnitude, providing them instead asaimodel inputs. In contrast, ANDREA
models multifaceted means by which emotional adoedated to outcome magnitude is encoded
by the amygdala (equations [4] and [5]). This aldar the postulation of neural explanations
for phenomena not addressed by Frank and Clau$)28@ch as multiple mechanisms for
framing and the observations of decision affecotheln addition, while both models describe
loss aversion as resulting from greater amygddlaadion by losses than equivalent gains,
ANDREA offers specific neurological reasons of hibws might occur through differential
calibration of distinct loss and gain reward prédit error networks, as well as feedback to the
amygdala from dorsolateral and cingulate processirmgehavioral saliency. Our detailed

characterization of how the amygdala comes to sgmtemagnitude information thus allows us

43



to both explain additional phenomena and provideensomplete biological mechanisms for
valuation and decision behaviors simulated by Inotllels.

Important structural differences between the modkdslt from their differing
conceptions of amygdala activity. The Frank andu€R006) model focuses primarily on the
top-down biasing effect of orbitofrontal activity gradual, multi-trial learning in the basal
ganglia dopamine network, with much less emphasithe reciprocal influence of relative
reinforcement probability computations on orbitoft@ activation. We are able to explore in
depth such effects in ANDREA through feedback @fael prediction error information to the
amygdala that influences its encoding of emoti@matsal, which in turn modulates
orbitofrontal valuations. These valuations havedop/n biasing effects on reinforcement
learning and action selection similar to those neley Frank and Claus (2006), for instance
how differing orbitofrontal representations of itieal reward values caused by framing effects
produce different activity in dopamine and seratgmiediction error subsystems.

There are several other issues on which the malifiéds in important ways. Perhaps the
most obvious is regarding the role of serotoniimngcdi opponency with dopamine in reward
prediction error. Frank and Claus (2006) argue tt@tow baseline firing rates of dopaminergic
cells need not mean that firing rate depressioasess capable of encoding highly negative
outcomes, as there may exist countervailing sertgitlifferences in dopamine receptors to
firing bursts versus dips. While they remain op@a tole for serotonin in negative
reinforcement learning and aversive stimulus prsiogsmediated within OFC, they argue for
the centrality of dopamine firing dips to negatirguation processing mediated by the basal
ganglia, even in light of evidence showing thegis @ire physiologically limited in scope (e.g.,

Bayer & Glimcher, 2005). Our model can be considesteucturally consistent with this line of
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reasoning, since the mutual biasing effects we Imapéemented between dopamine and
serotonin produce the same dopaminergic firing e&pons utilized computationally by Frank
and Claus in cases where we describe encodingratomergic activity. Clearly, though, the
models differ markedly in the degree to which thegign explanatory import to dopamine firing
dips versus concomitant serotonergic firing incesagurther differences are evident in
respective extents of brain region modeling. Fran# Claus employ more complex conceptions
of orbitofrontal cortex and midbrain dopamine artes are implemented by ANDREA,
differentially utilizing specific subpopulations tifese broadly defined brain areas. In contrast,
ANDREA includes limited but important contributiofrem anterior cingulate and dorsolateral
prefrontal cortices. These include involvementnoading the behavioral relevance of
outcomes, how this encoding may differ for positwvel negative outcomes, and the subsequent
effects of behavioral saliency on emotional arauBhése are brain regions omitted in the model
of Frank and Claus (2006) that they acknowledge beagrucial to understanding decision
phenomena. Finally, ANDREA is the first model tgpkre a possible role for neural saturation
in explaining the nature of subjective valuatiohisTeffect is not examined in the Frank and
Claus work, which does not address the levelingpbthe prospect theory value function for
increasingly extreme losses and gains. Thus, indse two models are fairly consistent with
one another and share similarities in their larcedesapproaches to modeling the neural
foundations of decision making, they both make ueigontributions to explaining different
aspects of relevant behaviors and psychologicalgases.

One of the most fertile areas for future appliaagiof neural affective decision theory
and the ANDREA model is the burgeoning field of riconomics, which operates at the

intersection of economics, psychology, and neuersa (Camerer, Loewenstein, & Prelec,
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2005; Glimcher & Rustichini, 2004; Sanfey, Loewenst McClure, & Cohen, 2006). Examples
of such applications include the previously mergabfindings regarding preference reversal in
joint versus separate option evaluation (Hsee, lemsiein, Blount, & Bazerman, 1999) and
observed interactions between risk, uncertaintyeandtion (Rottenstreich & Hsee, 2001), both
of which seem explainable via the neurological na@itms we have modeled. Unlike traditional
economic theory, we do not take preferences asighu#t rather explain them as the result of
specific neural operations. A person’s preferecé\foverB is the result of a neural-affective
evaluation in which the representationfgbroduces a more positive anticipated reward v@ue
at least a less negative value) than the reprdganta B. As depicted in Figure 12, the neural-
affective evaluation of options depends on thegnitive-emotional representation, which can
vary depending on the presentation and contextfofmation. This dependence explains why
actual human preferences often do not obey thevexaf traditional microeconomic theory. In
addition to neuroeconomics, we are exploring theveace of our theory and model to
understanding ethical judgments, the neural balsesich are under increasing investigation
(Casebeer and Churchland, 2003; Greene and HaiR, Moll et al., 2005). Finally, while
neural affective decision theory is primarily intlexal as a descriptive account of how people
actually do make decisions, but it can provideaatisig point for developing a prescriptive
theory of how they ought to make better decisidisagard, 2006).

Like all models, ANDREA provides a drastically silfipd picture of the phenomena it
simulates, and there are many possible areas foowaement and extension. These include
increasing the complexity of individual populatipasiding more brain areas, modeling more
relationships between brain areas, and exploriagetfects of neuronal firing saturation beyond

simply orbitofrontal cortex. Nevertheless, we hdescribed a variety of neurobiologically
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realistic mechanisms for fundamental decision @ses, and shown their applicability to
explaining several major experimental findings @havioral decision research. Besides
implementing original mechanistic ideas, such edeafor saturation in explaining diminishing
marginal sensitivity in prospect theory, ANDREA taloutes to two important classes of
explanation in decision neuroscienceGBneralizatiorand novekynthesesf hitherto unrelated
mechanisms of neural processing (e.g., multipheatnodels of attention and reward
reinforcement learning); and 2) Specific and dethgiroundingof behaviorally explored
psychological phenomena in such plausible andsteaheurocomputational mechanisms. The
result, we hope, is a deeper understanding of hmlwdny people make the choices that they do.
ACKNOWLEDGMENTS

We thank Daniela O’Neill, Christopher Parisien, &nyTripp, and three anonymous
reviewers for comments on earlier versions. Thigaech was supported by the Natural Sciences
and Engineering Research Council of Canada an8dbel Sciences and Humanities Research
Council of Canada.

APPENDIX A: NEUROCOMPUTATIONAL DETAILS

Our reward model was implemented in MATLAB 7.0.1a0RC with an Intel Pentium 4
processor running at 2.53 GHz, with 1.00 GB of RAMX4ilable. For simulations of the extent
that we have conducted and described here, thesdisations represent close to the minimum
required, based on the memory and other resougcerements of the most recent version of the
NESImMNEF simulation software running within MATLABNESimdocumentation and software

download links are available onlineldtp://compneuro.uwaterloo.ca

We modeled spiking activity for a total of 7600 nans spread over 7 specific

populations (Fig. 1), using the common and phygiicllly realistic leaky integrate-and-fire
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(LIF) model for each of our modeled neurons (sepeilix B). In particular, we use 800-1200
neurons for simulating each of the amygdala, oftmtdal cortex, ventral striatum, anterior
cingulate cortex, and dorsolateral prefrontal cqrtepresenting one- to three-dimensional
vectors as needed in the neural engineering frame{@ppendix B). The areas representing
midbrain dopaminergic neurons and the dorsal rayicteus of the brainstem are each modeled
with 1200-neuron ensembles, each with several@is@ubpopulations, in order to capture the
additional complexities involved in the encodingsl &ransformations we assign to these areas in
our model (recurrent, rectified, biased-opponeiduwtation of reward prediction error; see
Appendix C).

Each individual neuron is based on a reduced-cotipleiophysical model that
includes features fundamental to most neuronsydney) conventional action potentials (spikes),
spike train variability, absolute refractorinesackground firing, and membrane leak currents.
The membrane time constant for our LIF neurongtigcs10 ms, with a refractory period (a
post-spike delay during which the neuron may nej fof 1 ms. We introduce at simulation
runtime 10% Gaussian, independent zero-mean neis¢ive to normalized maximum firing
rates, to simulate the noisy environment in whighreurons operate. These choices are based
on plausible biological assumptions (see Eliasithnderson, 2003), and we have made
reasonable efforts to select neurobiologicallyistialvalues for other network cell parameters as
well. For example, our 5 ms synaptic time constantiorsal raphe serotonergic neurons is
consistent with the 3 ms decay constants obsenveido (Li & Bayliss, 1998). Neurons in the
cortical areas we have modeled have been showawve maximum firing rates ranging from 20-
40 Hz in dorsolateral prefrontal and orbitofrordedas (Wallis & Miller, 2003) to at least 50 Hz

in anterior cingulate cortex (Davis et al., 200)us, our selection of a 10-80 Hz saturation
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range for neurons in these model ensembles is siglbgically reasonable compromise to
maintain population sizes that are manageabledmulation purposes. Ensembles must grow
increasingly large to allow for meaningful represgion with slower-firing, smaller saturation-
range neurons making up the ensembles.

Practical considerations nonetheless made necessiag limitations on biological
realism. Principally, the saturation ranges wedebkfor our modeled subcortical regions are
appreciably higher (by roughly a factor of 10) thlhose observed empirically for typical
neurons in these areas. The much larger neuramndseaizes that would be required for clean
representation and transformation using the extieloe experimentally observed firing rates
would have made our large-scale simulations contipataly impracticable given available
resources. We additionally support this comproroidgiological realism by noting that
significantly higher firing peaks (greater than 1) are observed in thmirstingbehavior of
both certain raphe serotonergic neurons (e.g.s@aret al., 2000; Hajés et al., 1995) and
subpopulations of the amygdala (Driesang & Pap@0Q2Paré & Gaudreau, 1996), and to less
degree in midbrain and striatum dopaminergic nesisanwell (Hyland et al., 2002). The specific
activity our model produces in these subcorticabharseems well-suited to coding via bursting
neurons (large but transient firing upsurges thigrpose lengthier periods of near-zero activity).
While we do not define here an explicit alternatina@iron model to LIF, Eliasmith (2005a)
describes how bursting could be incorporated indONEF, and thuSIESimsimulations.

For the most part, we have chosen neuron firingstiolds (that is, the respective input
levels above which individual neurons begin to ce&}) from an even distribution over a range
represented symmetrically around zero, with negreferred directions in the space of

representation also chosen from an even distrib\tie., equal numbers of ‘on’ and ‘off’
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neurons; see Appendix B). The exceptions to tHesate single subpopulations of both the
dorsal raphe and midbrain dopaminergic regionghdse cases, our establishment of minimum
firing thresholds of zero combines with an exclesise of positively sloped ‘on’ neurons in
these subpopulations to produce insensitivity @atige values (i.e., rectified reward prediction
error encoding). This corresponds well with expemtally observed physiological limitations in
the computation of reward prediction error in thessn regions (see Bayer & Glimcher, 2005,
as well as the discussion of dopamine and serotaitimin the main text description of the
ANDREA model).
APPENDIX B: NEF REPRESENTATION, TRANSFORMATION AND DYNAMICS

The NEF consists primarily of three fundamentahgiples regarding the representation
of information in neural populations, the meansibych these representations are transformed
through interactions between populations, and tmérol theoretic nature of the characterization
of neural dynamics. Eliasmith and Anderson (2008sent a rigorous explication and analysis
of the NEF, but the mathematical details we outhiree should be sufficient for understanding
the fundamental nature and operation of our neuaalel of affective choice and valuation.

Consider a neural ensemble whose activdjeg encodesome vector quantity(t)
mapping onto a real-world quantity (eye positiampgional arousal, etc.). Note that this quantity
need not be a vector; scalars, functions, and ifumspaces can be represented and manipulated
in the NEF in a near-identical fashion. The encgdifix involves a conversion oft) into a

neural spike train:

a(x)=>.0(t-t,)=G[J(x(D)], [B1]

where G [[]] is the nonlinear function describing the speaifture of the spiking responsé, is

the current in the cell body (soma) of a particmeuaron and andn are relevant indices (
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indexing specific neuronsg,indexing the individual spikes produced by a ginenron). The

nonlinearityG we employ is the common leaky-integrate-and-fii&) model:

dv/dt=-(V- J() /5", [B2]
whereV, represents somatic voltage, the leak resistance, anff® the RC (membrane) time
constant. The system is integrated until the mendpmtentiaV, crosses the threshol, , at

which point a spike&d(t -t,,) is generated and is reset to zero for the duration of the refragtor

ref

period, 7" (Eliasmith & Anderson, 2003). A basic descriptafrthe soma current is

J(X)=a <gZ) D(>+J|b‘as+/7I , [B3]
where J, (x) is the current input to neurayx is (in this case) the vector variable of the stusul
space encoded by the neuran,is a gain factorgZ( is the preferred direction vector of the
bias

neuron in the stimulus spacg,® is a bias current (accounting for any backgrowtvity) and

1, models any noise to which the system is subjeate M particular that theot product
<¢~( D(> describes how a potentially complex (i.e., higmeinsional) physical quantity, such as

an encoded stimulus, is related to a scalar sagsdribing the input current. For scalars, the
encoding vector is either +1 (an ‘on’ neuron) ofaf ‘off neuron). [B1] thus captures the
nonlinear encoding process from a high-dimensigaghble, x , to a one dimensional soma
current, J, , to a train of neural spikeg(t -t ).

Under this encoding paradigm, the original stimwlastor representation can be
estimated bylecodingthose activities; that is, converting neural spileéns back into quantities
relevant for explanations of neural computatiothatlevel of our chosen representations. A

plausible means of characterizing this decodiragia specifitinear transformation of the spike
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train. In the NEF, the original stimulus vect(t) is decoded by computing an estiméte)

using a linear combination of filtets(t) that are weighted by certain decoding weights
()= 3(t-t,) Ch(Dg =2 h(t-1)¢ . [B4]

where the decoding weights are calculated by a regaared error minimization (Eliasmith &

Anderson, 2003) and the operatidd indicates convolution. Thé (t) filters are linear

temporal decoders, which are taken to be the pospdic currents (PSCs) in the associated
neuroni for reasons of biological plausibility. Togeth#ére nonlinear encoding in [B1] and the
linear decoding in [B4] define an ensemble ‘cods’'the neural representationof

The next aspect of the NEF to examine is the mbgnghich computations are
performed in order to transform the representatmmesent in a given model. The main task
needed to be performed is the calculation of cotmmeeveights between the different
populations involved in a transformation. As anrapée, let us consider the transformation
z = x/y. The process of connection weight calculationlmaicharacterized as substituting into
ourencodingequation [B1] thalecodingf x andy (as per [B4]) in order to find the encoding

of z, which represents our transformation of interest:

¢ (2 =c(>xy
=G, :ak@(XEV) + J'Eias]

6 _ak(g@ A0 ¢ M} ;f}

=G, Z%ija(x)t?( Y+ \Iias}’

where @ = akém‘(pjy represents the connection weights between neurpaadk in thex, y,

andz populations, respectively. It should be noted thatnonlinear neural activity interaction
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suggested in this example is avoided in our achaael—all interactions are implemented in a
purely linear fashion, as is typically taken tothe case in real neural systems (see Eliasmith &
Anderson, 2003, for complete implementation details

Finally, dynamics play a fundamental role in them@¥ operation of our model, such as
in our recurrent reward prediction error computatid/e can describe the dynamics of a neural
population in control theoretic form via the dynamstate equation that is at the basis of modern
control theory:

X(t) = Ax(t) + Bu(t), [B5]

whereA is the dynamics matribB is the input matrixu(t) is the input or control vector, axd)
is the state vector. At this high-level of charaeetion we are detached from any neural-level
implementation details. It is possible, howeverntooduce simple modifications that render the
system neurally plausible. The first step in cotimgrthis characterization is to account for

intrinsic neural dynamics. To do so, we assumemdstrd PSC model given bft) =7'e""",

and then employ the following derived relation é8hnith & Anderson, 2003):

A'=TA+| (B6]
B'=7B

so that ouneurally plausiblehigh-level dynamics characterization becomes
X(t) = h(t) E[A’x(t) + B’u(t)]. [B7]

To integrate this dynamics description with themaétepresentation code we described

previously, we combine the dynamics of [B7], theading of [B1], and the population decoding

of x andu as per [B4]. That is, we take decodings >, h;(t-t,)¢ andi=} h(t-t,)¢

and introduce neural dynamics into the encodingaifmn as follows:
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> 8(t=t,) =G| a (x(t)+ " |

n =G| a (@[A®)+BaW)])+ 3|

=6 [a (@[ L, h -t BT, b1 )+ 1]
=G [T, ah )+ T, @h -1+ 3]

[B8]

It is interesting to note thdi(t) in the above characterization defines both thealelynamics
andthe decoding of the relevant representatiess= a; <égA qu> andw, =a, <¢Bq¢‘>

describe the recurrent and input connection wejghspectively, which implement the

dynamics defined by the control theoretic structusen [B7] in a neurally plausible network.
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APPENDIX C: REPRESENTATION/TRANSFORMATION SUMMARY

Table C1 encapsulates the complete inputs, ougmadgransformations we use to model

specific interactions between the brain regionfuished in our model (see also Figure 1 and

discussions of equations in the main body for nimge-level, conceptual characterizations of

connectivity and signal transformation). Variab&ames are as in the text of the Methods section.

Brainarea Inputs Outputs

AMYG Ao(t) (ext.) A(t) = Au(t) + B-DA(Y) + y-5-HT(t) + C(t)
Aq(t)
DA(t) whereA(t) = Ag(t) + A -(1 — P[outcomeX])
5-HT(t)
C(t)

OFC V(1) (ext.) S(t) = A(t) -V(t)
A(t)

5-HT S(t) E(t) = P(t—1) — S(t)
E" (1) 5-HT(t) =0 E(t) — 1 —0)E"(t)
P(t-1) P(t) = P(t-1) + a E(t)

DA S(t) E*(t) = S(t) — P(t-1)
E(t) DA(t) =6 E' () — 1 - 0)E(t)
P(t-1) P(t) = P(t-1) + a E(t)

VS DA(t) E(t) = DA(t) — 5-HT(t)
5-HT(t)

ACC S(t) B(t) =2:(S(t)>0) -1
E(t) R(t) = B(t) / [7 + E(V)]
C(t) C(t)

DLPFC R(t) C(t) = u-5-HT(t)
5-HT(t)

Table C1: Transformation summar®, andV are provided as external inputs to the model. Note
the recurrent connectivity and opponent interachietween 5-HT and DA. Abbreviations:

AMYG, amygdala; OFC, orbitofrontal cortex; 5-HT ptee dorsalis serotonergic neurons; DA,
midbrain dopaminergic neurons; VS, ventral strigtdh@C, anterior cingulate cortex; DLPFC,
dorsolateral prefrontal cortex.
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These equations describe explicitly the naturdnefdonnectivity relationships and signal
transformation processes outlined in Figure 1 asdudsed in the main body description of the
ANDREA model.
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