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Neural Affective Decision Theory: Choices, Brains, and Emotions 

Abninder Litt1*, Chris Eliasmith2, 3 and Paul Thagard2, 4, 5 

 

ABSTRACT 

We present a theory and neurocomputational model of how specific brain operations produce 

complex decision and preference phenomena, including those explored in prospect theory and 

decision affect theory. We propose that valuation and decision making are emotional processes, 

involving interacting brain areas that include two expectation-discrepancy subsystems: a 

dopamine-encoded system for positive events and a serotonin-encoded system for negative ones. 

The model provides a rigorous account of loss aversion and the shape of the value function from 

prospect theory. It also suggests multiple distinct neurological mechanisms by which information 

framing may affect choices, including ones involving anticipated pleasure. It further offers a 

neural basis for the interactions among affect, prior expectations and counterfactual comparisons 

explored in decision affect theory. Along with predicting the effects of particular brain 

disturbances and damage, the model suggests specific neurological explanations for individual 

differences observed in choice and valuation behaviors. 
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How do people decide what clothes to wear, what to eat for dinner, what car to buy, or 

what kind of career to pursue? In traditional economics, the standard answer is that people decide 

by maximizing expected utility, but psychologists have found many problems with this kind of 

decision theory as a description of human behavior (e.g., Camerer, 2000; Kahneman & Tversky, 

2000; Koehler, Brenner, & Tversky, 1997; Rottenstreich & Hsee, 2001; Tversky & Kahneman, 

1991). Economists commonly take preferences as given, but from a psychological point of view 

it should be possible to explain how preferences arise from cognitive and affective processes. 

Work in this spirit has made tremendous progress in revealing key features and dynamics missed 

by theories disconnected from the study of cognitive, emotional and socially motivated 

phenomena, such as a common hypersensitivity to losses over equivalent gains (Kahneman & 

Tversky, 1979) and the affective influence of prior expectations and counterfactual comparisons 

on preference judgments (Mellers, 2000). Moreover, with the rise of cognitive and affective 

neuroscience, it should be possible to identify precise neural mechanisms underlying these 

behavioral-level explanations of why people make the choices that they do. 

We propose neural affective decision theory as a psychologically and neurologically 

realistic account of specific brain mechanisms underlying human preference and decision. The 

theory consists of four principles, which we shall list here and describe in detail later: 

1. Affect. Decision making is a cognitive-affective process, crucially dependent on emotional 

evaluation of potential actions. 

2. Brain. Decision making is a neural process driven by coordinated dynamic interactions among 

multiple brain areas, including parts of prefrontal cortex as well as major subcortical systems. 

3. Valuation. The brain forms preferences via interacting but distinct mechanisms for positive 

and negative outcomes, encoded primarily by dopamine and serotonin, respectively. 
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4. Framing. Judgments and decisions vary depending on how the context and manner of the 

presentation of information initiate different neural activation patterns. 

There is substantial empirical evidence for each of these principles, and when integrated in the 

precise manner we outline they can explain the findings of a wide range of psychological and 

neurological phenomena. 

In order to connect these principles with experimental results in a mathematically and 

neurologically rigorous fashion, we have developed a neurocomputational model called 

ANDREA (Affective Neuroscience of Decision through Reward-based Evaluation of 

Alternatives). It operates within the Neural Engineering Framework (NEF) developed by 

Eliasmith and Anderson (2003), using biologically realistic populations of neurons to encode and 

transform complex representations of relevant information. ANDREA simulates computations 

among several thousand neurons to model coordinated activities in seven major brain areas that 

contribute to valuation and decision making: the amygdala, orbitofrontal cortex, anterior 

cingulate cortex, dorsolateral prefrontal cortex, the ventral striatum, midbrain dopaminergic 

neurons, and serotonergic neurons centered in the dorsal raphe nucleus of the brainstem. 

ANDREA successfully produces detailed neural-level simulations of behavioral findings 

explored in prospect theory (Kahneman & Tversky, 1979) and the decision affect theory of 

Mellers and colleagues (1997). It shows how specific neural processes can produce behaviors 

observed in both psychological experiments and real-world scenarios that have provided 

compelling evidence for these preference and choice theories. In particular, ANDREA provides 

neurological explanations for the major hypothesis of prospect theory that losses have greater 

psychological force than gains, as well as for the fundamental claim of decision affect theory that 

the evaluation (and subsequent potential choice) of an option is strongly influenced by its 
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perceived relative pleasure, an emotional determinant that is dependant on expectations and 

counterfactual comparisons. In our concluding discussion, we compare ANDREA to other 

models in decision neuroscience, describe promising avenues of expansion for ANDREA and 

neural affective decision theory, and suggest additional psychological phenomena that are likely 

to fall within the scope of our theory. 

NEURAL AFFECTIVE DECISION THEORY 

We now examine in detail the four guiding principles of neural affective decision theory, 

including connections to and supporting evidence provided by a diverse array of research in both 

psychology and neuroscience. The ANDREA implementation of the theory we describe later 

provides the formal integration of these ideas necessary for our detailed simulation experiments. 

Principle 1. Affect. 

According to our first principle, decision making is a cognitive-affective process, 

crucially dependent on emotional evaluation of potential actions. This claim rejects the 

assumption of traditional mathematical decision theory that choice is a ‘cold’ process involving 

the calculation of expected values and utilities (Kreps, 1990; von Neumann and Morgenstern, 

1947). The original nineteenth-century concept of utility was a psychologically rich, affective 

one based on pleasure and pain (Kahneman, Wakker, and Sarin, 1997). In contrast, twentieth-

century economics adopted the behaviorist view that utilities are mathematical constructions 

based on preferences revealed purely by behavior. There is no room in this view for findings 

observed in both psychological experiments and everyday life that people’s decisions are often 

highly emotional, with preferences arising from having positive feelings for some options and 

negative ones for others. While psychology has introduced a more complex characterization of 

the cognitive processes underlying decision making, the specific influence of affect on behavior 
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has frequently been ignored. Rottenstreich and Shu (2004) argue that this neglect of affect may 

stem from an original desire of psychological decision researchers to minimize differences with 

the terminology and general themes of classical normative decision theories. 

But there is increasing appreciation in cognitive science that emotions are an integral part 

of decision making (e.g. Bechara, Damasio, & Damasio, 2000, 2003; Churchland, 1996; Lerner 

& Keltner, 2000; Loewenstein, Weber, Hsee, & Welch, 2001; Sanfey, Loewenstein, McClure, & 

Cohen, 2006; Slovic, 2002; Wagar & Thagard, 2004). Kahneman (2003, p. 710) argues that 

“there is compelling evidence for the proposition that every stimulus evokes an affective 

evaluation.” Common experience suggests that emotions are both inputs and outputs of decision 

making. Preference for one option over another depends strongly on their relative emotional 

interpretations, and the process of decision making can itself generate emotions such as anxiety 

or relief. The relevance of emotion to decision making is consistent with physiological theories 

that regard emotions as reactions to somatic changes (James, 1894; Damasio, 1994). It also fits 

with some cognitive theories of emotions, which regard them as judgments about the extent to 

which ones goals are being satisfied (Oatley, 1992). From a neurological perspective, it is easy to 

see how emotions can be both cognitive and physiological, as there are numerous 

interconnections among the relevant brain areas. 

Principle 2. Brains. 

According to our second principle, decision making is a neural process driven by 

coordinated dynamic interactions among multiple brain areas, including parts of prefrontal cortex 

as well as major subcortical systems. In particular, activity in brain regions involved in assessing 

and acting upon the appetitive or aversive nature of stimuli (commonly conceptualized as part of 

the brain’s reward system) seems most crucial to understanding judgment and choice behavior 
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(for a review, see Sanfey, Loewenstein, McClure, & Cohen, 2006). Empirical neuroscientific 

investigation of the nature of preference and decision has been developing rapidly, and much 

work today is identifying specific brain areas involved in producing decision-related behaviors 

(e.g., Bayer & Glimcher, 2005; Breiter, Aharon, Kahneman, Dale, & Shizgal, 2001; Knutson et 

al, 2005; McClure, York & Montague, 2004; Montague & Berns, 2002). This nascent field of 

decision neuroscience represents an exciting frontier of deep exploration into how and why 

people act, think and feel as they do in choice and judgment scenarios (Shiv et al., 2005). 

But taking a neural approach to decision making allows for much more than simply 

identifying brain areas activated in the subjects of behavioral studies. The development of 

biologically plausible theories of how brain areas interact to produce preferences and choices can 

provide more refined mechanistic explanations of decision behaviors. Moreover, investigation at 

the neural level can suggest novel experiments, for example the recent discovery that an odorless 

nasal spray preparation of the neuropeptide oxytocin increases trust in risky choice scenarios, 

including those involving monetary transactions (Kosfeld, Heinrichs, Zak, Fischbacher, & Fehr, 

2005). Such a finding is one that decision neuroscience can reveal, but that would be missed by 

higher level psychological study alone. Neuroscience can thus inform the development of more 

detailed predictions and richer understandings of behavioral-level observations.  

Principle 3. Valuation. 

Our third principle states that the brain forms preferences via interacting but distinct 

mechanisms for positive and negative outcomes, encoded primarily by dopamine and serotonin, 

respectively. There is extensive evidence that midbrain dopamine neurons, such as those in the 

ventral tegmental area and nucleus accumbens, are involved in the computation of a discrepancy 

between the expected and actual rewarding nature of an outcome (e.g., Schultz 1998, 2000; Suri 
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2002; Knutson et al. 2005), although recent evidence suggests that this activity is only involved 

in the encoding of positive deviations from expectations, that is, getting more than one expected. 

(Bayer & Glimcher, 2005). Daw, Kakade, and Dayan (2002) describe a plausible alternative 

brain mechanism for situations in which one receives less than expected, arguing that serotonin 

innervation from the dorsal raphe nucleus of the brainstem is crucial for producing characteristic 

reactions to negatively valued stimuli and matters being considered (e.g., options in a choice 

scenario). There are thus neurobiological reasons for viewing gains and losses as being encoded 

and subsequently assessed in a fundamentally different manner by the brain, involving distinct 

neural circuits and activation patterns. This provides the basis for our explanation of the central 

finding of prospect theory that losses loom larger than gains. Our neurocomputational model 

ANDREA simulates how interactions of the dopamine and serotonin systems with the amygdala 

and other brain areas may enable this asymmetric assessment of positive and negative outcomes. 

Principle 4. Framing. 

The last principle states that judgments and decisions vary depending on how the context 

and manner of the presentation of information initiate different neural activation patterns. The 

importance of framing is evident from the long history of influential work by Kahneman and 

Tversky (1981, 1986, 2000). They demonstrated that framing a decision in terms of either losses 

or gains can substantially affect the choices that people make, and related phenomena have been 

observed in many real-life arenas such as the stock market and consumer choice (Camerer, 

2000). We contend that framing can be understood even more deeply from the neural-affective 

perspective we propose in our first two principles. The simulation results we describe later show 

how this enriched conception of framing allows for the integration of diverse lines of behavioral 

decision research, as well as the postulation of important new predictions and hypotheses. 
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We take the concept of framing to encompass any potential effects of the manner or 

context of presentation on decisions and judgments. Following this characterization, such 

findings as preference reversals when outcomes are evaluated jointly versus separately (e.g., 

Hsee, Loewenstein, Blount, & Bazerman, 1999) might also be considered to be framing results. 

Another such framing effect is illustrated by the ‘trolley-footbridge’ dilemma (e.g., Greene et al., 

2001): most people consider flipping a switch to kill one person instead of five morally justified, 

but consider it immoral to personally push a person into the path of an oncoming trolley, killing 

that person but preventing the trolley from killing five others. We will also explain some of the 

findings of the decision affect theory of Mellers and colleagues (1997) as framing effects that 

differentially activate specific neural systems. 

These four principles make strong claims about the processes that constitute human 

decision making, but alone they are not sufficiently precise to explain particular experimental 

results. We now describe a rigorously defined, biologically realistic neurocomputational model 

that specifies how different brain areas might interact in a manner consistent with neural 

affective decision theory to produce observed behavioral phenomena. 

THE ANDREA MODEL 

A neuropsychological theory consists of a set of hypotheses about how specific brain 

operations produce observed behaviors. Because of the complexity of the brain, computational 

models are indispensable for theoretical neuroscience, both for precisely specifying relevant 

neural structures and activities and for examining their implications through appropriate 

simulation experiments. Litt, Eliasmith, and Thagard (2006) proposed a biologically detailed 

neural model of reward system substrates of valuation and decision. We describe here the 

primary functional components of this model, and introduce several explanatorily valuable 



 9 

additions regarding neural response characteristics and the complexity of emotional arousal 

encoding. This version of the model we call ANDREA, for Affective Neuroscience of Decision 

through Reward-based Evaluation of Alternatives. 

Our model applies the Neural Engineering Framework (NEF) developed by Eliasmith 

and Anderson (2003), and has been implemented in MATLAB using the NEF simulation 

software NESim (see Appendix A). Neural populations (‘ensembles’) and their firing activities 

are described in the NEF in terms of mathematically precise representations and transformations, 

with the dynamic characteristics of neural computations characterized using the tools of modern 

control theory. Appendix B outlines the exact mathematical nature of representation, 

transformation and dynamics as defined by the NEF. This rigorous, generalized mapping of 

high-level mathematical entities and transformations onto biophysical phenomena such as spike 

patterns and currents allows for biologically constrained computations and dynamics to be 

implemented in physiologically realistic neural populations, and has proven successful in 

modeling phenomena ranging from the swimming of lamprey fish (Eliasmith & Anderson, 2000) 

to the Wason card task from cognitive psychology (Eliasmith, 2005b). 

Figure 1 shows the connectivity structure between the different brain regions we have 

modeled. A comprehensive examination of afferent and efferent transmission among these 

regions would feature many more connections than we have included. The interactions shown 

represent particular paths of coordinated activity that contribute to observed behaviors, rather 

than a full characterization of all relevant neural activity. Appendix A provides details regarding 

the specific numbers of neurons used to model each of these brain areas, as well as the 

physiological parameters used to model individual neurons in each of these populations. Each 

input-output relation symbolized by a connection line in Figure 1 maps onto one or more specific 
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mathematical transformations, as summarized in Appendix C. We now describe these 

coordinated neural computations as they are relevant to explaining decisions and valuations.  

 

Figure 1: Basic connectivity framework. Dotted arrows represent external inputs to the model. 
Abbreviations: 5-HT, dorsal raphe serotonergic neurons; ACC, anterior cingulate cortex; 
AMYG, amygdala; DA, midbrain dopaminergic neurons; DLPFC, dorsolateral prefrontal cortex; 
OFC, orbitofrontal cortex; VS, ventral striatum. 
 
Subjective Valuation by Emotional Modulation 

Valuation of alternatives and other information is an essential part of decision making. 

Central to the performance of this task by ANDREA is an interaction between the amygdala and 

orbitofrontal cortex (Fig. 1). Much research has implicated orbitofrontal cortex in the valuation 

of stimuli (e.g., Rolls, 2000; Thorpe, Rolls & Maddison, 1983), particularly in light of its 

extensive connections with sensory processing areas of the brain. Several recent studies have 

indicated an important role for orbitofrontal neurons in providing a sort of “common neural 

currency” (Montague & Berns, 2002) which allows for the evaluation and comparison of 

figurative (or even literal) apples and oranges (Padoa-Schioppa & Assad, 2006). Recent studies 

of the amygdala have challenged its traditional association with mainly aversive stimulus 

processing, showing instead activation based on the degree to which stimuli are salient or 

arousing, rather than a specific valence type (for a review, see McClure, York & Montague, 
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2004). This has inspired a reinterpretation of classic results as indicating that negatively 

appraised events may be in general more emotionally arousing than positive outcomes, perhaps 

because of a need to alter current behavior in response to aversive feedback. In accord with 

research on the role of the amygdala in emotional attention (Adolphs et al., 2005) and 

multiplicative scaling observations for visual attention (e.g., Treue, 2001), ANDREA performs a 

multiplicative modulation by amygdala-encoded emotional arousal of the valuation computation 

performed in orbitofrontal cortex (Fig. 2). That is, orbitofrontal valuations are modeled as being 

multiplicatively dampened or intensified, depending on whether the individual is in a lowered or 

heightened state of affective arousal, respectively. 

Let V represent baseline orbitofrontal stimulus valuation, based on initial sensory and 

cognitive processing and provided as an input in our model. Taking A to represent amygdala-

encoded emotional arousal, we characterize the output subjective valuation S at time t as: 

S(t) = A(t)⋅V(t).      [1] 

Thus, increased levels of emotional arousal will amplify the subjective valuation of stimuli by 

orbitofrontal cortex, while lower arousal levels lead to valuation attenuation. As we discuss in 

our later account of prospect theory, ANDREA also introduces realistic biological constraints 

imposed by neural firing saturation that help to explain valuation behaviors observed in humans, 

an advancement over our earlier reward system model (Litt, Eliasmith, & Thagard, 2006). 

Surprise as Deviation from Expectations 

Figure 2 shows that our model generates amygdala activity upsurges accompanying 

changes in the valuation input to orbitofrontal cortex, and that these upsurges are valence-

asymmetric: negative changes in valuation (losses) produce greater affective arousal increases 

than equivalent positive changes (gains). This neurological behavior is produced mainly through 



 12 

a modulation of amygdala-encoded emotional arousal by a reward prediction error signal. This 

is simply the discrepancy between expected and actual stimulus valuation, and as such represents 

the effect of the surprising nature of a stimulus on how emotionally arousing it is.  
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Figure 2: Arousal modulation of valuation. a) The “emotionless” input signal to orbitofrontal 
cortex consists here of positive and negative valuation changes of varying magnitude. The 
vertical axis can be interpreted as a sort of neural currency scale: upward steps in the graph thus 
represent gains, while stepping down indicates a loss. Positive/negative sign corresponds to 
appetitive/aversive valence. b) Emotional arousal reflected in amygdala activity. Decoded output 
from spiking neuron populations (see Appendix B). Upsurges correspond to arousal increases 
coinciding with changes in the externally provided stimulus value signal in a), demonstrating the 
role such changes play in influencing emotional engagement. c) Multiplicative modulation of the 
activity presented in a) by that shown in b). Emotional arousal can induce significant changes in 
valuation from the baseline input signal. 
 

For this computation we employ the temporal difference (TD) model (Sutton & Barto, 

1998), due to its simple mathematical structure and robust correspondence with experimental 
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neural activity observations (e.g., Schultz, 2000). TD computes reward prediction error (E) based 

on the difference between the latest reward valuation and a weighted sum of all previous rewards 

(P). Using our arousal-modulated signal S as the input regarding current stimulus valuation, this 

leads to the modeled recurrent equations 

E(t) =  S(t) - P(t - 1)      [2] 

P(t) = P(t - 1) + α ·E(t),      [3] 

where α is a learning rate constant between 0 and 1. This activity has typically been modeled by 

increased midbrain dopamine firing with positive prediction errors (that is, getting more than 

expected) and firing rate depression for negative errors (getting less than expected) (Schultz, 

1998, 2000; Suri, 2002).While this approach seems valid for particular ranges, recent work has 

called into question the feasibility of midbrain dopamine acting alone to perform this 

computation (Daw, Kakade, & Dayan, 2002; Dayan & Balleine, 2002). In particular, such 

physiological constraints as low baseline firing rates make it difficult to envision how activity 

depression could be used to well encode highly negative prediction errors, a concern supported 

by recent experimental findings (Bayer & Glimcher, 2005). 

Accordingly, we adopt an interacting opponent encoding of positive prediction errors by 

midbrain dopamine and negative errors by serotonergic neurons in the dorsal raphe nucleus of 

the brainstem. This is supported by a variety of experimental studies in humans and other 

animals (Deakin, 1983; Evenden & Ryan, 1996; Mobini et al., 2000; Soubrié, 1986; Vertes, 

1991; for a review, see Daw, Kakade, & Dayan, 2002). By separating the encodings of losses 

and gains, we are able to distinctly calibrate the modulatory effects of positive and negative 

valuation changes to provide a plausible neural mechanism for loss aversion (Appendix C). That 

is, asymmetries in loss-gain valuation can be modeled via differing amygdala sensitivity to 
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inputs from dorsal raphe or midbrain areas, perhaps realized in actual brains through differences 

in specific neurotransmitter receptor concentrations in the amygdala, or similar mechanisms of 

connectivity strength variation (e.g., receptor sensitivity differences). 

Increased Behavioral Saliency of Negative Outcomes 

Valence-asymmetry in emotional arousal is further strengthened in our model through 

the activities we have assigned to the anterior cingulate and dorsolateral prefrontal cortices, 

specifically via a proposed dissimilarity in the influences of losses and gains on required 

behavioral planning. Much evidence supports the importance of dorsolateral prefrontal cortex in 

the planning, representation and selection of goal-directed behaviors (e.g., Owen, 1997), and the 

anterior cingulate cortex in the detection of conflicts between current behavior and desired or 

expected results, interfacing appropriately with dorsolateral prefrontal in the process (e.g., Bush, 

Luu, & Posner, 2002). We hypothesize an increased behavioral saliency of negative reward 

prediction errors, as such results may indicate that current behavior needs to be modified, rather 

than be simply maintained or strengthened as a positive error would indicate. Such a situation 

would introduce the attendant cognitive resource requirements of new action plan formation and 

execution in response to the displeasing outcome, as well as potential environmental risks 

stemming from altering current behavior. We model this increased behavioral saliency through a 

corresponding increase in emotional arousal (Appendix C). Thus, feedback from dorsolateral 

prefrontal cortex and the anterior cingulate to the amygdala in our model further increases the 

affective influence of losses over similarly sized gains. 

In combination with the previously discussed roles of dopamine and serotonin in 

influencing the amygdala, we arrive at our final characterization of how emotional arousal A is 
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influenced by the saliency of unexpected gains and losses, as well as potential behavioral 

modification costs associated with the latter: 

   A(t) = A1(t) + β ·DA(t) + γ ·5-HT(t) + C(t).   [4] 

A1 represents a degree of emotional arousal determined by external factors unrelated to reward 

prediction error or the described dorsolateral-cingulate contribution. In previous work we have 

provided this as a straightforward input signal to the model (Litt, Eliasmith, & Thagard, 2006). 

We shall describe later how ANDREA expands A1 arousal by incorporating prior expectations 

regarding valuation targets, which allows for a neurobiological explanation of decision affect 

theory (Mellers, Schwartz, Ho, & Ritov, 1997). DA and 5-HT are the opponent encodings of 

positive and negative reward prediction error, respectively, with γ chosen to be a connection-

strength constant greater than β to simulate an increased influence of serotonin-encoded losses 

over dopamine-encoded gains on emotional state. Finally, C represents the additional costs 

associated with losses that increase their behavioral saliency, and hence emotional import, as 

determined by activity in the anterior cingulate and dorsolateral prefrontal cortices. 

A NEURAL ACCOUNT OF PROSPECT THEORY 

Prospect theory, a theoretical framework for understanding risky choice developed by 

Kahneman and Tversky (1979, 1982, 2000), has been applied to many preference and choice 

behaviors commonly exhibited by people. The most famous such phenomenon is loss aversion, 

whereby people behave asymmetrically in their personal valuations of objectively equivalent 

losses and gains. Central to prospect theory’s resolution of this and other inconsistencies between 

classical decision research and actual behavior is a redefined characterization of the nature of 

subjective evaluations of decision outcomes. The resulting value function proposed by the theory 

has the following essential characteristics (Kahneman & Tversky, 1979; Tversky & Kahneman, 
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1984): i) subjective value is defined on gains and losses—that is, deviations from a neutral 

reference point—rather than on total wealth, as is typical of expected utility theory; ii) the value 

function is concave for gains and convex for losses; and iii) the curve is steeper for losses than 

gains. Taken together, an asymmetric sigmoid value function is the well-known result (Fig. 3).  

 
Figure 3: A hypothetical prospect theory value function, illustrating subjective valuation 
commonalities observed in tests of numerous subjects. 
 
Loss Aversion 

Neural affective decision theory, via the ANDREA model, provides a compelling 

explanation of loss aversion. The combination of arousal modulation of subjective valuation and 

the increased affective import of losses produces emotionally-influenced orbitofrontal valuations 

that overweight losses. This can be seen in Figure 2, and even more vividly in the simplified 

simulation of Figure 4. The resulting effects on thinking and behavior would produce the 

asymmetries in peoples’ evaluations of and responses to gains and losses that have been 

documented and explained by prospect theory.  
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Figure 4: Unbalanced evaluation of gains and losses. a) The input signal to orbitofrontal cortex 
consists of positive and negative changes in value of equal magnitude. b) Arousal level 
modulated by prediction error and likely behavioral saliency of stimuli. The loss induces a much 
greater arousal increase than the equal gain. c) The outcome of the unevenness displayed in b). 
Reductions in stimulus valuation (losses) are disproportionately amplified compared to gains. 
 

We turn now to extending this neural account of loss aversion into a detailed biological 

explanation for the specific shape of prospect theory’s sigmoid value function. 

The Value Function of Prospect Theory 

In developing a neural theory of preference that meshes with the behaviorally inspired 

prospect theory value function, the first step is to identify brain regions that should be expected 

to produce responses corresponding to the sorts of behaviors monitored in psychological studies 

of preference and valuation. As discussed earlier, it seems natural to look to orbitofrontal cortex 

as the site of activity mapping directly onto people’s subjective valuations of gains and losses. It 

has been implicated strongly in tasks related to valuation and comparison of outcomes, events 

and perceived stimuli in general, and we have described a fundamental affective modulation of 

this encoding that may form the basis of the subjective nature of ultimate outcome valuation. 
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The next step is to identify features of the ANDREA model that might explain the 

specific nature of the sigmoid value function, as described previously in terms of three primary 

characteristics (Fig. 3). Feature i) of the curve, valuation in terms of reference point deviation, 

identifies the sort of input signal to be modulated in orbitofrontal cortex. Since the degree to 

which a stimulus is considered a loss or a gain is a representation of its divergence from a neutral 

reference, evaluating such changes in value calls for a step-style input, similar to those shown in 

Figures 2 and 4, where the subjective valuation of a deviation of size X will be determined by the 

emotional modulation produced by an input valuation step from 0 to X. For example, to produce 

orbitofrontal activity corresponding to the subjective valuation of a loss of $200, we measure the 

emotionally modulated output from orbitofrontal cortex to a step input that moves from 0 (the 

reference point) to our target value (-200). Leaving aside feature ii) for a moment, the third 

aspect of the prospect theory value curve, a steeper slope for losses than gains, is simply loss 

aversion (Kahneman & Tversky, 1979). The biological account of loss aversion we previously 

described will thus serve as a critical component of our neural explanation of the S-curve. 

The second feature of the sigmoid value function, the leveling off of loss and gain 

valuations at the extremes, requires appeal to additional neurological mechanisms. In particular, 

we introduce the notion of neural saturation. Any type of neuron has hard biological constraints 

on how fast it can fire. Each action potential is followed by a refractory period of repolarization 

during which the neuron cannot fire, and issues such as cellular respiration requirements and 

local neurotransmitter depletion introduce unavoidable limitations on spike rates. In the context 

of neurocomputation in the NEF (and hence ANDREA), this means that the range of values that 

can be encoded by any neural population is limited. This inherent restriction can actually serve 

an explanatory purpose in the case of the prospect theory value function. To explain how 
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ANDREA could produce leveling-off valuations at the extremes, note that we encode values 

through increasing neural spike rates in the encoding population as these values become larger 

(in either the positive or negative direction). Thus, in attempting to provide subjective valuations 

for very large gains or losses, neurons in orbitofrontal cortex will begin to saturate, as they 

simply cannot fire fast enough to produce linearly distinctive affective responses to increasingly 

large value deviations. 

An alternative encoding of value magnitude through activated population size, rather than 

the firing levels of a fixed population, would seem to deny this saturation-based account of 

diminishing marginal sensitivity. Such a scheme might be akin to accumulator models that have 

been applied to numerosity encoding in intraparietal regions (Roitman, Brannon, & Platt, 2007). 

However, applying this approach to valuation encoding seems less plausible from a 

neurophysiological resources perspective; while the salient brain areas do have millions of 

neurons, all of these would require direct connectivity to areas interpreting magnitude 

information in order to impart the same information as naturally rate-tuned transmitter release by 

a population which encodes magnitude via firing rates. Indeed, accumulator models generally 

allow for cardinal value encodings on restricted integer scales such as 2-to-32, rather than the 

potentially arbitrary and quasi-analog scale on which valuations often lie. 

Figure 5 illustrates the results of running simulations based on the preceding description. 

Each data point at X along the horizontal axes of 5b and 5c is the result of measuring a 

modulated orbitofrontal valuation output in a simulation providing orbitofrontal cortex a step 

input from 0 to X, in accord with the reference-deviation characterization of value in prospect 

theory. As expected, the effects of loss aversion are clear, with the slope differential indicating a 

greater affective impact of losses over equivalent gains. The 2:1 slope ratio observed here for 
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moderate losses and gains mirrors behavioral evidence in the decision literature (e.g., Kahneman, 

Knetsch, & Thaler, 1991). Finally, the concavity features of the value function have been 

successfully replicated in these simulations. Figure 6 shows the specific role of neural saturation 

in this regard. Each row in these spike rasters represents an individual orbitofrontal cortex 

neuron, and each point represents a single action potential at a specific point in time produced by 

the neuron in question. Clearly, equal changes in the size of a loss or gain do not necessarily 

produce similar changes in neural spiking, particularly as neurons begin to saturate. This causes a 

decreasing distinctness in firing response at the extremes, which we propose as the neurological 

basis for the leveling-off in loss and gain valuation observed in behavioral studies. Overall, the 

mechanisms we have outlined combine to produce a detailed, biologically plausible neural 

explanation of the nature of the value function described by prospect theory. 
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Figure 5: Value function simulation results. a) A typical prospect theory value function. b) 
Subjective valuation outputs from orbitofrontal cortex. Each data point represents the 
emotionally modulated valuation of the loss or gain value chosen along the horizontal axis. c) 
Close-up of the central portion of b), showing the differing slopes for loss and gain valuations. 
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Figure 6: Orbitofrontal cortex spike rasters. Note the clear difference in activity between a) and 
b) (a 52% increase in immediate post-event spiking). This is in contrast to the relative similarity 
in spiking in b) and c) forced by neural saturation, as the $50 change moves farther away from 
the reference value of 0. This response characteristic forms the basis of our neural explanation 
for the concavity features of the prospect theory value function. 
 
Framing through Reference Value Manipulation 

Understanding how individuals respond differently depending on the manner in which 

information regarding a situation is presented is considered to be one of the primary explanatory 

successes of prospect theory. A famous illustration of the power of framing is the presentation of 

two different choice-sets to subjects regarding the consequences of different plans to handle the 

outbreak of a disease expected to kill 600 people (Tversky & Kahneman, 1981, 1986): 

Problem 1: Program A – 200 people will be saved. 

  Program B – 1/3 probability 600 are saved, 2/3 probability nobody is saved. 
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Problem 2: Program C – 400 people will die. 

  Program D – 1/3 probability nobody will die, 2/3 probability 600 will die. 

Faced with the choice in Problem 1, 72 percent of subjects chose Program A over B, whereas 

only 22 percent of subjects chose Program C over D when faced with Problem 2. Clearly, 

though, Programs A and C are objectively equivalent, as are their respective alternatives. The 

framing of situations in terms of losses or gains may thus cause dramatic reversals of preference 

in decision scenarios. 

The mechanisms implemented in the ANDREA model provide a realistic neural basis for 

such framing effects. We describe means by which objectively equivalent outcomes can produce 

markedly different subjective valuations in orbitofrontal cortex, depending on the manner in 

which each is framed. In particular, note that feature i) of the prospect theory value function, the 

definition of subjective valuation on deviations from some neutral reference value, points 

towards an obvious mechanism for the framing of decisions: variation of the reference value 

itself. In the disease example, Problem 1 is framed in terms of lives saved rather than lives lost, 

while the reverse is true for Problem 2. Thus, choosing “zero” reference points from which 

subjective valuations shall deviate in each case should lead to different values for each problem. 

For Problem 1, “zero lives saved” would indeed correspond to 0 on a scale measuring the total 

number of people of our original 600 who are expected to be left alive after the choice of a given 

program for combating the disease. Crucially, however, the “zero lives lost” reference point for 

Problem 2 would correspond to the value 600 when measured on this same scale, since 600 out 

of 600 people alive indicates that no lives have been lost, as required. 

Thus, in the case of the Program A option in Problem 1, a subjective valuation deviation 

described as “200 people out of 600 will be saved” represents a positive-direction deviation from 
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0 lives saved to 200 lives saved. In contrast, the objectively equivalent Program C option in 

Problem 2, described as “400 people out of 600 will die”, represents a negative-direction 

deviation from 0 lives lost to 400 lives lost, that is, from 600 left alive down to 200 left alive. 

Note that both deviation construals end at the value 200 on the scale of people still alive, since 

they are objectively equivalent outcomes. Nevertheless, because of our multiplicative modulation 

of valuation deviations by emotional arousal, opposite directions of deviation will produce 

subjective valuations that are emotionally amplified in opposite directions. Figure 7 illustrates 

the results of characterizing this type of framing as a manipulation of the deviation reference 

point. We obtain a subjective valuation of orbitofrontal step-input corresponding to Program A 

that is much more positive than that of a step-input corresponding to Program C, simply because 

of opposite directions of emotional modulation. This would explain the preference reversal that 

occurs upon switching decision frames, as what was seen as a gain in comparison to one 

reference value is suddenly evaluated as a loss in comparison to a different referent. Later we 

will discuss framing effects that operate in ways other than varying reference values, and how 

these different sorts of framing can in combination explain the observed interactions between 

affect, prior expectations and counterfactual comparisons explored in decision affect theory.  
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Figure 7: Simulation results for framing in terms of gains and losses. a) Objectively equivalent 
outcomes (ending up with 200 people alive) evaluated as deviations from different reference 
points. The thin-lined step input represents Problem 1/Program A, and the heavy line Problem 
2/Program C (Tversky & Kahneman, 1981). b) Opposite directions of deviation produce 
opposite directions of emotional amplification in subjective valuation, leading to more a positive 
outlook towards Program A than Program C. 
 
Predictions 

Our neurological explanation of prospect theory suggests a range of testable neural-level 

predictions and hypotheses. Litt, Eliasmith and Thagard (2006) outline several such predictions 

in relation to loss aversion and the behavioral influence of serotonin. For example, the extent of a 

particular individual’s hypersensitivity to losses is hypothesized to be correlated with the 

concentration in the amygdala of a specific serotonin receptor subtype, which would influence 

the degree to which negative reward prediction errors affect amygdala activity. As well, 

degraded connectivity between midbrain dopamine neurons and the raphe serotonin system is 

predicted to increase emotionally influenced overvaluation of both gains and losses, due to 

mutual attenuation effects that we have modeled between these systems. Such correlation 

between loss and gain sensitivity has indeed been shown in recent work .by Tom and colleagues 

(2007). The particular neural activity they describe suggests the mechanism underlying this 
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relationship may involve important additions to the computations captured in the ANDREA 

model, such as the effects of noradrenergic circuits. 

Further empirical investigation of the neural correlates of loss aversion can provide more 

such tests and potential falsifications of the relationships proposed in ANDREA, although 

practical barriers to imaging brain stem serotonergic activity limit the capacity of the approach of 

the Tom et al. study in this respect. Additionally, this work and other explorations of “prospect 

theory on the brain” by this team did not show any significant amygdala activity relevant to loss 

aversion (Tom, Fox, Trepel, & Poldrack, 2007; Trepel, Fox, & Poldrack, 2005). Besides the 

studies we have previously cited that indicate an important role for the amygdala in emotional 

valuation, significant amygdala activity directly corresponding to loss aversion has contrastingly 

been directly observed in other fMRI experiments (e.g., Weber et al., 2007). Such discrepancies 

and limitations might be resolved by employing alternative experimental techniques; for 

instance, it is possible to temporarily diminish cerebral serotonin levels by an ingestion of a 

tryptophan depleting drink (Cools et al., 2005), which our model suggests would specifically 

diminish loss aversion. Depletion studies of decision-related phenomena hold much promise for 

testing the validity of neurocomputational models like ANDREA, as well as advancing our 

understanding of the biological bases of complex behaviors and cognitions. Various other 

anomalous choice-related behaviors arising from specific disconnections and damage patterns 

are also described by Litt, Eliasmith and Thagard (2006). The enriched conceptions of decision 

phenomena provided by neural-level exploration allow for postulation of potential influences on 

behavior that would be missed by studies restricted to examining higher-level psychological 

processing. 
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A straightforward set of additional predictions deriving from our ANDREA simulations 

would be expectations of activation of the brain regions described in our model (Fig. 1) to be 

observed in imaging experiments involving people performing preference and choice tasks. But a 

more interesting explanatory and predictive utility of the model involves the study of individual 

differences in value functions. While the general features of the curve have been reproduced by 

many different experiments and in large numbers of people, the specific functions of different 

individuals are known to vary widely (e.g., Kahneman & Tversky, 1982). Because our 

simulations essentially represent the value function produced by a single brain (to which we have 

complete access, as its designers and builders) the model offers biological reasons for why and 

how individual value functions vary, while preserving some common general features. As 

discussed previously, connectivity strength between dorsal raphe serotonin and the amygdala can 

influence loss aversion, and thus the nature of the subjective valuations performed in 

orbitofrontal cortex. In persons with heightened serotonin sensitivity in the amygdala, we would 

expect to see a value function with an even steeper slope for losses than that of gains. The 

opposite also holds, in terms of lessened serotonergic influence or stronger midbrain 

dopaminergic connectivity, with either of these cases predictive of less discrepancy in slope 

between losses and gains (i.e., reduced loss aversion). The damaged innervation between the 

raphe and midbrain mentioned earlier would have the effect of steepening both the loss and gain 

portions of the curve, although the slope ratio might be unaffected. These connectivity 

manipulations can be understood psychologically as altering the extent to which one is 

emotionally aroused by losses and gains, with this affective influence central to producing 

subjective valuations of these deviations from a reference point. 
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We also predict that specific neural saturation range differences between brains may 

underlie individual differences in value function shape, with more readily saturating orbitofrontal 

populations prone to producing curves that level off quicker and more markedly. In the NEF, this 

saturation can itself be modeled asymmetrically around 0, so we can readily create a neural 

system of specific architecture and connectivity that yields significant leveling-off for losses but 

much less so for gains, or vice versa. In sum, the ANDREA model allows for numerous 

experimentally testable neural-level predictions regarding prospect theoretic behavior. 

A NEURAL ACCOUNT OF DECISION AFFECT THEORY 

The hedonic influence of prior expectations and counterfactual comparisons on the 

subjective valuation of outcomes is characterized by the work of Mellers and colleagues on what 

they call decision affect theory (Mellers & McGraw, 2001; Mellers, Schwartz, Ho, & Ritov, 

1997; Mellers, Schwartz, & Ritov, 1999). Its fundamental claim is that evaluation by an 

individual of an outcome, event or decision option is strongly influenced by the “relative 

pleasure” it is considered to provide (Mellers, 2000). This relativity derives in part from the 

effects of counterfactual comparisons, as illustrated by the finding that Olympic silver medalists 

are more likely to feel disappointed than bronze medalists because of generally higher personal 

expectations (McGraw, Mellers, & Tetlock, 2005). Another factor is the degree to which an 

obtained outcome is considered surprising, with greater emotional impact for unexpected results 

(either good or bad) than for expected outcomes. The mathematical expression of decision affect 

theory is 

   RO = J[uO + d(uO – uE) ∗  (1 – sO)]     [5] 

(cf. equation [1] in McGraw, Mellers, & Tetlock, 2005). RO is the emotional feeling associated 

with the obtained outcome and J is a linear function relating the felt pleasure to a specific 
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numerical response. uO and uE are the respective utilities of the obtained and expected outcomes, 

and d(uO – uE) is a disappointment function that models how the obtained outcome is compared 

to the alternative expected outcome. sO is the subjectively judged probability of the obtained 

outcome actually occurring, so the weighting by the complementary (1 – sO) term models the 

degree to which the obtained outcome was not expected (i.e., the subjective probability that 

something else would occur). The importance of emotional influence becomes clear with the 

finding that people will choose what feels best—that is, make decisions in such a manner as to 

maximize average positive emotional experience (Mellers, Schwartz, Ho, & Ritov, 1997). 

Thus feelings about outcomes and choices, and hence the decisions people may be 

expected to make, are greatly influenced by the size and valence of the discrepancy between 

anticipated and actual results. The expected emotional reaction to gaining $20 will be vastly 

different if the prior expectation is gaining $100, versus the case where the expected yield is only 

$1. Indeed, the degree of influence of this discrepancy from anticipated results is such that an 

objectively worse outcome can sometimes be more pleasurable than one which is better. 

Consider the easily imaginable experience of feeling happier in stumbling across a twenty-dollar 

bill while walking home from work than from receiving an underwhelming one percent raise the 

same day, despite the monetary value of the raise being significantly higher than that of the 

found note. Decision affect theory thus describes in a revealing and systematic fashion the nature 

of certain situations in which less can actually feel like more. In describing a neural basis for the 

theory suggested by ANDREA, we shall draw upon an integration of the sort of framing 

discussed in our examination of prospect theory with the effects of the emotional context of 

information presentation on valuation and choice, which we now explore in depth. 
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Framing through Direct Emotional Arousal Influence 

Our earlier discussion of framing effects focused on the type most discussed in prospect 

theory, concerning alternative descriptions of losses and gains. However, framing can affect 

decisions in other ways, as in the trolley-footbridge experiments of Greene and colleagues 

(2001). These experiments are not reference value manipulations, and are therefore not 

explainable by the neural mechanisms that we described for prospect theory. The judgment of 

morality reversal occurs between two outcomes that are both described as killing one person to 

save five others. The manipulation involved here is not one of reference point, but rather the 

personal or impersonal nature of the specific action performed that leads to the described 

outcome. It is thus differing contexts of choice presentation (i.e., the nature of the situation story) 

that produce the change in situational evaluation, rather than any suggestive presentation of 

choices in terms of either losses or gains. We will call this emotional-context framing, in contrast 

to the reference-value framing we discussed in relation to prospect theory. 

We propose that emotional-context framing in the trolley-footbridge dilemma occurs 

through increased arousal associated with the direct, personalized action of pushing a person to 

their death, compared to the more detached and impersonal act of flipping a switch that will 

cause a trolley to divert from hitting five people towards hitting a single person. Such an increase 

in emotional engagement induces greater amplification of the subjective evaluation of causing a 

death in the personal case, which would provide a neurological basis for the reversal in typical 

judgments of the morality of the actions in question. fMRI experiments by Greene and 

colleagues seem to support this neural account of the trolley-footbridge dilemma, showing 

increased amygdala and orbitofrontal activity in cases of highly personal characterizations of 

morally debatable actions (Greene & Haidt, 2002; Greene et al., 2004). 
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Figure 8 illustrates the neural explanation we have described for the type of framing 

produced by changing the emotional context of the presented information. Just as for reference-

value framing, we get different subjective valuations for scenarios that have identical objective 

values, which would allow for preference reversals to occur when the decision frame is altered. 

The primary difference is that this mechanism employs a direct manipulation of emotional 

arousal state, whereas our neural basis for the reference-value framing caused emotional 

modulation changes indirectly though manipulation of valuation-deviation reference points.  
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Figure 8: Simulation results for framing that changes emotional context. a) A step input to 
orbitofrontal cortex indicating a negative change in value, such as the consideration of a situation 
in which one’s actions cause the death another person. b) Two different base arousal inputs to 
the amygdala, corresponding to differing levels of context-produced emotional engagement. c) 
Because of differing base arousal levels, arousal upsurges corresponding to the negative 
valuation deviation differ as well. d) Higher context-motivated base arousal leads to greater 
amplification of the subjective valuation change, and thus a belief that the more arousing 
scenario is actually worse than the objectively equivalent but less arousing scenario. 
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Decision Affect Theory as an Integrated Framing Phenomenon 

Explanation of the experimental results examined in decision affect theory requires both 

reference-value framing and emotional-context framing. The hedonic impact of counterfactual 

comparisons can be produced by setting the reference point of the valuation deviation for an 

obtained outcome to the value of the unobtained counterfactual result, which is exactly 

reference-value framing. Then winning $20 when the counterfactual comparison is a $100 win 

would be construed as a loss, whereas a counterfactual comparison to winning only $1 would 

reframe the $20 win as a gain. In addition, the degree to which the obtained outcome was 

unexpected can have the effect of emotional-context framing. We formally model this in 

ANDREA by having emotional context influence neural behavior through the arousal input A1 

(see equation [4]) in a manner that takes into account the perceived probability of the obtained 

outcome X actually occurring: 

   A1(t) = A0(t) + λ ·(1 – P[outcome X]).   [6] 

In this enriched conception of emotional arousal, A0 fills the previous role of A1 as a base arousal 

level determined by external factors and provided as an input to the model. A1 emotional arousal 

is now explicitly increased in inverse proportion to the expected probability of obtaining the 

outcome under consideration. Surprising, low-probability outcomes produce higher arousal than 

unsurprising outcomes, where 1 – P[X] is closer to 0. The constant multiplier λ may be related to 

the relative affect-richness of the outcome in question, as this variable seems strongly related to 

the degree to which uncertainty affects valuations (Rottenstreich & Hsee, 2001). 

This direct manipulation of base emotional arousal is a formalization of emotional-

context framing, in this case a context related to outcome uncertainty. It and reference-value 

framing, implemented in ANDREA by the mechanisms described earlier, together produce the 
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canonical finding of decision affect theory that objectively worse outcomes can sometimes feel 

better than more advantageous alternatives (Fig. 9). The mechanisms described above and 

illustrated in Figure 9 allow us to map the standard mathematical model of decision affect theory 

(equation [5]) onto specific neural structures and computations. The calculation of subjective 

utilities and their subsequent comparison, as embodied in the d(uO – uE) term in equation [5], are 

performed neurologically through step-functional deviation in orbitofrontal cortex exactly as we 

modeled for prospect theoretic subjective valuation. The ‘disappointment’ effects of comparing 

obtained and expected outcome valuations result from prediction error computations by 

dopamine and serotonin networks feeding back to influence emotional arousal encoded in the 

amygdala, which in turn modulates orbitofrontal valuations. The subjective probability 

augmentation to our arousal representation (equation [6]) is identical to the (1 – sO) surprise term 

in the decision affect theory model of Mellers and colleagues. In combination with our 

multiplicative modulation of valuation by affective arousal (equation [1]), it is clear that this 

enhancement also has similar mathematical effects to that of for the surprise term in equation [5].  
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Figure 9: Decision affect theory as an integration of framing ideas. a) Counterfactual 
comparisons between obtained and unobtained outcomes are encoded through appropriate setting 
of valuation deviation reference points, as in reference-value framing. b) The surprising natures 
of obtained outcomes are encoded through direct manipulation of base emotional arousal input, 
as in emotional-context framing (equation [5]). c) The effect of surprise can outweigh an 
objectively larger valuation deviation, producing greater hedonic intensity for a surprising 
smaller gain than an unsurprising larger one in this case. d) The subjective valuation of an 
objectively worse outcome is greater than that of the better outcome, because of the added 
pleasure of being surprised by the smaller gain here. 
 

Figures 10 and 11 show the results of more comprehensive simulations of the behavioral 

findings of Mellers and colleagues (Mellers, Schwartz, Ho, & Ritov, 1997). In Figure 10, the 

value of the unobtained counterfactual comparison outcome is held constant at $0 (i.e., neither 

losing nor gaining money) while the obtained outcome value and the expected probability of 
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obtaining that outcome are varied. Figure 11 describes an opposing experiment where the $0 is 

the unvarying obtained outcome—that is, subjects neither lose nor gain any money. What is 

instead varied is the expected probability of obtaining this $0 outcome and the value of the 

unobtained outcome used as a counterfactual comparison. In both figures and in both the 

behavioral and ANDREA simulation results, lower-probability curves (corresponding to 

surprising obtained outcomes) produce more intense affective experiences, as reflected by more 

extreme emotional response ratings. As well, there are cases in both the behavioral findings and 

our simulation data where an objectively worse outcome produces a more positive emotional 

response than one which is objectively greater. For instance, both Figures 10a and 10b show 

more elation from winning $17.50 instead of $0 with an expected probability of such a win of 

only 0.09 than for winning $31.50 instead of $0 when the anticipated probability of this outcome 

is 0.94. The surprising smaller gain feels better than the unexpected larger gain. Our proposed 

neural basis for decision affect theory thus provides a plausible and thorough biological 

characterization of the phenomenon. 
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Figure 10: Comparing behavioral and simulation results in decision affect theory. a) Behavioral 
findings of Mellers et al., 1997, for lotteries with a constant $0 unobtained counterfactual 
comparison and varying obtained outcomes and expected obtained outcome probability. 
Emotional response was reported by subjects by ratings of feelings on a scale of 50 (extreme 
elation) to -50 (extreme disappointment) b) Results of model simulations of the Mellers et al. 
experiment in a), with data points determined through simulations in line with our proposed 
neural basis for decision affect theory (Fig. 9). 
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Figure 11: Comparing behavioral and simulation results in decision affect theory, opposite 
experiment to that described in Figure 10. a) Behavioral findings of Mellers et al., 1997, for 
lotteries with constant $0 obtained outcome and varying unobtained counterfactual comparison 
outcome value and expected obtained outcome probability. b) Model simulation of the 
experiment in a), with data points determined through simulations in line with our proposed 
neural basis for decision affect theory (Fig. 9). 
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We have been able to explain the central findings of decision affect theory using the same 

mechanisms that we applied to the phenomena explained by prospect theory, with the addition of 

framing by emotional context. A major motivating factor for the exploration of any subject at 

more basic levels of explanation is the desire to unite findings that are disconnected at higher 

levels of study through a set of shared lower-level mechanisms. In this vein, an important 

undertaking in the neuroscientific exploration of the psychology of preference and choice is to 

uncover shared underpinnings for phenomena that have yet to be rigorously tied together at the 

behavioral level. ANDREA demonstrates such a means to connect decision affect theory and 

prospect theory via the two neural mechanisms for framing we have outlined. 

Predictions 

There are undoubtedly other kinds of framing besides the reference-value and emotional-

context types that we have discussed. Additional brain mechanisms may be required to explain 

other cases in which differing modes of identical information presentation produce divergent 

results, such as the case of reversals in preference when options are considered jointly versus 

separately (e.g., Hsee, Loewenstein, Blount, & Bazerman, 1999). Emotional-context framing 

could also be relevant to explaining a prominent result in constructive memory research. In the 

car accident study by Loftus and Palmer (1974), they describe significant effects on speed-of-

impact memory judgments by subjects based simply on the emotiveness of the action verb used 

to describe the collision between two cars (“contacted each other” producing lower remembered 

speed judgments than “smashed into each other”). This seems analogous to the baseline 

emotional arousal manipulation inherent in our second neural framing mechanism, which in turn 

causes increasingly amplified subjective valuations that would correspond to inflated speed 

judgments by subjects when asked more emotively framed questions by Loftus and Palmer. 
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Further predictions arising from the framing mechanisms we have described relate to 

how the neural activity making up these mechanisms, and hence the effects of framing, could be 

induced without performing explicit decision framing. For instance, it might be possible to 

manipulate default subjective valuation reference points either upwards or downwards via 

positive or negative priming, or perhaps even through direct neuropharmacological intervention 

to influence orbitofrontal activity. This could potentially produce effects similar to reference-

value framing in a less conspicuous manner. Similarly for emotional-context framing, 

manipulation of affective arousal in a manner wholly unrelated to situation context could cause 

“bleed-over” effects identical to those produced by situation-related arousal modulation. 

Methods of manipulation include prior exposure to violent or sexual imagery, relaxing or 

stressful preceding tasks, and direct pharmacological modulation of amygdala activity. There is a 

wide variety of means by which brain activity similar or identical to our mechanisms of framing 

can be induced either behaviorally or neurochemically, and we predict that such alternative 

routes should produce behaviors in people similar to explicit framing effects, regardless of 

whether or not they are aware of how they are being influenced. 

GENERAL DISCUSSION 

We have shown how neural affective decision theory, as stated in our four principles and 

as implemented in the ANDREA model, can account for the central phenomena described by 

prospect theory and decision affect theory. Our view of the general process of decision making is 

summarized in Figure 12. People are presented with a decision problem by verbal or perceptually 

experienced descriptions which they must interpret based on the context in which the decision is 

being made, resulting in an overall representation of the problem that is both cognitive and 

emotional. Options, outcomes, and goals can be encoded by verbal and other cognitive 
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representations, but with an ineliminable emotional content; in particular, goals are emotionally 

tagged. The translation of the presentation of a problem and its context into an internal cognitive-

emotional representation produces framing effects, because different representations will invoke 

different neural-affective evaluations. ANDREA shows how these evaluations can be computed 

by coordinated activity among multiple brain areas, especially the orbitofrontal cortex, the 

amygdala, and dopamine and serotonin systems involved in encoding positive and negative 

changes in valuation. The result is decisions that select options inducing the highest emotional 

subjective valuations.  

 

Figure 12. Overview of neural affective decision theory. 
 

ANDREA has greater explanatory scope than other neurocomputational models of 

decision and reward that have focused on in-depth modeling of more restricted subsystems of the 

brain, and accordingly limited ranges of behavioral phenomena. Two such examples are the 

model of reward association reversal in orbitofrontal cortex by Deco and Rolls (2005) and the 

GAGE model of cognitive-affective integration in the Iowa gambling task and self-evaluations of 

physiologically ambiguous emotional states (Wagar & Thagard, 2004). Additionally, a 

straightforward diffusion decision process implemented in superior colliculus cells seems able to 

accurately characterize accuracy and reaction time in simple two-choice decision tasks (Ratcliff, 

Cherian, & Segraves, 2003). Task modeling of this sort is important for exploring basic details of 

neural mechanisms for specific phenomena, but examining brain processes on a larger scale is 
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required for explaining more complex and wide-ranging psychological findings, such as prospect 

theory and decision affect theory. Busemeyer and Johnson (2004) describe a connectionist model 

that they apply to a range of behaviors as diverse as those explored by ANDREA, including 

preference reversal effects and loss aversion. The network model called affective balance theory 

(Grossberg & Gutowski, 1987) also explores a wide range of risky decision phenomena in a 

mathematically sophisticated fashion, and proposes effects of emotional context on cognitive 

processing that are largely consistent with those implemented in ANDREA. The main 

improvement that our approach offers over these two models is in neurological realism, as 

reflected by modeled characteristics of individual processing units (‘neurons’) and the mapping 

of proposed computations onto specific brain regions and interactions supported by empirical 

findings. The models of Grossberg and Gutowski (1987) and Busemeyer and Johnson (2004) are 

not comparable in this respect to either ANDREA or the previously mentioned works of Deco 

and Rolls (2005) and Wagar and Thagard (2004). This of course is not a criticism of such 

methods of modeling. Rather, it is more of an indication of the different levels at which 

theoreticians can formulate explanations of behaviorally studied psychological phenomena.  

While the proposed mechanisms are interesting from the larger perspective of computational 

models of decision making, these artificial neural networks are of a fundamentally different 

nature than ANDREA and similar models in computational cognitive neuroscience. 

A recent model of decision-related interactions between basal ganglia and orbitofrontal 

cortex by Frank and Claus (2006) recognizes the utility of taking the sort of broad-scale 

approach we employ in our design of ANDREA, and maintains a similar level of neurological 

realism and detail. Despite certain similarities regarding modeled brain regions and proposed 

computations, this model diverges from ANDREA in several fundamental ways, leading to both 
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different mechanisms and different explanatory targets for each of our models. After briefly 

describing the structure of the Frank and Claus (2006) model, we compare it in detail with our 

own model of valuation and choice phenomena. 

The main focus of the Frank and Claus model is the means by which basal ganglia 

dopaminergic activity and orbitofrontal computations enable adaptive decision making 

responsive to contextual information. Computation and representation of expected decision value 

information is accomplished through a division of labor between subcortical dopamine and 

prefrontal networks. A basal ganglia dopaminergic network learns to make decisions based on 

the relative probability of such decisions leading to positive outcomes. This process is 

augmented by orbitofrontal circuits that provide a working memory representation of associated 

reinforcer value magnitudes that exercises top-down control on the basal ganglia activity, which 

allows more flexible response to rapidly changing inputs. The proposed computations are 

detailed, elegant and well-supported by empirical data, and the model is effective in explaining 

decision-related behaviors as diverse as risk aversion/seeking, reversal learning, and peoples’ 

performance in a variant of the Iowa gambling task in both normal and brain-damaged scenarios. 

While ANDREA does not implement the specific computations proposed by Frank and 

Claus (2006), this is due more to differing targets of explanation than to any major 

inconsistencies in our respective conceptions of the roles of various brain regions in decision 

making. Both models describe important functional differences between orbitofrontal-amygdala 

networks and dopaminergic activity in line with empirical findings demonstrating the 

involvement of orbitofrontal cortex in valuation and dopaminergic encoding of reward prediction 

error. How these subsystems might interact is a question that both ANDREA and Frank and 

Claus (2006) address, and one that has been neglected in previous theoretical modeling of the 
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neurobiology of reward. Nevertheless, whereas Frank and Claus develop a comprehensive 

characterization of how orbitofrontal cortex learns and represents reinforcer value, our goal is to 

describe how specific external influences differentially alter the magnitudes of these 

orbitofrontal-encoded values, such as via the asymmetric emotional modulation by losses and 

gains on valuations that we describe as the basis of loss aversion in prospect theory. As a result, 

the models are best suited to providing neural explanations of different psychological 

phenomena, and where they address similar phenomena they do so with contrasting emphases on 

specific relevant brain mechanisms. 

The most prominent difference is that of representational complexity of amygdala 

activity. In both models, the amygdala encodes the magnitude of losses and gains in proportion 

to overall activity level, which then influences orbitofrontal representations of reward values. 

Frank and Claus (2006) do not explore how the amygdala forms such representations of 

reinforcer magnitude, providing them instead as direct model inputs. In contrast, ANDREA 

models multifaceted means by which emotional arousal related to outcome magnitude is encoded 

by the amygdala (equations [4] and [5]). This allows for the postulation of neural explanations 

for phenomena not addressed by Frank and Claus (2006), such as multiple mechanisms for 

framing and the observations of decision affect theory. In addition, while both models describe 

loss aversion as resulting from greater amygdala activation by losses than equivalent gains, 

ANDREA offers specific neurological reasons of how this might occur through differential 

calibration of distinct loss and gain reward prediction error networks, as well as feedback to the 

amygdala from dorsolateral and cingulate processing of behavioral saliency. Our detailed 

characterization of how the amygdala comes to represent magnitude information thus allows us 
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to both explain additional phenomena and provide more complete biological mechanisms for 

valuation and decision behaviors simulated by both models. 

Important structural differences between the models result from their differing 

conceptions of amygdala activity. The Frank and Claus (2006) model focuses primarily on the 

top-down biasing effect of orbitofrontal activity on gradual, multi-trial learning in the basal 

ganglia dopamine network, with much less emphasis on the reciprocal influence of relative 

reinforcement probability computations on orbitofrontal activation. We are able to explore in 

depth such effects in ANDREA through feedback of reward prediction error information to the 

amygdala that influences its encoding of emotional arousal, which in turn modulates 

orbitofrontal valuations. These valuations have top-down biasing effects on reinforcement 

learning and action selection similar to those modeled by Frank and Claus (2006), for instance 

how differing orbitofrontal representations of identical reward values caused by framing effects 

produce different activity in dopamine and serotonin prediction error subsystems. 

There are several other issues on which the models differ in important ways. Perhaps the 

most obvious is regarding the role of serotonin acting in opponency with dopamine in reward 

prediction error. Frank and Claus (2006) argue that the low baseline firing rates of dopaminergic 

cells need not mean that firing rate depressions are less capable of encoding highly negative 

outcomes, as there may exist countervailing sensitivity differences in dopamine receptors to 

firing bursts versus dips. While they remain open to a role for serotonin in negative 

reinforcement learning and aversive stimulus processing mediated within OFC, they argue for 

the centrality of dopamine firing dips to negative valuation processing mediated by the basal 

ganglia, even in light of evidence showing these dips are physiologically limited in scope (e.g., 

Bayer & Glimcher, 2005). Our model can be considered structurally consistent with this line of 
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reasoning, since the mutual biasing effects we have implemented between dopamine and 

serotonin produce the same dopaminergic firing depressions utilized computationally by Frank 

and Claus in cases where we describe encoding via serotonergic activity. Clearly, though, the 

models differ markedly in the degree to which they assign explanatory import to dopamine firing 

dips versus concomitant serotonergic firing increases. Further differences are evident in 

respective extents of brain region modeling. Frank and Claus employ more complex conceptions 

of orbitofrontal cortex and midbrain dopamine areas than are implemented by ANDREA, 

differentially utilizing specific subpopulations of these broadly defined brain areas. In contrast, 

ANDREA includes limited but important contributions from anterior cingulate and dorsolateral 

prefrontal cortices. These include involvement in encoding the behavioral relevance of 

outcomes, how this encoding may differ for positive and negative outcomes, and the subsequent 

effects of behavioral saliency on emotional arousal. These are brain regions omitted in the model 

of Frank and Claus (2006) that they acknowledge may be crucial to understanding decision 

phenomena. Finally, ANDREA is the first model to explore a possible role for neural saturation 

in explaining the nature of subjective valuation. This effect is not examined in the Frank and 

Claus work, which does not address the leveling off of the prospect theory value function for 

increasingly extreme losses and gains. Thus, while these two models are fairly consistent with 

one another and share similarities in their large-scale approaches to modeling the neural 

foundations of decision making, they both make unique contributions to explaining different 

aspects of relevant behaviors and psychological processes. 

One of the most fertile areas for future applications of neural affective decision theory 

and the ANDREA model is the burgeoning field of neuroeconomics, which operates at the 

intersection of economics, psychology, and neuroscience (Camerer, Loewenstein, & Prelec, 
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2005; Glimcher & Rustichini, 2004; Sanfey, Loewenstein, McClure, & Cohen, 2006). Examples 

of such applications include the previously mentioned findings regarding preference reversal in 

joint versus separate option evaluation (Hsee, Loewenstein, Blount, & Bazerman, 1999) and 

observed interactions between risk, uncertainty and emotion (Rottenstreich & Hsee, 2001), both 

of which seem explainable via the neurological mechanisms we have modeled. Unlike traditional 

economic theory, we do not take preferences as given, but rather explain them as the result of 

specific neural operations. A person’s preference for A over B is the result of a neural-affective 

evaluation in which the representation of A produces a more positive anticipated reward value (or 

at least a less negative value) than the representation of B. As depicted in Figure 12, the neural-

affective evaluation of options depends on their cognitive-emotional representation, which can 

vary depending on the presentation and context of information. This dependence explains why 

actual human preferences often do not obey the axioms of traditional microeconomic theory. In 

addition to neuroeconomics, we are exploring the relevance of our theory and model to 

understanding ethical judgments, the neural bases of which are under increasing investigation 

(Casebeer and Churchland, 2003; Greene and Haidt, 2002; Moll et al., 2005). Finally, while 

neural affective decision theory is primarily intended as a descriptive account of how people 

actually do make decisions, but it can provide a starting point for developing a prescriptive 

theory of how they ought to make better decisions (Thagard, 2006). 

Like all models, ANDREA provides a drastically simplified picture of the phenomena it 

simulates, and there are many possible areas for improvement and extension. These include 

increasing the complexity of individual populations, adding more brain areas, modeling more 

relationships between brain areas, and exploring the effects of neuronal firing saturation beyond 

simply orbitofrontal cortex. Nevertheless, we have described a variety of neurobiologically 
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realistic mechanisms for fundamental decision processes, and shown their applicability to 

explaining several major experimental findings in behavioral decision research. Besides 

implementing original mechanistic ideas, such as a role for saturation in explaining diminishing 

marginal sensitivity in prospect theory, ANDREA contributes to two important classes of 

explanation in decision neuroscience: 1) Generalization and novel syntheses of hitherto unrelated 

mechanisms of neural processing (e.g., multiplicative models of attention and reward 

reinforcement learning); and 2) Specific and detailed grounding of behaviorally explored 

psychological phenomena in such plausible and realistic neurocomputational mechanisms. The 

result, we hope, is a deeper understanding of how and why people make the choices that they do. 
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APPENDIX A: NEUROCOMPUTATIONAL DETAILS 

Our reward model was implemented in MATLAB 7.0.1 on a PC with an Intel Pentium 4 

processor running at 2.53 GHz, with 1.00 GB of RAM available. For simulations of the extent 

that we have conducted and described here, these specifications represent close to the minimum 

required, based on the memory and other resource requirements of the most recent version of the 

NESim NEF simulation software running within MATLAB. NESim documentation and software 

download links are available online at http://compneuro.uwaterloo.ca. 

We modeled spiking activity for a total of 7600 neurons spread over 7 specific 

populations (Fig. 1), using the common and physiologically realistic leaky integrate-and-fire 
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(LIF) model for each of our modeled neurons (see Appendix B). In particular, we use 800-1200 

neurons for simulating each of the amygdala, orbitofrontal cortex, ventral striatum, anterior 

cingulate cortex, and dorsolateral prefrontal cortex, representing one- to three-dimensional 

vectors as needed in the neural engineering framework (Appendix B). The areas representing 

midbrain dopaminergic neurons and the dorsal raphe nucleus of the brainstem are each modeled 

with 1200-neuron ensembles, each with several discrete subpopulations, in order to capture the 

additional complexities involved in the encodings and transformations we assign to these areas in 

our model (recurrent, rectified, biased-opponent calculation of reward prediction error; see 

Appendix C). 

Each individual neuron is based on a reduced-complexity biophysical model that 

includes features fundamental to most neurons, including conventional action potentials (spikes), 

spike train variability, absolute refractoriness, background firing, and membrane leak currents. 

The membrane time constant for our LIF neurons is set to 10 ms, with a refractory period (a 

post-spike delay during which the neuron may not fire) of 1 ms. We introduce at simulation 

runtime 10% Gaussian, independent zero-mean noise, relative to normalized maximum firing 

rates, to simulate the noisy environment in which our neurons operate. These choices are based 

on plausible biological assumptions (see Eliasmith & Anderson, 2003), and we have made 

reasonable efforts to select neurobiologically realistic values for other network cell parameters as 

well. For example, our 5 ms synaptic time constant for dorsal raphe serotonergic neurons is 

consistent with the 3 ms decay constants observed in vivo (Li & Bayliss, 1998). Neurons in the 

cortical areas we have modeled have been shown to have maximum firing rates ranging from 20-

40 Hz in dorsolateral prefrontal and orbitofrontal areas (Wallis & Miller, 2003) to at least 50 Hz 

in anterior cingulate cortex (Davis et al., 2000). Thus, our selection of a 10-80 Hz saturation 
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range for neurons in these model ensembles is a physiologically reasonable compromise to 

maintain population sizes that are manageable for simulation purposes. Ensembles must grow 

increasingly large to allow for meaningful representation with slower-firing, smaller saturation-

range neurons making up the ensembles. 

Practical considerations nonetheless made necessary some limitations on biological 

realism. Principally, the saturation ranges we selected for our modeled subcortical regions are 

appreciably higher (by roughly a factor of 10) than those observed empirically for typical 

neurons in these areas. The much larger neural ensemble sizes that would be required for clean 

representation and transformation using the extremely low experimentally observed firing rates 

would have made our large-scale simulations computationally impracticable given available 

resources. We additionally support this compromise of biological realism by noting that 

significantly higher firing peaks (greater than 100 Hz) are observed in the bursting behavior of 

both certain raphe serotonergic neurons (e.g., Gartside et al., 2000; Hajós et al., 1995) and 

subpopulations of the amygdala (Driesang & Pape, 2000; Paré & Gaudreau, 1996), and to less 

degree in midbrain and striatum dopaminergic neurons as well (Hyland et al., 2002). The specific 

activity our model produces in these subcortical areas seems well-suited to coding via bursting 

neurons (large but transient firing upsurges that interpose lengthier periods of near-zero activity). 

While we do not define here an explicit alternative neuron model to LIF, Eliasmith (2005a) 

describes how bursting could be incorporated into the NEF, and thus NESim simulations. 

For the most part, we have chosen neuron firing thresholds (that is, the respective input 

levels above which individual neurons begin to respond) from an even distribution over a range 

represented symmetrically around zero, with neuron preferred directions in the space of 

representation also chosen from an even distribution (i.e., equal numbers of ‘on’ and ‘off’ 
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neurons; see Appendix B). The exceptions to this rule are single subpopulations of both the 

dorsal raphe and midbrain dopaminergic regions. In these cases, our establishment of minimum 

firing thresholds of zero combines with an exclusive use of positively sloped ‘on’ neurons in 

these subpopulations to produce insensitivity to negative values (i.e., rectified reward prediction 

error encoding). This corresponds well with experimentally observed physiological limitations in 

the computation of reward prediction error in these brain regions (see Bayer & Glimcher, 2005, 

as well as the discussion of dopamine and serotonin within the main text description of the 

ANDREA model). 

APPENDIX B: NEF REPRESENTATION, TRANSFORMATION AND DYNAMICS 

The NEF consists primarily of three fundamental principles regarding the representation 

of information in neural populations, the means by which these representations are transformed 

through interactions between populations, and the control theoretic nature of the characterization 

of neural dynamics. Eliasmith and Anderson (2003) present a rigorous explication and analysis 

of the NEF, but the mathematical details we outline here should be sufficient for understanding 

the fundamental nature and operation of our neural model of affective choice and valuation. 

Consider a neural ensemble whose activities ai(x) encode some vector quantity x(t) 

mapping onto a real-world quantity (eye position, emotional arousal, etc.). Note that this quantity 

need not be a vector; scalars, functions, and function spaces can be represented and manipulated 

in the NEF in a near-identical fashion. The encoding of x involves a conversion of x(t) into a 

neural spike train: 

   [ ]( ) ( ) ( ( ))i in i i
n

a t t G J tδ= − =∑x x ,    [B1] 

where [ ]iG ⋅  is the nonlinear function describing the specific nature of the spiking response, iJ  is 

the current in the cell body (soma) of a particular neuron and i and n are relevant indices (i 
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indexing specific neurons, n indexing the individual spikes produced by a given neuron). The 

nonlinearity G we employ is the common leaky-integrate-and-fire (LIF) model:  

   ( )( ) ,RC
i i i idV dt V J R τ= − − x     [B2] 

where iV  represents somatic voltage, R  the leak resistance, and RC
iτ  the RC (membrane) time 

constant. The system is integrated until the membrane potential iV  crosses the threshold thV , at 

which point a spike ( )int tδ −  is generated and iV  is reset to zero for the duration of the refractory 

period, ref
iτ  (Eliasmith & Anderson, 2003). A basic description of the soma current is 

   ( ) bias
i i i i iJ Jα φ η= ⋅ + +x xɶ  ,     [B3] 

where ( )iJ x  is the current input to neuron i, x is (in this case) the vector variable of the stimulus 

space encoded by the neuron, iα  is a gain factor, iφɶ  is the preferred direction vector of the 

neuron in the stimulus space, bias
iJ  is a bias current (accounting for any background activity) and 

iη  models any noise to which the system is subject. Note in particular that the dot product 

iφ ⋅ xɶ  describes how a potentially complex (i.e., high-dimensional) physical quantity, such as 

an encoded stimulus, is related to a scalar signal describing the input current. For scalars, the 

encoding vector is either +1 (an ‘on’ neuron) or -1 (an ‘off’ neuron). [B1] thus captures the 

nonlinear encoding process from a high-dimensional variable, x , to a one dimensional soma 

current, iJ , to a train of neural spikes, ( )int tδ − . 

Under this encoding paradigm, the original stimulus vector representation can be 

estimated by decoding those activities; that is, converting neural spike trains back into quantities 

relevant for explanations of neural computation at the level of our chosen representations. A 

plausible means of characterizing this decoding is as a specific linear transformation of the spike 



 52 

train. In the NEF, the original stimulus vector ( )tx  is decoded by computing an estimate ˆ ( )tx  

using a linear combination of filters ( )ih t  that are weighted by certain decoding weightsiφ : 

   ˆ ( ) ( ) ( ) ( )in i i i in i
in in

t t t h t h t tδ φ φ= − ∗ = −∑ ∑x ,  [B4] 

where the decoding weights are calculated by a mean-squared error minimization (Eliasmith & 

Anderson, 2003) and the operation ‘∗ ’ indicates convolution. The ( )ih t  filters are linear 

temporal decoders, which are taken to be the postsynaptic currents (PSCs) in the associated 

neuron i for reasons of biological plausibility. Together, the nonlinear encoding in [B1] and the 

linear decoding in [B4] define an ensemble ‘code’ for the neural representation of x. 

The next aspect of the NEF to examine is the means by which computations are 

performed in order to transform the representations present in a given model. The main task 

needed to be performed is the calculation of connection weights between the different 

populations involved in a transformation. As an example, let us consider the transformation 

z = x⋅ y. The process of connection weight calculation can be characterized as substituting into 

our encoding equation [B1] the decodings of x and y (as per [B4]) in order to find the encoding 

of z, which represents our transformation of interest: 

  

,

( ) ( )

( )

( ) ( )

( ) ( ) ,

k k

bias
k k k k

x y bias
k k k i i j j k

i j

bias
k kij i j k

i j

c z c x y

G x y J

G a x b y J

G a x b y J

α φ

α φ φ φ

ω

= ⋅

 = ⋅ + 

  
= ⋅ +  

   

 
= + 

 

∑ ∑

∑

ɶ

ɶ  

where x y
kij k k i jω α φ φ φ= ɶ  represents the connection weights between neurons i, j and k in the x, y, 

and z populations, respectively. It should be noted that the nonlinear neural activity interaction 
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suggested in this example is avoided in our actual model—all interactions are implemented in a 

purely linear fashion, as is typically taken to be the case in real neural systems (see Eliasmith & 

Anderson, 2003, for complete implementation details). 

Finally, dynamics play a fundamental role in the overall operation of our model, such as 

in our recurrent reward prediction error computation. We can describe the dynamics of a neural 

population in control theoretic form via the dynamics state equation that is at the basis of modern 

control theory: 

   ( ) ( ) ( )t t t= +x Ax Buɺ ,      [B5] 

where A is the dynamics matrix, B is the input matrix, u(t) is the input or control vector, and x(t) 

is the state vector. At this high-level of characterization we are detached from any neural-level 

implementation details. It is possible, however, to introduce simple modifications that render the 

system neurally plausible. The first step in converting this characterization is to account for 

intrinsic neural dynamics. To do so, we assume a standard PSC model given by( ) 1 /th t e ττ − −= , 

and then employ the following derived relation (Eliasmith & Anderson, 2003): 

   
τ
τ

′ = +
′ =

A A I

B B
       [B6] 

so that our neurally plausible high-level dynamics characterization becomes 

   [ ]( ) ( ) ( ) ( ) .t h t t t′ ′= ∗ +x A x B u      [B7] 

To integrate this dynamics description with the neural representation code we described 

previously, we combine the dynamics of [B7], the encoding of [B1], and the population decoding 

of x and u as per [B4]. That is, we take decodings ˆ ( )j jn jjn
h t t φ= −∑ xx  andˆ ( )k kn kkn

h t t φ= −∑ uu  

and introduce neural dynamics into the encoding operation as follows: 
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[ ]

( ) ( )

ˆ ˆ' ( ) ' ( )

' ( ) ' ( )

( ) ( ) .

bias
in i i i i

n

bias
i i i i

bias
i i i j jn j k kn k ijn kn

bias
i ij j jn ik k kn ijn kn

t t G t J

G t t J

G h t t h t t J

G h t t h t t J

δ α φ

α φ

α φ φ φ

ω ω

 − = +
 
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   

 = − + − +
 

∑

∑ ∑

∑ ∑

x u

x

A x B u

A B

ɶ

ɶ

ɶ

 [B8] 

It is interesting to note that ( )h t  in the above characterization defines both the neural dynamics 

and the decoding of the relevant representations. 'ij i i jω α φ φ= xAɶ  and 'ik i i kω α φ φ= uBɶ  

describe the recurrent and input connection weights, respectively, which implement the 

dynamics defined by the control theoretic structure from [B7] in a neurally plausible network. 
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APPENDIX C: REPRESENTATION/TRANSFORMATION SUMMARY 

Table C1 encapsulates the complete inputs, outputs and transformations we use to model 

specific interactions between the brain regions included in our model (see also Figure 1 and 

discussions of equations in the main body for more high-level, conceptual characterizations of 

connectivity and signal transformation). Variable names are as in the text of the Methods section.  

Brain area Inputs Outputs 
AMYG A0(t) (ext.) 

A1(t)  
DA(t) 
5-HT(t) 
C(t) 
 

A(t) = A1(t) + β ·DA(t) + γ ·5-HT(t) + C(t), 
 
where A1(t) = A0(t) + λ ·(1 – P[outcome X]) 

OFC V(t) (ext.) 
A(t) 
 

S(t) = A(t) ·V(t) 

5-HT S(t) 
E+(t) 
P(t – 1) 

E-(t) = P(t – 1) – S(t) 
5-HT(t) = σ E-(t) – (1 – σ)E+(t) 
P(t) = P(t – 1) + α E(t) 
 

DA S(t) 
E-(t) 
P(t – 1) 

E+(t) = S(t) – P(t – 1) 
DA(t) = σ E+(t) – (1 – σ)E-(t) 
P(t) = P(t – 1) + α E(t) 
 

VS DA(t) 
5-HT(t) 
 

E(t) = DA(t) – 5-HT(t) 

ACC S(t) 
E(t) 
C(t) 
 

B(t) = 2·(S(t) ≥ 0) – 1 
R(t) = B(t) / [η + E(t)] 
C(t) 

DLPFC R(t) 
5-HT(t) 
 

C(t) = µ ·5-HT(t) 

 
Table C1: Transformation summary. A0 and V are provided as external inputs to the model. Note 
the recurrent connectivity and opponent interaction between 5-HT and DA. Abbreviations: 
AMYG, amygdala; OFC, orbitofrontal cortex; 5-HT, raphe dorsalis serotonergic neurons; DA, 
midbrain dopaminergic neurons; VS, ventral striatum; ACC, anterior cingulate cortex; DLPFC, 
dorsolateral prefrontal cortex. 
 



 56 

These equations describe explicitly the nature of the connectivity relationships and signal 

transformation processes outlined in Figure 1 and discussed in the main body description of the 

ANDREA model. 

REFERENCES 

Adolphs, R., Gosselin, F., Buchanan, T. W., Tranel, D., Schyns, P., & Damasio, A. R. (2005). A 

mechanism for impaired fear recognition after amygdala damage. Nature, 433, 68-72. 

Bayer, H. M. & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative 

reward prediction error signal. Neuron, 47, 129-141. 

Bechara, A., Damasio, H., & Damasio, A. R. (2003). Role of the amygdala in decision-making. 

Annals of the New York Academy of Sciences, 985, 356-369. 

Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the 

orbitofrontal cortex. Cerebral Cortex, 10(3), 295-307. 

Breiter, H. C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. (2001). Functional imaging of 

neural responses to expectancy and experience of monetary gains and losses. Neuron, 30, 

619-639. 

Busemeyer, J. R., & Johnson, J. G. (2004). Computational models of decision making. In D. 

Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision making (pp. 

133-154). Oxford: Blackwell. 

Bush, G., Luu, P. & Posner, M. I. (2000). Cognitive and emotional influences in anterior 

cingulate cortex. Trends in Cognitive Sciences, 4(6), 215-222. 

Camerer, C. F. (2000). Prospect theory in the wild: evidence from the field. In D. Kahneman & 

A. Tversky (Eds.), Choices, Values, and Frames. New York: Cambridge University 

Press. 



 57 

Camerer, C., Loewenstein, G. F., & Prelec, D. (2005). Neuroeconomics: How neuroscience can 

inform economics. Journal of Economic Literature, 34, 9-64. 

Casebeer, W. D., & Churchland, P. S. (2003). The neural mechanisms of moral cognition: A 

multiple-aspect approach. Biology and philosophy, 18, 169-194. 

Churchland, P. S. (1996). Feeling reasons. In A. R. Damasio, H. Damasio & Y. Christen (Eds.), 

Neurobiology of Decision-Making (pp. 181-199). Berlin: Springer. 

Cools, R., Calder, A. J., Lawrence, A. D., Clark, L., Bullmore, E., & Robbins, T. W. (2005). 

Individual differences in threat sensitivity predict serotonergic modulation of amygdala 

response to fearful faces. Psychopharmacology, 180(4), 670-679. 

Damasio, A. R. (1994). Descartes' error. New York: G. P. Putnam's Sons. 

Davis, K. D., Hutchison, W. D., Lozano, A. M., Tasker, R. R., & Dostrovsky, J. O. (2000). 

Human anterior cingulate cortex neurons modulated by attention-demanding tasks. 

Journal of Neurophysiology, 83(6), 3575-3577. 

Davis, K. D., Taylor, K. S., Hutchison, W. D., Dostrovsky, J. O., McAndrews, M. P., & Richter, 

E. O. et al. (2005). Human anterior cingulate cortex neurons encode cognitive and 

emotional demands. Journal of Neuroscience, 25(37), 8402-8406. 

Daw, N. D., Kakade, S. & Dayan, P. (2002). Opponent interactions between serotonin and 

dopamine. Neural Networks, 15, 603-616. 

Deakin, J. F. W. (1983). Roles of brain serotonergic neurons in escape, avoidance and other 

behaviors. Journal of Psychopharmacology, 43, 563-577. 

Deco, G. & Rolls, E. T. (2005). Synaptic and spiking dynamics underlying reward reversal in the 

orbitofrontal cortex. Cerebral Cortex, 15, 15-30. 



 58 

Driesang, R. B. & Pape, H. (2000). Spike doublets in neurons of the lateral amygdala: 

mechanisms and contribution to rhythmic activity. NeuroReport, 11(8), 1703-1708. 

Eliasmith, C. (2005a). A unified approach to building and controlling spiking attractor networks. 

Neural Computation, 17(6), 1276-1314. 

Eliasmith, C. (2005b). Cognition with neurons: a large-scale, biologically realistic model of the 

Wason task. In B. Bara, L. Barasalou & M. Bucciarelli (Eds.), Proceedings of the XXVII 

Annual Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Eliasmith, C. & Anderson, C. H. (2003). Neural engineering: Computation, representation and 

dynamics in neurobiological systems. Cambridge, MA: MIT Press. 

Eliasmith, C. & Anderson, C. H. (2000). Rethinking central pattern generators: a general 

framework. Neurocomputing, 32-33(1-4), 735-740. 

Evenden, J. L. & Ryan, C. N. (1996). The pharmacology of impulsive behaviour in rats: the 

effects of drugs on response choice with varying delays of reinforcement. 

Psychopharmacology (Berl.), 128, 161-170. 

Gartside, S. E., Hajos-Korcsok, E., Bagdy, E., Harsing, L. G., Sharp, T., & Hajós, M. (2000). 

Neurochemical and electrophysiological studies on the functional significance of burst 

firing in serotonergic neurons. Neuroscience, 98(2), 295-300. 

Glimcher, P. W., & Rustichini, A. (2004). Neuroeconomics: The consilience of brain and 

decision. Science, 306(5695), 447-452. 

Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An 

fMRI investigation of emotional engagement in moral judgment. Science, 293, 2105-

2108. 



 59 

Greene, J. & Haidt, J. (2002). How (and where) does moral judgment work? Trends in Cognitive 

Sciences, 6(12), 517-523. 

Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural 

bases of cognitive conflict and control in moral judgment. Neuron, 44, 389-400. 

Grossberg, S. & Gutowski, W. E. (1987). Neural dynamics of decision making under risk: 

affective balance and cognitive-emotional interactions. Psychological Review, 94(3), 

300-318. 

Hajós, M., Gartside, S. E., Villa, A. E., & Sharp, T. (1995). Evidence for a repetitive (burst) 

firing pattern in a sub-population of 5-hydroxytryptamine neurons in the dorsal and 

median raphe nuclei of the rat. Neuroscience, 69(1), 189-197. 

Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses to salient non-

reward events. Neuroscience, 96, 651-656. 

Hsee, C. K., Loewenstein, G. F., Blount, S., & Bazerman, M. H. (1999). Preference reversals 

between joint and separate evaluations of options: a review and theoretical analysis. 

Psychological Bulletin, 125(5), 576-590. 

Hsee, C. K., Rottenstreich, Y., & Xiao, Z. (2005). When is more better? On the relationship 

between magnitude and subjective value. Current Directions in Psychological Science, 

14, 234-237. 

Hyland, B. I., Reynolds, J. N., Hay, J., Perk, C. G., & Miller, R. (2002). Firing modes of 

midbrain dopamine cells in the freely moving rat. Neuroscience, 114(2), 475-492. 

James, W. (1884). What is an emotion? Mind, 9, 188-205. 

Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. 

American Psychologist, 58(9), 697-720. 



 60 

Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: the endowment effect, loss 

aversion, and status quo bias. Journal of Economic Perspectives, 5, 193-206. 

Kahneman, D. & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. 

Econometrica, 47, 263-291. 

Kahneman, D. & Tversky, A. (1982). The psychology of preferences. Scientific American, 

246(1), 160-173. 

Kahneman, D. & Tversky, A. (2000). Choices, Values, and Frames. New York: Cambridge 

University Press. 

Kahneman, D., Wakker, P. P., & Sarin, R. (1997). Back to Bentham? Explorations of 

experienced utility. Quarterly Journal of Economics, 112, 375-405. 

Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed neural 

representation of expected value. Journal of Neuroscience, 25(19), 4806-4812. 

Koehler, D. J., Brenner, L. A., & Tversky, A. (1997). The enhancement effect in probability 

judgment. Journal of Behavioral Decision Making, 10, 293-313. 

Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases 

trust in humans. Nature, 435, 673-676. 

Kreps, D. M. (1990). A course in microeconomic theory. Princeton: Princeton University Press. 

Lerner, J. S., & Keltner, D. (2000). Beyond valence: Toward a model of emotion-specific 

influences on judgement and choice. Cognition and Emotion, 14, 473-493. 

Li, Y. & Bayliss, D. A. (1998). Presynaptic inhibition by 5-HT1B receptors of glutamatergic 

synaptic inputs onto serotonergic caudal raphe neurones in rat. Journal of Physiology, 

510(1), 121-134. 



 61 

Litt, A., Eliasmith, C., & Thagard, P. (2006). Why losses loom larger than gains: modeling 

neural mechanisms of cognitive-affective interaction. In R. Sun & N. Miyake (Eds.), 

Proceedings of the Twenty-Eighth Annual Conference of the Cognitive Science Society 

(pp. 495-500). Mahwah, NJ: Lawrence Erlbaum. 

Loewenstein, G. F., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as feelings. 

Psychological Bulletin, 127, 267-286. 

Loftus, E. F. & Palmer, J. C. (1974). Reconstruction of automobile destruction: an example of 

the interaction between language and memory. Journal of Verbal Learning and Verbal 

Behavior, 13, 585-589. 

McClure, S. M., York, M. K. & Montague, P. R. (2004). The neural substrates of reward 

processing in humans: the modern role of fMRI. The Neuroscientist, 10(3), 260-268. 

McGraw, A. P., Mellers, B. A., & Tetlock, P. E. (2005). Expectations and emotions of Olympic 

athletes. Journal of Experimental Social Psychology, 41, 438-446. 

Mellers, B. A. (2000). Choice and the relative pleasure of consequences. Psychological Bulletin, 

126, 910-924. 

Mellers, B. A. & McGraw, A. P. (2001). Anticipated emotions as guides to choice. Current 

Directions in Psychological Science, 10, 210-214. 

Mellers, B. A., Schwartz, A., Ho, K., & Ritov, I. (1997). Decision affect theory: emotional 

reactions to the outcomes of risky options. Psychological Science, 8, 423-429. 

Mellers, B. A., Schwartz, A., & Ritov, I. (1997). Emotion-based choice. Journal of Experimental 

Psychology: General, 128, 332-345. 



 62 

Mobini, S., Chiang, T. J., Ho, M. Y., Bradshaw, C. M. & Szabadi, E. (2000). Effects of central 5-

hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. 

Psychopharmacology (Berl.), 152, 390-397. 

Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F., & Grafman, J. (2005). The neural basis of 

human moral cognition. Nature Reviews Neuroscience, 6(10), 799-809. 

Montague, P. R. & Berns, G. S. (2002). Neural economics and the biological substrates of 

valuation. Neuron, 36, 265-284. 

Oatley, K. (1992). Best laid schemes: The psychology of emotions. Cambridge: Cambridge 

University Press. 

Owen, A. M. (1997). Cognitive planning in humans: neuropsychological, neuroanatomical and 

neuropharmacological perspectives. Progress in Neurobiology, 53, 431-450. 

Padoa-Schioppa, C. & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic 

value. Nature, 441, 223-226. 

Paré, D. & Gaudreau, H. (1996). Projection cells and interneurons of the lateral and basolateral 

amygdala: distinct firing patterns and differential relation to theta and delta rhythms in 

conscious cats. Journal of Neuroscience, 16(10), 3334-3350. 

Ratcliff, R., Cherian, A., & Segraves, M. (2003). A comparison of macaque behavior and 

superior colliculus neuronal activity to predictions from models of two-choice decisions. 

Journal of Neurophysiology, 90, 1392-1407. 

Roitman, J. D., Brannon, E. M., & Platt, M. L. (2007). Monotonic coding of numerosity in 

macaque lateral intraparietal area. PLoS Biology, 5(8), e208 

doi:10.1371/journal.pbio.0050208 

Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284-294. 



 63 

Rottenstreich, Y. & Hsee, C. K. (2001). Money, kisses and electric shocks: on the affective 

psychology of risk. Psychological Science, 12, 185-190. 

Rottenstreich, Y., & Shu, S. (2004). The connections between affect and decision making: Nine 

resulting phenomena. In D. J. Koehler, & N. Harvey (Eds.), Blackwell handbook of 

judgment and decision making (pp. 444-463). Oxford: Blackwell. 

Sanfey, A. G., Loewenstein, G., McClure, S. M., & Cohen, J. D. (2006). Neuroeconomics: 

Cross-currents in research on decision-making. Trends in Cognitive Sciences, 10(3), 108-

116. 

Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199-

207. 

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 

80, 1-27. 

Shiv, B., Bechara, A., Levin, I., Alba, J. W., Bettman, J. R., Dubé, L., Isen, A., Mellers, B., 

Smidts, A., Grant, S. J. & McGraw, A. P. (2005). Decision neuroscience. Marketing 

Letters, 16, 375-386. 

Slovic, P., Finucane, M. L., Peters, E., & MacGregor, D. G. (2002). The affect heuristic. In T. 

Gilovich, D. Griffin & D. Kahneman (Eds.), Heuristics and biases: The psychology of 

intuitive judgement (pp. 397-420). Cambridge: Cambridge University Press. 

Soubrié, P. (1986). Reconciling the role of central serotonin neurons in human and animal 

behavior. Behavioral and Brain Sciences, 9, 319-335. 

Suri, R. E. (2002). TD models of reward predictive responses in dopamine neurons. Neural 

Networks, 15, 523-533. 



 64 

Thagard, P. (2006). Hot thought: Mechanisms and applications of emotional cognition. 

Cambridge, MA: MIT Press. 

Thorpe, S. J., Rolls, E. T. & Maddison, S. (1983). The orbitofrontal cortex: neuronal activity in 

the behaving monkey. Experimental Brain Research, 49, 93–115. 

Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neural basis of loss aversion in 

decision-making under risk. Science, 315(5811), 515-518. 

Trepel, C., Fox, C. R., & Poldrack, R. A. (2005). Prospect theory on the brain? Toward a 

cognitive neuroscience of decision under risk. Cognitive Brain Research, 23(1), 34-50. 

Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in 

Neurosciences, 24(5), 295-300. 

Tversky, A. & Kahneman, D. (1991). Loss aversion in riskless choice: a reference dependent 

model. Quarterly Journal of Economics, 106, 1039-1061. 

Tversky, A. & Kahneman, D. (1986). Rational choice and the framing of decisions. Journal of 

Business, 59, 251-278. 

Tversky, A. & Kahneman, D. (1984). Choices, values, and frames. American Psychologist, 39, 

341-350. 

Tversky, A. & Kahneman, D. (1981). The framing of decisions and the psychology of choice. 

Science, 211, 453-458. 

Vertes, R. P. (1991). A PHA-L analysis of ascending projections of the dorsal raphe nucleus in 

the rat. Journal of Comparative Neurology, 313(4), 643-668. 

Von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior. 

Princeton: Princeton University Press. 



 65 

Wagar, B. M., & Thagard, P. (2004). Spiking Phineas Gage: A neurocomputational theory of 

cognitive-affective integration in decision making. Psychological Review, 111, 67-79. 

Wallis, J. D. & Miller, E. K. (2003). Neuronal activity in primate dorsolateral and orbital 

prefrontal cortex during performance of a reward preference task. European Journal of 

Neuroscience, 18(7), 2069-2081. 

Weber, B., Aholt, A., Neuhaus, C., Trautner, P., Elger, C. E., & Teichert, T. (2007). Neural 

evidence for reference-dependence in real-market-transactions. NeuroImage, 35, 441-

447. 


