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Abstract The spinal neural networks of larval zebrafish
(Danio rerio) generate a variety of movements such as es-
cape, struggling, and swimming. Various mechanisms at the
neural and network levels have been proposed to account
for switches between these behaviors. However, there are
currently no detailed demonstrations of such mechanisms.
This makes determining which mechanisms are plausible
extremely difficult. In this paper, we propose a detailed bio-
logically plausible model of the interactions between the
swimming and escape networks in the larval zebrafish, while
taking into account anatomical and physiological evidence.
We show that the results of our neural model generate the ex-
pected behavior when used to control a hydrodynamic model
of carangiform locomotion. As a result, the model presented
here is a clear demonstration of a plausible mechanism by
which these distinct behaviors can be controlled. Interest-
ingly, the networks are anatomically overlapping, despite
clear differences in behavioral function and physiology.

Keywords CPGs · Zebrafish · CiD interneuron · MCoD
interneuron · Network interaction · Motor co-ordination ·
Escape behavior

1 Introduction

Two distinct rhythmic motor patterns (among others), which
have been classified as ‘escape’ and ‘swimming’ have been
observed in the larval zebrafish (for a review of the zebra-
fish locomotor repertoire, see Budick and O’Malley 2000b).
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Escape motions are characterized by large amplitude waves
propagating along the body of the fish in a C- or S-shaped
pattern, and are normally invoked by an outside stimulus.
Swimming is characterized as a rhythmic alternating move-
ment of the tail, with bends propagating from the head to
the tail of the fish (Domenici and Blake 1997; Budick and
O’Malley 2000b).

Soffe (1993) has suggested two possible means by which
both escape and swimming behaviors could be generated by
the same network. The first possibility is that of a unified net-
work where different control signals are used in order to elicit
different motor behavior from the same network of neurons
(Soffe 1993; Getting and Dekin 1985). In such an arrange-
ment, all neurons in the network could potentially be active
for both escape and swimming behaviors. The second alterna-
tive is that there exist separate classes of spinal interneurons
and networks implicated in these different behaviors.

Anatomical and functional evidences clearly show that
there are some differences in the spinal networks of zebra-
fish activated during escape and swimming movements, sup-
porting the second hypothesis (Ritter et al. 2001). However,
since both swimming and escape are produced by the same
muscles and thus the same motoneurons, there must be some
form of interaction between interneurons responsible for the
different behaviors. One of the purposes of this paper is to
describe a model consistent with these observations, and to
determine where and to what extent these functional differ-
ences are likely to anatomically overlap.

Previous models of the neuronal mechanisms involved
in the swimming behaviors of the lamprey and salamander
have been modeled by Ekeberg (1993), Ekeberg and Grillner
(1999), Ijspeert and Kodjabachian (1999), Ijspeert (2001),
and Grillner et al. (1991). However, all these models use
a unified network approach to generate forward swimming
and turning behaviors. In addition, the turning behaviors de-
scribed are of a different nature from that described in this
contribution. Here, we model escape motion (i.e., a very
rapid turn typically in response to external stimuli (Budick
and O’Malley 2000b)), a behavior classified differently from
turning. We also introduce the use of a hydrodynamic model
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specifically for the carangiform swimming gait exhibited by
the larval zebrafish in contrast to the anguilliform swimming
motion of the lamprey and salamander.

Typically, swimming motions generated by central pat-
tern generators (CPGs) are modeled as a chain of biphasic
oscillators (strictly local CPGs) connected in series (Ijspeert
and Kodjabachian 1999; Ijspeert 2001; Grillner et al. 1991;
Kopell 1995; Ekeberg 1993; Ekeberg and Grillner 1999). This
is commonly referred to as a ‘bottom-up’ approach (for a re-
view of CPGs, see Cohen 1988; Duysens and Van de Crom-
mert 1998).

Limitations in purely ‘bottom-up’ approaches have been
noted by Marder et al. (1997) who found that network models
composed of chains of coupled oscillators in no way guaran-
teed oscillations (or stability) and often produced synchrony
along the chain. This would prove lethal for any organism. In
addition, it has been noted by Wannier et al. (1998) that the
direction and frequency of oscillations in coupled oscillators
are difficult to control.

It is also common for the weights used to couple local
CPGs to be ‘hand-picked’ to produce the desired behavior.
With ‘bottom-up’ models, it is also unclear how additional
behaviors can be easily incorporated into already existing
models constructed using chains of oscillators.

Even with the successes of the so-called ‘bottom-up’ ap-
proaches, in this contribution we choose to use the framework
of Eliasmith and Anderson (2003) as a means of integrating
system constraints in a ‘top-down’manner complementary to
a ‘bottom-up’ approach. By designing the desired behavior
directly into our model through the representation and higher
level control structures, we bypass many of the difficulties
previously mentioned. The model presented guarantees sta-
bility by placing constraints on the allowable representation,
allows control of both the direction and frequency of swim-
ming and easily allows the incorporation of new behaviors
(such as the escape bends presented in this contribution)
through modification of the equations of motion of the sys-
tem. In addition, connection weights are determined analyti-
cally using the approach of Eliasmith and Anderson (2003).

2 Larval zebrafish (Danio rerio) system description

At the larval stage, zebrafish are transparent thus allowing the
imaging and investigation of neural activity and their behav-
ioral roles in vivo (Hale et al. 2001; Ritter et al. 2001; Fetcho
and O’Malley 1995; Liu and Fetcho 1999; Ghatan et al. 2002;
Ghatan and O’Malley 2001; Budick and O’Malley 2000a).
This can be done by imaging the response to stimuli of cells
filled with calcium indicators (Fetcho and O’Malley 1995;
Hale et al. 2001; Ritter et al. 2001) and through laser ablation
targeting fluorescently labeled cells (Liu and Fetcho 1999;
Ghatan and O’Malley 2001; Budick and O’Malley 2000a).

Although it has been suggested that the majority of neu-
rons in the hindbrain are active during escapes in the larval
zebrafish (Ghatan et al. 2002), it has been established through
laser-ablation that many of these same neurons are not neces-

sary for producing escape movements (Ghatan and O’Malley
2001; Budick and O’Malley 2000a).

Two classes of zebrafish interneurons which have been
established to be relevant for these behaviors are the circum-
ferential descending (CiD) interneurons and the multipolar
commissural descending (MCoD) interneurons. CiD inter-
neurons have been found to be active during escapes but not
during swimming while the MCoD interneurons have been
found to be active during swimming but not during escapes
(Ritter et al. 2001).

Circumferential descending interneurons are typically
characterized by ventrally projecting ipsilateral axons and
sparse dendrites (Bernhardt et al. 1990). These interneurons
can generally be found in the middle and dorsal regions along
the dorso-ventral extent of the spinal cord (Hale et al. 2001).
The axons of ventrally located CiD interneurons are also
in close proximity to the axon collaterals of Mauthner cells
which are known to initiate the escape response in goldfish
(Svoboda and Fetcho 1996).

Bernhardt et al. (1990) previously identified the MCoD
interneuron as the larval ventral longitudinal descending
(VeLD) interneuron. However, Ritter et al. (2001) and Hale
et al. (2001) argue that an additional distinction should be
made. Since there exist VeLD cells which possess either ipsi-
lateral or commissural axons, MCoD interneurons should
refer to cells which have the same somatic morphology as
VeLD interneurons but possess commissural as opposed to
ipsilateral axons (Ritter et al. 2001; Hale et al. 2001). MCoD
interneurons are typically ventrally and laterally positioned
compared to CiD interneurons and also often possess elabo-
rate dendritic arbors.

3 Control theoretic model

In order to model the larval zebrafish, we adapt standard
control theory to describe the forces that produce the desired
motion. Following the methods of Eliasmith and Anderson
(2003), this allows us to relate the external dynamics of the
system (such as external joint angles) to the internal neu-
ral representations of the system (such as the desired joint
angles). To begin, we describe the zebrafish in a horizon-
tal plane as a set of finite length rods (vertebrae) connected
by muscles whose tensions result in the swimming motion
(Fig. 1).

To determine the desired tensions in the muscles, we as-
sume a simplified hydrodynamic environment in which the
generated normal force is proportional to the normal velocity
similar to Ijspeert and Kodjabachian (1999), Ijspeert (2001),
Ekeberg (1993), and Ekeberg and Grillner (1999). We show
in Sect. 5 that this assumption is not problematic, where the
resulting neural model is placed in a more complex hydro-
dynamic environment. To obtain an expression for these ten-
sions, we sum the torques necessary to generate the observed
swimming behavior about each point n, which results in an
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Fig. 1 Zebrafish described as a set of finite length rods in a horizontal plane

expression for the required muscle tension as a function of
time (t), frequency (ω), and lengthwise position (z):

T (z, t) = κ [sin(ωt − kz)− sin(ωt)] (1)

where κ = (1/2π)Lγ ηωA, L is the zebrafish length, γ is
the ratio of vertebrae height and length, η the viscosity coeffi-
cient, k = (π/2L), and A the wave amplitude.

To use control theory to describe the dynamics, we must
identify the state vector. To accomplish this, we can rewrite
the equation for the tensions using a Fourier-like expansion,
whose coefficients become the state vector:

T̂ (z, t; x)

= κ

(
N∑
n=0

x2n(t) cos(2πnz)+ x2n+1(t) sin(2πnz)

)
(2)

wherex0(t) = cos(ωt),x1(t) = − cos(ωt), andx2 = sin(ωt).
These coefficients are closely related to the simple oscilla-
tor, a system familiar in control theory. We can thus write a
compact description of this system using the dynamics state
equation from standard control theory,

d

dt
[x(t)] = Ax(t)+ Bu(t) (3)

which relates the state vector x(t) with its time derivative
(d/dt) [x(t)] and control input u(t). Specifically, the state
vector x, represents the amplitudes of the coefficients in the
orthonormal space, A the oscillator dynamics matrix, and
B the input matrix which controls the start up behavior of
the model. The state vector and initial conditions completely
characterize the current state of the system as well as all past
states. Therefore, the future states of the system are depen-
dent only on the current state and future inputs to the system.

By minimizing the mean square error (MSE) between
this ideal system, and some possibly noisy implementation
of it, we can determine control matrices that are stable under
perturbations:

MSE =
(
T (z, t)− T̂ (z, t; x)

)2
= 0 (4)

MSE = 〈E1 + E2 + E3 + E4 + E5〉t (5a)

E1 = 1

2
(x1 + cos(ωt))2 (5b)

E2 = 1

2
(sin(ωt − x2))

2 (5c)

E3 = (x0 + x1)
2 (5d)

E4 =
(
x0 − x1

2
+ cos(ωt)

)2

(5e)

E5 =
N∑
n=1

x2
n (5f)

Each term in Eq. (5a) must tend to zero over time for
the overall error to reach zero. Equations (5b) and (5c) are
satisfied if x1 and x2 form a simple oscillator since

x1 = cos(ωt)
x2 = sin(ωt). (6)

A simple oscillator is written in standard control theory
form as:

ẋ(t) =
[

0 −ω
ω 0

]
x(t) (7)

However, this does not satisfy all of the error terms. In
addition, for Eq. (5d) to reach zero, the sum of x0 and x1 must
tend to zero, and Eq. (5e) suggests that x0 = −x1 = cos(ωt).
Thus we need to explicitly force the term d((x0 + x1)/2)/dt
to zero. Adding an extra row and column of zeros to the oscil-
lator matrix enforces this constraint. However, since this new
matrix is in a different coordinate system than the original
matrix we must perform a coordinate transformation back
into the original space giving:

A =

 0 0 −ω

0 0 ω
1
2ω − 1

2ω 0


 (8)

Notably, if there is any representational error in x0 or
x1, this constraint will not be properly enforced. Thus, these
errors need to be damped. Similarly, errors in higher order
terms need to be damped or E5 will become significant. As
a result, we introduce a damping matrix. In other words, we
decompose the dynamics matrix A, into a dampening matrix
Adamp and a steady-state oscillator matrix Aosc (defined by
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Eq. (8)). The dampening matrix can be written:

Adamp =




−α −α 0 0 0
−α −α 0 0 0
0 0 0 0 0
0 0 0 −α0 0

0 0 0 0
. . .


 (9)

where α and α0 control the damping on the x0 and x1, and
higher order terms, respectively.

Notably, the Aosc matrix defines a cyclic attractor. This
is not surprising since we are modeling a CPG. Both CPGs
and cyclic attractors generate repetitive oscillatory motion.
Therefore, a cyclic attractor can be thought of as a way to
implement CPG dynamics (Eliasmith and Anderson 2003).

In order to control the start up motions of the system, the
input matrix B must be constructed. The start up dynamics
are chosen as follows, which causes the model to display
exponential start up behavior until the prescribed amplitude
is reached:

B =

 0 0 1

0 0 1
− 1

2
1
2 0


 (10)

In order to implement escape behavior in this model, the
dynamics matrix Aosc must tend to zero during an escape,
while the input matrix B implements a rapid turn. This change
in the dynamics matrix is accomplished by adding terms to
its nonzero elements, where E is either 0 for no escape or
±1 for an escape (negative in the case of a stimulus from the
left, and positive for a stimulus on the right):

Aosc=

 0 0 −ω(1 − |E|)

0 0 ω(1 − |E|)
1
2ω(1 − |E|) − 1

2ω(1 − |E|) 0



(11)

To implement the rapid turn in the input matrix B, the
escape signalE, is multiplied by a rate constant v, which con-
trols the speed with which the system responds to an escape
signal. In order to create a large bend, the state variables x,
are introduced into this matrix (making the system nonlin-
ear). This results in the state (current bend) being significantly
affected by an escape stimulus E. The resulting input matrix
is

B =

 0 −υ |E| x1 1

0 −υ |E| x2 1
− 1

2
1
2 −υ |E| x3 − υE


 (12)

Combining the matrices together, we create a set of
dynamical equations that describe the desired behavior:

ẋ(t) = [
Aosc + Adamp

]
x(t)+ Bu(t). (13)

In summary, the model swims in steady state with a travel-
ing wave whose temporal frequency is controlled by ω. The
high-frequency harmonics are damped out and the wave’s
amplitude increases exponentially to the desired value at
startup as controlled by u(t).When the escape signal is active,
normal swimming motion is interrupted, so the amplitudes of

Aosc decrease to zero. However, the nonlinear terms of the B
matrix become active during an escape and elicit a C-shaped
escape motion. The speed of response to this stimulation is
determined by υ. When the escape signal is removed the
amplitudes of Aosc once again dominate and normal swim-
ming is resumed.

4 Neural model

In this section we construct a biologically plausible neu-
ral network with two distinct populations of neurons, which
display both escape and swimming behaviors as defined by
the higher level control theoretic model. To do this, we use
the methods described in Eliasmith and Anderson (2003). In
other words, we take the neural representations in the system
to be the state variables of the control model.

We define these representations using a spiking neural
nonlinearity for encoding:∑

n

δi(t − tn)

= Gi

[
αi

〈
φ̃i
(
hi(t) ∗ [A′x(t)+ B′u(t)

])〉
m

+ J bias
i

]
(14)

where

A′ = τA + I
B′ = τB

relates the previous standard control theoretic system to a
neural control system which takes into account observable
neural dynamics. Here, φ̃i is the encoding vector, Gi is a
neural nonlinearity (for computational savings we use leaky
integrate-and-fire (LIF) neurons), αi and J bias map the input
vector into soma current, τ is the synaptic time constant, and
δi(t − tn) are spikes from neuron i emitted at time tn.

To complete the representational definition, we define the
complementary decoding as:

x̂(t) =
∑
in

δi(t − tn) ∗ φx
i (t) (15)

where φx
i (t) is the population-temporal filter. This filter is

the product of the post-synaptic currents (for temporal decod-
ing) and least-squares optimal linear decoders (for population
decoding). Again, this characterization of neural representa-
tion is discussed in detail in Eliasmith and Anderson (2003).

To complete the neural implementation of the model, we
similarly define the representation of the escape signalE, the
frequency ω, and the control signal u. These signals are rep-
resented in a control population which is presumed to reside
in the fish’s brain.

Let us now introduce an intermediate-level model which
provides a population-based description which resides be-
tween the high-level control theoretic description and the
neural model.

This intermediate-level model serves two purposes. The
first is to better match the anatomy of the larval zebrafish.
The larval zebrafish spine is composed of approximately 30
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Fig. 2 Individual spikes and firing rates for two typical neurons in the population (of 200 LIF neurons) for one segment of the model are shown.
An escape stimulus is introduced at 0.35 s. Neural spikes for the neuron encoding the right side of the model are displayed above while those for
the neuron encoding the left side are shown below

segments that have individual local tensions. This was not
reflected in the high-level description previously presented.
The intermediate model, which includes local representations
of muscle tensions, better reflects the anatomy of the larval
zebrafish.

The second purpose is to allow for potential reductions
in computational complexity. Simulating all segments of the
fish at the level of single spiking neurons is extremely com-
putationally expensive. Because the intermediate model is
significantly less computationally expensive, and because
intermediate and neural descriptions can be mixed in one
model using these methods, introducing the intermediate
model results in significant computational savings.

The intermediate-level model is constructed by represent-
ing the local tensions using Gaussian encoding functions
along the length of the fish. It is natural to think of these
encoders as describing the behavior of a local population of
neurons in the spinal cord of the fish. We can write the inter-
mediate-level encoding of the tensions as

am(t) =
〈
T (z, t)φ̃m(z)

〉
=
〈
T (z, t)e−(z−m dz)2

〉
. (16)

Thus the complementary decoding is

T̂ (z, t) = κ

(
M∑
m=1

am(t)φm(z)

)
. (17)

Given the high-level model, we know that the dynamics
of this representation is described by

ȧ(t) = (
θ−1Aθ

)
a(t)+ (

θ−1Bθ
)

u(t) (18)

where am(t) is the amplitude of the mth gaussian segment

centered at the point z = m dz, and θ =
[
φ̃�

]−1
is a projec-

tion matrix between the high- and intermediate-level repre-
sentations.

The model was solved using Euler’s method with a step
size of dt = 5 × 10−5 s. The starting position of the model is
such that all segments are parallel to the longitudinal direc-
tion. A start up signal of u(t) = +1 is input in to the model
from t = 0.00 to 0.02 s. An escape signal (from the left, i.e.,
−1) is presented at t = 0.35 s for eight time steps (0.0004 s)
directly into the CiD population but could have also been
encoded in a separate population of neurons encoding the
escape signal such as with the Mauthner neuron in gold-
fish (Svoboda and Fetcho 1996). The refractory period and
the ‘RC’ time constant for both populations of LIF neurons
(representing MCoD and CiD interneurons) were tref = 1 ×
10−3 s and tRC = 1 × 10−2 s, respectively, assuming a neu-
ronal noise variance of 0.1.

As stated previously, any given segment(s) of the model
may be simulated at the level of single neurons if desired.
This allows comparisons between what is known from single
cell physiology and the firing profiles of particular neurons
in the simulation. Figure 2 shows the activity of two typical
opposing single neurons in one of the segments of the model
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Fig. 3 The connection weights between the CiD population and the first two segments of the zebrafish model

simulated with a population of 200 spiking LIF neurons in
lieu of the Gaussian representation previously mentioned.
Since the firing thresholds for each neuron in the population
are chosen randomly, the duration of firing for each neu-
ron is different (but the period remains the same across the
population). This can be seen in Fig. 2 where the amplitude
and duration of firing for one typical neuron encoding the left
and right side of the zebrafish are shown.

It can also be seen that there is a sharp increase (left
side)/decrease (right side) in activity when an escape stimu-
lus is presented at t = 0.35 s. This corresponds to a sudden
activation on the left side of the model (and a corresponding
drop in activity on the right side) indicating that an escape
bend has occurred. This produces a corresponding turn to
the right away from the stimulus. We would like to re-iter-
ate that this escape motion (not merely turning behavior) is
produced using a nonlinear model with separate interacting
populations of interneurons in contrast to the models of Eke-
berg (1993), Ekeberg and Grillner (1999), Ijspeert and Kod-
jabachian (1999), Ijspeert (2001), and Grillner et al. (1991).
This results in an immediate change in body orientation and
subsequent direction of travel as opposed to a slower turning
behavior.

Simulation of the model results in the expected behaviors.
As in the higher level model, the zebrafish swims in a steady
state until the escape signal is activated, at which point nor-
mal swimming is interrupted and a C-shaped escape bend is
produced. The use of the Gaussian encoding functions allows
us to explore the model at either the segment and/or individ-
ual neuron level leaving the high-level behavior of the model
unchanged.

The resulting neural model is consistent with the known
physiology of the zebrafish, suggesting that the hypothesized
mechanism may be a good description of that found in the
zebrafish. Specifically, from Fig. 4 it can be seen that the pop-
ulation of interneurons playing the functional role of MCoD
neurons has dense local connectivity (indicated by the strong
diagonal ridge in the figure). This correlates well with the
known neural data indicating that MCoD cells have elabo-
rate dendritic arbors (Ritter et al. 2001; Hale et al. 2001).

Furthermore, CiD (and Mauthner) neurons should share
sparse connectivity, longer range projections, and ipsilat-
eral connections with neurons in the population encoding
E. Figure 5 shows the connectivity between the 600 neurons
of the control population and the 30 segments of the model. It
can be seen that the connection weights are fairly sparse and
have longer range projections than the MCoD interneurons
along the 30 segment length of the larval zebrafish model.

However, connectivity patterns near the head are different
for the MCoD neurons than further along the body (Fig. 4).
There exist longer range projections such as those for segment
3. These connections are stronger in weighting as compared
to the CiD interneuron connections near the head (Fig. 3).
These weights indicate a much stronger connection to the
segments close to the head than others along the length of
the body.

It was also found from the simulation that the CiD in-
terneurons must be quiescent during regular swimming. Any
consistent or correlated noise in the CiD interneuron popula-
tion introduced a bias which quickly disturbed regular swim-
ming patterns. This is consistent with what is found in larval
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Fig. 4 Connection weights between individual segments of the larval zebrafish spinal cord representing MCoD interneurons. The large diagonal
ridge of both strongly positive and negative connections indicates a dense local connectivity. These dense local interconnections along the spinal
cord map well to the known anatomy of MCoD interneurons. The activity of each segment may also be simulated individually using a population
of MCoD interneurons

zebrafish where CiD interneurons do not fire during regular
swimming (Hale et al. 2001).

5 Hydrodynamic model

In order to validate the neural model we have presented here,
we have also created a hydrodynamic zebrafish model. In
modeling the hydrodynamic forces, models can range in com-
plexity from the simplicity of completely ignoring hydrody-
namic interactions to full three-dimensional fluid-dynamic
calculations which solve the Navier–Stokes equations.

Williams et al. (1995) calculated the solution to the two-
dimensional Navier–Stokes equations, however, this method
does not allow calculations of body dynamics controlled by
neuronal outputs. In contrast, the lamprey models of Eke-
berg (1993), Ekeberg and Grillner (1999), Ijspeert and Kod-
jabachian (1999), and Grillner et al. (1991) and the
salamander model of Ijspeert (2001) all utilize simpler hydro-
dynamic interactions taking the static drag force as an esti-
mate of the true force of the water on the body. However,
the examples given are anguilliform swimmers whereas the
larval zebrafish is a carangiform swimmer indicating a differ-
ent behavior, body structure, and kinematics. In addition,
the models of Ekeberg (1993), Ekeberg and Grillner (1999),
Ijspeert and Kodjabachian (1999), Ijspeert (2001), and Grill-
ner et al. (1991) assume that the speed of the water relative
to the body is sufficiently high such that the forces exerted
by water can be assumed to be mainly inertial (indicating a
high Reynold’s number). However, in the case of the larval
zebrafish, this is most likely not the case due to the small size

and speed of the fish. Hence, in this model the assumption of
a low Reynold’s number is more appropriate.

As such, we have chosen to modify a previous hydrody-
namic model of carangiform fish locomotion by Mason and
Burdick (2000) and Morgansen et al. (2001, 2002). These
previous models used three segments in order to model the
zebrafish – the body, the peduncle, and the tail. We have
extended this model to the 30 segments representative of a
larval zebrafish. Motion is analyzed in two dimensions of the
horizontal plane, allowing a simplified analysis of the thrust
generated. The direction of intended travel (longitudinal to
the fish’s body) is referred to as the x-direction. Travel in
the lateral direction is referred to as travel in the y-direction
(where positive values indicate lateral displacement to the
right).

The equations of motion for this nonlinear system are
given below:

Itotal



ψ̈1..29
ẍ
ÿ

θ̈




=




u1..29
Lx +Dfx +Dbx + famx

Ly +Dfy +Dby + famy

τf + τb + τam + (xm − x, ym − y) ∗ (L+ fam)




(19)

Here, ẍ and ÿ represent the accelerations in the forward
and lateral directions, respectively, θ̈ the acceleration of the
orientation of the body in the inertial reference frame, ψ̈1
and ψ̈2 the acceleration of the joint angles with respect to the
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Fig. 5 Connection weights between the control population of 600 (CiD) interneurons and the 30 segments of the spinal cord. It can be seen from
the figure that some of the CiD interneurons share long-range projections along the length of the spinal cord. These long-range projections map
well to the known anatomy of CiD interneurons

body’s longitudinal axis, u1 and u2 the input signals to the
system, L the lift generated by the tail fin, Df the drag on
the tail fin, Db the total drag force acting on the body, fam
the added mass effects, τf the torque generated around the
midpoint of the tail, τb the total drag moment acting on the
body, τam the moment due to the acceleration component of
the tail fin (which is independent of ẍ, ÿ, and θ̈ ), xm and ym
the position of the midpoint of the tail fin, and Itotal a matrix
which represent the inertia of the fluid surrounding the body,
the inertia of the actual body plate, and the added inertia due
to the tail fin.

Values required for the evaluation of the thrust gener-
ated can be derived using the Kutta–Joukowski theorem and
assuming that the tail hydrofoil is in a quasi-steady uniform
flow with the overall velocity being implied by the instan-
taneous velocity of the foil’s quarter-chord point. The drag
forces acting on the tailfin can be estimated using Lanchester–
Prandtl wing theory (Mason and Burdick 2000; Morgansen
et al. 2001, 2002). The hydrodynamic model accounts for
quasi-static torque generated around the midpoint of the tail,
total drag moment acting on the body, the moment added
by mass forces, lift, drag force acting on the body and fin,
and the added mass forces. Due to simplifications in the
model, the spatial structure of the wake is ignored. Vortices
shed from the tail fin are treated as if they are swept away
and become immediately very distant. Hydrodynamic inter-
actions between the different components, and forces on the
peduncle are also ignored.

The system specified by Eq. (19) is simulated by inputting
the neural control inputs obtained from the neural model in
Sect. 4. The equations are solved using a fourth order Runge–

Kutta method with Dormand–Prince coefficients. Figure 6
shows the results of this simulation. Movements in the lateral
and forward directions are as indicated in the plot. An escape
bend is initiated at t = 0.35 s which results in a sharp turn
of the zebrafish. This can be seen in the subsequent increase
in lateral displacement for t > 0.35 s, indicating a change
in the direction. Therefore, the inputs from the neural model
generate the expected swimming motions in this more com-
plex hydrodynamic simulation of the larval zebrafish. This
suggests that the neural controller derived previously, which
is consistent with the known anatomy and physiology of the
zebrafish, is an effective controller of the fish’s body in a more
complex hydrodynamic environment. As a result, we can be
confident that the simplified hydrodynamics assumed during
the derivation of the controller did not adversely affect the
resulting model.

6 Conclusions

In this contribution, we have used the methods of Eliasmith
and Anderson (2003) to synthesize spiking neural models
consistent with both high-level behavioral descriptions and
neurophysiological data. Because the model was constructed
with the desired behavior directly through the representa-
tion and higher level control structures, we bypass many of
the difficulties encountered using coupled oscillator models.
The model is guaranteed to be stable with the implicit ability
to control the frequency and direction of swimming. There
is no difficulty in integrating new behaviors in this model
which can be accomplished by simply changing the dynamic
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Fig. 6 Motion of hydrodynamic model using neural control inputs with an escape signal initiated at t = 0.35 s. The arrow indicates the time at
which the escape signal is applied to the system. A rapid turn occurs changing the orientation of the body. Subsequent swimming proceeds in a
new direction with a nontrivial lateral component as seen for t > 0.35 s

equations governing the model. In addition, the connection
weights of the model are determined analytically as opposed
to being hand-tuned as with many previous models.

We have provided an explicit model of a biologically
plausible mechanism for coordinating the switch between
two kinds of behavior in the larval zebrafish. In addition, the
model shows that separate populations of interneurons for
normal swimming and escape motions can function in simu-
lation thus adding some additional support to the findings of
Ritter et al. (2001).

These results are in contrast to the models of the lam-
prey (Ekeberg 1993; Ekeberg and Grillner 1999; Ijspeert and
Kodjabachian 1999; Grillner et al. 1991) and the salaman-
der (Ijspeert 2001) which use a single unified network where
different control signals are used in order to elicit different
motor behavior from the same network of neurons. These
models also only model turning behavior whereas this con-
tribution models escape behavior (a much more rapid change
in body orientation in contrast to the gradual turns of previ-
ous work). As such, the model presented is a nonlinear con-
trol system which implements the dynamics of the switch
between normal swimming and escape motions.

The resulting neural model maps well to the known phys-
iology and anatomy of the larval zebrafish. In particular,
MCoD cells are elements of the network encoding the normal
swimming dynamics of the larval zebrafish, which have sim-
ilar, dense connections and project contralaterally. The CiD
interneurons share sparse connectivity, and longer range pro-
jections, consistent with neurons in the population encoding
the escape response behavior.

In general, we have presented a detailed characterization
of how the connectivity of MCoD and CiD interneurons pos-
sibly relate to function in the larval zebrafish. Namely, we
predict that the connectivity of MCoD neurons extends fur-
ther along the length of the zebrafish near the head than at
other areas, that longer range MCoD interneuron connectiv-
ity near the head should dominate the CiD interneurons near
the head, and that noise in the CiD interneuron population
during regular swimming should disrupt normal swimming
behavior. Such predictions may be tested in vivo in the larval
zebrafish.

In addition, we have shown that the model functions effec-
tively in a complex hydrodynamic environment, producing
the two classes of observed behavior, swimming and escape,
included in the model.
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