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Introduction

Mental multiplication is an advanced, abstract cognitive task
that separates adults from non-human animals, Al systems,
and young children. We present a biologically and psycholog-
ically plausible spiking neural model of simple mental multipli-
cation, expanding on previous work on mental addition [1, 2].

Background
People primarily use three main solution strategies [3—9]:

e Retrieval: fact recall from memory (first attempt).

e Repeated addition (counting): iteratively adding one
factor the number of times of the other (first ‘backup’).

e Rules: shortcuts for 0- and 1-multiplication (special cases).

Strategy choice depends on the problem. Only when retrieval
fails are more involved ‘backup’ strategies invoked.

People consistently exhibit two main patterns [3-9]:

e Problem-size effect: ‘'smaller’ problems are easier/faster.
e QOutliers: 0-, 1-, 5-multiplication and ties are easier/faster.

We propose that people use the following algorithm:

e |f the person has seen the problem before and is confident
enough in a memorized solution, they use retrieval. Other-
wise, they manually compute the solution using a backup
strategy. If a rule can be applied, they apply that rule; other-
wise, they perform repeated addition.

Model

The model leverages the Semantic Pointer Architecture (SPA)
[10] and Neural Engineering Framework (NEF) [11] and is
implemented in 200K-2M spiking neurons using Nengo [12].
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Results

Qualitatively, the model was capable of correctly executing
the repeated addition and rules strateqgies.
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Quantitatively, model performance scaled with resources.
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The performance of separate ‘child’ and ‘adult’ versions of the
model matched data obtained from studies on people.

Study Subjects Rules Repeated Addition
Accuracy (%) Latency (s) Accuracy (%) Latency (s)
Lemaire and Siegler (1995) French Children — — 71 11.8
Siegler (1988) American Children — — 59 23.3
Ours Child Model 99.9 0.322 57.9 6.795
LeFevre et al. (1996) Canadian Adults 98.9 0.895 97.2 1.490
Ours Adult Model 100.0 0.324 94.7 1.747

The model reproduced the problem-size effect and outliers.

., Problem-Size Effect: Accuracy versus Product Problem-Size Effect: Latency versus Second Factor
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Conclusion

We presented a novel, biologically and psychologically plaus-
ible, spiking neural model of mental multiplication. The model:

e Implemented key strategies used by people.
e Replicated performance levels and trends found in people.
e Had tunable accuracy that could be made perfect.
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