
 
 
 
 
 

The Myth of the Turing Machine
The Failings of Functionalism and Related Theses

 
 
 
 
 

February, 2002
 
 

Submitted to JETAI
 

 
 
 

Chris Eliasmith
Dept. of Philosophy

University of Waterloo
eliasmith@uwaterloo.ca

 

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

1 of 16 11/28/08 10:50 AM



Abstract

The properties of Turing’s famous ‘universal machine’ has long sustained functionalist

intuitions about the nature of cognition.  Here, I show that there is a logical problem with

standard  functionalist  arguments  for  multiple  realizability.  These  arguments  rely

essentially on Turing’s powerful insights regarding computation. In addressing a possible

reply to this criticism, I  further argue that  functionalism is not a useful approach for

understanding  what  it  is  to  have  a  mind.  In  particular,  I  show  that  the  difficulties

involved  in  distinguishing  implementation  from  function  make  multiple  realizability

claims  untestable  and  uninformative.  As  a  result,  I  conclude  that  the  role  of  Turing

machines in philosophy of mind needs to be reconsidered.
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The Myth of the Turing Machine
The Failings of Functionalism and Related Theses

1. Introduction

Since  its  invention  in  the  late  thirties,  the  Turing  machine  has  heavily  influenced

characterizations of human cognition.  The Turing machine often plays a central role in

debates  about  the  nature  of  cognition  because  many  characterizations  of  cognitive

systems are computational and Turing (1937) showed that the machine could be used to

characterize all computable functions.[1]  Functionalists, in particular, have used Turing’s

results to argue for the ‘multiple realizability’ of the mental; i.e., for the thesis that what it

takes to be a mind is independent of physical realization.  A typical argument for multiple

realizability goes something like this:

1.     Systems with minds are cognitive systems.

2.     Cognitive systems are computational systems.

3.     Turing machines can completely describe any computational system.

4.      Therefore,  Turing machines can completely describe any cognitive
system (2. and 3.).

5.      Turing machines are defined independently of  implementation (i.e.
functionally).

6.      Therefore,  cognitive  systems  can  be  defined  independently  of
implementation (4. and 5.).

7.      Therefore,  systems  with  minds  can  be  defined  independently  of
implementation (1. and 6.).

This  conclusion,  associated  with  the  philosophical  position  of  ‘functionalism’  (or

sometimes  ‘psychofunctionalism’),  has  become  a  mainstay  in  philosophy  of  mind.

However, if we consider the argument closely, especially in light of alternate (though

closely related) characterizations of computation, we will see that it is not valid. As a

result,  the multiple realizability thesis and functionalism itself needs to be rethought. 

Before considering the argument in detail, I briefly describe Turing machines and their

relation to functionalism.  I  then consider the argument and show that it  relies on an

equivocation. Subsequently, I consider a way to avoid this equivocation, but this attempt
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to revive the argument ultimately fails because it relies on a notion of equivalence that

cannot  do the conceptual  work functionalists  need it  to.  The reason,  I  argue,  is  that

implementation  and  function  are  not  as  easily  parted  as  multiple  realizability  claims

presume. As a result,  such claims are untestable and uninformative. By considering a

more  implementation-conscious  characterization  of  computation,  I  suggest  that  the

relevance of Turing machines and the functionalist thesis in philosophy of mind needs to

be reconsidered.

2. Turing Machines on the Brain

The Turing machine has been crucial to 20th century mathematics, in part because it has

played  a  central  role  in  theories  of  computation  and  computability.  Specifically,  the

Turing machine helps provide a rigorous definition of an algorithm or method.  Turing

was able to show that his ‘machine’ describes a mechanical process that can perform all

of the operations a person working with a logical system can perform.  Subsequently,

Alonzo  Church  formulated  the  Church-Turing  thesis;  namely,  the  thesis  that  all

definitions  of  computability  are  equivalent.  Together,  these  results  demonstrate  that

Turing machine computable functions are all the computable functions there are.  Thus,

Turing had succeeded in specifying a universal computer. 

Turing machines are as simple as they are familiar: they consist solely of a tape, a

read/write head and a finite table of state changes (see table 1).  The tape is divided into

discrete boxes, each of which may have either a zero or a one in it.  The head will read a

zero or one from the current tape square and, depending on the current state and what is

in the current tape square it will write a zero or one, move left or right and proceed to the

next state in the table.  Consider, for example, the state table below (table 1).  This Turing

machine description defines an algorithm for a simple adder.  Given two strings of ones

separated by a zero, it will output a single string that is the same length as the sum of the

original two strings.  So, for example, the string [ 1 0 1 ] becomes [ 1 1 ] and [ 1 1 0 1 1 1

] becomes [ 1 1 1 1 1 ].

State Number Input Output Next State
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1 0
1

R1
R1

2
1

2 0
1

L0
R1

3
2

3 0
1

L0
L0

3
4

4 0
1

R0
L1

HALT
4

Table 1: A Turing machine state table for a simple adder.

Turing himself argued that a Turing machine could achieve whatever the human

brain could achieve (Turing 1950).  Because he had shown that Turing machines can

compute  any  function  that  is  computable  (assuming  that  both  the  tape  and  time  are

infinite),  and given the further  claim that  human cognition is  a  product  of  biological

computation, Turning concluded that all of our cognitive behaviors can be captured in the

language of the Turing machine.  So,  for any mental  process there must  be a Turing

machine description that will have the same input/output relations. 

Central to the power of Turing’s formulation of the Turing machine is the fact that

it provides a computational description without any reference to the physical makeup of

the  computer.  In  table  1  there  are  clearly  no  physical  constraints  placed  on  the

implementation of the state table.  So, to  fully characterize the behavior of a Turing

machine at a time we need specify only three things: 1) the input at that time; 2) the state

of the machine at that time; and 3) the state table.  Notably, what makes a machine state

the type of state it is (e.g. an adder), are functional relations between inputs, outputs, and

other machine states. 

Following Turing’s lead, functionalists analogously hold that what individuates

mental states are functional relations between inputs,  outputs,  and other mental states

(Putnam 1975).  Functionalists thus suggest that cognitive functions can be completely

characterized  by  high-level  descriptions,  abstracted  from  (i.e.,  independent  of)  their

implementation.  Coupled  with  a  notion  of  functional  equivalence  (or  ‘functional

isomorphism’ to use Putnam’s phrase), this characterization of mental states establishes

the  cherished  multiple  realizability  thesis.  That  is,  if  two  systems  have  functionally
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equivalent descriptions, then they have the same set of mental states (if any). Because

functional descriptions are independent of implementation, two different implementations

can have functionally equivalent descriptions. Thus, two different implementations can

have the same set of mental states (if any); this just is the thesis of multiple realizability.

Note the central role played in this argument by the notion of ‘functional equivalence’ – it

is this notion that, I will argue, is ultimately unable to do the work functionalists need it

to (see section 4). [2]

It  is hardly necessary to argue for the prevalence of these positions in current

philosophy  of  mind  (see  Block  1980;  Fodor  1981;  Cummins  1983;  Putnam  1994;

Stillings, Weisler et al. 1995).    Ned Block has, in fact, claimed that functionalism and

multiple realizability are obvious enough to be considered default positions in philosophy

of mind (Block 1980, p. 178):

[I]t is a simple matter to dream up a nomologically possible machine that
satisfies [a given] machine table but does not have the designated physical
state.  Of course, it is one thing to say this and another thing to prove it,
but  the  claim has  such  overwhelming  prima  facie  plausibility  that  the
burden of  proof  is  on  the  critic  to  come up with  reasons  for  thinking
otherwise.

Indeed, the majority of philosophers of mind embrace some form of functionalism (and

with it  the multiple realizability thesis)  and so it  will  take some effort  to show how,

precisely, functionalism fails. 

3. A Logical Slip

Perhaps the most obvious assumption of the multiple realizability argument outlined in

section 1 is that cognitive systems are computational.  I wish to grant this assumption – in

a sense.  In precisely this sense: all  systems we consider to be cognitive systems are

things-that-compute.  What is avoided by this formulation is the ambiguity of the term

‘computational  system’.  The  term  could  also  be  taken  to  mean  ‘a  system  of

computations’;  i.e.,  the  abstract  set  of  input  to  output  transformations.  Noticing  this

difference, it is clear that premise 3 is true only under the second interpretation.  Thus,

Turing machines  completely describe computations,  not  the physical  systems that  are
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performing computations.  It is clear that the antecedent premise (premise 2) is using the

term ‘computational system’ to refer to things-that-compute, since real cognitive systems

are physical systems and systems of computations are not.  So, there is an equivocation

on the terms ‘computational system’, rendering the argument invalid.

Of course, it is still possible to save this Turing machine-motivated argument, and

perhaps functionalists would make the necessary additional claims.  In particular they

may claim that  the equivocation noted above is  irrelevant.  They may argue that  the

equivocation does not nullify the fact that there are systems of computations that could be

implemented  by  different  things-that-compute.  That  is,  we  can  construct  different

implementations that have equivalent (or even identical) Turing machine descriptions.  If,

by completely describing the system of computations, we have completely described the

cognitively relevant aspects of those things-that-compute, then the argument will survive

since  nothing  would  ride  on  the  equivocation.  I  argue  in  the  next  section  that  the

standard  notion  of  equivalent  Turing  machines  does  not,  in  the  end,  support  this

conjecture.  And, because the notion of equivalence fails in this context, the claim that the

equivocation is irrelevant cannot be sustained.

4. Are All Equivalent Systems Created Equal?

In section 2 we saw that intuitions supporting multiple realizability stem from rely to the

notion of the “equivalence” of computational systems.  But when, exactly,  are Turing

machines  equivalent?  And,  what  kind  of  equivalence  is  necessary  to  eliminate  the

equivocation  discussed  above?  Recall  that  premise  3  of  the  argument  to  multiple

realizability is: “Turing machines can completely describe any computational system.” 

Where by “computational system” we mean things-that-compute.  And by “completely

describe” we mean something like: a description that captures the cognitively relevant

behaviors  of  a  system  under  a  set  of  conditions.  So,  if  we  take  any  two  things-

that-compute and they are implementations of equivalent Turing machines, we should

expect them to have cognitively similar behavior under similar conditions.  Of course, if
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they are implementations of the same Turing machine, we have good reason to expect

their cognitive behavior to be as similar as possible.

I  return  to  this  point  shortly,  but  first  let  us  consider  more  recent  results  in

computational theory that bear directly on considerations of computational equivalence. 

Kolmogorov has shown how important the implementation of a computational system is

to  its  computational  character.  He  has  proven  that  two  implementations  of  a  given

functional description can not be usefully considered equivalent unless they are almost

identical.  This is because an algorithm running on one implementation can only be run

by  another  implementation  with  the  addition  of  an  emulator  program of  some sort. 

Running  this  emulator  adds  computational  complexity[3]  making  the  second

implementation significantly different from the first (Le Cun and Denker 1992).  It is only

in the limiting case of infinite symbol-strings that this overhead can be ignored (a limiting

case  often  adopted  by  Turing  machine  proofs).  For  finite  strings,  this  overhead  will

significantly affect the performance of the computer – especially if we place time and

resource restrictions on its behavior.  Such restrictions seem to be the rule more than the

exception in the case of cognitive systems (Newell 1990; van Gelder 1995; van Gelder

and Port 1995; Eliasmith 1996). 

So,  the  structure  of  a  computer  may  not  affect  what  class  of  functions  is

computable  for  that  computer,  however,  its  structure  will  significantly  affect

computational complexity.  Since an increase in computational complexity necessitates

an increase in the time and power needed to perform a computation, the class of actual

computable  functions  within  a  given  period  of  time  and  with  a  fixed  amount  of

computational resources will vary for different physical computers.  It is in this way that

“equivalent”  computers  are  significantly  not  equal.  Implementing  equivalent  or  even

identical Turing machines does not at all guarantee equivalent computational complexity. 

In this respect, implementation and function are intimately bound.  This is true even for

abstract  computational  descriptions  if  time  and  resources  are  included  in  such

descriptions.  So, claims of Turing machine equivalence tell us little about computational
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complexity and it  is  computational  complexity,  not  mere function,  that  is  cognitively

relevant.

To  see  this,  consider  the  example  of  deciding  whether  an  object  in  the

environment is a friend or foe. Suppose we have two different implementations of the

function that needs to be computed to successfully achieve this recognition. One of these

implementations, Athlon Alan, can compute this function in less than a second given it’s

architecture, computational primitives, and so on. The other implementation, Intel Alan,

takes  nearly  10  minutes  to  perform  the  same  computation  because  it’s  architecture,

computational primitives, and so on aren’t optimized for this kind of computation. In

other  words,  the  computational  complexity  of  the  algorithm  on  the  second

implementation is significantly higher than on the first implementation.[4] Of course, if

the object is a foe, Intel Alan may not have the 10 minutes required to make this decision

and thus may not ever exhibit this cognitive behavior. As a result, it is computational

complexity, not function, that determines possible cognitive behavior. Merely noting the

class of abstract functions computable by Intel Alan won’t tell us much about Intel Alan’s

actual cognitive behavior.

5. The impropriety of Turing’s machines

Because functionalists have insisted that computable functions are cognitively relevant,

they  have  relied  on  Turing  equivalence,  a  notion  that  is  both  uninformative,  and

untestable  as typically applied to cognitive systems by functionalists.  In other words,

functionalists  have  improperly  applied  Turing’s  theoretical  results  to  understanding

minds.

So see this, let us again consider the Turing machine description in table 1.  As

previously discussed, this is the state table for an adder; let us call the state table Alan. 

So  we  have  Alan  Turing  machine,  a  theoretical  entity  with  four  states  that  can  be

described by table 1.  Of course, Alan and his tape can be implemented in silicon, or with

water flowing through a series of pipes.  Suppose Alan is implemented in both water and
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silicon.  Then we can know that silicon Alan and water Alan have equivalent (in fact,

identical) Turing machines descriptions.

In trying to understand the brain, we are obviously not provided with the state

table and tape that we are trying to characterize.  So, to render this thought experiment

more amenable to the situation we are in with natural cognitive systems, suppose we find

water Alan and silicon Alan, without already knowing that they are implementing the

same Turing machine.  We must now set to work to find out what these two recently

discovered systems are computing, i.e., what input, output, and state transition relations

hold.  If we begin by characterizing these relations at the level of electrons, atoms, or

molecules,  we will  undoubtedly get  different  Turing machine descriptions of  the two

systems.  Such descriptions will  be enormously complex.  Indeed, we may never find

those four simple states that the two Alans’ designers were trying to implement.  Given

these considerations, it is not surprising that we can provide an infinite number of Turing

machine descriptions of both systems (Dennett 1978).

To make things worse, let us suppose that there is another system, Nala, that is an

implementation of a state table that has been randomly selected from the vast space of

possible Turing machines.  Since, once implemented, there are an enormous number of

Turing machine descriptions of this system as well, it is likely that we would be able find

a Turing machine description for Nala that matched one for either water or silicon Alan. 

In fact, this would be just as likely as it would be for us to find descriptions for water and

silicon Alan that matched.  If we did find matching descriptions for Nala and, say, water

Alan, we could rightfully claim that Nala and water Alan are Turing machine equivalent. 

Together,  Alan  and  Nala  can  help  us  discover  how  Turing  equivalence  is

uninformative and untestable.  The reason Turing equivalence is uninformative is that it

is both too easy and too hard to find in physical systems.  The example of water and

silicon Alan shows how equivalence can be too hard to establish – matter simply has too

many input, output, and state transition relations to know which are the right ones for a

given analysis.  The example of Nala shows how equivalence can be too easy to establish
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– any matching input, output, state transition mapping supports an equivalence claim. 

The notion of equivalence is so under-constrained as to provide no means for making

principled distinctions in our descriptions of unfamiliar computational systems, of which

the brain is presumably one example.[5] 

The problem is that the designers of water and silicon Alan could not implement

just four states, without implementing an infinite host of others; such is the nature of

physical  stuff.  Any physical  system can  be  described  in  terms  of  a  near  infinity  of

different virtual machines.  As a result, we can’t be in a position to tell which one is

explanatorily relevant.  As the example of Nala shows, Turing machine characterizations

are cheap.  That means that for unknown systems, they will not help determine how to

draw  a  function/implementation  distinction  in  an  explanatorily  useful  way;  all  such

characterizations (mis-) describe a system equally well.   But functionalists assume that

there is such a distinction to be drawn; without that distinction, the multiple realizability

thesis  would  make  no  sense.  But  the  distinction  can  not  be  supported  in  practice

precisely because real physical systems implement not one, but infinitely many Turing

machine defined functions. 

A functionalist may claim that this is fine as long as that infinity includes some

subset of functions of interest, e.g. the subset necessary for supporting a mind.  But the

same two problems arise.  First, it is likely that we can find whatever subset is specified

in a host of implementations we do not want to count as minds.  Second, we can never

test such an hypothesis since we can never implement just that subset of functions.  Such

claims are thus uninformative (because both things with and without minds will have

those functional descriptions) and untestable (because we can not implement just that

functional description).  Simply put,  there is no way around the fact that the set of a

system’s functions and its implementation are intimately related.

It follows that the function of a given implementation can only be successfully

divorced from that  implementation in  the realms of  mathematical  theory (although it

doesn’t need to be, as Kolmogorov’s result shows).  As soon as we build something (or
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even make design decisions), the materials we choose to build it with and the way we put

it together will determine what functions it can realize.  For example, if we wish to build

a machine to catch a baseball, we cannot simply specify the states through which the

machine must move; those states have to be moved through in a given period of time (i.e.

with a  specified computational  complexity given certain resource constraints),  or  that

function cannot be actually performed. 

More  generally,  if  we  add  to  a  functional  description  some  function  whose

performance  depends  on  a  dimension  along  which  two  implementations  are

non-identical, they will no longer both be able to implement the exact same functions. 

The  reason  is  that,  whereas  Turing  machine  descriptions  are  dimensionless,  Turing

machine implementations are not.  The significance of this realization is most evident

once we acknowledge that many functions have a distinctly temporal nature.  In such

cases, the speed with which a given system can compute helps determine those functions

computable by that system[6].  If implementation affects computational speed, it affects

computable  functions;  and  there  is  a  huge  range  of  factors,  from  computational

complexity to mass, which affect computational speed.

6. Conclusion

Without a robust notion of equivalence, functionalism as standardly construed is not a

useful means of understanding what it is to have a mind.  Turing machine equivalence, I

have  argued,  is  not  a  robust  notion  in  this  context.  However,  this  is  the  notion  that

functionalists  typically  adopt.  As  a  result,  the  functionalist  argument  to  multiple

realizability  fails  because Turing machine-type functional  descriptions  simply are  not

complete enough descriptions of physical implementations. 

As a result, the role that Turing machines play in our understanding of what it

takes to be a cognitive system needs to reevaluated. While Turing’s insights can be useful

for specifying a class of potentially computable functions, this class is unlikely to tell us

much about the set of real systems we deem to count as cognitive. Instead, we need a
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notion  of  (Kolmogorov)  equivalence  based  on  considerations  of  computational

complexity and computability. Specifying boundaries on temporal and/or computational

complexity within which a system must fall to count as cognitive is essential to a useful

taxonomy of minds.  This is because there is no getting around the fact that in the real

world  the  set  of  functions  realized  by  a  given  physical  system  is  going  to  depend

significantly on the physics of that system.
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[2]   It is not unanimous amongst teleological functionalists that a notion of equivalence is mandatory.  For
those who do not commit themselves to a notion of equivalence, the arguments in section 4 should be
considered merely a warning.

[3]  Computational  complexity  is  roughly  a  measure  of  the  number  of  steps  it  takes  to  complete  a
computation.

[4] This is true despite being able to give an abstract characterization of the algorithm. In order for that
characterization to be realized, the actual algorithm being run on the computer will depend intimately on
the computer’s architecture.

[5]    These arguments are reminiscent of Searle’s (1990) rejection of computation all together (see also
Putnam 1988).  However, I simply wish to show the generality of the notion of Turing equivalence and
don’t need nearly as strong a result as Searle does. Searle’s point is rejected by some because it seems
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My point, in contrast, is that even given a machine that is running a word processor, Turing equivalence
can’t provide useful constraints for determining that this is so. 

[6]   More abstractly, consider that a function can be mathematically defined as F:X®Y where X, Y and F are
the sets X={x1,…,xn}, Y = {y1,…,yn}, and F is some set of ordered pairs of elements of X and Y.  We
must, in addition, realize that in an implementation all members of X occur at a time t, and thus this
mapping is really one from vectors, xiÎX, to vectors, yiÎY, where xi = {xi,ti}, yi = {yi,ti}.  If we don’t
preserve this mapping, we aren’t computing the same function.
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