

The Myth of the Turing Machine
The Failings of Functionalism and Related Theses

February, 2002

Submitted to JETAI

Chris Eliasmith
Dept. of Philosophy

University of Waterloo
eliasmith@uwaterloo.ca

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

1 of 16 11/28/08 10:50 AM

Abstract

The properties of Turing’s famous ‘universal machine’ has long sustained functionalist

intuitions about the nature of cognition. Here, I show that there is a logical problem with

standard functionalist arguments for multiple realizability. These arguments rely

essentially on Turing’s powerful insights regarding computation. In addressing a possible

reply to this criticism, I further argue that functionalism is not a useful approach for

understanding what it is to have a mind. In particular, I show that the difficulties

involved in distinguishing implementation from function make multiple realizability

claims untestable and uninformative. As a result, I conclude that the role of Turing

machines in philosophy of mind needs to be reconsidered.

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

2 of 16 11/28/08 10:50 AM

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

3 of 16 11/28/08 10:50 AM

The Myth of the Turing Machine
The Failings of Functionalism and Related Theses

1. Introduction

Since its invention in the late thirties, the Turing machine has heavily influenced

characterizations of human cognition. The Turing machine often plays a central role in

debates about the nature of cognition because many characterizations of cognitive

systems are computational and Turing (1937) showed that the machine could be used to

characterize all computable functions.[1] Functionalists, in particular, have used Turing’s

results to argue for the ‘multiple realizability’ of the mental; i.e., for the thesis that what it

takes to be a mind is independent of physical realization. A typical argument for multiple

realizability goes something like this:

1. Systems with minds are cognitive systems.

2. Cognitive systems are computational systems.

3. Turing machines can completely describe any computational system.

4. Therefore, Turing machines can completely describe any cognitive
system (2. and 3.).

5. Turing machines are defined independently of implementation (i.e.
functionally).

6. Therefore, cognitive systems can be defined independently of
implementation (4. and 5.).

7. Therefore, systems with minds can be defined independently of
implementation (1. and 6.).

This conclusion, associated with the philosophical position of ‘functionalism’ (or

sometimes ‘psychofunctionalism’), has become a mainstay in philosophy of mind.

However, if we consider the argument closely, especially in light of alternate (though

closely related) characterizations of computation, we will see that it is not valid. As a

result, the multiple realizability thesis and functionalism itself needs to be rethought.

Before considering the argument in detail, I briefly describe Turing machines and their

relation to functionalism. I then consider the argument and show that it relies on an

equivocation. Subsequently, I consider a way to avoid this equivocation, but this attempt

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

4 of 16 11/28/08 10:50 AM

to revive the argument ultimately fails because it relies on a notion of equivalence that

cannot do the conceptual work functionalists need it to. The reason, I argue, is that

implementation and function are not as easily parted as multiple realizability claims

presume. As a result, such claims are untestable and uninformative. By considering a

more implementation-conscious characterization of computation, I suggest that the

relevance of Turing machines and the functionalist thesis in philosophy of mind needs to

be reconsidered.

2. Turing Machines on the Brain

The Turing machine has been crucial to 20th century mathematics, in part because it has

played a central role in theories of computation and computability. Specifically, the

Turing machine helps provide a rigorous definition of an algorithm or method. Turing

was able to show that his ‘machine’ describes a mechanical process that can perform all

of the operations a person working with a logical system can perform. Subsequently,

Alonzo Church formulated the Church-Turing thesis; namely, the thesis that all

definitions of computability are equivalent. Together, these results demonstrate that

Turing machine computable functions are all the computable functions there are. Thus,

Turing had succeeded in specifying a universal computer.

Turing machines are as simple as they are familiar: they consist solely of a tape, a

read/write head and a finite table of state changes (see table 1). The tape is divided into

discrete boxes, each of which may have either a zero or a one in it. The head will read a

zero or one from the current tape square and, depending on the current state and what is

in the current tape square it will write a zero or one, move left or right and proceed to the

next state in the table. Consider, for example, the state table below (table 1). This Turing

machine description defines an algorithm for a simple adder. Given two strings of ones

separated by a zero, it will output a single string that is the same length as the sum of the

original two strings. So, for example, the string [1 0 1] becomes [1 1] and [1 1 0 1 1 1

] becomes [1 1 1 1 1].

State Number Input Output Next State

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

5 of 16 11/28/08 10:50 AM

1 0
1

R1
R1

2
1

2 0
1

L0
R1

3
2

3 0
1

L0
L0

3
4

4 0
1

R0
L1

HALT
4

Table 1: A Turing machine state table for a simple adder.

Turing himself argued that a Turing machine could achieve whatever the human

brain could achieve (Turing 1950). Because he had shown that Turing machines can

compute any function that is computable (assuming that both the tape and time are

infinite), and given the further claim that human cognition is a product of biological

computation, Turning concluded that all of our cognitive behaviors can be captured in the

language of the Turing machine. So, for any mental process there must be a Turing

machine description that will have the same input/output relations.

Central to the power of Turing’s formulation of the Turing machine is the fact that

it provides a computational description without any reference to the physical makeup of

the computer. In table 1 there are clearly no physical constraints placed on the

implementation of the state table. So, to fully characterize the behavior of a Turing

machine at a time we need specify only three things: 1) the input at that time; 2) the state

of the machine at that time; and 3) the state table. Notably, what makes a machine state

the type of state it is (e.g. an adder), are functional relations between inputs, outputs, and

other machine states.

Following Turing’s lead, functionalists analogously hold that what individuates

mental states are functional relations between inputs, outputs, and other mental states

(Putnam 1975). Functionalists thus suggest that cognitive functions can be completely

characterized by high-level descriptions, abstracted from (i.e., independent of) their

implementation. Coupled with a notion of functional equivalence (or ‘functional

isomorphism’ to use Putnam’s phrase), this characterization of mental states establishes

the cherished multiple realizability thesis. That is, if two systems have functionally

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

6 of 16 11/28/08 10:50 AM

equivalent descriptions, then they have the same set of mental states (if any). Because

functional descriptions are independent of implementation, two different implementations

can have functionally equivalent descriptions. Thus, two different implementations can

have the same set of mental states (if any); this just is the thesis of multiple realizability.

Note the central role played in this argument by the notion of ‘functional equivalence’ – it

is this notion that, I will argue, is ultimately unable to do the work functionalists need it

to (see section 4). [2]

It is hardly necessary to argue for the prevalence of these positions in current

philosophy of mind (see Block 1980; Fodor 1981; Cummins 1983; Putnam 1994;

Stillings, Weisler et al. 1995). Ned Block has, in fact, claimed that functionalism and

multiple realizability are obvious enough to be considered default positions in philosophy

of mind (Block 1980, p. 178):

[I]t is a simple matter to dream up a nomologically possible machine that
satisfies [a given] machine table but does not have the designated physical
state. Of course, it is one thing to say this and another thing to prove it,
but the claim has such overwhelming prima facie plausibility that the
burden of proof is on the critic to come up with reasons for thinking
otherwise.

Indeed, the majority of philosophers of mind embrace some form of functionalism (and

with it the multiple realizability thesis) and so it will take some effort to show how,

precisely, functionalism fails.

3. A Logical Slip

Perhaps the most obvious assumption of the multiple realizability argument outlined in

section 1 is that cognitive systems are computational. I wish to grant this assumption – in

a sense. In precisely this sense: all systems we consider to be cognitive systems are

things-that-compute. What is avoided by this formulation is the ambiguity of the term

‘computational system’. The term could also be taken to mean ‘a system of

computations’; i.e., the abstract set of input to output transformations. Noticing this

difference, it is clear that premise 3 is true only under the second interpretation. Thus,

Turing machines completely describe computations, not the physical systems that are

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

7 of 16 11/28/08 10:50 AM

performing computations. It is clear that the antecedent premise (premise 2) is using the

term ‘computational system’ to refer to things-that-compute, since real cognitive systems

are physical systems and systems of computations are not. So, there is an equivocation

on the terms ‘computational system’, rendering the argument invalid.

Of course, it is still possible to save this Turing machine-motivated argument, and

perhaps functionalists would make the necessary additional claims. In particular they

may claim that the equivocation noted above is irrelevant. They may argue that the

equivocation does not nullify the fact that there are systems of computations that could be

implemented by different things-that-compute. That is, we can construct different

implementations that have equivalent (or even identical) Turing machine descriptions. If,

by completely describing the system of computations, we have completely described the

cognitively relevant aspects of those things-that-compute, then the argument will survive

since nothing would ride on the equivocation. I argue in the next section that the

standard notion of equivalent Turing machines does not, in the end, support this

conjecture. And, because the notion of equivalence fails in this context, the claim that the

equivocation is irrelevant cannot be sustained.

4. Are All Equivalent Systems Created Equal?

In section 2 we saw that intuitions supporting multiple realizability stem from rely to the

notion of the “equivalence” of computational systems. But when, exactly, are Turing

machines equivalent? And, what kind of equivalence is necessary to eliminate the

equivocation discussed above? Recall that premise 3 of the argument to multiple

realizability is: “Turing machines can completely describe any computational system.”

Where by “computational system” we mean things-that-compute. And by “completely

describe” we mean something like: a description that captures the cognitively relevant

behaviors of a system under a set of conditions. So, if we take any two things-

that-compute and they are implementations of equivalent Turing machines, we should

expect them to have cognitively similar behavior under similar conditions. Of course, if

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

8 of 16 11/28/08 10:50 AM

they are implementations of the same Turing machine, we have good reason to expect

their cognitive behavior to be as similar as possible.

I return to this point shortly, but first let us consider more recent results in

computational theory that bear directly on considerations of computational equivalence.

Kolmogorov has shown how important the implementation of a computational system is

to its computational character. He has proven that two implementations of a given

functional description can not be usefully considered equivalent unless they are almost

identical. This is because an algorithm running on one implementation can only be run

by another implementation with the addition of an emulator program of some sort.

Running this emulator adds computational complexity[3] making the second

implementation significantly different from the first (Le Cun and Denker 1992). It is only

in the limiting case of infinite symbol-strings that this overhead can be ignored (a limiting

case often adopted by Turing machine proofs). For finite strings, this overhead will

significantly affect the performance of the computer – especially if we place time and

resource restrictions on its behavior. Such restrictions seem to be the rule more than the

exception in the case of cognitive systems (Newell 1990; van Gelder 1995; van Gelder

and Port 1995; Eliasmith 1996).

So, the structure of a computer may not affect what class of functions is

computable for that computer, however, its structure will significantly affect

computational complexity. Since an increase in computational complexity necessitates

an increase in the time and power needed to perform a computation, the class of actual

computable functions within a given period of time and with a fixed amount of

computational resources will vary for different physical computers. It is in this way that

“equivalent” computers are significantly not equal. Implementing equivalent or even

identical Turing machines does not at all guarantee equivalent computational complexity.

In this respect, implementation and function are intimately bound. This is true even for

abstract computational descriptions if time and resources are included in such

descriptions. So, claims of Turing machine equivalence tell us little about computational

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

9 of 16 11/28/08 10:50 AM

complexity and it is computational complexity, not mere function, that is cognitively

relevant.

To see this, consider the example of deciding whether an object in the

environment is a friend or foe. Suppose we have two different implementations of the

function that needs to be computed to successfully achieve this recognition. One of these

implementations, Athlon Alan, can compute this function in less than a second given it’s

architecture, computational primitives, and so on. The other implementation, Intel Alan,

takes nearly 10 minutes to perform the same computation because it’s architecture,

computational primitives, and so on aren’t optimized for this kind of computation. In

other words, the computational complexity of the algorithm on the second

implementation is significantly higher than on the first implementation.[4] Of course, if

the object is a foe, Intel Alan may not have the 10 minutes required to make this decision

and thus may not ever exhibit this cognitive behavior. As a result, it is computational

complexity, not function, that determines possible cognitive behavior. Merely noting the

class of abstract functions computable by Intel Alan won’t tell us much about Intel Alan’s

actual cognitive behavior.

5. The impropriety of Turing’s machines

Because functionalists have insisted that computable functions are cognitively relevant,

they have relied on Turing equivalence, a notion that is both uninformative, and

untestable as typically applied to cognitive systems by functionalists. In other words,

functionalists have improperly applied Turing’s theoretical results to understanding

minds.

So see this, let us again consider the Turing machine description in table 1. As

previously discussed, this is the state table for an adder; let us call the state table Alan.

So we have Alan Turing machine, a theoretical entity with four states that can be

described by table 1. Of course, Alan and his tape can be implemented in silicon, or with

water flowing through a series of pipes. Suppose Alan is implemented in both water and

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

10 of 16 11/28/08 10:50 AM

silicon. Then we can know that silicon Alan and water Alan have equivalent (in fact,

identical) Turing machines descriptions.

In trying to understand the brain, we are obviously not provided with the state

table and tape that we are trying to characterize. So, to render this thought experiment

more amenable to the situation we are in with natural cognitive systems, suppose we find

water Alan and silicon Alan, without already knowing that they are implementing the

same Turing machine. We must now set to work to find out what these two recently

discovered systems are computing, i.e., what input, output, and state transition relations

hold. If we begin by characterizing these relations at the level of electrons, atoms, or

molecules, we will undoubtedly get different Turing machine descriptions of the two

systems. Such descriptions will be enormously complex. Indeed, we may never find

those four simple states that the two Alans’ designers were trying to implement. Given

these considerations, it is not surprising that we can provide an infinite number of Turing

machine descriptions of both systems (Dennett 1978).

To make things worse, let us suppose that there is another system, Nala, that is an

implementation of a state table that has been randomly selected from the vast space of

possible Turing machines. Since, once implemented, there are an enormous number of

Turing machine descriptions of this system as well, it is likely that we would be able find

a Turing machine description for Nala that matched one for either water or silicon Alan.

In fact, this would be just as likely as it would be for us to find descriptions for water and

silicon Alan that matched. If we did find matching descriptions for Nala and, say, water

Alan, we could rightfully claim that Nala and water Alan are Turing machine equivalent.

Together, Alan and Nala can help us discover how Turing equivalence is

uninformative and untestable. The reason Turing equivalence is uninformative is that it

is both too easy and too hard to find in physical systems. The example of water and

silicon Alan shows how equivalence can be too hard to establish – matter simply has too

many input, output, and state transition relations to know which are the right ones for a

given analysis. The example of Nala shows how equivalence can be too easy to establish

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

11 of 16 11/28/08 10:50 AM

– any matching input, output, state transition mapping supports an equivalence claim.

The notion of equivalence is so under-constrained as to provide no means for making

principled distinctions in our descriptions of unfamiliar computational systems, of which

the brain is presumably one example.[5]

The problem is that the designers of water and silicon Alan could not implement

just four states, without implementing an infinite host of others; such is the nature of

physical stuff. Any physical system can be described in terms of a near infinity of

different virtual machines. As a result, we can’t be in a position to tell which one is

explanatorily relevant. As the example of Nala shows, Turing machine characterizations

are cheap. That means that for unknown systems, they will not help determine how to

draw a function/implementation distinction in an explanatorily useful way; all such

characterizations (mis-) describe a system equally well. But functionalists assume that

there is such a distinction to be drawn; without that distinction, the multiple realizability

thesis would make no sense. But the distinction can not be supported in practice

precisely because real physical systems implement not one, but infinitely many Turing

machine defined functions.

A functionalist may claim that this is fine as long as that infinity includes some

subset of functions of interest, e.g. the subset necessary for supporting a mind. But the

same two problems arise. First, it is likely that we can find whatever subset is specified

in a host of implementations we do not want to count as minds. Second, we can never

test such an hypothesis since we can never implement just that subset of functions. Such

claims are thus uninformative (because both things with and without minds will have

those functional descriptions) and untestable (because we can not implement just that

functional description). Simply put, there is no way around the fact that the set of a

system’s functions and its implementation are intimately related.

It follows that the function of a given implementation can only be successfully

divorced from that implementation in the realms of mathematical theory (although it

doesn’t need to be, as Kolmogorov’s result shows). As soon as we build something (or

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

12 of 16 11/28/08 10:50 AM

even make design decisions), the materials we choose to build it with and the way we put

it together will determine what functions it can realize. For example, if we wish to build

a machine to catch a baseball, we cannot simply specify the states through which the

machine must move; those states have to be moved through in a given period of time (i.e.

with a specified computational complexity given certain resource constraints), or that

function cannot be actually performed.

More generally, if we add to a functional description some function whose

performance depends on a dimension along which two implementations are

non-identical, they will no longer both be able to implement the exact same functions.

The reason is that, whereas Turing machine descriptions are dimensionless, Turing

machine implementations are not. The significance of this realization is most evident

once we acknowledge that many functions have a distinctly temporal nature. In such

cases, the speed with which a given system can compute helps determine those functions

computable by that system[6]. If implementation affects computational speed, it affects

computable functions; and there is a huge range of factors, from computational

complexity to mass, which affect computational speed.

6. Conclusion

Without a robust notion of equivalence, functionalism as standardly construed is not a

useful means of understanding what it is to have a mind. Turing machine equivalence, I

have argued, is not a robust notion in this context. However, this is the notion that

functionalists typically adopt. As a result, the functionalist argument to multiple

realizability fails because Turing machine-type functional descriptions simply are not

complete enough descriptions of physical implementations.

As a result, the role that Turing machines play in our understanding of what it

takes to be a cognitive system needs to reevaluated. While Turing’s insights can be useful

for specifying a class of potentially computable functions, this class is unlikely to tell us

much about the set of real systems we deem to count as cognitive. Instead, we need a

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

13 of 16 11/28/08 10:50 AM

notion of (Kolmogorov) equivalence based on considerations of computational

complexity and computability. Specifying boundaries on temporal and/or computational

complexity within which a system must fall to count as cognitive is essential to a useful

taxonomy of minds. This is because there is no getting around the fact that in the real

world the set of functions realized by a given physical system is going to depend

significantly on the physics of that system.

7. Acknowledgements

Special thanks to Charles Anderson, William Bechtel, Andy Clark, Valerie Hardcastle,

Pete Mandik, Jesse Prinz, and Chase Wrenn for insightful discussions and comments on

earlier drafts of this paper. This work was supported in part by the McDonnell Project in

Philosophy and the Neurosciences and the Social Sciences and Humanities Research

Council of Canada.

8. References

Block, N. (1980). Introduction: what is functionalism? Readings in philosophy of

psychology. N. Block. Cambridge, MA, Harvard University Press. 1: 171-184.

Cummins, R. (1983). The nature of psychological explanation. Cambridge, MA, MIT

Press.

Dennett, D. (1978). Brainstorms. Montgomery, VT, Bradford Books.

Eliasmith, C. (1996). “The third contender: a critical examination of the dynamicist

theory of cognition.” Philosophical Psychology 9(4): 441-463.

Eliasmith, C. (2000). “Is the brain analog or digital?: The solution and its consequences

for cognitive science.” Cognitive Science Quarterly 1(2): 147-170.

Fodor, J. (1981). Representations. Cambridge, MA, MIT Press.

Le Cun, Y. and J. S. Denker (1992). "Natural versus universal probability, complexity,

and entropy". IEEE Workshop on the Physics of Computation.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA, Harvard University

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

14 of 16 11/28/08 10:50 AM

Press.

Putnam, H. (1975). The nature of mental states. Mind, language and reality, Cambridge

University Press: 429-440.

Putnam, H. (1988). Representation and reality. Cambridge, MA, MIT.

Putnam, H. (1994). Words and Life. Cambridge, MA, Harvard University Press.

Searle, J. R. (1990). “Is the brain a digital computer?” Proceedings and Addresses of the

American Philosophical Association 64: 21-37.

Stillings, N. A., S. E. Weisler, et al. (1995). Cognitive science: an introduction.

Cambridge, MA, MIT Press.

Turing, A. M. (1937). “On computable numbers, with an application to the

entscheidungsproblem.” Proceedings of the London Mathematical Society 42:

230-265.

Turing, A. M. (1950). “Computing machinery and intelligence.” Mind 59: 433-460.

van Gelder, T. (1995). “What might cognition be, if not computation?” The Journal of

Philosophy XCI(7): 345-381.

van Gelder, T. and R. Port (1995). It's about time: An overview of the dynamical

approach to cognition. Mind as motion: Explorations in the dynamics of

cognition. R. Port and T. van Gelder. Cambridge, MA, MIT Press.

[1] Technically, Turing’s result only applies to digital, or discrete state, machines. However, I take it that
the brain can be successfully characterized as such a machine (Eliasmith 2000).

[2] It is not unanimous amongst teleological functionalists that a notion of equivalence is mandatory. For
those who do not commit themselves to a notion of equivalence, the arguments in section 4 should be
considered merely a warning.

[3] Computational complexity is roughly a measure of the number of steps it takes to complete a
computation.

[4] This is true despite being able to give an abstract characterization of the algorithm. In order for that
characterization to be realized, the actual algorithm being run on the computer will depend intimately on
the computer’s architecture.

[5] These arguments are reminiscent of Searle’s (1990) rejection of computation all together (see also
Putnam 1988). However, I simply wish to show the generality of the notion of Turing equivalence and
don’t need nearly as strong a result as Searle does. Searle’s point is rejected by some because it seems
outlandish to suppose that we could ever figure out how our office wall was running a word processor.

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

15 of 16 11/28/08 10:50 AM

My point, in contrast, is that even given a machine that is running a word processor, Turing equivalence
can’t provide useful constraints for determining that this is so.

[6] More abstractly, consider that a function can be mathematically defined as F:X®Y where X, Y and F are
the sets X={x1,…,xn}, Y = {y1,…,yn}, and F is some set of ordered pairs of elements of X and Y. We
must, in addition, realize that in an implementation all members of X occur at a time t, and thus this
mapping is really one from vectors, xiÎX, to vectors, yiÎY, where xi = {xi,ti}, yi = {yi,ti}. If we don’t
preserve this mapping, we aren’t computing the same function.

The Myth of the Turing Machine http://watarts.uwaterloo.ca/~celiasmi/Papers/Turing%20Myth.centr...

16 of 16 11/28/08 10:50 AM

