
Developing and applying a toolkit from a

general neurocomputational framework 1

Chris Eliasmith a, Charles H. Anderson b

aDepartment of Philosophy, Philosophy-Neuroscience-Psychology Program,
Washington University in St. Louis, Campus Box 1073, One Brookings Drive, St.

Louis, MO 63130, chris@twinearth.wustl.edu
bDepartment of Anatomy and Neurobiology, Washington University School of

Medicine, St. Louis, MO 63124, cha@shifter.wustl.edu

Abstract

Using a general neurocomputational framework, we develop a set of biologically
constrained tools for constructing networks which exhibit interesting behavior. We
provide an example of the application of these tools to modeling the part of the
brain which controls horizontal eye position. This toolkit and its use is an example
of the application of the more general framework.

Key words: Representation; Neurocomputation; Line attractor; Neural integrator

1 Introduction

Neuroscience has been characterized as field with a dearth of general theories.
We see this characterization as a challenge to researchers. Our overriding goal
is to meet this challenge by developing a general neurocomputational frame-
work for understanding biological systems. Of course, this is a grand goal and
one which cannot be met in the course of a single paper. Here, we take the
first few steps in introducing our more general framework; namely, developing
a set of simple, yet general, tools and showing how they can be applied to a
specific problem. In the first two sections we will develop these tools. In the
third section we will show how this toolkit can be employed in constructing a
model of the part of the brain responsible for controlling eye movement; the

1 This research has been supported by the McDonnell Center for Higher Brain Func-
tion at Washington University (both authors), the Social Sciences and Humanities
Research Council of Canada (Eliasmith) and NFS IBN-9634314 (Anderson).

Preprint submitted to Elsevier Preprint 14 April 2000

neural integrator. The neural integrator is intended only as an example of the
kind of networks researchers can construct with this toolkit. And, the toolkit
itself is only one example of the kinds of tools which can be generated within
our general framework.

2 Representation and the line attractor

In order to behave appropriately in its environment, an animal needs a means
of both transducing and storing information. As well, a successful animal must
be able to represent its desired behavior. For example, an animal must be able
to saccade to something it perceives as a threat. This kind of orienting behavior
demands both a successful representation of the position of the threat and a
representation of the motor commands necessary to orient the animal’s eyes in
the appropriate way. Such considerations lead us to take as the fundamental
problem of neural computation that of representing (e.g. positions in the world
and desired eye positions) and transforming those representations (e.g. from
positions in the world to desired eye positions).

A simple yet ubiquitous kind of representation in a biological system is that
of an analog value. But we need more than just a representation of an analog
value to cope with the real world. In order to be a successful representation
it must be dynamically stable; by which we mean that the means of repre-
sentation should not drastically alter the value of the analog quantity over
time. Furthermore, in biological systems, we must assume that the represen-
tation into which the value is to be encoded is dependent on some property of
neurons. An obvious choice for such a property is the neural response function.

The distinction between the neural representation of eye position and the ac-
tual eye position is an important one. We will, after Zemel and Dayan (3),
refer to the neural representation as being in the explicit space (i.e. the space
of measurable neural firings) and the actual eye position as being in the im-
plicit space (i.e. the space of eye positions measured in degrees). Given this
distinction, we are encoding into and decoding from the explicit space. More
precisely, we can formulate this relationship as:

ai(ξ) =F [
∫
φ̂i(x)f(x; ξ)dx] (1)

f(x; ξ) =
∑
i

ai(ξ)φi(x) (2)

Where ai(ξ) are neuron response functions, f(x; ξ) is the parameterized func-
tion to be represented in terms of the neuron response functions, φ̂i(x) are

2

encoding functions, φi(x) are decoding functions, F [] is some nonlinear opera-
tor, and ξ is the implicit space over which the representation is parameterized.

For generality, we perform the encoding and decoding not on a single variable
but rather on a function of that variable. The function is parameterized on
the implicit space we are interested in representing. In the cases we discuss in
this paper, our implicit space is the mean of the function being represented.

Thus, we can write our estimate of the implicit variable, i.e. the mean, as:

< x̄ >=
∫
xf(x; x̄)dx =

∑
i

ai(x̄)
∫
xφi(x)dx (3)

Before we can make use of this representation, that is, transform it in various
ways, we must determine the encoding and decoding functions. To determine
the decoding functions we can construct the following energy:

E =
1

2

∫∫
[f(x; x̄)−

∑
i

ai(x̄)φi(x)]2dxdx̄ (4)

Minimizing this energy will enable us to find the desired set of optimal decod-
ing functions:

V = ΓΦ (5)

Γ−V = Φ (6)

Where, Vj =
∫
aj(x̄)f0(x, x̄)dx̄ (7)

Γij =
∫
aj(x̄)ai(x̄)dx̄ (8)

Because Γ in this expression is likely to be singular, we must use singular value
decomposition to find a pseudo-inverse and solve for Φ.

In order to simplify our analysis, we will assume that the encoding functions,
φ̂ are the non-rectified straight lines defined by the neuron response functions.
Barber (5) has shown that this is a good approximation to the encoding func-
tions found using gradient descent. The neuron response functions themselves,
i.e. ai(x̄), can be determined experimentally though, again, we assume here
that they are rectified (i.e. piecewise linear) lines to simplify our analysis.
However, the analysis is not at all dependent on this assumption, and simi-
lar analyses have been carried out for various neuron response functions and,
importantly, spiking neurons (2; 1).

As noted, in order for our representation to be a good one, it must be stable.
Substituting (2) into (1), and including a time index we obtain:

3

ai(x̄(t+ τ)) =
∑
j

aj(x̄(t))
∫
φ̂i(x)φj(x)dx (9)

ai(x̄(t+ τ)) =
∑
j

ωijaj(x̄(t)) (10)

Where, ωij =
∫
φ̂i(x)φj(x)dx (11)

This expression is now in the form of a simple recurrent network. Given the
representations developed in the previous section, we have a means of directly
calculating the weights needed to preserve our representation of the implicit
variable over time. This is the same as performing a simple transformation
from a value onto itself.

We have found that random initial conditions of such networks relax to a
point on the transfer function in approximately one time step. Furthermore,
the transfer function approximates a line attractor. That is, at about half of
the crossing points of the actual transfer function with the ideal line attractor
transfer function, the network exhibits a stable fixed point. The number of
such crossings increases linearly with the number of neurons in the network.
In effect, we have constructed a network which holds a memory (e.g. analog
value) and whose precision depends on the number of neurons in the network 2 .
This concludes our derivation of a basic toolkit which can be used to construct
more complex networks.

3 The neural integrator

In this section we present an application of the computational tools so far de-
veloped. In particular, we describe a model of the horizontal neural integrator
which controls horizontal eye position given a velocity input. This biological
network is found in the rostral medial vestibular nuclei and the nuclei preposi-
tus hypoglossi. The velocity inputs from premotor neurons have been shown to
have a background firing rate (6). The output of the neural integrator projects
to the motor neurons controlling eye position.

There is evidence that the neural integrator acts much like a line attractor
(4). We can express its behavior as:

x̄(t+ τ) = x̄(t) + τ̄v(t)v̄(t) (12)

The integration time step, τv(t), which determines the integration speed of

2 We have also performed noise sensitivy and RMS error characterizations which
show the representation is stable under noise.

4

20 40 60 80 100 120 140

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Displacement
Velocity
Tau

Time
)

(
),

(
),

(
t

t
v

t
x

τ

Fig. 1. Time course behavior of the implicit variables in the neural integrator net-
work

the velocity signal can also be stored in a line attractor. Thus, we can con-
struct a network to act as a neural integrator by combining a line attractor
storing τv(t), a network representing the velocity command, and a second line
attractor which integrates the velocity command and stores the resulting eye
position. To calculate the weights for this complex network we can formu-
late the problem as a calculation over mean values, as suggested by equation
(12). Given the representation developed in section 2, we know, because of our
straight line encoding functions, that (1) reduces to:

ai(x̄(t+ τ)) = F [αix̄(t+ τ) + βi]+ (13)

We can also rewrite (12) as:

< x̄(t+ τ) >=< x̄(t) > + < τ̄v(t) >< v̄(t) > (14)

=
∑
j

bj(x̄(t))xj +
∑
lk

dl(τ̄v(t))τlck(v̄(t))vk (15)

Where bj, dl and ck are firing rates and xj, τl and vk are encoding function
means, e.g. xj =

∫
xφj(x)dx, from equation (3). Substituting (15) into (13),

we obtain:

ai(x̄(t+ τ)) =F [
∑
j

ωijxi +
∑
lk

$ilkτlvk + βi]+ (16)

Where, ωij =αibj(x̄(t)) (17)

$ilk =αidl(τ̄v(t))ck(v̄(t)) (18)

The network resulting from this derivation has the behavior depicted in figure
1. We can see from this example that the toolkit developed in earlier sections
can be applied in a straightforward manner to constructing more complex
networks with correspondingly more complex behavior.

4 Conclusion

We have provided a toolkit for constructing models which adhere to biolog-
ical constraints. There are a number of important extensions of these basic
tools which merit brief mention. First, this analysis generalizes to any number
of dimensions. We have implemented a plane attractor using two-dimensional

5

neuron response functions. Second, the analysis generalizes to any kind of neu-
ron response functions. We have implemented a ring attractor using Gaussian
response functions. Third, and perhaps most important, this analysis gener-
alizes to spiking neurons even though the model and analyses presented here
assume a rate model (2). In sum, we have demonstrated how basic tools de-
rived from a general framework can be applied to construct networks with
biologically relevant behaviors.

References

[1] C.H. Anderson, Modeling population codes, Proceedings of CNS *98
(Santa Barbar, CA, July 1998).

[2] Shahin Hakimian, Charles H. Anderson, and W. Thomas Thach, A PDF
model of populations of purkinje cells: Non-linear interactions and high
variability, Neurocomputing This issue.

[3] P. Zemel, R. Dayan, and A. Pouget, Probabilistic interpretation of popu-
lation codes, Neural Comput. 10(2) (1998) 403–430.

[4] H.S. Seung, How the brain keeps the eyes still, Proc. Natl. Acad. Sci. USA
Neurobiology 93 (Nov. 1996) 13339–13344.

[5] M.J. Barber, Finding encoders and decoders for the PDF framework, (un-
published).

[6] D.M. Waitzman, V.L. Silakov, and B. Cohen, Central mesencephalic retic-
ular formation (cMRF) neurons discharging before and during eye move-
ments, J. Neurophysiol. 75(4) (1996) 1546–1572.

6

