
Biol Cybern (2011) 104:251–262
DOI 10.1007/s00422-011-0433-y

ORIGINAL PAPER

Normalization for probabilistic inference with neurons

Chris Eliasmith · James Martens

Received: 22 June 2010 / Accepted: 19 April 2011 / Published online: 14 May 2011
© Springer-Verlag 2011

Abstract Recently, there have been a number of proposals
regarding how biologically plausible neural networks might
perform probabilistic inference (Rao, Neural Computation,
16(1):1–38, 2004; Eliasmith and Anderson, Neural engineer-
ing: computation, representation and dynamics in neuro-
biological systems, 2003; Ma et al., Nature Neuroscience,
9(11):1432–1438, 2006; Sahani and Dayan, Neural Compu-
tation, 15(10):2255–2279, 2003). To be able to repeatedly
perform such inference, it is essential that the represented
distributions be appropriately normalized. Past approaches
have considered normalization mechanisms independently
of inference, often leaving them unexplored, or appealing to
a notion of divisive normalization that requires pooling across
many neurons. Here, we demonstrate how normalization and
inference can be combined into an appropriate connection
matrix, eliminating the need for pooling or a division-like
operation. We algebraically demonstrate that such a solution
is available regardless of the inference being performed. We
show that such a solution is relevant to neural computation
by implementing it in a recurrent spiking neural network.

Keywords Neural computation · Probabilistic inference ·
Spiking network · Attractor network · Normalization · NEF

Electronic supplementary material The online version of this
article (doi:10.1007/s00422-011-0433-y) contains supplementary
material, which is available to authorized users.

C. Eliasmith (B)
Centre for Theoretical Neuroscience, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
e-mail: celiasmith@uwaterloo.ca

J. Martens
Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada
e-mail: james.martens@gmail.com

1 Introduction

There have been several suggestions for how to implement
probabilistic inference in neurons (Rao 2004; Eliasmith and
Anderson 2003; Ma et al. 2006; Sahani and Dayan 2003).
However, these proposals do not satisfactorily address the
issue of how the resulting inferred distributions are appropri-
ately normalized. Most often, normalization is left to a sep-
arate mechanism, such as division by pooled activity, which
may not be an appropriate mechanism in many circumstances
(such as rapid feedforward inference).

Correct normalization is crucial because if each layer in a
multilayer network performs inference, or if there are recur-
rent connections in a network which perform inference, any
lack of normality will accumulate over repeated inferences
resulting in a non-probabilistic function representation (Rao
2004; Ma et al. 2006). This may allow the representation to be
lost in background noise because its amplitude is too low, or
may result in saturation of neurons which represent the result
because the norm will become too large. In either case, inter-
pretation of the resulting representation as a probability den-
sity will not be warranted. In short, because neurons have a
finite dynamic range, arbitrarily large or small signals cannot
be represented with consistent accuracy. Mis-normalization,
coupled with repeated inference, drives the system to one of
these regimes.

In this article, we present a solution to this problem for
approaches that explicitly represent the probability density
which inference is performed on (Rao 2004; Eliasmith and
Anderson 2003; Sahani and Dayan 2003). This solution,
unlike divisive normalization, does not rely on a nonlinear
operation (division), or on pooling activity over a population
of neurons. Instead, it appropriately modifies the inference
transformation performed by the connection weights to pre-
serve the integral of the represented function. In past work,

123

http://dx.doi.org/10.1007/s00422-011-0433-y

252 Biol Cybern (2011) 104:251–262

we have shown how the Neural Engineering Framework
(NEF), can be used to perform arbitrary statistical inference
(Eliasmith and Anderson 2003). Consequently, we demon-
strate our solution using the NEF method for performing
inference in spiking neurons.

After briefly introducing the NEF formalism, we present
the relevant mathematical background and solve the problem
of normalization purely algebraically. We then demonstrate
that the solution is neurally relevant by applying it to the
NEF characterization of statistical inference. We conclude
by discussing the consequences of this solution to the nor-
malization problem, and compare and contrast it with divisive
normalization.

2 The neural engineering framework (NEF)

This section briefly summarizes the relevant methods
described in Eliasmith and Anderson (2003). The following
three principles describe the NEF approach:

1. Neural representations are defined by the combination of
nonlinear encoding (exemplified by neuron tuning curves,
and neural spiking) and weighted linear decoding (over
populations of neurons and over time).

2. Transformations of neural representations are functions
of the variables represented by neural populations. Trans-
formations are determined using an alternately weighted
linear decoding.

3. Neural dynamics are characterized by considering neural
representations as control theoretic state variables. Thus,
the dynamics of neurobiological systems can be analyzed
using control theory.

These principles have been applied to constructing models
of a wide variety of neural systems, including the barn owl
auditory system (Fischer 2005), the rodent navigation system
(Conklin and Eliasmith 2005), escape and swimming control
in zebrafish (Kuo and Eliasmith 2005), working memory sys-
tems (Singh and Eliasmith 2006), and others. Here, we con-
sider each principle in the context of performing statistical
inference.

2.1 Representation

Consider a population of neurons whose activities ai (x)

encode some M-dimensional vector, x = [x1, . . . , xM].
These activities can be written

ai (x) = Gi [Ji (x)] , (1)

where Gi is the nonlinear function describing the neuron’s
response function, and Ji (x) is the current entering the soma.
The somatic current is defined by

Ji (x) = αi 〈x · ei 〉m + J bias
i (2)

where Ji (x) is the current in the soma, αi is a gain and con-
version factor, x is the vector variable to be encoded, ei is
the encoding vector which picks out the “preferred stimu-
lus” of the neuron, and J bias

i is a bias current that accounts
for background activity. Throughout the article, the notation
〈�〉m indicates the dot product (or integral) over the indicated
elements (here just the vector elements). This equation pro-
vides a standard description of the current arriving at the
soma of neuron i as a result of presenting a stimulus x.

The nonlinearity Gi which describes the neuron’s activity
as a result of this current is determined by physiological prop-
erties of the neuron(s) being modeled. The result of applying
Gi to the soma current Ji (x) is neural activity in the form
of a pattern of action potentials, or “spikes”. Over the range
of possible stimuli, this activity is often summarized by a
neuron’s “tuning curve” ai (x). Therefore, the function ai (x)

defines the encoding of the stimulus into neural activity over
the range of x of interest.

Given this encoding, the original stimulus vector can be
estimated by decoding those activities, i.e.

x̂ =
∑

i

ai (x)di . (3)

These decoding vectors, di , can be found by a least-squares
optimization (Salinas and Abbott 1994; Eliasmith and Ander-
son 2003). This optimization amounts to performing an SVD
decomposition (i.e. pseudo-inverse) on the correlation matrix
of the neural activities. The decoders resulting from this
optimization thus define a “population code” over a set of
neurons i for the representation of x by the combination of
nonlinear encoding in Eq. 1 and linear decoding in Eq. 3.

As characterized to this point, the tuning curve is a time-
averaged summary of neural activity. To explicitly incorpo-
rate a temporal code into this population code, we draw on
work that has shown that most of the information in neural
spike trains can be extracted by linear decoding (Rieke et al.
1997). Let us first consider the temporal code in isolation by
taking the neural activities ai (t) to be decoded spike trains,
i.e.

ai (t) =
∑

n

hi (t) ∗ δi (t − tn) =
∑

n

hi (t − tn), (4)

where δi (·) are the spikes at times tn for neuron i gener-
ated by Gi , and hi (t) are the linear decoding filters which,
for reasons of biological plausibility, we can take to be the
(normalized) post-synaptic currents (PSCs) in the subsequent
neuron. Elsewhere, it has been shown that the information
loss under this assumption compared to optimal linear filters
is minimal, and can be alleviated by increasing population
size (Eliasmith and Anderson 2003). As before, the encoding
on which this linear decoding operates is defined as in Eq. 1,
where Gi is defined by a spiking neuron model.

123

Biol Cybern (2011) 104:251–262 253

We can combine this temporal code with the previ-
ously defined population code to give a general population-
temporal code for vectors:

Encoding δ(t − tin) = Gi

[
αi 〈x · ei 〉m + J bias

i

]
(5)

Decoding x̂ = ∑
i,n

hi (t − tn)di (6)

Since we are here concerned with the representation and
transformation of functions, it is useful to consider the rela-
tionship between vector and function representation. Often,
external world relations between two continuous variables
(e.g. light intensity and space, pitch and time, etc.) that are
reflected in neural activity are naturally characterized as func-
tion representation. That is, neural activity that changes as
some x(ν) changes can be said to represent the relation cap-
tured by x (e.g., change in brightness as a function of loca-
tion ν).

As with any representation, we must specify the domain
of that representation. In the case of vectors, this is the sub-
space of the vector space that is represented by the neurons of
interest (e.g., the x vectors we performed the minimization
over previously). To help us identify the relevant function
domain, we parameterize the set of represented functions by
a vector of coefficients r with components rm . These define
any function of interest on a basis �(ν)

x(ν; r) =
∑

m

rm�m(ν) for r ∼ ρ(r)

Defining a particular probability distribution ρ(r) is a way
of limiting the space spanned by the basis �(ν) to some sub-
space of particular interest. The specific choice of domain
will depend on the application. Importantly, this is also the
domain over which the optimization to find the decoders will
be performed as described for Eq. 3. We can now proceed to
define a population encoding and decoding analogous to that
in Eqs. 1 and 3, but for functions:

Encoding: ai (x(ν; r)) = ai (r)

= Gi

[
αi 〈x(ν; r)ei (ν)〉ν +J bias

i

]
(7)

Decoding: x̂(ν; r) =
∑

i

ai (r)di (ν) (8)

where ei (ν) and di (ν) are the encoding and decoding func-
tions of the neurons.

We can proceed further, projecting these encoding and
decoding functions onto the same basis used to iden-
tify the function space. Notably, the basis could be either
bi-orthonormal (for an overcomplete basis) or orthonormal.
For this example, we assume an orthonormal basis �m(ν)

for simplicity, although an analogous derivation follows for
a bi-orthonormal set as employed in Sect. 4.1. To begin, we
can rewrite the encoding and decoding functions as:

di (ν) =
M∑

m

dim�m(ν). (9)

and

ei (ν) =
M∑

m

eim�m(ν). (10)

where the eim and dim identify the M coefficients that repre-
sent the encoding and decoding functions in the orthonormal
�(ν) basis. We can now exploit these relations by substitu-
tion into Eq. 7:

ai (A) = Gi

[
αi

〈
∑

n,m

rm�m(ν)ein�n(ν)

〉

ν

+ J bias
i

]

= Gi

[
αi

(
∑

n,m

rmeinδnm

)
+ J bias

i

]

= Gi

[
αi

(
∑

m

rmeim

)
+ J bias

i

]

= Gi

[
αi 〈rei 〉m + J bias

i

]
.

We have thus expressed the problem of function encod-
ing as one of vector encoding, given an orthonormal basis.
Similarly, we can express the problem of function decoding
as one of vector decoding:

r̂ =
∑

i

ai (r)di . (11)

In short, this is the observation that it is mathematically
equivalent to talk in terms of function spaces or vector spaces
(given an orthonormal basis). However, there are good rea-
sons to discuss both in the context of neural systems. This is
because some neural systems are more naturally thought of as
representing functions. Describing the visual field as a two-
dimensional function is far more intuitive than describing it
as a 25-dimensional vector space, even though both might
carry the same information. In other words, it may be the
case than any 2-dimensional function of relevance to visual
processing can be represented as a 25-dimensional vector
over an orthonormal basis. But, visualization of the stimuli,
the relevant tasks, and even the neural responses themselves
is much easier to interpret as related to a 2-dimensional func-
tion space. However, it can be mathematically convenient to
consider such function representations as vector representa-
tions to derive certain results and to characterize transforma-
tions of the representation. We exploit this relationship in our
solution to the normalization problem.

2.2 Transformation

For such representations to be used by the system it must be
possible to define transformations (i.e. functions of the vector

123

254 Biol Cybern (2011) 104:251–262

variables). Fortunately, we can again find (least-squares opti-
mal) decoders d f (x)

i to perform a transformation f (x). There-
fore, instead of finding the optimal decoders di to extract
the originally encoded variable x from the encoding, we can
“re-weight” the decoding to give some function f (x) other
than identity. Given this characterization, it is a simple matter
to re-write the encoding and decoding equations for estimat-
ing some function of the vector variable:

δ(t − tin) = Gi

[
αi 〈x · ei 〉m + J bias

i

]
Encoding

f̂ (x) =
∑

i,n

hi (t − tn)d f (x)
i Decoding

Notably, both the linear and nonlinear functions of the
encoded variable can be computed in this manner (Eliasmith
and Anderson 2003).

Of particular interest here, is how we can perform statisti-
cal inference. Statistical inference is naturally thought of as a
transformation of function representations. Suppose the sys-
tem traffics in probability density function representations
of the form ρ(v|r), where v is the property that needs to be
inferred on the basis of data r. Notice that here, the function
ρ() is analogous to the vector x in our previous discussions,
since these are the objects taken to be represented by the
neurons.

Applying Eqs. 7 and 8, we can define ensembles of neu-
rons as representing such functions as follows:

ai (r) = Gi

[
αi 〈ei (v)ρ(v|r)〉v + J bias

i

]

b j (r) = G j

[
α j

〈
e j (u)ρ(u|r)〉u + J bias

j

]
,

(12)

with the corresponding decoding rules

ρ̂(v|r) =
∑

i

di (v)ai (r)

ρ̂(u|r) =
∑

j

d j (u)b j (r).
(13)

One transformation of interest for relating such representa-
tions is simple conditional inference. Assuming r is condi-
tionally independent of u given v:

ρ(u|r) =
∫

ρ(u|v)ρ(v|r)dv (14)

Substituting Eq. 14 into Eq. 12, and then letting ρ̂(v|r) =
ρ(v|r) gives

b j (r) = G j

[
α j

〈
e j (u)ρ(u|v)ρ(v|r)〉v,u + J bias

j

]

= G j

⎡

⎣α j

〈
e j (u)ρ(u|v)

∑

i

di (v)ai (r)

〉

v,u

+ J bias
j

⎤

⎦

= G j

[
∑

i

ω j i ai (r) + J bias
j

]
, (15)

where

ω j i = α j
〈
e j (u)ρ(u|v)di (v)

〉
v,u . (16)

Note that the expression within the angle brackets is inte-
grated over both v and u, but for different reasons. The inte-
gral over v is due to the inference in Eq. 14, while the integral
over u is from the neural encoding, Eq. 12. Within this frame-
work, Eqs. 15 and 16 tell us how to implement simple feed-
forward statistical inference in a neurobiologically plausible
network. In particular, the connection weights between neu-
rons in these networks can be understood as the projection
of the encoding functions of the output neurons, e j (u), on
the condition, ρ(u|v), weighted by the decoding function,
di (v), of each input neuron.

Notably, for the final representation to be probability den-
sity, it should have an integral equal to 1. However, even if all
of the distributions are appropriately defined there is nothing
in this formulation that will guarantee us of that fact. This
is because our representations are approximate, and hence
likely to introduce error. In addition, they are defined over
finite subspaces, which necessarily leads to violations of stan-
dard probabilistic representation assumed by these equations.
If we repeat such a transformation many times in a row, such
errors will accumulate, and it would be highly unlikely that
the integral of our function representation will remain 1. This
is also a consideration for more sophisticated forms of infer-
ence, such as Bayesian inference, where the computation is
more difficult, given the explicit normalization by the mar-
ginal. In the remainder of the article, we concern ourselves
with solving the normalization problem for simple statistical
inference.

2.3 Dynamics

As we have discussed in detail in other work, the dynamics of
neural systems can be described using the previous charac-
terizations of representation and transformation by employ-
ing modern linear control theory (Eliasmith and Anderson,
2003). Specifically, we can allow the “higher-level” vector
variables represented by a neural population to be control the-
oretic state variables, specifically, the vector space r decoded
in equation 11 can be taken to be the relevant state variable.
Since we have shown how function representations can also
be considered as vector representations, we consider the vec-
tor case here.

Let us first consider linear, time-invariant (LTI) systems.
Recall that the state equation in modern linear control theory
describing LTI dynamics is

ṙ(t) = Ar(t) + Bu(t). (17)

Notably, the input matrix B and the dynamics matrix A com-
pletely describe the dynamics of the LTI system, given the
state variables r(t) and the input u(t). Taking the Laplace

123

Biol Cybern (2011) 104:251–262 255

transform of (17) gives:

r(s) = h(s) [Ar(s) + Bu(s)] ,

where h(s) = 1
s . Any LTI control system can be written in

this form.
In the case of the neural system, the transfer function

h(s) is not 1
s , but is determined by the intrinsic properties

of the component cells. Since it is reasonable to assume that
the dynamics of the synaptic PSC dominate the dynamics of
the cellular response as a whole (Eliasmith and Anderson,
2003), it is reasonable to characterize the dynamics of neu-
ral populations based on their synaptic dynamics, i.e. using
hi (t) from Eq. 4.

A simple model of a synaptic PSC is given by

h′(t) = 1

τ
e−t/τ , (18)

where τ is the synaptic time constant. The Laplace transform
of this filter is:

h′(s) = 1

1 + sτ
.

Given the change in filters from h(s) to h′(s), we now need
to determine how to change A and B in order to preserve the
dynamics defined in the original system (i.e. the one using
h(s)). In other words, letting the neural dynamics be defined
by A′ and B′, we need to determine the relation between
matrices A and A′ and matrices B and B′ given the differ-
ences between h(s) and h′(s). To do so, we can solve for r(s)
in both cases and equate the resulting expressions for r(s).
Doing so gives

A′ = τA + I (19)

B′ = τB. (20)

This procedure assumes nothing about A or B, so we
can construct a neurobiologically realistic implementations
of any dynamical system defined using the techniques of
modern linear control theory applied to LTI systems (con-
strained by the neurons’ intrinsic dynamics). For example, if
we want to implement an integrator, we would set A =0 and
B = 1 in Eq. 17. As a result, we find A′ = I and B =τ for
the neural dynamics from Eqs. 19 and 20. Importantly, the
same approach can be used to characterize the broader class
of time-varying and nonlinear control systems, though for
repeated statistical inference we can consider only the linear
case.

To be more specific, we can reconsider the statistical infer-
ence defined by Eq. 15. The connection weights defined for
this inference determine the feedforward connection between
a first and second population of cells, a and b. If we want to
perform repeated inference, then we need to use the result of
a single inference, found in population b, to drive the next

inference. A natural way to do this is to project the b neu-
rons back to a. This results in a recurrent network, where
the dynamics of the whole network are similar to an integra-
tor, since the output of the network is also its recurrent input
(see Fig. 5 for the architecture, and Eqs. 24 and 25 for the
connection weights).

3 An algebraic solution

Since we have characterized neural representation of func-
tions as equivalent to representations in a vector space, here
we consider a solution to the normalization problem strictly
in a mathematical context first. We subsequently demonstrate
it in the context of simulations of spiking neural networks.

Following the introduction of some mathematical back-
ground, we derive an expression for a bias function that can
be used to modify any linear transformation (such as condi-
tional inference), to guarantee that this transformation pre-
serves the integral of the function represented by the vector
being transformed. That is, the bias function tells us how to
perform inference while normalizing the result.

3.1 Mathematical background

Let (V, 〈, 〉) and (W, 〈, 〉) be Hilbert spaces over �. Finite
dimensional inner product spaces, like those used to charac-
terize representation earlier, over � are necessarily Hilbert
spaces.

Definition 1 We say that a linear transformation T : V → W
respects (a, b), where a ∈ V, b ∈ W, if we have 〈v, a〉 =
〈T (v), b〉 ∀v ∈ V .

That is, if inner product between the transformation of v and
b is the same as that between v and a, then T respects (a, b).

This is a standard definition.

Definition 2 T ∗ is the unique linear transformation that
satisfies 〈T (v), w〉 = 〈v, T ∗(w)〉 ∀v ∈ V,∀w ∈ W

Often T ∗ is called the adjoint of T .

Proposition 3 Let x, y ∈ V, then 〈v, x〉 = 〈v, y〉 ∀v ∈ V iff
x = y.

Proof The reverse direction is trivial. For the forward direc-
tion we have 〈v, x〉 = 〈v, y〉 ∀v∈V ⇒ 〈v, x − y〉 = 0 ∀v∈V .

In particular, 〈x − y, x − y〉 = 0 so x = y. �

Proposition 4 Let T : V → W be a linear transformation
and a ∈ V, b ∈ W, then T respects (a, b) iff T ∗(b) = a.

Proof T respects (a, b) iff 〈v, a〉 = 〈T (v), b〉 = 〈v, T ∗(b)〉
∀v ∈ V from Definitions 1 and 2. But this happens iff
T ∗(b) = a by Proposition 3.

123

256 Biol Cybern (2011) 104:251–262

Suppose T : V → W is linear and continuous and S :
V → �, R : W → � are bounded linear functionals. By the
Riesz Representation Theorem there is a ∈ V, b ∈ W such
that 〈 f, a〉 = S(f)∀ f ∈ V and 〈 f, b〉 = R(f)∀ f ∈ W.

We then have that S(f) = R(T (f))∀ f ∈ V iff 〈 f, a〉 =
〈T (f), b〉 ∀ f ∈ V (i.e. T respects (a, b) iff T ∗(b) = a). �

3.2 Application to probability function representation
in the NEF

As described earlier, we need to ensure that the integral of
probability densities represented in neural populations is 1.
In the Neural Engineering Framework (NEF), probability
densities are represented as linear combinations of a finite
set of functions (see Eq. 8). Applying a linear transformation
to such a linear representation will not necessarily preserve
this property, even when the transformation corresponds to
probabilistic inference.

Let (F, 〈, 〉) be the Hilbert space of continuous functions
on some compact interval [x1,x2].
Definition 5 1F is the function that is identically 1 over
[x1,x2].
Let A and B be closed subspaces of F (closed subspaces
of Hilbert spaces are themselves Hilbert spaces). Let T :
A → B be linear (and continuous). Let OA : A → F and
OB : B → F be projection maps (i.e. OA(f) = f). These
are projections like those defined in Eqs. 9 and 10, in our
discussion of neural representation of functions.

Definition 6 I : F → R is normal integration. Normal inte-
gration is a bounded linear functional.

Proposition 7 For a closed subspace C of F, the Riesz rep-
resentation c of integration in C is given by O∗

C (1F) where
OC : C → F is the identity map.

Proof I (f) = 〈OC (f), 1F 〉 = 〈
f, O∗

C (1F)
〉∀ f ∈ C. �

For T to preserve integrals (which is a necessary and suffi-
cient condition for T to map integral 1 functions to integral 1
functions), we require that I (f) = I (T (f))∀ f ∈ A which
by the discussion in the last section is equivalent to requiring
T ∗(b) = a where a and b are the Riesz representations for
integration in A and B, respectively.

Since a = O∗
A(1F) and b = O∗

B(1F), we have that T is
integral preserving iff T ∗(b) = a iff T ∗O∗

B(1F) = O∗
A(1F).

If P : F → F corresponds to probabilistic inference then
P necessarily preserves integrals, which is equivalent to the
statement that P respects (1F , 1F). This is in turn equivalent
to P∗(1F) = 1F .

However, if A and B are strict subspaces of F (finite
dimensional in the case of the NEF) and T is given by
O+

B P OA where + denotes the pseudo-inverse (as in the NEF

optimization), then T will not necessarily preserve integrals.

Definition 8 We define for a closed subspace C of F, the
“bias vector of C” which we will denote bias(C) to be
O+∗

C O∗
C (1F) = (OC O+

C)∗(1F).

Next, we give a proposition which essentially states that
bias(C) defines how encoding functions and vectors from
F into the subspace C will change their integrals.

Proposition 9 I (O+
C (f)) = 〈 f, bias(C)〉 ∀ f ∈ V

Proof I(O+
C (f))= 〈

O+
C (f), O∗

C (1F)
〉= 〈

f, O+∗
C O∗

C (1F)
〉=

〈 f, bias(C)〉 ∀ f ∈ V . �

Since bias(C) is not in general equal to 1F there will be func-
tions in F whose integral will not be preserved when encoded
into the C space.

Applying this to the example of NEF representation, we
have:

I (T (f)) = I (O+
B P OA) = 〈P OA(f),

bias(B)〉 = 〈
f, O∗ P∗bias(B)

〉 ∀ f ∈ A

This is equal to I (f) = 〈
f, O∗

A(1F)
〉∀ f ∈ A iff

O∗
A P∗bias(B) = O∗

A(1F) which is true iff O∗
A(P∗bias(B)−

1F) = 0F which holds iff P∗bias(B) − 1F ∈ null(A).

Definition 10 Define the “discrepancy” as disc(A, B, P) =
O∗

A(P∗bias(B) − 1F) for spaces A and B and transforma-
tions P.

If bias(B) = 1F then since P∗(1F) = 1F we have
disc(A, B, P) = 0F so P is integral preserving. This is a
sufficient condition but it is not strictly required condition
for T to be integral preserving.

Proposition 11 bias(C) = 1F iff 1F ∈ C.

Proof Since bias(C) is a vector in C by definition the for-
ward direction is trivial. Suppose that 1F ∈ C. Noting that
OC : C → F is one-to-one we have O+

C OC = IC and in
particular O+

C (1F) = 1F . Taking OC of both sides then gives
OC O+

C (1F) = OC (1F) = 1F . The result then follows from
the fact that OC O+

C = (OC O+
C)∗ = bias(C). �

This is the only proposition in which we used specific
properties of the pseudo-inverse, which we use to determine
the decoding functions. Indeed, the bias can be defined some-
what independently of the decoding transformation used, and
all the previous results discussed in this paper will hold, save
perhaps this one.

3.3 Bilinear functions

Since probabilistic inference often relies on the integral of
products of functions, it is important to consider the more

123

Biol Cybern (2011) 104:251–262 257

general case of bilinear functions. Suppose C is a closed
subspace of F and P : F × F → F corresponds to proba-
bilistic inference. In an analogous way to the linear case, we
let T : A × B → C be given by

T (f, g) = O+
C O P(OA(f), OB(g)).

We will say that T is integral preserving if I (T (f, g)) =
I (f)I (g) which is the natural definition to make for T to be
both bilinear and to preserve integrals with respect to only
the first or the second arguments. Since P corresponds to
probabilistic inference, it preserve integrals in this sense.

For a fixed f ∈ A we define T f : B → C by T f (g) =
T (f, g). Then, T f is a continuous linear transformation and
applying results from the previous section we have:

I (T f (g)) = I (O+
C Pf) = 〈

Pf OB(g), bias(C)
〉

=
〈
g, O∗

B P∗
f bias(C)

〉

Noting that I (f)I (g) = 〈g, I (f)1F 〉, we have that T f

preserves integrals iff O∗
B(P∗

f bias(C) − I (f)1F) = 0F .

If we have I (f) �= 0, then an equivalent condition is:

disc(B, C,
Pf

I (f)
) = 0F (21)

And, since P∗
f (1F) = I (f)1F we again have that a suffi-

cient condition for T f to preserve integrals is bias(C) = 1F .

The intuitive interpretation of the discrepancy function is
that it identifies areas in the function space that will be dis-
torted by a linear transformation between closed subspaces
of F (as given by the NEF formulation). Similarly, the bias
function describes how optimal linear decoding into a given
subspace will distort arbitrary functions from F . This distor-
tion, among other things, affects the integral of the functions.
Areas of the bias function that are below 1 correspond to
areas that need to be boosted by the bias function. In short,
computing the bias(C), and including it in the transforma-
tions defined earlier provides a method for guaranteeing that
the result of a probabilistic transformation will be a function
whose integral is 1.

4 Application to the NEF

Given this derivation of the bias function, we now present
several numerical demonstrations that this function is useful
in practice.

4.1 Idealized application

To begin, we consider the repeated application of the statis-
tical inference described by Eq. 14, where the conditional
probability is a Gaussian for all values of v. This distribu-
tion is shown in Fig. 1. To demonstrate the utility of a bias

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

1

2

3

4

5

Fig. 1 The conditional probability distribution for the example infer-
ence problem. The distribution has been normalized so that

∫
ρ(u|v) =

1∀v , giving the higher values on either end

function in this context, we begin by employing the idealized
neural responses shown in Fig. 2a.

These responses form the encoding basis for the represen-
tation, i.e.

ai (ρ(v)) = Gi

[
αi 〈ei (v)ρ(v)〉v + J bias

i

]

where all αi = 1, Gi is linear, and J bias
i = 0. Conse-

quently, ai (ρ(v)) = 〈ei (v)ρ(v)〉v , which is shown for all 20
“neurons” in Fig. 2a where ρ(v) = δ(v) is assumed as input
to give these neuron-like tuning curves.

The complementary optimal decoding functions are shown
in Fig. 2b. As described earlier, these functions are found by
minimizing the reconstruction error

[
ρ(v) − ρ̂(v)

]2 using
the pseudo-inverse, where:

ρ̂(v) =
∑

i

ai (ρ(v))di (v).

We have now defined a simplified problem so application
of the algebraic solution to preserving integrals is straight-
forward. Specifically, recall from Definition 8, that the bias
vector we need to compute can be found as follows

bias(C) = O+∗
C O∗

C (1F) = (OC O+
C)∗(1F).

Therefore, for the NEF the bias function is

bias(v) = DE1F (22)

where D and E are matrices consisting of the decoding func-
tions in columns and encoding functions in rows, respec-
tively. The product of these matrices can be thought of as
providing a kernel function of v and v′, K (v, v′). Therefore,
given the definition of 1F (i.e., equal to 1 over the range), the
bias can be written:

123

258 Biol Cybern (2011) 104:251–262

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Decoding functions for neuron−like encoders

v

d(
v)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
Neuron−like basis functions

v

A
ct

iv
ity

a b

Fig. 2 Idealized neuron bi-orthonormal basis. a The 20 evenly spaced Gaussian neuron-like responses used in the example in this section. These
form the encoding basis of the neural representation of ρ(v). b Two example decoding functions. These do not have a neural correlate

bias(v) =
∫

K (v, v′)dv′.

Essentially, this bias captures the distortion to the repre-
sentation that results from projecting it into the neuron-like
encoding. Consequently, because we want the discrepancy
to be equal to zero, as shown in Eq. 21, the transformation
of interest must be modified as follows:

ρ(u|v)bias = ρ(u|v)/bias(v)∀v. (23)

To be clear, this division by the bias function must be done for
each row in the conditional distribution separately and point-
wise. This new transformation ρ(u|v)bias will now preserve
integrals given the properties of the representational space,
as captured by bias(v).

To demonstrate the utility of this bias, it is important to
repeatedly apply the transformation, as the distortion can
be reasonably small for a single inference. In this idealized
application, the starting ρ(v) is a Gaussian centered at zero,
so repeated application of the given conditional results in a
flattening of that Gaussian to an even distribution over the
range of interest as evident in Fig. 3. This figure also demon-
strates the important effect of the bias function over repeated
applications. As can be seen, with the bias function, the repre-
sentation, though distorted, remains a good estimate of ideal
inference. In contrast, without the bias function (i.e. apply-
ing ρ(u|v) to the neuron representation), the estimate quickly
decays.

An explicit calculation of the integral of these represen-
tations over the 100 iterations of the simulation is shown
in Fig. 4. As can be seen from this graph, the integral is
preserved well in both the ideal and biased cases, but not
in the unbiased case. In short, the inference is being appro-
priately normalized in the neuron-like representation by the

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

v

ρ (
v)

Comparison of ideal, biased, and unbiased inference over time

ideal
with bias
without bias

5 iter.

10 iter.

100 iter.

Fig. 3 Repeated application of inference. Each line represents a dis-
tribution after a given number of inferences (5, 10, and 100 iterations).
The ideal, which goes from a Gaussian to an even distribution is shown
in gray. Without the bias function, the integral is not preserved as can
be seen from the decaying dashed line. With the bias function, the inte-
gral is preserved and the represented distribution approximates the ideal
well, as shown by the solid black line

bias. The slight increase in the integral of both the ideal and
biased cases is due to the end effects evident in the condi-
tional matrix in Fig. 1. This change in the integral can be
removed from the inference, but only at the cost of no longer
inferring to a constant distribution. In either situation, the
biased inference normalizes the representation as well as the
ideal case.

123

Biol Cybern (2011) 104:251–262 259

0 10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
Bias effect on density area

Iteration

A
re

a

ideal
with bias
without bias

Fig. 4 The integral of the representations during repeated inference.
The ideal and biased inference preserve integrals similarly over all 100
iterations. In contrast, the unbiased inference decays quickly

4.2 A biologically relevant application

Considering the ideal neural representation helps to distin-
guish the effects of the bias function from the effects of the
neural representation itself. Here, we use the same solution,
but in the context of a recurrent neural network implemented
in spiking neurons. This demonstrates that the solution may
be biologically relevant.

In the previous ideal case, repeated inference was per-
formed by simply taking the representation after one pass
through the neuron-like nodes and using it as the starting
point for the next iteration. However, in a more biologically
plausible setting, repeated inference must be done by either
embedding the inference in a many layered feedforward net-
work, or through a recurrent connection. To demonstrate the
generality of the solution, we have chosen the latter approach.
This brings with it the extra challenge of ensuring that the nat-
ural dynamics of a spiking network are accounted for in the
model. We can employ the results of Sect. 2.3 to convert both
our inference transformation and the recurrent connection to
ensure they are compatible with the post-synaptic current
dynamics in the model. The network structure is shown in
Fig. 5.

In these simulations, each population consists of 3,000
leaky integrate-and-fire (LIF) neurons, which define the Gi

in Eq. 7. Sample tuning curves for neurons in this network are
shown in Fig. 6. As can be seen from this figure, the tuning
curves are very heterogeneous, unlike the ideal case. The
neurons used in the network have their thresholds, gains, and
encoding vectors chosen randomly from even distributions
over appropriate ranges.

Fig. 5 The network architecture of the spiking network implement-
ing repeated inference. The input signal is projected into the first layer,
which represents the presented function ρ(v, t). Inference is then per-
formed in the connection weights between the first and second layers,
resulting in a representation of ρ(u, t), which is then projected back to
the first layer for subsequent inference

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

x

S
pi

ke
 R

at
e

(H
z)

Sample Tuning Curves for Spiking Neurons

Fig. 6 Sample tuning curves of neurons in the recurrent network. The
tuning curves were generated by moving a delta function input across
the possible range of v. The resulting spikes were binned (50 ms) and
smoothed (10 point moving average). The neurons shown were ran-
domly selected from the output population. A variety of background
firing, gain, and input selectivity is evident

The connection weights from the first to second layer are
determined as in Eq. 16, with the condition being modified
as in Eq. 23 to include the bias. The resulting weights for this
connection are thus:

ω j i = α j
〈
e j (u)ρ(u|v)biasdi (v)

〉
v,u (24)

where the encoders and decoders are from the post-synaptic
and pre-synaptic populations, respectively. The recurrent
weights from the second layer to the first are also computed
as in Eq. 16, where the transformation is simply the identity
map, so:

ω j i = α j
〈
e j (v)di (u)

〉
v,u . (25)

123

260 Biol Cybern (2011) 104:251–262

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

v

ρ(
v)

Comparison of ideal and biased inference in a spiking network

ideal
with bias

Fig. 7 Performance of the spiking inference network over time with
the bias included in the connection weights. Some distortion due to the
neural representation is evident, but the overall integral is preserved as
demonstrated in Fig. 9. The spiking representation is computed by filter-
ing the spikes over a 50 ms window to smooth the results. The example
functions are plotted at points in time equivalent to the 5, 10, and 100
iterations in Fig. 3

In essence, this connection projects the current representa-
tion of ρ(u) to the future state of ρ(v). This is very similar
to performing repeated inference in a many layered feedfor-
ward network. The main difference is that the neurons used to
represent ρ(v, t) and ρ(v, t+δt) are the same in the recurrent
case, and would not be in the feedforward case.

We have chosen our time constants and scaled the weight
matrices so that the 100 iterations in the ideal, feedforward
simulation is equivalent to the 2 s run times used for the recur-
rent network. Specifically, post-synaptic currents are mod-
eled as in Eq. 18 with a time constant of 10ms, and scaling
is determined by Eqs. 19 and 20.

The behavior of this network with the bias included in the
connection weights is shown in Fig. 7. The behavior of the
same network without the bias in the connection weights is
shown in Fig. 8. These figures can be compared to Fig. 3.
It is evident from this comparison that the spiking network
is performing similarly to the the ideal inference (shown on
both figures in gray).

Finally, Fig. 9 demonstrates that the spiking network pre-
serves the integral of the represented probability distribution
appropriately. Comparing the two “ideal” cases demonstrates
that the switch to a dynamic characterization of the problem
does not change the ability of the network to preserve the
integrals. More importantly, comparing these ideals to the
spiking network responses demonstrates that the connection
weights that include the bias term is able to preserve the
integral, while the network without the bias is not able to
do so. Given the similarity between the dynamical and non-

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

v

ρ(
v)

Comparison of ideal and unbiased inference in a spiking network

ideal
without bias

Fig. 8 Performance of the spiking inference network without bias in
the connection weights. The final representation has a much smaller
area than earlier representations as demonstrated by Fig. 9

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Bias effect on density area

Iteration

A
re

a

ideal
ideal dynamics
spikes
spikes without bias

Fig. 9 A comparison of the integral of the various simulations.
Included is the ideal case with bias from Fig. 4, the ideal case in a
recurrent dynamical setting, and the results of the recurrent spiking net-
work with and without the bias included in the connection weights. It
is evident here that the bias results in preservation of the integral in
the spiking network. The integral is slightly lower than the ideal due to
error introduced through the neural representation

dynamical characterizations of repeated inference, the differ-
ence between the spiking network performance and the ideal
is likely due to the error in the neural representation evident
in Fig. 7. Nevertheless, the integral itself is preserved. Thus,
including the bias in the connection weights is a possible
method for ensuring normalization during repeated inference
in a spiking neural network.

123

Biol Cybern (2011) 104:251–262 261

5 Discussion

These results demonstrate that this method for ensuring the
normalization of probability density functions is effective
in the context of a spiking recurrent network. It is worth
emphasizing several aspects of this solution to the normali-
zation problem. First, the input signal is arbitrary. Though in
the presented simulations it is a Gaussian distribution cen-
tered at zero, there are no assumptions about the kind of
distribution being represented built into the solution. There-
fore, while there are limitations on the kind of functions
that can be represented by a neural population given the fre-
quency content of their tuning curves, any function that can
be represented by the neural basis can be normalized by this
method.

Second, the conditional distribution that determines the
inference is similarly arbitrary. We have chosen a particularly
simple condition, so it would be obvious if repeated appli-
cations of the matrix were generating the correct results. As
with the representation of the input function, the only con-
straints on the quality of the inference come from the quality
of the neural representation of the space the inference is being
performed on.

The quality of the neural representation used in the
NEF has been discussed in detail elsewhere (Eliasmith
and Anderson 2003, pp. 44–49). In particular, it has been
shown that the root-mean-squared error of the representation
decreases as 1/N , where N is the number of neurons. In
this same work, it has been demonstrated that there is a clear
relationship between the quality of representation and the sta-
bility of a recurrent network employing such representations
(Eliasmith and Anderson 2003, pp. 232–243). Specifically,
the error in the approximation of the representation to the
ideal vector space drive the dynamics of the network. When
the approximation “crosses” the ideal with a negative gradi-
ent, there will be a dynamical fixed point. When the crossing
has a positive gradient, there will be a dynamical unstable
point. More generally, the speed of drift of the network is
proportional to the magnitude of the error, with the direc-
tion of the drift determined by the error gradient. It should
also be noted that the speed of drift is proportional to the
synaptic time constant of the recurrent connections. Taken
together, these observations demonstrate that the quality
of repeated normalization is systematically sensitive to the
number of neurons used to represent the underlying vec-
tor space. The preceding results were achieved with 3,000
neurons.

Third, the vector space underlying the neural representa-
tion is also arbitrary in the sense that the solution presented
here does not depend on a particular choice of vector space. In
the simulations presented, we have chosen a twenty dimen-
sional space with a reasonably broad tuning to the basis
functions. However, these choices are independent of the

normalization solution, and can be tailored to the particu-
lar neural system that the solution is to be applied to.

It has often been noted that past approaches to perform-
ing statistical inference with neural representations demand
some kind of normalization to ensure the neurons do not sat-
urate and to keep recurrent networks stable (e.g., Rao 2004;
Ma et al. 2006, p. 1436). Most commonly, these approaches
allow for some kind of divisive normalization to be added to
their networks to ensure normalization occurs. Divisive nor-
malization has been suggested to take place in cortical cir-
cuits for several decades, and recent work has documented
many examples of responses that are well-modeled by the
presence of divisive normalization (Ringach 2010).

However, there remain several outstanding concerns with
divisive normalization in the context of statistical inference.
For instance, recent work suggests that such normaliza-
tion cannot account for the distribution of observed neural
responses (Shi et al. 2006). More importantly for statistical
inference, the most common assumption is that a pooling of
nearby neural responses divides (by an as-yet undetermined
mechanism) the activity of the cell being normalized. How-
ever, the inclusion of this extra nonlinearity in cells is often
not explicitly incorporated within inference models (Ma et al.
2006). Even if it is included, the time delays introduced by
having to pool such information over the population of cells
in a spiking network are ignored (Rao 2004). These delays
can have serious impact on a recurrent network’s stability,
and in a feedforward implementation, would result in a non-
normalized inference for at least some initial period of time.

The proposal presented here avoids such concerns. Since
the normalization is included in the connection weight
matrix, there is no need to introduce additional mechanisms
to ensure that normalization takes place. Consequently, addi-
tional single cell nonlinearities, or the use of global inhibition
for normalization, can be avoided. In addition, the preceding
implementation in a recurrent spiking network demonstrates
that the approach does not introduce unexpected stability
issues.

Empirically distinguishing these two suggestions is likely
to be challenging. Both can account for typical normalization
effects (DeAngelis et al. 1992; Reynolds et al. 1999). Conse-
quently, more subtle differences would need to be identified.
For instance, the timing of the effect of normalization should
be different for the two cases. Pooling models of normali-
zation should predict a delay between the input signal and
the normalization of that signal that accounts for the time
it takes for the pooled responses to affect each individual
cell’s response. In contrast, the proposal we have presented
would allow the normalization to occur as the signal prop-
agates through the system. The difficulty with identifying
this difference lies in the fact that there are many confound-
ing effects, such as adaptation and feedback, that would be
difficult to control for.

123

262 Biol Cybern (2011) 104:251–262

Another possible means of distinguishing these sugges-
tions is to examine the differential effects of removing inhi-
bition. If local inhibition alone could be blocked, then the
current proposal would allow feedforward normalization to
proceed as normal, though divisive normalization would be
expected to fail. Similarly, even in a recurrent normaliza-
tion situation, much of the recurrent information is excitatory
under our proposal, so normalization should not be com-
pletely removed (even though the recurrent signal would not
be the truly inferred distribution). Finally, sufficient random
perturbation of the connection weights in the present proposal
should essentially eliminate the effects of normalization. In
contrast, a pooling model would continue to normalize the
activity of the cells regardless of the specific computation
being performed by the feedforward weights. While these
hypotheses can be more carefully quantified by further mod-
eling, testing them convincingly in vivo will be extremely
challenging.

Despite these empirical challenges, there are clear theo-
retical differences between the present proposal and the more
familiar divisive normalization. Future work may elucidate
specific applications which would help distinguish these pos-
sibilities. Consequently, it remains useful to consider alter-
native biologically plausible methods for normalizing neural
representations. This is especially relevant given the several
recent suggestions for implementing statistical inference in
neurally plausible networks.

6 Supplementary material

All Matlab® code and Nengo models for these simulations
are available in the supplementary material.

References

Conklin J, Eliasmith C (2005) An attractor network model of path inte-
gration in the rat. J Comput Neurosci 18:183–203

DeAngelis GC, Robson JG, Ohzawa I, Freeman RD (1992) Organi-
zation of suppression in receptive fields of neurons in cat visual
cortex. J Neurophysiol 68:144–163

Eliasmith C, Anderson CH (2003) Neural engineering: computation,
representation and dynamics in neurobiological systems. MIT
Press, Cambridge

Fischer BJ (2005) A model of the computations leading to a representa-
tion of auditory space in the midbrain of the barn owl. PhD thesis,
Washington University, St. Louis

Kuo D, Eliasmith C (2005) Integrating behavioral and neural data in
a model of zebrafish network interaction. Biol Cybern 93(3):
178–187

Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with
probabilistic population codes. Nat Neurosci 9(11):1432–1438

Rao R (2004) Bayesian computation in recurrent neural circuits. Neural
Comput 16(1):1–38

Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms
sub serve attention in macaque areas V2 and V4. J Neurosci
19:1736–1753

Rieke F, Warland D, deRuytervan Steveninick R, Bialek W (1997)
Spikes: exploring the neural code. MIT Press, Cambridge, MA

Ringach DL (2010) Population coding under normalization. Vis Res
50(22):2223–2232

Sahani M, Dayan P (2003) Doubly distributional population codes:
Simultaneous representation of uncertainty and multiplicity. Neu-
ral Comput 15(10):2255–2279

Salinas E, Abbott LF (1994) Vector reconstruction from firing rates.
J Comput Neurosci 1:89–107

Shi J, Wielaard J, Sajda P (2006) Analysis of a gain control model of
V1: is the goal redundancy reduction? Conference proceedings: ...
Annual international conference of the IEEE engineering in med-
icine and biology society. IEEE Eng Med Biol Soc 1:4991–4994.

Singh R, Eliasmith C (2006) Higher-dimensional neurons explain the
tuning and dynamics of working memory cells. J Neurosci
26:3667–3678

123

	Normalization for probabilistic inference with neurons
	Abstract
	1 Introduction
	2 The neural engineering framework (NEF)
	2.1 Representation
	2.2 Transformation
	2.3 Dynamics

	3 An algebraic solution
	3.1 Mathematical background
	3.2 Application to probability function representation in the NEF
	3.3 Bilinear functions

	4 Application to the NEF
	4.1 Idealized application
	4.2 A biologically relevant application

	5 Discussion
	6 Supplementary material
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

