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Integrating Structure and Meaning: A Distributed
Model of Analogical Mapping*

Abstract
In this paper we present Drama, a distributed model of analogical mapping that integrates
semantic and structural constraints on constructing analogies.  Specifically, Drama uses
holographic reduced representations (Plate 1994), a distributed representation scheme, to
model  the  effects  of  structure  and  meaning  on  human  performance  of  analogical
mapping.  Drama is compared to three symbolic models of analogy (SME, Copycat, and
ACME) and one partially distributed model (LISA).  We describe Drama’s performance
on a number of example analogies and assess the model in terms of neurological and
psychological  plausibility.  We  argue  that  Drama’s  successes  are  due  largely  to
integrating structural and semantic constraints throughout the mapping process.  We also
claim that  Drama is  an existence proof  of  using distributed representations to model
high-level cognitive phenomena.

1. Introduction
Most  connectionist  models  focus on low-level  cognitive tasks such as  categorization,
recognition,  and  simple  learning  (Churchland  and  Sejnowski,  1992).  Critics  of
connectionism often contend that these models, though impressive in some ways, have
little  to  do  with  high-level  human  cognition  (Fodor  and  Pylyshyn,  1988;  Fodor  and
McLaughlin, 1990; c.f. Bechtel, 1995).

Analogy-making (or analogizing) is a quintessential high-level cognitive function
that is only fully developed in humans (Holyoak and Thagard, 1995).  The process of
mapping relations and objects that describe one situation (a source) to another (a target)
in a systematic way involves an understanding of the semantics and structure of both the
source and target.  Until recently, connectionist distributed representations have provided
no effective means of capturing the complex embedded structure needed to perform such
tasks  (Plate,  1994).  Although  there  is  general  agreement  among  connectionists  and
neuroscientists that representation in the brain is distributed, distributed computational
models of tasks as structure dependent as analogy have not been forthcoming (Hinton,
1986; Miikkulainen and Dyer, 1988; Smolensky, 1988; Churchland, 1989; Churchland
and Sejnowski, 1992).  However, distributed representations do seem to provide powerful
accounts  of  the  semantics  of  cognition  (Gentner  and  Forbus,  1991;  Churchland  and
Sejnowski, 1992; Harnad, 1992; Plate, 1994). 

In  contrast,  symbolic  representations,  which  are  ideally  suited  to  providing
flexible  representations  of  structure,  are  often  criticized  as  being  semantically  brittle
(Hinton, 1986; Clark and Toribio, 1994).  Nevertheless, most current models of human
analogy-making rely on symbolic representations at the expense of providing inadequate
accounts of the effects of semantics on the analogical mapping process (Mitchell, 1993;
Hofstadter, 1995).

Clearly then, a model of analogy that employs a means of representation that is
both  structurally  and  semantically  sensitive  would  be  an  improvement  over  current
models.  Furthermore,  it  has  been  argued  that  high-level  cognitive  processing,  in
particular  linguistic  processing,  is  best  explained  by  the  integration  of  structure  and
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meaning (Tomasello, 1998; Langacker, 1986).  There are two possible ways of achieving
this goal:

1.   Improve the semantic flexibility of symbolic representations (see Barnden,
1994 for further discussion).

2.   Improve the structural flexibility of distributed representations.

We have chosen the second option for a number of reasons (see section 3 for
details).  In particular, distributed representations: can be learned from the environment
of the cognizer (Hinton, 1986); are equally applicable to all modes of perception (i.e.
vision,  hearing,  olfaction,  etc.);  have  recently  been  extended  to  provide  an  effective
means of capturing embedded structure (Smolensky, 1990; Plate, 1993); and provide a
degree of neurological realism not found in symbolic models (Churchland and Sejnowski,
1992; Churchland, 1995).  In addition, providing a distributed model of the analogical
mapping process would validate the contentious claim that connectionist methods will
scale to the complexity of high-level human cognition.

In the remainder of this paper,  we present a computational model of analogy-
making called Drama (Distributed Representation Analogy MApper).  Drama combines
recent advances in distributed representation of structure and an established theory of
analogy to account for current psychological data on analogy-making in humans.  Drama
is  based on Holyoak and Thagard’s  (1989a)  previous  model  of  analogy,  ACME, but
significantly extends and improves both the number of mapping phenomena accounted
for and the degree of neurological and psychological plausibility.  As well, Drama, unlike
ACME, embodies a theoretical commitment to explaining cognitive function through the
integration of structure and semantics.  Furthermore, Drama, while being a model of a
high-level cognitive phenomena, is based on distributed representations – this is a feat
some have though would not be possible (Gentner and Markman, 1993; section 6.2).

We begin our discussion of Drama by recounting the multiconstraint theory of
analogy.  We then review three other computational models of analogy (ACME, SME and
Copycat),  which  serve  as  points  of  comparison  to  Drama.  Subsequently  we  discuss
holographic  reduced  representations  (HRRs),  which  are  the  form  of  distributed
representation used to provide structural and semantic sensitivity to Drama.  After briefly
outlining  Drama’s  architecture  and  algorithms,  we  describe  Drama's  performance  on
several real-world analogies.  Next, we provide an evaluation of Drama by contrasting it
with ACME, SME, and Copycat. Finally, we discuss Drama in relation to another model
of analogical mapping, LISA, which has also been put forward as a distributed model of
analogy (Hummel and Holyoak, 1997).  We find that, though Drama has some important
limitations,  its  current  performance and its  potential  for  improvement  surpass  that  of
other models.

2. Theories of Analogy
Current theories of analogizing tend to divide the process into three or four stages.  For
our  purposes,  analogy-making  can  be  divided  into  three  distinct  steps  (Falkenhainer,
Forbus et al.,  1989; Eskridge, 1994; Holyoak and Thagard, 1995).   Assuming that the
agent already has access to a description of the target of the analogy, the first step is to
retrieve an appropriate analogous situation (i.e., the source).  Next, the correspondences
between propositions, objects, and relations (referred to collectively as elements of the
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analogy) must be found and mapped onto one another.  Finally, the newly formed analogy
is applied in some manner, whether it be to induce an outcome, to describe or explain a
novel situation, or to generate a new schema for understanding the world.  In sum, the
process of analogizing consists of: retrieval; mapping; and application.

Drama  is  centrally  concerned  with  the  mapping  stage  of  the  analogy-making
process.  However,  the  representational  commitments  of  Drama  have  been  used  to
construct  a  single  step  model  of  the  retrieval  stage  as  well  (Plate,  1994;  Plate
forthcoming).  Combined,  these  two  models  account  for  the  first  two  phases  of
analogizing (see section 6 for further discussion of Plate’s (forthcoming) model and a
simple extension to Drama).

The  mapping  stage  of  analogizing  is  commonly  the  focus  of  computational
models of analogy.  The three computational theories of analogy-making instantiated by
Copycat  (Hofstadter  and  Mitchell,  1988),  SME  (Structure  Mapping  Engine)
(Falkenhainer, Forbus et al., 1989), and ACME (Holyoak and Thagard, 1989) provide a
cross-section of available theories of analogical mapping.  Although there are many other
models  of  analogy-making (Kedar-Cabelli,  1988;  Hall,  1989),  these  three  models  are
arguably the best-known and have previously been the subjects of critical comparisons
(Mitchell, 1993).  There is a fourth analogical theory that is of particular interest because
it,  too,  is  touted as  a  distributed model  of  analogical  processing.  This  fourth theory,
implemented  in  the  model  LISA (Hummel  and  Holyoak,  1997),  will  be  discussed
separately  because  there  are  a  number  of  distinct  issues  that  are  of  importance  in
comparing this model with Drama (see section 7).

As competitors, there are a number of issues on which the three theories diverge. 
However,  as  theories  of  analogizing,  there  are  also  striking  similarities.  The
multiconstraint theory of analogy which underlies ACME (Holyoak and Thagard, 1995)
captures these similarities, and is thus promising as a general theory.  Notably, adherents
of both Copycat and SME have provided arguments affirming the importance of each of
the constraints in the multiconstraint theory (Gentner and Toupin, 1986; Falkenhainer,
Forbus  et  al.,  1989;  Mitchell,  1993).  Thus,  there  is  a  measure  of  agreement  on  the
importance of the central tenets of the multiconstraint theory to analogy-making (Kedar-
Cabelli, 1988; Hall, 1989), making it a good theory to adopt.  In addition, the theory is
simple,  identifying only three constraints.  As well,  the theory is  easily distinguished
from its implementation in the model ACME.  This allows us to separate theory from
model, providing a means to reconsider the model without having to completely reinvent
the theory.

The multiconstraint theory identifies three soft constraints on a good analogy: 
structure, similarity, and purpose.  These constraints are considered “soft” because none
of them must be satisfied, though each guides the construction of any analogy.  Briefly,
the  constraint  of  structure  guides  the  analogy  towards  one-to-one  and  structurally
consistent mappings (see section 2.1).  Similarity refers to conceptual similarity in verbal
analogies (like those addressed in Drama) but also extends to visual similarity, auditory
similarity, etc. for non-verbal analogies (Shelley, 1996; section 2.2).  The constraint of
purpose guides the analogy towards the accomplishment of practical goals as defined by
the analogizing agent.   In the following three sections we examine each constraint in turn
and discuss their relation to ACME, SME, Copycat and Drama. 

2.1. Structure
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An analogy satisfies the structural constraint if it is a one-to-one mapping and structurally
consistent  (Gentner,  1983).  A mapping  is  one-to-one  if  each  element  in  the  source
corresponds to one element  in  the target.  A mapping is  structurally consistent  if  the
objects of mapped relations are also mapped.  If an analogy has both of these properties,
it is considered isomorphic.  In order to satisfy this constraint, two-place relations are
most likely to be mapped to other two-place relations, three-place relations to three-place
relations and so on.  Furthermore, as figure 1 depicts, a two-place relation in which the
first place contains another (two-place) relation is more likely to be mapped to a relation
with that same structure than to a two-place relation with a (two-place) relation in its
second  place  or  to  one  with  no  relations  in  either  place.  In  other  words,  the  more
isomorphic propositions are, the more likely they are to map to each other.  Notably, the
meaning of the relations and their place holders is strictly irrelevant to the constraint of
structure.  Thus, arbitrary letters have been used in figure 1 to label objects and relations.

Figure 1. Two sets of relations whose degree of isomorphism is
proportional to the strength of the joining lines.  Arbitrary letters are used
to identify objects and relations to stress that meaning is irrelevant to the
constraint of structure.

Because  structure  has  long been studied  in  logic  and linguistics,  and because
structure is easy to capture in programming languages such as LISP, it is at the heart of
most models of analogy.  The most structurally driven model is the aptly named SME
(Structure Mapping Engine) model. In this model, objects are placed in correspondence
based  almost  entirely  on  their  role  in  relational  structures,  with  the  only  semantic
constraint being one of identity (Falkenhainer, Forbus et al., 1989).  ACME also relies
heavily on the syntactic information in the source and target,  though not to the same
degree as SME (see section 6.2).  In both cases, this reliance has been justly criticized as
providing psychologically unrealistic, overly powerful and somewhat unguided mappings
(Mitchell, 1993; Hofstadter, 1995; Hummel and Holyoak, 1997).

2.2. Similarity
In verbal analogies, the similarity constraint directs an analogizer to prefer semantically
similar mappings.  Thus, concepts with similar meaning are more likely to be mapped
than those with dissimilar meaning – if there are two equally isomorphic mappings to a
given element of an analogy, the more semantically similar of the two will be chosen as
the best mapping.  Though there is evidence that this constraint guides human analogy-
making, it is often violated by humans on the basis of structural concerns (Gentner and
Toupin,  1986).  Violations of  the constraint  are  more likely at  the more concrete  the
levels  of  mapping.  Thus,  dissimilar  objects  are  more  often  mapped  than  dissimilar
first-order  relations,  and  dissimilar  first-order  relations  are  more  often  mapped  than
dissimilar second-order relations[1].
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The three models of analogy we have chosen to discuss account for semantics in
very distinct ways.  SME only takes into account identity semantics (i.e. ‘cause’ means
the  same  as  ‘cause’)  and  otherwise  maps  purely  on  the  basis  of  structure.  ACME
considers semantic information only after-the-fact.  Specifically, semantics guides only
the acceptance of best mappings (i.e. not the choice of elements to be considered for
mapping).  Thus,  ACME includes  extremely  improbable  mappings  in  its  network  of
potential mappings (Hofstadter, 1995).  As well, ACME’s semantic relations are static,
hand-coded  and  not  decomposable.  Copycat,  in  contrast,  has  semantic  information
encoded both directly in its "Slipnet", and by the choice of which concepts are allowed to
slip into each other.  However, the semantic information of the letter-string domain in
which Copycat operates consists only of order information about the alphabet (i.e. ‘a’ is
before ‘b’, ‘b’ is after ‘a’, etc.) and a few concepts necessary for correct operation in this
domain,  such  as  'rightmost',  'leftmost'  and  'successor'.  Mitchell  (1993)  claims  that
Copycat knows much about certain concepts such as 'successor group'.  However, all of
this knowledge is purely implicit.  The system has no representation or definition of what
a 'successor group' is, but rather applies the concept as defined by the system's creator.  In
other words, the system could not answer queries concerning concepts. Rather it can only
act  consistently  with  an  external  definition  of  a  concept  under  certain,  controlled
conditions, resulting in a semantics too impoverished for complex analogies.

The most significant theoretical innovation of the Drama model comes with its
implementation of  the  similarity  constraint.  Unlike previous  models,  Drama  actually
combines  this  constraint  with  the  structural  constraint  to  generate  mappings.  Both
structure and similarity determine the outcome of the mapping process at every stage.  As
has been argued by the Cognitive Linguistics movement, semantics and structure may be
intimately connected (Tomasello, 1998; Ungerer and Schmid, 1996; Langacker, 1986). 
For example, Langacker (1987) suggests "[g]rammar (or syntax) does not constitute an
autonomous formal level of representation. ... There is no meaningful distinction between
grammar  and  lexicon"  (p.  2-3).  Drama  adopts  this  insight  through  its  novel
implementation of analogical mapping, combining structural and semantic considerations
(see  section  4  for  details).  Because  of  this  theoretical  commitment,  Drama  can
successfully account for a wide range of analogical phenomena (see section 6).

2.3. Purpose
Often, the reason for which a particular analogy is made affects how it is made (Kedar-
Cabelli,  1988).  This phenomenon is captured through the ‘purpose’ constraint.  If the
agent is aware that certain elements of an analogy are more important to the purposes of
the analogy, those elements will be the focus of attention and are thus more likely to be
mapped.

In SME, the goals relevant to a particular analogy are not considered until a later
stage of processing (i.e. during the application phase).  In Copycat, all goals are a priori
assumptions, and can not be altered (Mitchell, 1993).  In ACME, goals are given special
consideration, affecting activations during the acceptance of the best mappings.  Drama
does not add anything new to these models regarding the purpose constraint.

2.4 Summary
Given these considerations, the strengths and weaknesses of each model becomes more
evident.  SME, like all three models, effectively deals with most structural considerations
but lacks an interesting semantics and leaves pragmatic considerations to the application
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step.  CopyCat, while unique in its ability to derive its own representations, also lacks
much in terms of semantics and does not consider pragmatics except implicitly.  ACME
is an improvement over SME because of the inclusion of some semantic and pragmatic
information in the mapping process.  Unlike CopyCat, ACME is not restricted to a toy
domain.  However, ACME only includes semantics after structural constraints have been
satisfied.  As well, the semantics are not decomposable (i.e. we don’t know why dogs are
similar to cats) and are static.  In the case of all previous models, structure and semantics
are not integrated to the degree to which they seem to be in human cognition (Langacker,
1987).

This  analysis  allows  us  to  summarize  the  theoretical  advances  that  are
incorporated into Drama and are discussed in the remainder of the paper.  Drama:

1.     Lessens the dominance of structure on mapping considerations while not
sacrificing psychological plausibility;

2.     Considers semantics and syntax in parallel allowing both to influence all
stages of the mapping process and;

3.     Uses  fully  distributed  representations  that  explicitly  encode  complex
concepts that can are decomposable.

3. Holographic Reduced Representations
The  high-dimensional  distributed  representations  used  in  Drama  are  referred  to  as
holographic reduced representations  or  HRRs  (Plate,  1994).  For the purposes of this
paper, these distributed representations are 512-dimensional vectors.  The representations
are constructed using a form of vector multiplication called circular convolution and are
thus  closely  related  to  the  better-known  tensor  products  employed  by  Smolensky
(Smolensky,  1990).  The  differences  between  and  tensor  products  and  HRRs  are
discussed below.  Decoding of HRR representations is performed using the approximate
inverse of circular convolution, an operation called correlation (see appendix A for the
algebraic details of these operations).  These kinds of distributed representations have
been  used  in  a  number  of  psychological  and  computational  models  of  memory
(Borsellino and Poggio, 1973; Metcalfe Eich, 1985; Murdock, 1987).

The  HRR  sort  of  distributed  representation  are  referred  to  as  "holographic"
because the encoding and decoding operations (i.e. convolution and correlation) used to
manipulate  these  complex  distributed  representations  are  the  same  as  those  which
underlie explanations of holography (Borsellino and Poggio, 1973).  The convolution of
two HRRs creates a third unique HRR which encodes the information present in the two
previous HRRs - a process referred to as binding.  Importantly,  this new HRR is not
similar to either of its  components,  though the components may be retrieved through
decoding  the  new HRR with  a  correlation  operator.  These  operations  are  easiest  to
understand through a simple illustration.[2]  Let A, B and C be HRRs.  If

C = A Ä B (read: C equals A convolved with B)
then

C # A » B (read: C correlated with A approximately equals B)
and

C # B » A.
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Figure 2 depicts these operations as occurring on a 3-dimensional conceptual sphere.

Figure 2. HRR operations depicted on a conceptual sphere.  Vector C is
the circular convolution of vectors A and B.  Vector D is the superposition
of A and B.

Another  operation,  superposition,  is  used also to  combine two HRRs.  Unlike
convolution, superposition results in a vector equally similar to the two components.  The
superposition operation is simply the normalized sum of two vectors, and is written: D =
A + B (see figure 2).  One can think of the superposition of two vectors as being like
superimposing two photographic images.  The resulting image is similar in many ways to
both of the original photographs, and the original images are likely to be recognized from
the superimposed image, but it would be very difficult to perfectly reconstruct either of
the original images.  Similarly, superimposing two vectors results in a vector that is very
similar  to the original  two vectors  but  cannot provide a perfect  reconstruction of  the
original vectors.  This contrasts with convolution, in which the resulting vector is nothing
like the original  two vectors;  in fact,  the expected similarity of either of  the original
vectors to their convolution is zero (Plate, 1994).

As with the photographic image, some of the information in the original HRR
vectors  is  lost  in  their  combination.  Hence,  HRRs  are  considered  'reduced'
representations.  Upon  encoding  a  new representation  from a  number  of  others  (e.g.
constructing the representation for a particular 'cherub' from 'baby', 'has-wings', 'fictional',
'pink', etc.), the new representation does not contain all of the information present prior to
encoding; the new representation is  noisy.  This is  the case for both convolution and
superposition.  Therefore,  when decoding a  vector  using  the  correlation  operator,  the
resulting vector must somehow be recognized by the system, or ‘cleaned-up’.

The  process  of  recognizing  a  vector  is  accomplished  through  use  of  the  dot
product.  The  dot  product  of  two  vectors  is  the  sum of  the  product  of  each  of  the
corresponding elements of the vectors.  For normalized vectors, the resulting scalar is
equivalent to the length of one of the vectors projected on to the other (see figure 3).  This
relative length value can be used as a measure of the vectors’ similarity.  Because all of
our conceptual vectors are normalized to the unit hypersphere, we use the dot product
operation to determine the similarity of any two vectors.
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Figure 3. The dot product of normalized vectors A and B as the projection of B
onto A.

A number of properties of HRRs make them promising candidates for modeling
human cognition.  First,  HRRs are distributed representations,  with all  of the benefits
associated with distributed representations.  Thus they: are sensitive to statistical input
(Smolensky, 1995); provide cross-modal representations (e.g. they have been applied to
visual  (Qian  and  Sejnowski,  1988;  Raeburn,  1993),  olfactory  (Skarda  and  Freeman,
1987),  auditory  (Lazzaro  and  Mead,  1989)  and  tactile  problems);  degrade  gracefully
(Churchland, 1992); are semantically sensitive; represent concepts continuously; can be
processed in parallel; and are subject to the many learning algorithms already developed
(Hinton, 1986; Gorman and Sejnowski,  1988; Miikkulainen and Dyer, 1988; Le Cun,
Boser et al., 1990; Plate, 1993).  In regards to this last property (i.e. learning), it is the
contents of HRRs that are the subject of these well established learning methods.  The
operations which encode and decode these contents  (convolution and correlation)  are
hypothesized to be primitive operations (see  Borsellino and Poggio, 1973).

Second,  HRRs  accommodate  arbitrary  variable  binding  through  the  use  of
convolution.  Third,  HRRs  can  effectively  capture  embedded  structure  (Plate,  1994;
forthcoming).  Fourth, unlike tensor products, and most other distributed representations
which use vector multiplication, HRRs are fixed dimension vectors.  Thus, convolving
two three-dimensional vectors results in another three-dimensional vector - not a six- or
nine-dimensional vector as with tensor products.  Consequently, HRRs are not subject to
an explosion in the size of representations as the structures represented become more
complex.  This  property  also  allows  HRRs  of  various  structural  depths  to  be  easily
comparable  to  each  other  without  "padding"  the  representation,  as  is  necessary  with
tensor  products.  Fifth  and  finally,  convolution  can  be  implemented  by  a  recurrent
connectionist  network  (Plate,  1993).  This  potential  for  implementation  in  recurrent
networks  supports  the  neurological  plausibility  of  HRRs.  Though  the  degree  of
neurological  realism reached by such networks  may be disputed,  it  is  likely  that  the
extent of their neurological realism is greater than that of either localist connectionist or
symbolic models (Smolensky, 1995).

Most important to Drama are the properties relating to structure and semantics. 
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The ability of HRRs to accommodate arbitrary variable bindings and embedded structure
allow Drama to handle structures as complex those in classical symbolic systems.  The
statistical and semantic sensitivity of HRRs allow Drama to handle conceptual meaning
as well as any distributed connectionist system.  Thus, the representational commitment
of Drama  to HRRs gives it  both the semantic sensitivity and the structure sensitivity
needed to effectively model analogical mapping.

 

Table 1

Summary Comparison of the Properties of Three Forms of Representation.
Property Symbolic Tensor

Products
HRRs

Sensitive to statistical input No Yes Yes
Cross-modal representation No Yes Yes
Graceful degradation No Yes Yes
Semantically sensitive No Yes Yes
Continuous representation of concepts No Yes Yes
Easily processed in parallel No Yes Yes
Neurologically plausible No Yes Yes
Arbitrary variable binding Yes Yes Yes
Embedded structure Yes Yes Yes
Noise-free representation Yes Yes No
Perfect encoding/decoding N/A Yes No
Fixed dimension representation N/A No Yes
Cross-level comparison Yes No Yes

 
A summary comparison of the properties of HRRs, tensor products and symbolic

representations is presented in table 1.  The next section discusses Drama's application of
HRRs to analogizing.

4. Drama's Algorithms
Drama is intended as a model of human analogy-making abilities.  Using HRRs as the
representational foundation for Drama provides a powerful means of manipulating the
sets of propositions which make up a verbal analogy.  However, Drama’s representational
commitment does not determine the mapping process itself.  We discuss the mapping
algorithm used by Drama in this section.

Drama's  particular  implementation  of  the  mapping  process  is  based  on  the
multiconstraint theory outlined in section 2.  The original implementation of the theory in
ACME has provided the multiconstraint theory with some empirical support (Holyoak
and  Thagard,  1989).  As  well,  ACME  provides  a  useful  comparison  to  Drama's
implementation of this theory.  As with ACME, the mapping process has been subdivided
into  two  main  parts:  constructing  the  mapping  network;  and  settling  the  mapping
network.  However, the algorithm for constructing the mapping network is new, having
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been informed by the limitations of ACME.  In particular, Drama combines the structural
and  semantic  constraints  which  ACME  implemented  independently.  This  synthesis
results  in  many  behaviors  more  psychologically  realistic  than  those  of  ACME  (see
sections 5 and 6).

The mapping network is a network whose nodes are possible mappings and whose
connections are inhibitory or excitatory links connecting those nodes.  This network is
constructed  to  encapsulate  the  constraints  of  structure,  similarity  and  purpose  which
guide the system to choose the best mappings among those that are likely.  Settling of the
network is equivalent to satisfying as many of the constraints in parallel as is possible. 
Justification  of  this  choice  of  decomposition  of  the  analogy-making  task  has  been
discussed at  length elsewhere (Holyoak and Thagard,  1989;  Thagard,  Holyoak et  al.,
1990; Holyoak and Thagard,  1995).  The procedures for constructing and settling the
network in Drama are discussed below.

Before tackling the technical details of Drama, it is useful to introduce the Cupid
analogy that will serve as an illustrative example in our explanations of the functioning of
Drama.  This (somewhat degenerate) analogy is expressed in the following sentence:

When I first saw her radiant beauty I had a pang as if my heart felt Cupid's arrow.
An analytic presentation of the analogy can be found in table 2.

Table 2

Structure of the Cupid Analogy
Source (Cupid's Arrow) Target (Love Pang)

C1:  The heart feels the
arrow.

P1:  The observer sees
radiant beauty.

C2:  The observer's heart
hurts.

P2:  The observer has a pang.

C3:  C1 causes C2 P3:  P1 causes P2
 

Table 3 identifies the expected result of mapping this analogy.  Though simple,
this  analogy  has  object,  relational  (first-order),  and  systems  (second-order)  mappings
making it a sufficiently complex example to show the basic functioning of Drama (see
section 2).

Table 3a

Mappings in the Cupid Analogy
Source (Cupid's Arrow) Target (Love Pang)

arrow radiant beauty
heart observer
hurt pang
feels sees
cause cause

 
The next three sections describe the steps necessary for Drama to solve such an

analogy.  These include encoding the input into HRRs, using these representations to
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create the mapping network, and finally settling the mapping network to determine the
best mappings for this analogy.

4.1. Inputs
For Drama  to represent “concepts” for a particular analogy, it  must generate random,
normalized, 512-dimensional vectors.  This is equivalent to picking a random point on
the surface of the conceptual sphere and assigning it a particular name.  In a "real-world"
system, such a representation could be learned through interaction of the system with its
environment (see section 3).  However, this process is beyond the scope of our current
model.

In order to capture the structure of propositions, we bind the various elements of a
proposition to their appropriate places.  Thus, in order to represent proposition C1 “The
heart feels the arrow” we must perform the following bindings using convolution:

relation Ä feels                                                                       (1)

object Ä arrow                                                                        (2)

agent Ä heart                                                                           (3)
These bindings can then be superimposed to give the full sentence:

C1 = relation Ä feels + agent Ä heart + object Ä arrow         (4)
Proposition  C1  is  thus  a  512-dimensional  vector  composed  of  the  relevant  bindings
superimposed together and normalized.  On a ‘conceptual sphere’, we can think of the
bindings of two vectors as creating a third, unique vector (i.e. finding a distant dimple to
which to assign the binding).  The subsequent superposition of these unique vectors is
equivalent  to  locating  the  central  dimple  of  the  group  of  three  bound  dimples  and
assigning the label "C1" to that dimple (see figure 4).

Figure 4. Superposition of three bound concepts to form proposition C1
on a conceptual sphere.  The binding (i.e. convolution) of ‘object’ and
‘arrow’ is also shown.

Similar  operations  are  used  to  encode  properties  and  ISA relations  for  the
appropriate  concepts  used in an analogy.  Properties  are  encoded using superimposed
bindings.  For example, the proposition “The observer's heart hurts” would be encoded
as:

property Ä hurts                                                                      (5)
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C2 = heart + property Ä hurts                                                 (6)
On the other hand, ISA relations are encoded using only superposition.  Though there are
no examples of this in the Cupid analogy, if the proposition “Cupid is fictional and a
cherub” were present, it would be encoded as:

cupid = fictional + cherub                                                       (7)
To encode higher level relations,  such as 'cause',  one simply repeats the same

process used for encoding the lower level relations.  Therefore the proposition “C1 causes
C2” would necessitate performing the appropriate bindings:

relation Ä cause                                                                      (8)

object Ä C1                                                                             (9)

agent  Ä  C2                                                                                               
(10)

And then the superpositions:

C3  =  relation  Ä  cause  +  object  Ä  C1  +  agent  Ä
C2                                                                                                (11)

Once the representations have been encoded as necessary, it is possible to decode them
using  the  correlation  operation.  For  example,  if  we  correlate  C1  with  'relation',  the
resulting vector is approximately equal to the 'feels' vector.  Conversely, if we correlate
C1 with 'feels', the resulting vector is approximately equal to the 'relation' vector.  It is the
cleaning up process that determines which vectors the results of correlation are nearest to
(see section 3).

Given the  method of  encoding and decoding propositions  into  representations
which maintain semantic and structural information, it is now possible to describe the
analogy-making algorithm of Drama  with reference to these representations and their
operators.

4.2. Network Construction Algorithms
There are three major  steps involved in creating the mapping network which Drama
settles to produce the final "best" mapping.  These steps are: perform the initial mapping;
construct  inhibitory  links;  and  construct  pragmatic  links.  The  following  subsections
outlines the algorithm used to accomplish each of these steps.
4.2.1. Initial Mapping. The initial mapping step is the most important, and complicated of
the three network construction steps.  The algorithm constructs excitatory links between
propositions  of  the  source  and  target  based  on  structural  and  semantic  similarity  in
tandem.  In other words, it decides which, if any, mappings are likely based on the syntax
and meaning of given source and target propositions.  The following eight steps present a
simplified version of the original algorithm which was implemented in C++ and run on a
PowerMac 7100/80 for the examples presented in section 5.  All italicized words in the
following description refer to variables whose typical values and definitions are given
following the  algorithm.  The  square  brackets,  [],  denote  the  particular  aspect  of  the
multiconstraint theory of analogy which justifies the step (see section 2).

1.   Find the dot product similarity of each source proposition vector to each
target proposition vector [similarity].

2.   If a particular similarity is greater than the threshold and they have the
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same number of  constituent  types,[3]  create the mapping node:  “Source
Proposition  =  Target  Proposition”  [similarity  and  structure].  Seed  the
activation of this node with their similarity value.

3.    Decode  the  proposition  vectors  into  their  constituents,  and  create  the
following mapping nodes if applicable: “Source Object = Target Object”,
“Source Agent = Target Agent”, “Source Relation = Target Relation”, etc
[structure].  Seed the activation of these nodes with their similarity value.

4.   Construct excitatory links between the proposition mapping node and its
constituent mapping nodes and set their value to excite [structure].

5.   Construct excitatory links between each of the constituent mapping nodes
and set their value to excite [structure].

6.    Perform steps 3-6 for all  mapped constituents (except already existent
nodes) until none of the constituents can be decoded further.

7.   If  the  “Source  Object  =  Target  Object”  and  “Source  Agent  =  Source
Agent” nodes are valid nodes for any other sets of two proposition vectors,
map those proposition vectors as per steps 3-6 [structure].

8.   If any proposition vectors in the source have not been mapped, for each of
those non-mapped proposition vectors perform steps 3-7 with all  target
proposition  vectors  that  have  the  same  number  of  constituent  types
regardless of semantics [structure in case of no similarity information].

The threshold variable determines how similar elements must be to be considered
similar for the purposes of mapping.  The threshold is set to 0.2 in the examples we have
run on Drama.  If the similarity value (i.e. dot product) of A and B is above the threshold,
then  they  are  somewhat  similar;  otherwise,  they  are  considered  not  similar.  The
activation variable helps to vary the likelihood of a particular node being accepted during
settling: a high activation increases the chances of a node being accepted.  The similarity
of two items is determined by their dot product divided by the semantic similarity system
parameter.  This parameter determines how much weight the system puts on semantics. 
The excite variable determines the strength with which mutually supporting constraints
aid each others' acceptance.  In Drama, this variable is always set to 0.1.

If a particular node is created more than once, for each re-creation its activation
seed is increased by the semantic similarity of its constituents.  Similarly, if a particular
excitatory link is created more than once, each time it is created the already existing link
is updated by the value of an excite increase parameter.  In our examples, this parameter
was set to the same value as excite, which is 0.1.

Notably, these nodes currently use a localist representation in Drama.  Though it
is  clearly  possible  to  encode relations  such as  ‘maps(C1,  P1)’ using HRRs,  we have
decided not to do so as the choice of representation type at this level should not affect
analogical  mapping (see appendix B for  an example of  a  fully encoded network and
discussion).  Moreover,  the  large  number  of  extra  encoding  and  decoding  operations
demanded by a fully encoded network are too demanding for our available hardware. 
However,  we would  not  expect  the  decoding and encoding to  be  slow on a  parallel
machine  (see  appendix  C  for  a  complexity  analysis  of  the  mapping  process  and
discussion).  Future versions of Drama  may extend the representational scheme to all
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aspects of the model, but again, this should not affect the mapping process.
To clarify this algorithm, we will now trace it through some of the steps involved

in  mapping  the  Cupid  analogy.  First,  step  1  will  generate  the  similarity  values  of
propositions C1 to C3 compared to P1 to P3 (i.e. C1-P1, C1-P2, C1-P3, C2-P1, etc.).  Of
these similarities, C3-P3 will be the greatest, as both of these propositions contain the
semantically  identical  'cause'  concept,  and  structurally  similar  'cause'  relation  (i.e.
cause(agent, object)).  Thus, this comparison will satisfy the 'if' condition of step 2, and
step 2 will create the “C3=P3” mapping node (see figure 5).

Figure 5. Example steps of the creation of the potential mapping network
for the Cupid example.

Step 3 will create the nodes: “C1=P1”, “C2=P2”, and “cause=cause” and seed
them appropriately

Step 4 will construct all of the excitatory links between the node “C3=P3” and the
nodes “C1=P1”, “C2=P2”, and “cause=cause”.

Step  5  will  construct  all  of  the  excitatory  links  between  the  nodes  “C1=P1”,
“C2=P2”, and “cause=cause” (see figure 5).

Step 6 causes us to select a current constituent node, let us say “C1=P1” and treat
it  as  we  have  just  treated  the  proposition  node  “C3=P3”.  Thus,  we  will  decode
propositions  C1  and  P1,  and  map  their  constituents,  resulting  in  the  mappings
“arrow=radiant beauty”, “heart=observer”, and “feels=sees”.  The appropriate links will
be constructed, as they were for the higher-level mapping “C3=P3” (see figure 5). 

Since  none  of  the  constituents  of  “C1=P1”  can  be  further  decoded  into
constituents, step 6 would be bypassed at this point.  However, step 6 must be performed
for the constituents “C2=P2” and “cause=cause” of the proposition node “C3=P3”. 

Step 7 is not necessary for this particular analogy.  However, as an example of its
use, assume there are two other propositions (one in the source and one in the target) in
which 'heart' and 'observer' were in the agent place of a relation, and 'arrow' and 'radiant
beauty' were in the object place, respectively.  In such a case, those two propositions, and
their relation, would be mapped because their constituents match those of the “C1=P1”
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node.
Step 8 is again not necessary to solve the Cupid analogy.  However, if it were the

case that there was no semantic similarity in this analogy, step 8 would provide possible
mappings purely on the basis of structure (see section 5.5; Holyoak and Thagard, 1989).
4.2.2. Constructing Inhibitory Links. Once all of the plausible mappings and appropriate
excitatory links have been constructed, it is necessary to identify conflicting mappings. 
Two mappings are considered to be conflicting if they map one element to two different
elements.  For example, if both the nodes “heart=observer” and “heart=sees” were validly
constructed in the Cupid analogy, they would be considered to be in conflict because the
concept 'heart' is being inconsistently mapped.  It is very unlikely, though not impossible,
that 'heart' will map to both 'observer' and 'sees' in a good analogy (Holyoak and Thagard,
1995).  In order to capture this sense of "unlikeliness", inhibitory links are created in the
mapping network between these conflicting mappings.  The importance of these links
becomes  evident  when  the  network  is  being  settled,  as  they  provide  the  means  of
competition among possible mappings (see section 4.3).  In all of the example analogies
run in Drama, these links are given the value of -0.2.
4.2.3.  Constructing  Pragmatic  Links.  Pragmatic  links  are  simply  excitatory  links
constructed on the basis of the importance of particular propositions to the solution of the
analogy.  The importance of a particular proposition is determined by its inclusion in a set
of  important  propositions.  In  other  words,  Drama is  simply  told  what  is  important. 
These links provide a means of capturing the pragmatic constraint of the multiconstraint
theory (see section 2).

If  it  were  the  case  that  the  agent  who  was  mapping  the  Cupid  analogy  was
particularly  interested  in  the  mapping  of  proposition  C3,  this  proposition  would  be
included in the set of important elements for the analogy.  C3 would then play a greater
role in driving the analogy, and mappings in which it plays a role would be more likely to
be accepted.

4.3. Network Settling Algorithm
Once the mapping network has been constructed, it must be settled in order to determine
the best  mapping between source  and target.  The algorithm for  settling the  network
considers the positive and negative constraints that were established during construction
of the network and produces a globally optimal set of mappings.  The procedure used for
settling a network constructed by Drama  is  identical  to that  used to settle a network
constructed by ACME.  However,  the  networks  themselves  are  different  and thus  the
settling process produces different results (see section 6).

A cooperative  network settling algorithm is  used by Drama to solve the large
constraint  network,  though  it  is  only  one  of  many  suitable  algorithms  available  for
solving networks of this sort (Thagard and Verbeurgt, 1998).  This particular algorithm
has been chosen because of  its  psychological  plausibility and general  applicability to
high-level reasoning (Rumelhart and McClelland, 1986; Holyoak and Thagard, 1989).  A
cooperative  algorithm is,  by  definition,  a  parallel  algorithm for  satisfying  interacting
constraints.  Thus, it is ideally suited to solving the network constructed in the previous
steps  of  Drama.  Hofstadter's  Copycat  model  also  uses  a  cooperative  process  for
determining analogical mappings (see section 6.1).

The  details  of  the  algorithm  used  by  Drama  are  not  of  great  importance  to
determining the validity of Drama as a model of analogical mapping (see appendix C for

Integrating Structure and Meaning: A Distributed Model of Analog... http://watarts.uwaterloo.ca/~celiasmi/Papers/ce.pt.2001.drama.cogs...

16 of 47 11/28/08 10:57 AM



a complexity analysis of the settling algorithm).  Furthermore, our application is a simple
implementation  of  a  well-researched  method  of  constraint  satisfaction  (Rumelhart,
Smolensky et al., 1986).  Thus, we will only provide a quick summary of the algorithm. 

Each node in the network has its activation level updated on each cycle and in
parallel.  This update is based on the activation and link weights of connected nodes and
given by the following equation:

aj(t+1)=aj(t)(1-d)+enetj(max-aj(t))+inetj(aj(t)-min)

Where aj(t) is the activation level of unit j at time t; d is the decay; min = -1; max
= 1; enetj is the net excitatory input and inetj is the net inhibitory input both of which are

given by Siwijoi(t) with the weight (link) wij>0 for enetj and wij<0 for inetj.  The function
oi(t) used to calculate enetj and inetj is max(aj(t), 0).  Activation values of the nodes are
constrained to be within (min, max).

This rule has been tested in comparison with other, similar rules and has been
found  to  be  flexible,  accurate,  and  tractable  (Holyoak  and  Thagard,  1989;  Thagard
forthcoming).

5. Applications of Drama
Like  all  high-level  cognitive  functions,  analogizing  has  an  extremely  wide  range  of
applications.  Analogies  are  used  to  describe  unfamiliar  events  in  familiar  terms,  to
explain poorly understood phenomena in terms of well understood ones, and to solve new
problems  by  relating  them  to  already  solved  problems.  An  instance  of  descriptive
analogies  is  the  Cupid  example  which  describes  the  pangs  of  love  in  terms  of  the
presumably more familiar physical pain.  In the remainder of this section we examine a
number of other, more complex analogies, each of which addresses an important aspect
of human analogy-making.

In order to demonstrate the wide range of Drama's applicability, the values of all
of the model's parameters have been kept unchanged between examples.  Nevertheless,
the representations on different runs of the same problems will vary because of our use of
random concept vectors (see section 3).  Though this variation provides some differences
in activation values (i.e. levels of acceptance) of certain mappings, the reported results
represent typical runs.  From a psychological perspective, this variation among answers is
one  way  in  which  Drama  accounts  for  individual  variations  in  providing  analogical
mappings.

5.1. Light bulb Analogy
A class of analogies that have been frequently discussed are the "convergence" analogies
(Duncker,  1945;  Gick  and  Holyoak,  1980;  Gick  and  Holyoak,  1983;  Holyoak  and
Thagard, 1989).  In this class of analogies a source problem has been solved by having a
number of weak forces converge on a central item to achieve the effect of a single large
force without disturbing the item's surroundings.  This solution is expected to be mapped
to the target of the analogy.  In our example, taken from Holyoak and Thagard (1989), the
source problem is that of welding the filament of a light bulb without breaking the glass,
and the target problem is to destroy a tumor without damaging the surrounding tissue. 
Tables 4 and 5 provide the input to Drama.
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This introductory example should make clear the steps necessary to allow Drama
to map a somewhat complex analogy.  In this instance, the analogy is isomorphic, and not
necessarily reliant on semantic information.  In other words, a strictly syntactic mapping
engine should be able to map this example correctly.   This example also allows Drama
to incorporate pragmatic information, since the problem has clearly defined goals (i.e. to
destroy the tumor and not the surrounding tissue).

Table 4b

Semantic Input for the Lightbulb Analogy
Semantic Input for Lightbulb Analogy

object = RandVec electromagnetic_wave = RandVec
agent = RandVec light = electromagnetic_wave + RandVec
rel = RandVec surround = RandVec
not = RandVec outside = RandVec
prop = RandVec laser = device + prop Ä beam  + prop Ä light  
filament = RandVec high_beam = beam + prop Ä powerful 
bulb = RandVec low_beam = beam + prop Ä weak 
weak = RandVec not_fuse = not Ä fuse
produce = RandVec not_destroy = not Ä destroy
powerful = RandVec ray = beam + RandVec
destroy = RandVec tissue = RandVec
fuse = RandVec tumor = RandVec
device = RandVec ray_source = device + prop Ä ray  + prop Ä

electromagnetic_wave
beam = RandVec high_ray = ray + prop Ä powerful 
emits = RandVec low_ray = ray + prop Ä weak 

 

Table 5

Proposition Vector Input for the Lightbulb Analogy
Filament (Source) Tumor (Target)

l1 = rel Ä surround  + object Ä bulb  +
agent Ä filament  

r1 = rel Ä surround  + object Ä tissue  +
agent Ä tumor  

l2 = rel Ä outside  + object Ä laser  +
agent Ä bulb  

r2 = rel Ä outside  + object Ä
ray_source  + agent Ä tissue  

l3 = rel Ä produce  + object Ä laser  +
agent Ä high_beam  

r3 = rel Ä produce  + object Ä
ray_source  + agent Ä high_ray  

l4 = rel Ä produce  + object Ä laser  +
agent Ä low_beam  

r4 = rel Ä produce  + object Ä
ray_source  + agent Ä low_ray  
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l5 = rel Ä destroy  + object Ä
high_beam  + agent Ä bulb  

r5 = rel Ä destroy  + object Ä high_ray 
+ agent Ä tumor  

l6 = rel Ä not_destroy  + object Ä
low_beam  + agent Ä bulb  

r6 = rel Ä destroy  + object Ä high_ray 
+ agent Ä tissue  

l7 = rel Ä not_fuse  + object Ä
low_beam  + agent Ä filament  

r7 = rel Ä not_destroy  + object Ä
low_ray  + agent Ä tumor  

l8 = rel Ä not_destroy  + object Ä bulb r8 = rel Ä not_destroy  + object Ä
low_ray  + agent Ä tissue  

l9 = rel Ä fuse  + object Ä laser  +
agent Ä filament  

r9 = rel Ä destroy  + object Ä
ray_source  + agent Ä tumor  

 r10 = rel Ä not_destroy  + object Ä
tissue 

 
Table 6 displays the answer provided by Drama.  Accepted nodes are those which

Drama  has deemed the ‘best’ node to provide a particular  mapping.  A node is  only
considered to be a valid mapping if its final activation is above a threshold value of 0.2.

Table 6

Drama’s Solution to the Lightbulb Analogy
Accepted Mapping Activation

ray_source = laser 1.00000
surround = surround 0.88261
tissue = bulb 0.94852
tumor = filament 0.94182
weak = weak 0.94637
destroy = destroy 0.61621
fuse = destroy 0.46784
high_ray = high_beam 0.81929
low_ray = low_beam 0.81929
not_destroy = not_destroy 0.39995
not_fuse = not_destroy 0.57826
outside = outside 0.84184
powerful = powerful 0.94602
produce = produce 0.92494
r1 = l1 0.86192
r10 = l8 0.88510
r2 = l2 0.86949
r3 = l3 0.88186
r4 = l4 0.88183
r6 = l5 0.82203
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r7 = l7 0.84837
r8 = l6 0.55455
r9 = l9 0.78955

 
As table 6 shows, Drama maps the situation correctly.  Drama has provided this

correct answer despite having created a possible mapping network with 30% fewer nodes
than that created by ACME for the same problem.  Furthermore, this smaller network was
created  despite  a  25%  increase  in  mappable  objects.  This  increase  in  objects  was
necessary to provide Drama with semantic information.

5.2. Animal Stories
Strong  evidence  for  the  psychological  plausibility  of  Drama  is  provided  through  its
application to a series of animal stories that were used to examine the abilities of children
to perform analogical  mappings (Gentner and Toupin,  1986).  In total,  eight  different
stories  were  used  to  determine  the  effects  of  systematicity  and  semantic  similarity
(referred to as transparency or surface similarity, by Gentner and Toupin) on analogical
mapping in children.  The source “dog story” for these analogies is presented in table 7. 
Tables 8 and 9 provide the input to Drama for the analogy between the “dog story” and
the “cat story”.

Table 7c

The Source Story for the Animal Story Analogies
Animal Story Source

The dog was strong.
(Systematic version: The dog was jealous.)

 
The dog was friends with a seal.
 
The seal played with a penguin.
 
The dog was angry.

(Systematic version: Because the dog was jealous and the seal played with
penguin, the dog was angry.)

 
The dog was reckless.

(Systematic version: Because the dog was angry, it was reckless.)
 
The dog got in danger.

(Systematic version: Because the dog was reckless, it got in danger.)
 
The penguin saved the dog.

(Systematic version: Because the penguin saved the dog, the dog was
friends with the penguin.)
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Table 8

Semantic Input for the Animal Stories
Semantic Input

object = RandVec cause = RandVec
agent = RandVec strong = RandVec
rel = RandVec conjoin = RandVec
prop = RandVec cat = animal + pet + RandVec 
animal = RandVec dog = animal + pet + RandVec 
ocean_goer = RandVec camel = animal + RandVec
pet = RandVec seal = animal + ocean_goer + RandVec 
bird = RandVec walrus = animal + ocean_goer + RandVec 
friends = RandVec lion = animal + RandVec
played = RandVec penguin = animal + bird + RandVec 
angry = RandVec seagull = animal + bird + RandVec 
reckless = RandVec giraffe = animal + RandVec
endangered = RandVec theDog = dog + RandVec
save = RandVec theCat = cat + RandVec
jealous = RandVec  

 
The systematicity of the dog story is increased by including propositions relevant

to the causes of events in the story; e.g. Because the dog was angry, it was reckless (see
tables  7  and  9).  The  semantic  similarity  of  the  stories  was  altered  by  changing  the
similarity of the animals in the various roles (see table 8).  Table 10 shows the set of
semantic similarity conditions for the mappings.  For example, in the S/D condition the
target story is identical to that in table 7 except that the concept ‘dog’ is replaced by
‘seagull’, ‘seal’ by ‘cat’ and ‘penguin’ by ‘walrus’.

Table 9

Proposition Vector Input for the Systematic Dog/Cat Analogy
Dog Story (Source) Cat Story (Target)

d1 = theDog + prop * jealous s1 = theCat + prop * jealous 
d2 = rel * friends  + object * theDog  +

agent * seal  
s2 = rel * friends  + object * theCat  +

agent * walrus  
d3 = rel * played  + object * seal  +

agent * penguin  
s3 = rel * played  + object * walrus  +

agent * seagull  
d4 = theDog + prop * angry s4 = theCat + prop * angry 
d5 = rel * conjoin  + object * d1  +

agent * d3  
s5 = rel * conjoin  + object * s1  + agent

* s3  
d6 = rel * cause  + object * d5  + agent

* d4  
s6 = rel * cause  + object * s5  + agent *

s4  
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d7 = theDog + prop * reckless s7 = theCat + prop * reckless 
d8 = rel * cause  + object * d4  + agent

* d7  
s8 = rel * cause  + object * s4  + agent *

s7  
d9 = rel * endangered  + object *

theDog 
s9 = rel * endangered  + object * theCat 

d10 = rel * cause  + object * d7  + agent
* d9  

s10 = rel * cause  + object * s7  + agent
* s9  

d11 = rel * save  + object * penguin  +
agent * theDog  

s11 = rel * save  + object * seagull  +
agent * theCat  

d12 = rel * friends  + object * theDog 
+ agent * penguin  

s12 = rel * friends  + object * theCat  +
agent * seagull  

d13 = rel * cause  + object * d11  +
agent * d12  

s13 = rel * cause  + object * s11  + agent
* s12  

 

Table 10d

Semantic Similarity Conditions for Animal Story Analogies
Source Similar Objects/

Similar Roles (S/S)
Dissimilar

Objects (D)
Similar Objects/

Dissimilar Roles (S/D)
dog cat camel seagull
seal walrus lion cat

penguin seagull giraffe walrus
Gentner and Toupin (1986) found that both systematicity and semantic similarity

have  effects  on  children's  ability  to  provide  appropriate  analogies.  They  report  that
semantic similarity “strongly influenced” the ability to correctly perform the analogy;
with less similar characters being more difficult to map.  As well, for the older children
systematicity greatly affected their  ability to find the correct map; given a systematic
story, 9 year olds could map it accurately regardless of semantic similarity.  However, for
younger children, systematicity did not seem to aid them in overcoming the difficulties
associated with semantically similar concepts being used in different structural roles.

Table 11

Drama’s Performance with a Semantic Similarity Divisor of 10
Story Nodes Cycles Errors

S Cat (S/S) 188 26 0
S Camel (D) 175 38 0
S Seagull (S/D) 211 24 0
NS Cat (S/S) 58 27 0
NS Camel (D) 39 37 0
NS Seagull (S/D) 54 59 3

 

Table 12
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Drama’s Performance with a Semantic Similarity Divisor of 3
Story Nodes Cycles Errors

S Cat (S/S) 195 75 0
S Camel (D) 185 75 2
S Seagull (S/D) 199 75 5
NS Cat (S/S) 54 29 1
NS Camel (D) 47 39 2
NS Seagull (S/D) 52 39 5

 
Tables 11 and 12 show Drama’s  performance on these mapping problems.  As

figures 6 and 7 show, Drama performs very similarly to children on these problems.

Figure 6. Drama’s performance compared to that of 8-10 year olds
(adapted from Gentner and Toupin, 1986).
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Figure 7. Drama’s performance compared to that of 4-6 year olds (adapted
from Gentner and Toupin, 1986).

Drama  is  able  to  capture  the  performance differences  between age groups by
varying its semantic similarity parameter (see figures 6 and 7).  This parameter is used as
a divisor on the similarity seed of nodes when they are created (see section 4.2.1).  By
decreasing this parameter from 10 (for 8-10 year olds) to 3 (for 4-6) year olds Drama
effectively increases the importance of semantic similarity to the mapping process.  In
other words, by increasing the importance of semantics to such a high degree (i.e. to 3),
the effects of extra structural information become minor (see figure 7).  Thus, it seems
likely that as children grow older, they place less importance on semantic similarity and
pay more attention to the structure of a give situation in analogical mapping.  This is
equivalent to increasing the semantic similarity parameter in the Drama model.

5.3. Flow Analogy
The analogy between the flow of heat and the flow of water has been a standard test for
computational models of analogy since its use by Gentner (1983).  Both ACME and SME
have been tested on this analogy and thus it will aid in comparing Drama to these two
previous  models  (see  section  6).  In  this  analogy,  the  source  situation  is  the
well-understood  occurrence  of  water  flowing  from one  location  to  another  due  to  a
difference in pressure and the target is the less well-understood flow of heat caused by a
difference in temperature.

Table  13  presents  the  encoding  of  the  propositions  which  play  a  role  in  the
analogy.  Notably, much more information is known about the source than the target, as is
often the case in such explanatory analogies.  Also, the original encoding of this analogy
by Falkenhainer, Forbus and Gentner (1986) was designed to include three impediments
to constructing the proper analogy (Holyoak and Thagard, 1989).  These are:

1.   The concept 'clear' has no valid mapping.

2.   Misleading  semantic  information  concerning  'water'  and  'coffee'  both
being liquids and having flat tops is included.

3.   Irrelevant  information concerning the diameters  of  the beaker  and vial
encourages  an  incorrect  map  of  diameter  to  pressure  instead  of
temperature to pressure.
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Table 13

Proposition Vector Input for the Flow Analogy
Water Flow (Source) Heat Flow (Target)

w1 = water + prop Ä flat_top h1 = coffee + prop Ä flat_top 

w2 = beaker + prop Ä clear h6 = rel Ä temperature  + object Ä
coffee  + agent Ä val13  

w3 = rel Ä diameter  + object Ä beaker 
+ agent Ä val1  

h7 = rel Ä temperature  + object Ä
ice_cube  + agent Ä val14  

w4 = rel Ä diameter  + object Ä vial  +
agent Ä val2  

h8 = rel Ä greater  + object Ä val13  +
agent Ä val14  

w5 = rel Ä greater  + object Ä val1  +
agent Ä val2  

h9 = rel Ä flow  + object Ä coffee  +
agent Ä ice_cube  + stuff Ä heat  +
via Ä bar    

w6 = rel Ä pressure  + object Ä beaker 
+ agent Ä val3  

h10 = rel Ä cause  + object Ä h8  +
agent Ä h9  

w7 = rel Ä pressure  + object Ä vial  +
agent Ä val4  

 

w8 = rel Ä greater  + object Ä val3  +
agent Ä val4  

 

w9 = rel Ä flow  + object Ä beaker  +
agent Ä vial  + stuff Ä water  + via
Ä pipe    

 

w10 = rel Ä cause  + object Ä w8  +
agent Ä w9  

 

 
Table 14 shows the results from Drama's application to this analogy.  Drama does

not  fall  prey  to  any  of  these  difficulties.  Specifically,  'clear'  is  correctly  mapped  to
nothing;  'water'  and  'coffee'  are  not  mapped,  even  though Drama  relies  on  semantic
information  to  drive  much  of  its  analogizing  (see  section  4.2.2);  and  the  irrelevant
information  concerning  diameters  does  not  cause  Drama  to  perform  poorly.  Most
importantly,  this  example  demonstrates  that  Drama  has  not  sacrificed  structural
sensitivity in the name of semantics, but has rather successfully integrated both structure
and semantics in its analogical mapping.

Table 14

Drama’s Solution to the Flow Analogy
Mapping Activation

water = heat 0.90252
temperature = pressure 0.89613
pipe = bar 0.90252
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coffee = beaker 0.93576
vial = ice_cube 0.93576
cause = cause 0.88264
flow = flow 0.91925
greater = greater 0.88069
flat_top = flat_top 0.78194
val3 = val13 0.90541
val4 = val14 0.90541
w1 = h1 0.75434
w6 = h6 0.84530
w7 = h7 0.84530
w8 = h8 0.92373
w9 = h9 0.93585
w10 = h10 0.89258

 
This example also demonstrates an important difference in the theories underlying

Drama and SME.  In SME, this analogy is solved correctly essentially because there is
built in preference for mappings which allow the most inferences.  However, as Holyoak
and Thagard (1989) have noted, this assumption has serious failings.  It is a simple matter
to  construct  an extended version of  this  example in  which it  is  documented that  the
greater diameter of the beaker relative to the vial causes the beaker to have a greater
volume.  Also, in the heat flow situation, the volume of the coffee exceeds that of the ice
cube.  With this additional, irrelevant information, SME would be unable to determine if
temperature should map to diameter or pressure.  However, Drama, like ACME in this
instance, relies on pragmatic information to guide the choice of mappings.  It is assumed
that the proposition concerning the cause of the flow of water is most important to the
analogizer, as the analogizer is interested in explaining the flow of heat.  With this natural
assumption, Drama successfully solves the flow analogy in either case.  Thus, any such
irrelevant information does not adversely affect the mappings produced by Drama as it
would for SME.

5.4. Missionaries Problem
In many instances, people can perform complex mappings in which more than one item
in the source is mapped to one item in the target (many-to-one) or vice versa (one-to-
many).  An example which necessitates such mappings is the missionaries-and-cannibals
problem (Gholson, Eymard et al., 1988).  To solve the problem, it is necessary to get all
of the missionaries across a river without any of them being eaten by the cannibals. 

In order to solve this problem by analogy, the “farmer's dilemma” problem can be
used as a source.  The farmer's dilemma is to take a fox, a goose, and some corn across a
mountain, without either the goose or the corn being eaten.  Notably, the analogy between
these two problems is not isomorphic,  or one-to-one.  Rather,  all  of the cannibals,  or
missionaries map equally well to either corn, fox or goose, so in the final answer we
expect no particular missionary or cannibal to have a best mapping to its analog.  Table
15 presents Drama's propositional input.
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Table 15

Proposition Vector Input for the Missionaries Analogy
Missionaries and Cannibals Farmer's Dilemma

m1 = rel Ä carries  + object Ä boat  +
agent Ä rower  + agent2 Ä
passenger   

f1 = rel Ä carries  + object Ä wagon  +
agent Ä farmer  + agent2 Ä thing   

m2 = rel Ä eat  + agent Ä cannibal1  +
object Ä missionary1  

f2 = rel Ä eat  + agent Ä fox  + object Ä
goose  

m3 = rel Ä eat  + agent Ä cannibal1  +
object Ä missionary2  

f3 = rel Ä eat  + agent Ä goose  + object
Ä corn  

m4 = rel Ä eat  + agent Ä cannibal1  +
object Ä missionary3  

f4 = rel Ä cross_mountain  + object Ä
farmer 

m5 = rel Ä eat  + agent Ä cannibal2  +
object Ä missionary1  

f5 = rel Ä cross_mountain  + object Ä
fox 

m6 = rel Ä eat  + agent Ä cannibal2  +
object Ä missionary2  

f6 = rel Ä cross_mountain  + object Ä
goose 

m7 = rel Ä eat  + agent Ä cannibal2  +
object Ä missionary3   

f7 = rel Ä cross_mountain  + object Ä
corn 

m8 = rel Ä cross_river  + object Ä
cannibal1 

f8 = rel Ä not_eaten  + object Ä corn 

m9 = rel Ä cross_river  + object Ä
cannibal2 

f9 = rel Ä not_eaten  + object Ä goose 

m10 = rel Ä cross_river  + object Ä
missionary1 

 

m11 = rel Ä cross_river  + object Ä
missionary2 

 

m12 = rel Ä cross_river  + object Ä
missionary3 

 

m13 = rel Ä not_eaten  + object Ä
missionary1 

 

m14 = rel Ä not_eaten  + object Ä
missionary2 

 

m15 = rel Ä not_eaten  + object Ä
missionary3 

 

 
Gholson et al. (1988) found that third and fourth grade children were able to use

the farmer's dilemma as a source and transfer the solution to the missionaries problem. 
However, the converse was not true; i.e. the missionaries problem was not successfully
used as a source.  This has also been found to be the case for adults (Reed, Ernst et al.,
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1974).  Gholson et al. suggest two possible explanations for this asymmetric transfer. 
The asymmetry may be due to “differences among the surface features of the problem”
(i.e.  semantics) or the asymmetrical transfer could be “related to the number of legal
moves possible in each problem space” (Gholson, 1988, p. 51).

Table 16A

Drama’s Solution to the Missionaries Analogy with the Farmer’s Dilemma as Source
Mapping Activation

carries = carries 0.90077
rower = farmer 0.87610
wagon = boat 0.87610
eat = eat 0.95610
not_eaten = not_eaten 0.90419
thing = passenger 0.87610
cross_river = cross_mountain 0.91218
fox = cannibal2 0.48676
fox = cannibal1 0.39153
goose = cannibal2 0.26002
goose = cannibal1 0.30062
missionary1 = corn 0.32359
missionary2 = corn 0.58701
missionary3 = corn 0.26435
missionary1 = goose 0.30292
missionary2 = goose 0.12319
missionary3 = goose 0.37862

 

Table 16B

Drama’s Solution to the Missionaries Analogy with the Farmer’s Dilemma as Target
Mapping Activation

carries = carries 0.90077
rower = farmer 0.87610
wagon = boat 0.87610
eat = eat 0.95636
not_eaten = not_eaten 0.90384
thing = passenger 0.87610
cross_river = cross_mountain 0.90202
fox = cannibal1 0.50309
fox = cannibal2 0.35991
goose = cannibal1 0.25310
goose = cannibal2 0.34158
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missionary1 = corn 0.39149
missionary2 = corn 0.53025
missionary3 = corn 0.27297
missionary1 = goose 0.25631
missionary2 = goose 0.14303
missionary3 = goose 0.36738

 
Which is a better explanation of asymmetrical mappings?  We know that Drama

effectively captures the effects of semantic information on mapping in children of the
same age group tested by Gholson (see section 5.4).  Furthermore, as tables 16A and 16B
show, regardless which situation is a source or target, mapping of the analogy seems to
take place equally well.  Thus, the performance of Drama suggests that semantics alone
will  not  account  for  this  asymmetry.  Gholson,  et  al.’s  post  hoc  analysis  similarly
indicates that the number of solution paths is the more important property given these
two alternatives.

Gholson, et al. suggest that any theory of analogical reasoning too dependent on
structural information will be unable to explain these results:

This  pattern  of  findings  appears  to  have  implications  for  theories  of
analogical reasoning based upon purely syntactic relations...This kind of
approach suggests that transfer should be symmetrical in problems of the
type used here (Winston, 1980, pp. 697-698).  Our findings indicate that
transfer is not symmetrical (Gholson, Eymard et al., 1988).

This  realization  prompts  the  authors  to  call  for  “research  in  which  both  surface  and
structural  features  are  systematically  manipulated”  (ibid.,  52).  Though  it  does  not
provide an explanation of this asymmetry, Drama may help to indicate fruitful directions
for further research.

5.5. Structure-only Analogy
Because most previous models of analogical mapping have been structure driven, and
there is ample evidence to suggest structure is indeed important to this process (Gentner
and Toupin, 1986; Falkenhainer, Forbus et al., 1989; Holyoak and Thagard, 1995), we
anticipate  some  researchers  may  dismiss  Drama  because  of  its  heavy  reliance  on
semantic information.  This final example concerns a simple analogy that contains no
semantic information that is relevant to the final mapping.  The input for this "boy/dog"
analogy is presented in table 17.

Table 17

Proposition Vector Input for the Structure-only Analogy
Source Target

f1 = bill + prop Ä smart s1 = rover + prop Ä hungry 

f2 = bill + prop Ä tall s2 = rover + prop Ä friendly 

f3 = steve + prop Ä smart s3 = fido + prop Ä hungry 

f4 = tom + prop Ä timid s4 = blackie + prop Ä frisky 
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f5 = tom + prop Ä tall s5 = blackie + prop Ä friendly 
 

Drama's  output is presented in table 18.  The same solution is arrived at by a
majority  of  human  subjects  who  attempt  the  same  problem  (Holyoak  and  Thagard,
1989).  How Drama is able to solve this semantically deficient analogy is basically by
'guessing'.  Once Drama  has attempted the analogy and been unable to construct any
network  based  on  semantic  information,  it  simply  assumes  that  structurally  similar
matches are possibly correct (see section 4).  People seem to use a similar strategy in
trying to solve this type of analogy (Keane, 1995).

Table 18

Drama’s Solution to the Structure-only Analogy
Accepted
Mapping

Activation

s1 = f1 0.78332
s2 = f2 0.78122
s3 = f3 0.76499
s4 = f4 0.76084
s5 = f5 0.77494
rover = bill 0.86825
smart = hungry 0.86403
tall = friendly 0.86790
steve = fido 0.76395
tom = blackie 0.86316
timid = frisky 0.76087

 
Given this example, it is evident that Drama can perform structure-only analogies

without necessitating a structure-only (or structure-mostly) mapping engine such as those
used by ACME and SME.  Once again, this example demonstrates that Drama provides
an architecture which successfully amalgamates both structural and semantic constraints
without sacrificing the strengths of either.

6. Evaluation of Drama
In the following sections, we examine Drama's neurological and psychological strengths
and weaknesses with respect to ACME, SME and Copycat.  This analysis allows us not
only to contrast and compare Drama with ACME, SME and Copycat, it also highlights
the  ability  of  Drama  to  provide  accounts  of  phenomena  left  unaddressed  by  its
predecessors.  This discussion demonstrates how Drama both incorporates and extends
the scope of current computational models of analogy.

6.1. Neurological Plausibility
Drama's  neurological  plausibility  is  inherited  from  the  neurological  plausibility  of
distributed  representations.  However,  the  neurological  plausibility  of  distributed
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representations is quite general.  In other words, there is evidence that representations of
this kind are used in the brain (Churchland and Sejnowski, 1992), but the precise nature
of the representations is not understood (e.g., Are they HRRs? Are they tensor products?
What dimensions do they represent?  Are they encoding real values?, etc.).  Furthermore,
there is little specific data as to what neural structures are used in analogical reasoning,
and  Drama  does  not  incorporate  specific  anatomical  or  physiological  constraints. 
Nevertheless,  using  distributed  representations  makes  Drama  more  neurologically
plausible than predecessor models.  Gentner and Markman (1993) have gone so far as to
claim that analogy may be the Waterloo of distributed representations, suggesting that
models  with  even  Drama’s  limited  degree  of  neurological  plausibility  would  not  be
forthcoming. 

In the case of SME, standard symbolic representations are used.  In both ACME
and Copycat, however, connectionist ideas are incorporated to a degree.  In particular,
both  models  take  advantage  of  parallel  processing.  However,  both  models  use  less
neurologically  plausible  localist  representations  (Churchland  and  Sejnowski,  1992). 
Thus,  both  models  rely  on  symbol  manipulation  to  perform the  analogical  mapping
process,  whereas  Drama  manipulates  vectors  containing  distributed  representations. 
Mitchell  (1993) expresses a desire to have Copycat  achieve the level  of  neurological
plausibility achieved by Drama (p. 226-7):

It may be that these (distributed) systems are more neurologically realistic
than  Copycat,  but  their  distance  from  the  cognitive  level  makes  the
problem of controlling their high-level behavior quite difficult... Ideally, a
model  should  be  constructed  in  which  a  structure  such  as  Copycat’s
Slipnet arises from such a low-level, distributed representation...but again
the types of symbolic manipulations that have been achieved so far are not
nearly complex enough to implement the types of processing performed
by Copycat.
One  property  of  Drama  which  is  open  to  criticism  as  being  neurologically

unrealistic  is  its  construction of  localist  representations for  potential  mappings in  the
mapping  network.  However,  such  a  network  could  remain  as  a  distributed  HRR
representation (see appendix B for an example).  Notably, such an encoded network can
be manipulated in its distributed form (Plate, 1994). These translations would likely not
affect Drama's overall behavior, though this remains to be seen.

6.2. Psychological Plausibility
The HRRs used by Drama degrade, are subject to noise, and provide imperfect recall
under  certain  circumstances,  all  of  these  properties  are  psychologically  realistic.  A
number  of  other  systems,  including  CADAM,  CHARM,  and  TODAM2,  use  similar
encoding schemes to provide convincing models  of  human memory access  (Metcalfe
Eich, 1985; Murdock, 1987; Plate, 1994).

Drama  takes  advantage  of  these  properties  through  consistent  encoding  of
conceptual information used in analogical mapping.  Drama maintains concepts complex
enough  to  query  and  to  compare  directly  with  one  another  to  determine  semantic
similarity.  For example, the concept ‘dog’ can be queried with: “What is a dog?”  The
program will respond “animal, animate, mammal, etc.”.  Or it can be queried with: “Tell
me about Fido.”  The response will be “small, white, frisky, etc.”  The first sort of query
accesses the concept's ISA relations and the second sort accesses properties of a particular
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dog.  This sort of conceptual encoding allows for a large amount of semantic information
to be available for use in the analogical mapping process.  Furthermore, these encodings
are used consistently in all of the example applications of Drama presented in this paper.

The psychological plausibility of the conceptual encoding used in Drama is made
evident  by  the  ability  of  the  model  to  account  for  the  effects  of  systematicity  and
semantic  similarity  in  analogical  mapping  in  children  (see  section  5.2).  In  this
experiment, Drama was able to reproduce the interacting effects of semantic similarity
and  systematicity  in  its  mapping  of  selected  animal  story  analogs.  In  the  same
experiment,  the semantic similarity system parameter provided an explanation for the
variation in mapping abilities between age groups in mapping animal story analogies (see
section 5.2).  The ability of Drama to reproduce the behavior of two test groups across
two interacting psychological variables with solely the variation of one system parameter
is due to the interacting effects of semantics and structure in the model.  Perhaps this
example makes most clear the strengths of adopting the view that cognition is equally and
concurrently sensitive to structure and semantics.

Though both the conclusion concerning asymmetrical mappings (section 5.4) and
the account of the effects of systematicity in mapping provided by Drama are due to the
importance of semantics to the model, we have not sacrificed generality to achieve  these
results.  The performance of Drama on the structure-only analogy of section 5.5 shows its
ability  to  handle  semantically  barren  examples.  Furthermore,  misleading  semantic
information, such as that provided by Gentner for the flow analogy does not disrupt the
model (see section 5.3).  So, Drama has integrated semantics and structure in such a way
that increases its psychological plausibility compared to current models, which we would
expect given the claims of cognitive linguistics (Langacker, 1986).

Though Drama  settles  the  potential  mapping  network  in  the  same manner  as
ACME, the fact that it uses a different representational scheme, and a different method
for  constructing  the  mapping  network  serves  to  markedly  improve  its  performance. 
Mitchell (1993) insists that ACME is a poor model of human analogy-making for four
reasons:

1.   ACME's method results in computationally infeasible and psychologically
implausible mapping networks;

2.   ACME's representations are rigid and hand tailored for each new analogy;

3.   Semantics play a secondary role in the mapping process in ACME;

4.   Concepts are devoid of depth, or richness.

Drama,  however,  is  not  subject  to  these criticisms.  First,  Drama's  algorithms
provide  very  different  and  generally  much  smaller  mapping  networks  than  those
produced by ACME for the same problems (see table 19).  The networks tend to be
smaller  because  Drama  uses  the  semantic  information  available  to  exclude  highly
improbably mappings that are considered by ACME.  We have found no evidence that
these smaller networks are less able to solve a given analogy. 

Table 19

Comparison of Network Sizes for ACME and Drama in Number of Unitse

Example ACME Drama
Cannibals 144 84
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Heat Flow 127 35
Laser Convergence 192 117
Structure-only 43 43
Non-systematic Animal 125 ~52
Systematic Animal 214 ~188

 
Second,  Drama's  representations  are  not  ‘rigid’ representations.  The  precise

representation used in an analogy may vary between runs.  As well, Drama consistently
uses  an  encoding scheme which  captures  aspects  of  human conceptual  organization. 
Thus, Drama’s representations are not "hand-tailored" as Mitchell claims those of ACME
are.  However, the input itself is hand-tailored to some degree; the same degree as for any
model of analogy handling equally complex real-world analogies.  Third, semantics play
a central role in Drama's recognition of potential mappings (see section 4).  Lastly, the
representations  available  to  Drama  are  rich.  The  semantic  structure  of  individual
concepts  can  be  captured  through  encoding  both  properties  and  ISA relations.  The
animal stories examples in section 5.2 provides a simplified example of the conceptual
richness available in any of Drama's analogies.

6.3. Shortcomings and Future Improvements
Though  Drama  has  its  limitations,  these  should  be  regarded  in  the  context  of  other
available models.  In this context, we believe Drama is a significant improvement over
current models as we have already shown.  In this section we discuss the shortcomings of
the model as well as improvements that are within the scope of the current model.

The  ‘noisiness’  of  HRRs  has  important  consequences  for  its  encoding  and
decoding accuracy.  As noted in section 3, HRRs need to be 'cleaned up' in order to be
recognized by the system (this occurs by finding the nearest known neighbor to a given
decoded vector).  This cleaning up process means that it is possible for a vector to be
decoded incorrectly if the representation is noisy enough and the vector space is very
crowded.  Thus,  the  complexity  of  our  conceptual  space  using  HRRs  is  limited  and
proportional to the number of neurons being used to encode that space.  Having to clean
up each decoded vector by comparing it to every item in memory is a very expensive
process.  This is the means of clean up used in Drama,  but is not the only available
alternative.  All that is necessary is for the clean up to either return a nearest neighbor
(with the assumption that the neighbor is the ‘clean’ version of the given noisy vector) or
to note that the noisy vector is not recognized.  In the examples we ran, the number of
stored vectors was small enough to perform this function exhaustively (i.e. comparing
every item).  With many more items in memory, special attention may have to be paid to
precisely how this process is carried out, in order for it to be completed in a reasonable
time and at a reasonable cost.  It  is not clear how different memory structures would
affect the behavior of Drama.  However, the general fact that the decoded vectors are
noisy does not have an adverse affect on the behavior of Drama and may, in fact, provide
more psychological realism than non-noisy representations.

As a psychological model, Drama’s shortcomings can be seen in its inability to
account  for  asymmetry  in  the  cannibals  example,  despite  Drama’s  theoretical
commitments being appropriate ones for solving this problem (Gholson, et al., 1988). 
Furthermore, Drama cannot account for certain psychological data, such as the effects of
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the order in which propositions in an analogy are presented to a subject (Keane, 1995). 
Of  greater  concern  is  the  effect  of  the  programmer’s  choices  on  the

representations used in analogical mapping.  Though Drama generates (or could learn)
the contents of HRRs, determining the set of propositions to be mapped necessitates the
intervention  of  the  programmer.  However,  this  is  the  case  for  all  current  models  of
analogy. 

A  concern  more  specific  to  Drama,  is  that  of  incorporating  distributed
representations of  the networks to be settled.  Though Drama  can clearly encode the
structure of a generated mapping network, how the activations of network nodes and
weights of links would be encoded and updated is not so easily resolved, though there are
a number of options (see appendix B for further discussion).

Learning, which is an important part of repeated analogical mapping, is a multi-
faceted problem.  As noted, learning representation contents could be naturally included
in a distributed model like Drama (section 3).  However, the ability to learn common
mappings, and re-representation of certain structures to aid complex mappings, is not as
straightforward a problem.  Increasing saliency of elements in a structure is possible with
HRRs,[4] and increasing familiarity could be accomplished through minor architectural
changes.  In particular, rather than having a single large memory for all vectors, we could
identify multiple types of memory, such as short  term memory and working memory
which  would  hold  only  certain  vectors,  depending  on  their  relevance  to  the  current
mapping problem and past mappings.  However, the details of these architectural changes
need to be worked out and may adversely effect the current performance of the model.

Unlike  these  more  difficult  changes,  we  feel  Drama  needs  only  minor
modification to account for the other two steps in analogical reasoning; application, and
retrieval.  Consider first the application stage of analogical reasoning (section 2), which
includes  behaviors  such  as  candidate  inference  and  schema  generation.  Schema
generation could be accomplished by binding a superposition of example role fillers (i.e.
the fillers in the target and source) into that same role in the schema.  The result would be
a schema with the same structure, but with combined (in a sense generalized) semantics,
as one would expect.  Furthermore, the type of encoding used in Drama has been shown
to facilitate queried analogies of the sort: “mother is to baby as mare is to what?”  These
A:B::C:? analogies which have been modeled using tensor products by Halford, et al.
(1994)  could be encoded into Drama-like representations.  In  fact,  by introducing an
"unknown"  element  into  the  examples,  the  results  of  mapping  that  element  can  be
interpreted as an inference to the value of the unknown element.  This procedure has been
used in ACME to perform inference and would transfer neatly to Drama since many of
their  mapping  results  agree.  However,  ACME  is  often  overly  powerful  at  such
inference.  Using  the  semantic  information  available  in  Drama  to  limit  acceptable
inferences would likely lead to more plausible results.

Perhaps  the  most  obvious  extension  to  Drama  is  an  account  of  retrieval  (see
section 3).  Plate (1994) provides a discussion of the ability of HRRs to capture both
structure and semantics in a single vector.  This makes it extremely easy to find similar
vectors, and thus analogical sources, in very large memories.  Once a number of sources
have been recalled, comparative mappings could be performed using the current version
of Drama.  Plate (forthcoming) provides a detailed discussion of the degree to which
structure is preserved in HRR encodings.  From his results, it seems that the retrieval
process  can  be  performed  efficiently  and  effectively.  The  possible  source  analogies
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retrieved could then be used directly by Drama.

7. Distributed Models of Analogy
There are currently few distributed models of analogy, as methods for encoding structure
in distributed representations have become available only recently.  To the best of our
knowledge, Drama is the only conjunctive coding (i.e. HRR, tensor product, etc.) model
of analogical mapping that handles cases more complex than simple single proposition
A:B::C:D  analogies  (Halford,  Wilson  et  al.,  1994).  However,  another  model,  LISA
(Learning and Inference with Schemas and Analogies), also claims to be a distributed
model of analogy and uses dynamic binding  instead of conjunctive coding (Hummel,
1994; Hummel and Holyoak, 1997).

LISA has been successful in solving simple analogies and future versions of this
model may well solve models as complex as those presented in this paper.  Like Drama,
LISA is  semantically  driven,  stochastic,  and  reliant  on  connectionist  principles  for
implementation.  However, there are a number of important differences between LISA
and Drama.

The  first  difference  is  that,  because  of  inherent  limitations  of  the  LISA
architecture, it is far from clear that the model will be able to handle sufficiently complex
analogies.  The two most evident limitations of LISA are that it is only able to store one
proposition in working memory at a time, and that it can only represent one structural
level  at  a  time.  These  limitations  suggest  that  LISA would  not  be  able  to  handle
examples such as the flow analogy (section 5.3),  because there is no mechanism that
would allow a distinction between the pressure-temperature mapping and the diameter-
temperature mapping.  In other words, LISA would have no way to compare these two
mappings as there would be no "memory" of one mapping while the other was being
evaluated since only one proposition can be in working memory at a time. 

Furthermore,  with only one structural  level  available in working memory at  a
time, there does not appear to be a way for LISA to distinguish between two of the same
second-order propositions in one "story".  For example, if there were two causal relations
with propositions in each place in a target, LISA would not be able to distinguish them in
their  mappings  to  a  source  with  two  similar  causal  relations.  Since  semantic  and
structural  information  for  the  "next  level  down"  can  not  be  brought  to  bear  on  the
problem  (i.e.  loaded  into  working  memory),  LISA would  not  be  able  to  make  the
appropriate distinctions between mappings and could not determine the best mapping. 
Therefore, LISA could not solve the extended version of the heat flow/water flow analogy
discussed at the end of section 5.3.

These same limitations provide LISA with a distinct advantage over Drama.  It is
undeniable that there are limitations on the capacity of human working memory (Miller,
1956; Halford et al.,  1994).  Currently, Drama  does not sufficiently account for these
limitations,  though there is  a  limitation on the size of  the conceptual  memory in the
Drama model.  However, it is far from clear that LISA has done a satisfactory job in
accounting for these limitations either.  As noted, LISA seems to be more limited in its
capacity to perform analogical  mappings than humans.  Neither Drama  nor LISA are
clearly better when it comes to modeling this aspect of human performance.

Aside from these implementation difficulties, there are problems with theoretical
commitments implemented in LISA.  Though Hummel and Holyoak (1997) claim that
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LISA is a distributed model, it is only partially so.  Only low-level semantic information
is  encoded in  a  distributed  manner.  The structural  relations  amongst  components  of
propositions are encoded using purely localist  methods.  There are units  dedicated to
entire propositions, as well as each sub-part of the proposition.  This form of encoding is
highly unrealistic (Churchland and Sejnowski, 1992).  Drama,  in contrast, encodes all
structural and semantic information in the same way, using distributed representations.

Furthermore,  semantic  information  encoded  in  LISA  relies  on  “semantic
primitives” that are defined based on the intuitions of the researcher (Hummel, personal
communication).  Though  this  is  not  an  uncommon  approach  to  encoding  such
information,  HRRs  do  not  have  to  rely  on  such  intuition.  HRRs  could  be  encoded
directly from environmental input although in Drama they are random (which is still
independent of the researcher).  Intuiting which semantic information is to be explicitly
encoded  leads  to  inconsistencies  in  the  input  used  for  LISA.  In  one  example,  the
property of a beam being "strong" is encoded as distributed semantic information.  In a
different example, the property of a person being "smart" is  encoded through localist
structural information.  How one makes such a distinction between two properties, both
of which play identical roles, seems to be a matter of convenience.  In other words, the
encoding of a particular problem seems dependent on what LISA "needs to know" to
solve that problem.  Furthermore, LISA encodes all types of semantic information in the
same way, with no distinction between 'ISA' relations and properties.  In contrast, Drama
consistently accepts properties as encoded as 'prop Ä <property>' and distinguishes these
from 'ISA' relations which are encoded solely as superpositions.

On the  more  neurological  side,  LISA has  a  strong  commitment  to  synchrony
binding  as  a  means  of  encoding  structural  relations.  Though  there  are  a  number  of
connectionist models which use synchrony binding, the neurological evidence for this
sort  of  mechanism  is  controvertible  (Hardcastle,  1997).   Recent  psychophysical
experiments  by  Kiper,  et  al.  (1996)  have  shown  that  the  physiologically  observed
oscillatory responses in the human brain are unrelated to the processes underlying visual
segmentation and perceptual grouping.  It is these exact responses that are often used as a
basis  for  justifying  a  commitment  to  neural  synchrony  as  a  means  of  solving  the
perceptual binding problem (Gray and Singer, 1989; von der Malsburg, 1983; Singer,
1991).  LISA uses  synchrony  binding  in  a  similar  way  to  capture  the  structure  of
propositions.  So, it seems that Kiper, et al.'s results lessen the neurological plausibility of
LISA.  Furthermore, synchrony binding models tend to share a commitment to localist
encodings in order to facilitate binding by neural synchrony (Shastri and Ajjanagadde,
1993; Park and Robertson, 1995).  In general, then, it is not at all clear that a completely
distributed model could be forthcoming with a commitment to synchrony as found in
LISA.

8. Conclusions
Drama  is  an  improvement  over  currently  available  models  of  analogical  mapping in
terms of both neurological and psychological plausibility.  The numerous examples in
this  paper  provide  ample  evidence  of  the  ability  of  Drama  to  provide  a  distributed
account of structurally complex tasks.  In other words, Drama has successfully applied
connectionist ideas to a high-level cognitive task, undermining the claims by Fodor and
Pylyshyn  (1988),  Fodor  and  McLaughlin  (1989),  and  others  that  distributed
representations are not able to provide good models of cognitive tasks more obviously
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suited to symbolic representations.
Drama  is able to both account for and extend the successes of its predecessor

models SME, ACME, and Copycat.  Compared to LISA, Drama is more faithful to the
commitments  of  distributed  computation  and  representation,  and  is  likely  more
neurologically  realistic.  Most  notably,  Drama  is  able  to  successfully  model  the
developmental  changes  in  analogical  performance  on  the  basis  of  a  decrease  in  the
importance of similarity as children grow older.  This kind of result lends support to the
theoretical commitment of Drama to integrate structure and similarity.  Without such a
commitment, we feel it is unlikely that Drama would be as successful in modeling such a
wide variety of analogical phenomena.
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Appendix A
The Details of HRR Operations

Consider a set E of elements which are holographic reduced representations (HRRs).  A
member  of  E  is  an  n-dimensional  vector  whose  contents  may represent  an  image,  a
proposition, a concept, etc. The prima facie similarity of two vectors is captured by their
dot product.  The operations necessary to encode and decode HRRs can be understood as
follows:

Let  be the space of item vectors in n-dimensions, and let  be the space of
stored vectors in n-dimensions.

Let

be the encoding operation (circular convolution),

be the decoding operation (circular correlation), and

be the superposition operation (addition).  These three operations make it possible
to store any relations necessary for generating the network of relations amongst elements
of E.

More precisely, the circular convolution operation Ä is often referred to simply as
convolution and consists of the following operations for c = a Ä b where a, b, and c are
n-dimensional vectors:

co = aobo + anb1 + an-1b2 + ... + a1bn
c1 = an-1bo + an-2b1 + ... + anbn
M
cn = anbo + an-1b1 + ... + aobn
or

for j=0 to n-1 (subscripts are modulo-n)
This operation can be represented as:
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Figure 8. Visual representation of circular convolution (adapted from Plate
(1994)).

Similarly,  the  circular  correlation  operation  #  is  often  referred  to  simply  as
correlation and consists of the following operations for d = a # c:

do = aoco + a1c1 + ... + ancn
d1 = anco + aoc1 + ... + an-1cn
M
dn = a1co + anc1 + ... + aocn
or

for j=0 to n-1 (subscripts are modulo-n)
This operation can be represented as:

Figure 9. Visual representation of circular correlation (adapted from Plate
(1994)).

Notably, the correlation of two vectors a # c can be written as a* Ä c where a* is
the approximate inverse of a which is defined as:

Let
a = {ao, a1, ..., an}

then

a* = {ao, an, ..., a1}

Though the exact inverse, a-1, could be used to decode a Ä c exactly, this process
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results in a lower signal-to-noise ratio in the retrieved vectors in most instances.
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Appendix B
Example Encoding of a Settling Network

Table  20  summarizes  the  encoding  of  the  settling  network  for  the  Cupid  analogy
presented in section 4.  In order to encode a settling network, it is necessary to introduce
the relationship ‘maps’ and the operators ‘excite’ and ‘inhibit’.  Notably,  the example
analogy does  not  have any inhibitory  links,  but  they would be  encoded in  the  same
manner as the excitatory links. 

Table 20

Example Encoding of a Settling Network
Node Encoding

N1=rel Ä maps + object Ä C3 + agent Ä P3 + excite Ä N2 + excite
Ä N3 + excite Ä N4

N2=rel Ä maps + object Ä C1 + agent Ä P1 + excite Ä N1 + excite
Ä N3 + excite Ä N4  + excite Ä N5  + excite Ä N6  + excite Ä
N7

N3=rel Ä maps + object Ä C2 + agent Ä P2 + excite Ä N1 + excite
Ä N2 + excite Ä N4 + excite Ä N8

N4=rel Ä maps + object Ä cause + agent Ä cause + excite Ä N1 +
excite Ä N2 + excite Ä N3

N5=rel Ä maps + object Ä feels + agent Ä sees + excite Ä N2 +
excite Ä N6 + excite Ä N7

N6=rel Ä maps + object Ä heart + agent Ä observer + excite Ä N2 +
excite Ä N5 + excite Ä N7

N7=rel Ä maps + object Ä arrow + agent Ä beauty + excite Ä N2 +
excite Ä N5 + excite Ä N6

N8=rel Ä maps + object Ä pang + agent Ä hurts + excite Ä N3
 

In addition to the encoded network presented in table 20 it is necessary to encode
the excitation or inhibition weights and the current activation of each node.  There are a
number of options for doing this.  It could be supposed that a separate vector of current
activations and weights was maintained, or that an activation operator could be defined
and attached to each node.  In the latter case, the activation vector would be interpreted
differently  than  a  standard  vector,  i.e.  as  encoding  a  value  rather  than  a  position  in
concept space (Abbott, 1994).  In the case of weights, this sort of encoding could be used
as one element in the two place relations ‘excite’ or ‘inhibit’.  It is important to note that
the network settling could take place in the encoded form.  HRRs need not be decoded in
order to perform structural manipulation (see Plate, 1994).

Unfortunately,  using encoded settling networks greatly increases the execution
time  of  network  construction  on  a  serial  computer.  Network  construction  would  be
slowed for two reasons.  First, the dimensionality of the concept space would have to be
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increased to allow accurate decoding in light of the additional vectors needed to encode
the  network.  This  increase  in  dimensionality  would  slow the  network  construction. 
Second, a minimal increase in time would come from the encoding process itself when
constructing the nodes.  Because run times of the current analogies are on the order of
days, it is not currently feasible to use encoded networks in our examples.  This extension
could be feasible on faster hardware or, preferably, through a parallel implementation.

Integrating Structure and Meaning: A Distributed Model of Analog... http://watarts.uwaterloo.ca/~celiasmi/Papers/ce.pt.2001.drama.cogs...

45 of 47 11/28/08 10:57 AM



Appendix C
Complexity Analysis of the Worst Case

The length of time needed to construct a network using the algorithm presented in section
4 varies as a function of the number of vectors in memory (V) and the dimensionality of
each vector (N).  The most important operations for constructing the network are the dot
product,  which  is  O(N)  and  the  decode  operation  which  consists  in  V  dot  product
operations and is thus O(NV).  Proceeding through the algorithm step by step, we find the
following:

Step 1: We need to perform V2 dot products – O(NV2).
Step 2: We need to compare all results to a threshold and in the worst case construct V2
nodes – O(V2).

Step 3: We must perform a decode operation, O(NV), for each of V2 nodes – O(NV3).
Steps 4 and 5: These link constructions are on the order of V – O(V).
Step 6: Like the link steps, this step is dependent on the maximal number of constituents
in any proposition which must be less than V.  Thus, the size of the network cannot be
greater than V2 – O(V2).
Steps 7 and 8: These steps do not occur in the worst case.  When they do occur, their
complexity is much less than that of step 3.

Given this analysis, it is clear that step 3 determines the order of the algorithm,
which is O(NV3).

Of course, this analysis is for the complexity on a serial computer and does not
reflect the length of time of execution on a parallel machine.  Most importantly, both the
dot product and the decode operation can be done in a single step on a parallel machine. 
Thus, the high complexity does not reflect negatively on the algorithm in a neurological
context.

The problem of network settling is known to be NP-hard (Thagard and Verbeurgt
1998).  However, similar problems can be closely approximated (.878) with polynomial
time algorithms (Feige and Goemans 1995).  All of our examples settled quickly and
scale  about  linearly  with  the  network  size  (For  a  more  in-depth  treatment  of  the
computational properties of settling the networks and a characterization of the functions
being minimized see Thagard and Verbeurgt (1998)).

*    Thanks  to  Tony Plate  for  his  insights  into  the  workings  of  HRRs.  We also  appreciate  the  helpful

comments of Graeme Halford and two anonymous reviewers which helped improve this paper.  This

research has been supported by the Natural Sciences and Engineering Research Council of Canada.

[1] The order of a relation is dependent on its position in the structure of a proposition.  For example, a

first-order relation relates objects: e.g. "The bat hit the ball."  A second-order relation relates a first-order

relation with either an object or another first-order relation: e.g. "John caused the bat to hit the ball."

[2]   In all instances, every operation is followed by a normalization to the unit hypersphere.  This simply
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scales all results so as to render direct comparison of them feasible.

a   Horizontal lines denote a progression from object to relational to system-level mappings (see footnote

1).

[3] A constituent is an element of a proposition.  Therefore a constituent type is a particular type of element

encoded in to a proposition.  For example, the HRR proposition C1 = relation Ä feels + object Ä arrow +

agent Ä heart has three constituent types, namely relation, object and agent.

b   For every occurrence of “RandVec” a new random vector is generated.

c   The extra propositions necessary for the systematic version of the story are shown in brackets (adapted

from Gentner and Toupin, 1986).

d   Adapted from Gentner and Toupin (1986).

e   The ‘~’ signs on the Drama network sizes indicate that these values are averages of various runs. The

network size varies slightly because of the stochastic nature of Drama’s representations.

[4]   In particular, the more times an element is added to a structure, the more salient it is in that structure. 

Thus the result of (A Ä B + C Ä D + E Ä F) # A will be less like B than the results of (A Ä B + A Ä B +

C Ä D) # A.
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