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Introduction and model description
There remains a large difference between the kinds of mod-
els typical of cognitive neuroscience versus those typical of
systems neuroscience: the former tend to be ‘high-level’,
where components of the model are very large portions of
cortex and the relevant behaviors are cognitive, whereas the
latter tend to be ‘low-level’, where each component is a
single cell and the relevant phenomena are sub-personal.
This is true despite the fact that researchers in these areas
share a similar interest in brain-based explanations of be-
havioral phenomena. In this paper I apply the neural engi-
neering framework (NEF) described in Eliasmith & Ander-
son (2003) to describe a model that is both ‘high-level’ and
‘low-level’. I do this by constructing a biologically detailed
model of a traditionally cognitive phenonema – logical in-
ference.

Logical inference, or deductive inference, is an ideal
exemplar for this work because it is generally consid-
ered a phenomena that can only be explained with so-
phisticated, language-like processing. Indeed, it has been
widely suggested that neurally plausible architectures do not
naturally support structure sensitive computations, thereby
demonstrating that understanding neural computation is
not relevant for understanding cognitive function (Fodor
& Pylyshyn 1988; Jackendoff 2002). However, since the
early 1990s, there have been a series of suggestions as to
how to incorporate structure sensitive processing in mod-
els employing distributed representations (including Spat-
ter Codes (Kanerva 1994); Holographic Reduced Repre-
sentations (HRRs; Plate ); and Tensor Products (Smolen-
sky 1990)). Some of these approaches have been used to
build models of cognitive phenomena (Eliasmith & Thagard
2001).

However, none of these methods have been employed in a
biologically plausible computational setting. The NEF pro-
vides principles by which various levels of description of
neural function can be integrated. This model integrates
the relevant physiological and anatomical data from frontal
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cortices (Wharton & Grafman 1998), HRR representations,
and human performance on the Wason card selection task
(Wason 1966; Cheng & Holyoak 1985). Specifically, I de-
scribe a dynamic spiking network model that learns the rel-
evant transformations of structured representations in differ-
ent contexts, based on past experience.

The network receives input from: a) VMPFC which pro-
vides familiarity of content information that is used to select
the appropriate transformation (Adolphset al. 1995); b) left
language areas which provide HRR representations of the
rule to be examined (Parsons, Osherson, & Martinez 1999);
and c) ACC which gives an error signal consisting of either
the correct answer or an indication that the response was
correct or not (Holroyd & Coles 2002). The model itself is
of the right inferior frontal cortex where VMPFC and HRR
information is combined to select and apply the appropriate
transformation, to solve the Wason task (Parsons & Osher-
son 2001). It is during the application of the transformation
that learning also occurs. This biologically plausible net-
work accounts for the difference in the typical correct ver-
sus incorrect responses to content-dependent and content-
independent versions of the Wason task respectively. In ad-
dition, it explains why those trained in logic do better on
the content-independent tasks (Rinella, Bringsjord, & Yang
2001).

Model derivations and results
Here we demonstrate how the main computations can be per-
formed in a spiking network using NEF and present some
results.

HHRs in spiking networks
Following Plate (), structure is encoded in a representation,
using circular convolution (⊗), which implements a kind of
vector binding. In order to decode the structure circular cor-
relation (⊕) is used. These operations are defined as:
C = A⊗B and B ≈ A⊕C
cj =

∑n−1
k=0 akbj−k bj =

∑n−1
k=0 akcj+k.

where subscripts are modulon. It is often simpler to use the
‘involution’ or approximate inverse (′) in defining transfor-
mations of HRRs, where

A′ = (ao, an−1, an−2, . . . , a1)
I ≈ A′ ⊗A.



As a result, the following identity holdsA⊕B = A′ ⊗B,
which is useful since convolution is associative and commu-
tative but correlation is neither.

To implement convolution in a spiking network using the
NEF, we first define the encoding and decoding for a vector
x:

Encoding

ai(t) =
∑

n

δ(t− tin) = Gi

[
αi

〈
x · φ̃i

〉
m

+ Jbias
i

]

Decoding
x̂ =

∑

i,n

hi(t− tn)φx
i

whereδi(·) are the spikes at timestnfor neuronai, gen-
erated by the nonlinearityGi(here, a LIF neuron). Theαi is
a gain,φ̃i is the preferred direction vector of the neuron in
stimulus space, andJbias

i is a bias current that accounts for
background activity. For the decoding,hi(t) are the linear
decoding filters which, for reasons of biological plausibil-
ity, we take to be the (unweighted) post-synaptic currents
(PSCs) in the subsequent neuron. The decoding vectors,φx

i ,
are found by a least-squares method.

Assuming this kind of vector representation in four popu-
lations,a, b, c, andd we can now implement the convolution
function by using the convolution theorem. First, the two
vectors to be convolved are projected through the FFT ma-
trix into a middle layer:

ck([AFFT ,BFFT ])

= Gk

[
αkφ̃k([AFFT ,BFFT ]) + Jbias

k

]

= Gk

[∑
i ωikai +

∑
j ωjkbj + Jbias

k

]

whereωik = αkφ̃k1...kN
WFFT φA

i . Then the element-wise
product is extracted and the IFFT is performed, giving

dl(A⊗B)

= Gl

[
αlφ̃l(WIFFT (WFFT A.WFFT B)) + Jbias

k

]

= Gl

[
αl

(
φ̃lWIFFT

∑
k ckφA.B

k

)
+ Jbias

k

]

= Gl

[∑
k ωlkck + Jbias

l

]

whereωlk = αlφ̃lWIFFT φA.B
k . This derivation demon-

strates how spiking networks, without nonlinear dendritic
interactions can compute complex, nonlinear functions like
convolution. The implementation of convolution in a spik-
ing network is shown to be successful in figure 1.

Learning HRR transformations
In order to explain the results of the Wason task, we need to
transform HRRs encoding the rule being examined appropri-
ately. For the example rule “If there is a vowel on one side of
the card, there is an even number on the other side”, we can
write: R = ante⊗vowel+rel⊗impl+cons⊗even. The
typical answer for this ‘abstract’ Wason task is for subjects
to choose to turn over the cards with vowels and with even

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

0

0.5

  
U

  
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

0

0.5

  
V

  
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

0

0.5

  
U
⊗

V

Circular Convolution for 6D Vectors

Figure 1: Convolution of two 6 dimensional vectors in a
spiking network.

numbers. A transformation of the rule that provides these
results would beT1 = ante′ + impl′ ⊗ rel′ + conseq′,
sinceT1 ⊗ R ≈ vowel + even. However, in the more
familiar ‘permissive’ task, signalled in the model by differ-
ing activity from the VMPFC, subjects tend to choose the
correct answer (vowel and not even).

To model learning of these different transformations
in different contexts, we extend the work of Neumann
(2001). She noted that to find some unknown transfor-
mation T between two vectorsA and B, we can solve
T = circ(

∑m
i Bi ⊕ Bi)−1(

∑m
i Bi ⊕ Ai), wherecirc(·)

is the circulant matrix andm is the number of examples.
However, notingBi ⊕ Bi ≈ 1 this can be simplified to
T = 1

m

∑m
i Bi ⊕Ai. This can be implemented using the

standard delta ruleTi+1 = Ti −wi(Ti −Ai ⊕Bi), where
wi is an adaptive learning rate inversely proportional toi.
This rule needs to be written in terms of individual neural
firing. The somewhat involved derivation results in the rule:

∆wjl = κ δE
δωjl

= κ

αj‖φ̃j‖
[∑

k ωjkzk −
∑

j′ ωj′jyj

]
(yj > 0)xl

As demonstrated in figure 2, this rule leads to succesful
learning, and allows for the switching of learned transfor-
mations.

Results

The entire network consists of nine interconnected popula-
tions for a total of approximately twenty thousand neurons.
This network is able to reproduce the typical results from the
Wason task under both the abstract and permissive contexts,
as shown in figure 3.
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Figure 2: Learning of two different 6 dimensional vectors
under two different contexts.
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vowel, 0.03848

 even, 0.030762

ante, 0.019420

vowel, 0.753407

not_b, 0.660395

ante, 0.036040

vowel, 0.096732

not_b, 0.058189

ante, 0.018582

vowel, 0.770367

even, 0.627271

not, 0.283298

vowel, 0.120566
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ante, 0.027278

vowel, 0.747545

not_b, 0.676916

ante, 0.03642

vowel, 0.057156

even, 0.016832

not_b, 0.009485

vowel, 0.788069

even, 0.638051

not, 0.288477

Figure 3: The results from the entire network. The answers
are type written above the decoded neural output. As ex-
pected, during the first phase (after a brief learning period),
in the permissive context, the correct responses are given.
In the second phase (a ‘no task’ period) no answer is given,
and in the third phase, in the abstract context, the wrong re-
sponses are given. This pattern is repeated twice, to demon-
strate that the learning is not destructive.
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