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Abstract: To have a fully integrated understanding of neurobiological systems, we 

must address two fundamental questions: 1. What do brains do (what is their function)? 
and 2. How do brains do whatever it is that they do (how is that function implemented)?  
I begin by arguing that these questions are necessarily inter-related.  Thus, addressing one 
without consideration of an answer to the other, as is often done, is a mistake.  I then 
describe what I take to be the best available approach to addressing both questions.  
Specifically, to address 2, I  adopt the Neural Engineering Framework (NEF) of 
Eliasmith & Anderson  (2003) which identifies implementational principles for neural 
models.  To address 1, I suggest that adopting statistical modeling methods for perception 
and action will be functionally sufficient for capturing biological behaviour.  I show how 
these two answers will be mutually constraining, since the process of model selection for 
the statistical method in this approach can be informed by known anatomical and 
physiological properties of the brain, captured by the NEF.  Similarly, the application of 
the NEF must be informed by functional hypotheses, captured by the statistical modeling 
approach. 

1. Introduction 
Theoretical approaches to cognitive science (which I take to include both psychology 

and neuroscience) often attempt to construct models of human or animal behavior.  These 
neurocognitive models are unique in science in that there are often two distinct modeling 
relations of relevance to their construction.  Usually, when developing a theoretical 
description of a physical system, a scientist needs to concern himself or herself solely 
with the most effective way to quantify the observed behavior of the system.  This is true, 
for instance, when modeling mechanical, chemical, environmental, geological and other 
such physical systems.  This characterization, however, does not accurately describe the 
task undertaken by theorists in cognitive science.  This is because cognitive modeling 
essentially entails a kind of “meta-modeling” – modeling a system itself taken to be 
modeling its environment.  The system that the neurocognitive theorist is attempting to 
describe is taken to have its own internal model (or representation) of the world.  As a 
result, building models in the cognitive sciences means it is essential to address two 
modeling relations; that between our description and the physical system, and that 
between a physical system itself and the world. 

When considering questions of functional integration, both of these modeling 
relations are important to consider.  And, I believe that these two relations can be 
captured by answers to the following two questions: 

 
1. What do brains do (what is the relation between the system and its environment)? 
 
2. How do brains accomplish their functions (what is the relation between physically 

measurable variables of the system and our quantitative description of their 
interactions across various levels of detail)? 
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 By merely supposing that there are two modeling relations addressed by cognitive 
theories, we have delineated a reply to the first question: brains build and employ 
(adaptive, partial, approximate, etc.) models of the world.  Of course, this is not a 
satisfactory answer to that question because it is far too vague and so we must answer it 
more detail.  I will outline what I take to be a promising approach to characterizing the 
appropriate class of models in section 3.1   

Notice, however, that addressing the system-world relation (i.e. taking cognitive 
systems to model the world) cannot complete our theoretical characterization of the 
system.  After all, we have not yet said anything about the "usual" modeling relation, that 
between the physical system and our mathematical description of it.  As a result, it is 
crucial for theoreticians in cognitive science to address this relation, captured by question 
two.  That is, it is essential to explicitly describe how the physical brain could implement 
and use the model we take it to be constructing, given our answer to question one. 

Supposing that there are two distinct questions which must be addressed by cognitive 
models, what is the relation between them?  Before describing their specific relation, it is 
first important to establish whether they are related at all.  Here, I argue that they are 
intimately related.  Furthermore, it is fair to say that the vast majority of work in 
psychology and neuroscience has been focused on one question or the other – seldom 
concurrently addressing both.  I would also suggest that it is not unfair to assert that 
psychology has focused on the first question, whereas neuroscience has attended largely 
to the second.  For example, the vast majority of psychological models have not worried 
about biological realism, assuming that it can be added subsequently (including classical 
(e.g., SOAR (Newell, 1990)), connectionist (e.g., NETtalk (Sejnowski & Rosenberg, 
1986)), and dynamical (e.g. MOT (Busemeyer & Townsend, 1993)) work).2  Similarly, 
the vast majority of work in theoretical neuroscience has characterized implementation 
issues (e.g. information transfer (Rieke, et al., 1997), "fine-tuning" of neural integrators 
(Koulakov, Raghavachari, Kepecs, & Lisman, 2002), attractor networks (Amit, 1989), 
etc.).  Admittedly, since there must be some function that is implemented by a neural 
system, the work in theoretical neuroscience cannot completely avoid the issue of 
function (just as the work in psychology cannot completely avoid issues of 
implementation). Nevertheless, the functions theoretical neuroscientists have focused on 
tend to be simple, low-dimensional, and considered in isolation (i.e. not as part of a 
larger, functionally integrated system, or internal model).   

While a divide and conquer approach may often be reasonable in dealing with a 
system as complex as the brain, such an approach is seldom, if ever, successful when 
pursued in isolation; that is, without equal consideration given to the synthesis of the 
parts (Bechtel & Richardson, 1993).  Thus, it is a mistake to solely consider function and 
implementation as distinct as seems to be the status quo in psychology and neuroscience.  
Rather, it is essential to address the theoretical issue of large-scale, biologically plausible 
functional integration in a unified manner.  It is difficult to overstate how difficult this 
challenge is.  As a result, in this paper my goal is not to provide a polished solution to 

                                                 
1 The question of whether or not biological systems model the world is beyond my current scope.  I 

presume that they do, and refer interested readers to relevant psychological and neuroscientific work (e.g., 
Johnson-Laird, 1983; McIntyre, Zago, Berthoz, & Lacquaniti, 2001)(Wolpert, Goodbody, & Husain, 1998). 

2 This is true even though degrees of biological inspiration may partly distinguish kinds of 
psychological model. 
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this challenge, but rather to suggest, and provide a reasonable amount of detail about, 
approaches which I think hold the most promise for successfully meeting this challenge.   

The remainder of this essay is structured as follows: I first introduce what I take to be 
a promising method for relating function to biologically realistic implementation (i.e. an 
answer to question two); I then introduce what I take to be a promising approach to 
addressing biologically relevant functions (i.e., an answer to question one); next, I 
address how these two methods can be integrated to provided the kind of unified 
approach to understanding cognitive behaviors that I have just suggested is essential.  I 
conclude with a brief discussion of the implications of this view. 

2. Implementation and the NEF 
In recent years, Charles Anderson and I have championed an approach to building 

large-scale biologically plausible models called the Neural Engineering Framework 
(NEF, Eliasmith & Anderson, 2003).  It consists of three basic principles, quantitatively 
characterized in the Appendix:3 

 1. Representation: Neural representations are defined by a combination of non-linear 
encoding and optimal linear decoding.  

2. Transformation: Transformations of neural representations are functions of the 
variables that are represented by a population.  

3. Dynamics: Neural dynamics are characterized by considering neural 
representations as control theoretic state variables.  

Neural representation (principle 1) is thus characterized by: 1) the (nonlinear) neuron 
tuning curve, which typically captures the relation of the response of a given cell to a 
stimulus (e.g. Gaussian tuning to the angle of a bar in the receptive field); and 2) a 
theoretically defined neural decoder.  This decoder is not directly empirically observable, 
unlike the tuning curve, but rather captures what information is extractable from the 
given response of the cell.  Notably, the decoder still has empirical consequences 
(namely, the size of synaptic weights), though these are only accessible in the context of 
a circuit.  For instance, if a circuit was needed to estimate the angle of an encoded bar, 
the responses of all neurons sensitive to encoded bar angles could be pooled, weighted by 
their decoders and the receiving neurons’ encoders (i.e., synaptic weight ≈ decoders × 
receiving_encoders), and then the subsequent population could be interpreted as 
representing the ‘bar angle’ scalar.  This simple kind of representation can be similarly 
used to represent vectors, functions, vector fields or other kinds of mathematical objects. 

Technically, the representation circuit described in the previous paragraph is the 
simplest possible transformation (principle 2): the identity function.  That is, the scalar 
‘bar angle’ is simply reproduced from one population to the next.  If, rather than finding 
decoders which decode the information encoded in the original population, we find 
decoders that decode some function of that information (e.g., two times ‘bar angle’, i.e., 
f(x)=2x), we can similarly define neural connection weights that effect this 
transformation.  The same is true for nonlinear functions as well (e.g., f(x)=x2).  In short, 
we can estimate any function by computing the appropriate linear decoders to extract that 

                                                 
3 While these principles have been extended in more recent work (Tripp & Eliasmith, in press), here I 

present their original formulation (Eliasmith & Anderson, 2003) which is simpler and does not detract from 
subsequent discussion. 
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function from the encoded information.  This holds regardless of the kind of 
mathematical object that is being represented. 

Finally, the dynamics principle (principle 3) brings the first two together, and adds 
the crucial dimension of time to the circuits.   Essentially this principle allows the 
representations of principle 1 to be combined with the transformations of principle 2 to 
define sophisticated dynamical circuits.  For instance, if we take the simple representation 
circuit described earlier, which computes the identity function, and make the sending and 
receiving populations the same, we have constructed a ‘neural integrator’.  This recurrent 
circuit will act like a memory (given a state, it will constantly try to preserve that state 
over time, decoding now what was encoded at the previous time step, i.e. constantly 
recomputing the identity function).  In short, this circuit defines a simple dynamical 
system, in terms of the representation defined by principle 1, using the transformation 
defined by principle 2.  In fact, the integrator just described has been used by a number of 
authors to explain the function of the nuclei prepositus hypoglossi in the brain stem, that 
controls horizontal eye position (Koulakov et al., 2002; Seung, 1996).  The general 
relationship between the three principles and a spiking neural population is depicted in 
Figure 1.  
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Figure 1: A generic neural subsystem . The outer dotted line encompasses elements 
of the neuron-level description, including PSCs, synaptic weights, and the neural 
nonlinearity in the soma. The inner dotted line encompasses elements of the control 
theoretic descriptions at the higher-level. The grey boxes identify experimentally 
measurable elements of neural systems. The elements inside those boxes denote the 
theoretically relevant components of the description.  For a formal description of these 
elements, see the Appendix (adapted from Eliasmith (2003)).   

 
In short, the NEF principles: a) apply to a wide variety of single cell dynamics; b) 

incorporate linear and nonlinear transformations; c) permit linear, nonlinear and time-
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varying dynamics; and d) support the representation of scalars, vectors, functions, or any 
combinations of these.  In addition, the principles are formulated so as to preserve our 
current understanding of the biophysical limitations of neural systems (e.g., the presence 
of significant noise, the intrinsic dynamics of neurons, largely linear somatic interactions 
of dendritic currents, etc.).  

There are number of sources for a detailed discussion of these principles and their 
application in addition to their original formulation (see, e.g., Eliasmith, 2005; Tripp & 
Eliasmith, in press).  For the purposes of this paper, what is most relevant is that this 
approach has been widely applied to constructing novel, large-scale, biologically realistic 
models.  These include models of the barn owl auditory system (Fischer, 2005), the 
rodent navigation system (Conklin & Eliasmith, 2005), escape and swimming control in 
zebrafish (Kuo & Eliasmith, 2005), the translational vestibular ocular reflex in monkeys 
(Eliasmith, Westover, & Anderson, 2002), working memory systems (Singh & Eliasmith, 
2006), and language-based deductive inference (Eliasmith, 2004).  Notably, these models 
span sensory, motor and cognitive systems across the phylogenetic tree.  Furthermore, the 
majority of these models have resulted in testable experimental predictions, some of 
which have been used to drive further experiment (see, e.g., Fischer, Pena, & Konishi, in 
press).   

The broad applicability and success of this approach warrants the suggestion that it 
captures some fundamental aspects of the relevant constraints on neural implementation.  
Currently, there are no obvious competitors to the NEF as a general approach for 
constructing large-scale mechanistic models the brain to the level of individual, spiking 
neurons.  As a result, it is natural to suggest this is our current best answer to the second 
question posed earlier: the principles of the NEF describe how functions are implemented 
in the brain. 

However, it should be clear from looking at these principles that they do not answer 
questions regarding neural function.  Instead, they define a kind of "neural compiler."  
Compilers, familiar from computer science, are methods of translation, not hypotheses 
about function.  Of course, the important point about translation is that expressions in one 
language may take widely varying resources to re-express in another.  Consequently, the 
mathematical expressions that are natural for describing certain functions may take an 
unacceptable number of neural resources to implement.  This, then, puts significant and 
important constraints on what functions brains actually implement.  It does not, however, 
tell us what those functions may be. 

3. Function and Statistical modeling 
Statistical modeling has historical roots in data collection and analysis for 

characterizing political states (hence ‘stat-istics’), and mathematical roots in probability 
and error theory.  In these contexts, it is practical considerations of the world that drives 
the use of statistics.  That is, descriptive statistics are used to describe the state of the 
world, including noise and variability in the measured quantities, and inferential statistics 
is used to pick out the important patterns in those often noisy, measured quantities.  In 
other words, the tools of statistics have been developed to effectively describe complex 
relationships given real-world data.  This, I take it, is a similar problem to that faced by 
biological systems.  
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What is important for cognitive science, and somewhat foreign to traditional 
approaches to the subject, is the centrality of uncertainty, ambiguity, and randomness in 
this understanding of biological function.   Biological systems are not designed to be 
absolutely certain of the identity of an object (“there is a dog 3 feet away”), but rather 
they are designed to be certain enough of its identity to allow appropriate response (“that 
is probably a dog, and is too close for comfort”).  To capture this deft handling of 
uncertainty, perceptual processes can be understood as constructing statistical models of 
perceptual data, which are used to infer likely states of the world given that data. 

We can begin to formalize this characterization by supposing there is some ‘data’, y, 
which is the contribution of world states to neural activity.  The purpose of perceptual 
systems is to construct and use a statistical model p(y) to be able to predict the data (and 
hence usefully characterize the world states).  Because this ideal data distribution will be 
enormously complex (as it is the probability of all possible data at all times), it is natural 
to consider a parameterized model (where the dimensionality of the parameters is much 
smaller than the dimensionality of the data).  The biological system thus must estimate 
the distribution of the parameters in order to reason about (i.e. predict) the data.  To 
estimate this distribution, the system needs data.  As a result, a kind of bootstrapping 
process, i.e., learning, is necessary to construct this model.  In practice, however, the 
parameterized model p(y,Φ), is also too complex to estimate directly.  Instead, it has been 
found that a lower bound on this model can be defined, and model estimation by 
maximizing this lower bound is feasible (usually given various further assumptions).  
This method is variously designated Variational Bayes (VB), Maximization of Free 
Energy, or Product Distribution (PD) theory (Friston, 2003; Hinton & van Camp, 1993; 
Wolpert, 2004).   

Notably, these methods for optimal model inference do not specify the structure of 
the model itself.  However, it has become clear that for many perceptual problems, a 
hierarchical model – often noted to resemble the hierarchical structure of the brain – is 
very effective.  Essentially, a higher level in the hierarchy attempts to build a statistical 
model of the level below it.  Taken together, the levels define a model of the original 
input data (see figure 1).  This kind of hierarchical structure naturally allows the 
progressive generation of more complex features at higher levels, and progressively 
captures higher order correlations in the data.  Furthermore, application of these bound 
maximization methods to such a model leads to relations defined between hierarchical 
levels that are reminiscent of the variety of neural connectivity observed in cortex: that is, 
feedforward, feedback, and recurrent (interlayer) connections are all essential. 

The power of these methods for generating effective statistical models is impressive 
(Beal, 1998).  They have been applied to solve a number of standard pattern recognition 
problems, improving on other state-of-the-art methods (Hinton & Salakhutdinov, 2006).  
However, there are two central issues regarding their application to biological systems 
that remain important challenges.  The first is the incorporation of time, and the second is 
an extension to motor control. 

While some recent work has incorporated time (Brand & Hertzmann, 2000; e.g., 
Taylor, Hinton, & Roweis, 2007), there is no detailed, theoretically well-founded 
approach to adding temporal information to such statistical models that is biologically 
plausible.  The Taylor et al. (2007) approach simply treats past times as additional fixed 
inputs to a two layer model.  The Brand & Hertzmann (2000) work models motion as a 
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Hidden Markov Model (HMM; i.e. discrete state transitions) with no attempt at biological 
plausibility. Our work has extended the bound maximization methods with a hierarchical 
model to include time, but made the unrealistic assumption that time steps are discrete 
and independent (Martens & Eliasmith, 2007).  It is thus reasonable to conclude that 
statistical models can be adapted to modeling temporal correlations, but current 
approaches are at early stages of development, especially in the context of biologically 
plausible constraints.   
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Figure 1: A hierarchical statistical model. Parameters, indexed over time, t, and layer, 

i, include ui(t) (the hidden cause, i.e., neural activity), Gi and Hi (generative and 
predictive matrices, i.e., synaptic weights), Pi and Qi (precision matrices, i.e., intra-layer 
synaptic weights on neurons computing error terms).  The dependence relationships of 
the model parameters/hidden causes are defined by arrows. Dotted lines indicate 
additional dependencies from model parameters at future or past times. 

 
Less has been done to explicitly relate statistical models to motor control (although 

see Todorov, 2007).  As Todorov (2007) describes in detail, it is nevertheless natural for 
this kind of perceptual approach to extend to stochastic optimal control.  Early on, 
Kalman (1960) showed that a simple optimal estimator, now known as the Kalman filter 
(KF), is a mathematical dual to the linear-quadratic regulator (LQR).  Todorov (2007) has 
generalized this result to maximum a posteriori (MAP) smoothing and deterministic 
optimal control for continuous state systems (of which KF/LQR duality is a special case).  
In short, the best ways of interpreting incoming information via perception, are deeply 
the same as the best ways of controlling outgoing information via motor action.  So the 
notion that there are a few, specifiable computational principles governing neural 
function seems plausible.  In other words, given this very recent result, it seems clear that 
there is the enticingly close quantifiable relationship between perception and action that 
we would hope for.  This recognition holds great promise as a means of constructing a 
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general, unified theory of brain function.  In sum, perceptual models are reasonably well-
established theoretical approaches, motor control problems can be shown to be dual to 
those approaches, and more ‘cognitive’ functions (e.g. decision making) will be the result 
of the interface between the perceptual and motor models. 

However, there are a wide variety of challenges faced by this view.  As Todorov 
(2007) notes in his concluding section, important research directions that are left open by 
his theoretical result relating motor and perceptual models include: motor learning and 
adaptation, neural implementation of optimal control, and hierarchical/distributed control.  
It is interesting to note that the perceptual duals of two of these concerns have already 
been addressed by the statistical models I introduced earlier (as such perceptual models 
are both learned and hierarchical).  What remains left open by both the motor and 
perceptual approaches to characterizing brain function that I have recommended here is 
implementation.   

4. Functional integration 
To this point, I have highlighted what I take to be promising answers to both the 

‘how’ and the ‘what’ questions: the NEF captures how the brain computes; the statistical 
approach captures what the brain computes.  Both the NEF and statistical approach are 
good candidates for supporting functionally integrated descriptions of neural systems 
because of their generality.  The NEF generalizes across representation of mathematical 
objects (scalar, vectors, functions, etc.), kinds of computation (linear, non-linear), cell 
models (rectified linear, leaky-integrate and fire, conductance based, etc.), and kinds of 
dynamics (linear, time-varying, non-linear, etc.).  The statistical approach generalizes 
across perceptual processes (object recognition, location estimation, multi-modal 
integration, etc.) and motor processes (path planning, feedback control, locomotion, 
target tracking, etc.).  Given these considerations, I am willing to make the claim that 
between these two approaches, there is no obvious gap in our ability to answer, in 
principle, the ‘how’ and ‘what’ questions completely. 

Nevertheless, given my suggestion (in section 1) that answers to these two questions 
must be unified, there remains more to be said regarding how the two approaches 
interact.  The broadest answer is simply that implementational constraints delimit 
possible function (which is why your desktop computer is not a truly universal Turing 
machine), and that functional specification is essential for realizing an implementation.  
So, in practice, the integration of ‘how’ and ‘what’ considerations is bound to be an 
iterative, bootstrapping process. 

One example of this kind of integration is the utility of the NEF for model selection.  
One of the greatest challenges with any statistical modeling is model selection.  Once a 
model is described, there are well-established and effective methods for parameter tuning 
and inference.  However, defining the model itself, i.e. picking parameters, making 
distributional and independence assumptions, etc., has few systematic constraints.  This 
challenge arises largely from the generality of the approach.  Any set of relationships can 
be modeled statistically – but clearly the brain is tuned to picking up and acting on a 
particular set of relationships.  In defining a model (e.g., picking the number of 
hierarchical levels, making assumptions about the forms of priors, etc.), we implicitly 
limit the relationships that can be described by the system.  As a result, one good test of 
the plausibility of a particular model is determining whether or not it can be neurally 
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implemented.  If we define a model which demands more neurons than available in the 
brain, or demands a higher precision of representation than available, or demands a 
limitless memory, we cannot take the model to be a reasonable choice for characterizing 
neural function.  In other words, the lack of constraints available in the statistical 
modeling approach can be supplemented with the systematic constraints on neural 
implementation identified by the NEF.  A statistical way of thinking about this 
integration is that the NEF provides a prior on possible models to be considered.  The 
three principles specify the form of ‘reasonable’ implementations of any statistical model 
the brain may construct of the world.  

The NEF itself is constrained not only by functional specification, determined by the 
statistical model that is proposed, but also by available data.  This allows for a bridging of 
the often large gap between detailed anatomical and physiological evidence and a high-
level functional description.  The NEF relies on information about tuning curves, 
projections between neural populations, single cell dynamics, etc. when helping to 
specify a particular simulation.  Integrating these approaches means that this information 
can also determine how a statistical model might be realized in neural tissue.  
Furthermore, high-level physiological data, like that available from fMRI and ERP, can 
be compared to activity generated by a large scale NEF simulation of a given set of brain 
areas (see e.g., Eliasmith, 2004).  In short, the NEF can serve as a conduit through which 
large-scale integrative functional hypotheses meet experimental evidence from a wide 
variety of neuroscientific methods. 

Together, the NEF and statistical approach identify and integrate what are often 
referred to as ‘top-down’ (functional) and ‘bottom-up’ (neurophysiological) constraints.  
As a result, the generality of the methods allow for ‘whole brain’ modeling (more 
accurately, many system modeling).  In fact, precisely this ability to support models that 
address a wide variety of neural function within a single model raise important challenges 
for the use of these combined approaches: in short, the price of generality is complexity.  
Consider, for instance, how we might model a task such as reaching for a moving object.  
To perform this task, the system must track (and hence predict) where the target will be 
given its current position.  This entails extracting motion information.  Motion 
information is available from a wide variety of stimuli, and hence the inclusion of motion 
information in the model needs to be extracted from a wide variety of stimuli.  In other 
words, we need a fairly sophisticated visual system in the model – one which we 
construct by specifying a hierarchical statistical model (perhaps only a few levels are 
necessary) that is then tuned by many example stimuli.  The representations available 
from this model then must be used to generate predictions, in a specific stimulus context, 
of how the object will move (thus implementing a state estimator). These predictions 
would then need to be used to determine a statistically optimal control signal to guide the 
(many-degree of freedom) motion of an arm, which must also be modeled by the system.  
Each of these aspects of the model could be implemented by determining the kinds and 
distribution of tuning curves evident in the relevant perceptual and motor areas, 
identifying appropriate single cell models, and specifying the necessary transformations 
to implement the needed mappings. 

Were this simulation to be built successfully on a first attempt, it would be a 
significant advance over currently available simulations.  The difficulty lies in the 
diagnosis and updating of the model in the much more likely case that a first attempt 
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fails.  That is, the ability to build large-scale, highly integrated models brings with it a 
great difficulty in ‘debugging.’  Unlike compartmentalized computer code, such a 
simulation is likely to need high-dimensional representations which unexpectedly interact 
(e.g., concurrent representation of current location and prediction of future location), and 
complex nonlinear transformations that are difficult to predict in a stochastic 
environment.  Of course, this kind of challenge may be appropriate in a highly 
distributed, multi-functional neural system.   As well, the NEF, with its capacity to 
describe the relation between various levels of representation (e.g. between single neuron 
and population-level representations) may go some way to making sense of the system 
for the purposes of debugging.  Nevertheless, many of the well-known challenges of 
designing and debugging analog systems (Sarpeshkar, 1998) become prominent with 
these kinds of models.   

The combination of the NEF and statistical modeling approach is uniquely general, 
and able to directly connect with neurally relevant data.  As a result, I have suggested that 
this marriage of methods is our best current approach for exploring more highly 
integrated, and larger scale neural models.  But, having identified methods that can 
subserve functional integration brings with them a price: increased design challenges.  
This is a price that must be paid if we are to gain a deeper understanding of neural 
systems.   

5. Conclusion 
 
Clearly, the project of this paper – to identify a promising route to generating 

functionally integrated neural models – is only a first and tentative step towards a 
challenging research goal.  Nevertheless it may be of interest to very briefly consider 
some of the many consequences of adopting this approach.  First, the traditional notion of 
‘representation’ does not naturally fit into this account.  Instead, representations are 
‘deeply statistical’ (i.e., representations are themselves statistical distributions).   

As a result of shifting our understanding of representations in this way, our 
understanding of inference naturally shifts from logical inference to probabilistic 
inference as well.  This is important for understanding how to design experiments that 
test hypotheses relying on these kinds of representations and transformations.   

Furthermore, given such an integrated approach to modeling will likely demand more 
sophisticated experimental approaches – approaches that carefully intermix perceptual, 
cognitive, and motor aspects in their entirety.  In short, such a view may help 
theoreticians get past modeling data, to modeling animals themselves.  After all, animals 
don’t control ‘button presses,’ but rather the complex, fluid, adaptive motion that leads to 
such a result. 

It is beyond the scope of this paper to compare and contrast these three considerations 
with past paradigms in the behavioural sciences.  Nevertheless, these brief suggestions 
may be enough to peek our curiosity sufficiently to revisit some of our assumptions about 
how best to describe brain function.  After all, if we really want to build a brain, we had 
better be convinced of the utility of our basic principles. 
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6. Appendix 
This appendix describes each of the three principles of the NEF quantitatively.  For 

simplicity only the vector case is considered.  Notably, function, scalar, and other 
representational forms are instances of vector representation – scalars being one-
dimensional vectors, functions being representable as a vector of coefficients defined 
over an orthonormal basis (which itself does not need to be represented), and so on. 

6.1.  Neural representation 
In the NEF, representation in neural populations is characterized in terms of a nonlinear 
encoding process and a linear decoding process (Eliasmith & Anderson, 2003).  Encoding 
involves converting a quantity, x(t), from stimulus space into a spike train: 

 
 [ ]( ) ( ( ))in i i

n

t t G J tδ − =∑ x  (0.1) 

 
where [ ]iG ⋅   is the nonlinear function describing the spiking response model (e.g., leaky 

integrate-and-fire, Hodgkin-Huxley, or other conductance based models), iJ  is the 

current in the soma of the cell, i indexes the neuron, and n indexes the spikes produced by 
the neuron.  Specifically, the current is given by 
 

 ( ) bias
i i i i iJ Jα φ η= ⋅ + +x x�  (0.2) 

 
where ( )iJ x  is the input current to neuron i, x is the vector variable of the stimulus space 

encoded by the neuron, iα  is a gain factor, iφ�  is the preferred direction vector of the 

neuron in the stimulus space, bias
iJ  is a bias current that accounts for background activity, 

and iη  models neural noise.  Notably, the dot product, iφ ⋅x� , describes the relation 

between a high-dimensional physical quantity (e.g., a stimulus) and the resulting scalar 
signal describing the input current.  In short, equation (0.1) captures the nonlinear 
encoding process from a high-dimensional variable, x , to a one dimensional soma 
current, iJ , to a train of spikes, ( )int tδ − . 

To understand how a neural system might use the information encoded into a spike 
train in this manner, we must characterize a neurally plausible decoding as well.  To do 
so we need to understand how this information can be converted from spike trains back 
into a relevant quantity in stimulus space.  Note that this does not mean that the decoding 
process takes place explicitly in neurons.  Rather, it is a theoretically useful means of 
characterizing part of the information processing characteristics of neurons. In the NEF 
we characterize decoding in terms of post-synaptic currents and decoding weights.  
Somewhat surprisingly, a plausible means of characterizing this decoding is as a linear 
transformation of the spike train.  Specifically, we can estimate the original stimulus 
vector ( )tx  by decoding an estimate, ˆ ( )tx , using a linear combination of filters, ( )ih t , 

weighted by decoding weights, iφ : 
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 ˆ ( ) ( ) ( ) ( )in i i i in i
in in

t t t h t h t tδ φ φ= − ∗ = −∑ ∑x  (0.3) 

 
where ‘∗ ’ indicates convolution.  These ( )ih t  are thus linear decoding filters which, for 

reasons of biological plausibility, we take to be the postsynaptic currents (PSCs) in the 
subsequent neuron.   

To find the iφ  weights to determine this estimate, we minimize the mean-squared 

error,   

 

[ ]

( )

2

,

2

, ,

1
ˆ( ) ( )

2

1
( ) ( )

2

t

i in i i
in

t

E t t

t h t t
η

η φ

= −

 = − − + 
 

∑

x

x

x x

x
 (0.4) 

 
where ⋅

x
denotes integration over the range of x, and iη  models the expected noise.  By 

optimizing with Gaussian random noise, we ensure that fine tuning is not a concern, since 
the decoding weights will be robust to fluctuations.  For biological plausibility, this error 
is solved allowing the linear decoders to be PSCs, hence the minimization is done only 
over x. 

Defining a nonlinear encoding and a linear decoding (over both time and populations 
of neurons) provides a general means for capturing time-varying neural representation. 

6.2. Neural computation 
As stated in principle 2, neural computation is a special case of neural representation.  

As a result, we can modify (0.4) to find optimal linear decoders for a function of the 
stimulus space, rather than the stimulus space itself, i.e.,  

 

 [ ]2

,

1
ˆ( ) ( ( ))

2 t
E t f t= −

x
x x  (0.5) 

 
Solving this equation provides optimal decoders f

iφ  which give an estimate of that 

function, rather than an estimate of the variable itself as in the representation case.  This 
implies that representation is a ‘degenerate’ computation where the function is merely 
identity.  This approach has been shown to work well for both linear and nonlinear 
function computation (Eliasmith & Anderson, 2003). 

 

6.3. Neural dynamics 
For generality, we can write the relevant dynamics of a population in control theoretic 

form, i.e., employing the dynamics state equation that comprises the foundation of 
modern control theory, 

  
 ( ) ( ) ( )t t t= +x Ax Bu�  (0.6) 
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where A is the dynamics matrix, B is the input matrix, u(t) is the input or control vector, 
and x(t) is the state vector.  In general, these matrices and vectors can describe a wide 
variety of linear, time-invariant physical systems.  Here, we use (0.6) to capture the 
hypothesized high-level dynamics of a population of neurons.   

 
Initially, this high-level characterization is divorced from neural-level, 

implementational considerations.  However, it is possible to modify these matrices to 
render the system neurally plausible.  First, we must account for intrinsic neural 
dynamics by converting this characterization into a neurally relevant one. To do so, we 
assume a model of PSCs given by ( ) 1 /th t e ττ − −= , and can then derive the following 

relation between (0.6) and a neurally plausible control theory: 
 

 
τ
τ

′ = +
′ =

A A I

B B
 (0.7) 

 

So our description of the high-level neurally plausible dynamics becomes 
 

 [ ]( ) ( ) ( ) ( )t h t t t′ ′= ∗ +x A x B u  (0.8) 

 
Notably, this transformation is general, and assumes nothing about the form of A or B.  
So, given any behavioral system defined in the form of (0.6), it is possible to construct 
the neural counterpart by solving for ′A  and ′B .  In fact, despite starting with linear 
time-invariant systems, these methods can successfully be employed to model a much 
broader class of dynamical systems.  A variety of applications of this method to linear, 
nonlinear, and time-varying neural systems is described in Eliasmith (2005). 

Next, we must incorporate this high-level description of the dynamics with our 
previous characterization of the neural representation.  To do so we combine the 
dynamics of (0.8), the encoding of (0.1), and the population decoding of x and u from 
(0.3).  That is, we take  ˆ ( )j jn jjn

h t t φ= −∑
xx  and ˆ ( )k kn kkn

h t t φ= −∑
uu , which gives 
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 (0.9) 

 
It is important to keep in mind that the temporal filtering is only done once (here 

included in the estimate of the signals), despite the fact that it is include in both (0.8) and 
(0.3). That is, ( )h t  in these equations both defines the dynamics and defines the decoding 
of the representations. To put it in a more familiar form, this equation can be written as 
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( ) ( )

( ) ( )

bias
i i i j jn j k kn k ijn kn

bias
i ij j jn ik k kn ijn kn

G h t t h t t J

G h t t h t t J

α φ φ φ

ω ω

  ′ ′− + − +
   

 = − + − +
 

∑ ∑

∑ ∑

x uA B�

 (0.10) 

 

where xA jiiij φφω '~α=  and uB kiiik φφω '~α=  are the recurrent and input connection 

weights respectively.  These weights will now implement the dynamics defined by the 
control theoretic structure from (0.8) in a neurally plausible network. 

Taken together, these three sections allow for the construction of large, spiking neural 
network models that implement a given (linear/nonlinear/time-varying) high level 
hypothesis about the function of a neural system, through the time-dependent 
transformation of neural representations. 
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