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ABSTRACT 
 

Questions concerning the nature of representation and what representations are about have been a staple of 
Western philosophy since Aristotle. Recently, these same questions have begun to concern neuroscientists, who 
have developed new techniques and theories for understanding how the locus of neurobiological representation, 
the brain, operates. My dissertation draws on philosophy and neuroscience to develop a novel theory of 
representational content. 

I begin by identifying what I call the problem of "neurosemantics" (i.e., how neurobiological 
representations have meaning). This, I argue, is simply an updated version of a problem historically addressed by 
philosophers. I outline three kinds of contemporary theory of representational content (i.e., causal, conceptual 
role, and two-factor theories) and discuss difficulties with each. I suggest that discovering a single factor that 
provides a unified explanation of the traditionally independent aspects of meaning will provide a means of 
avoiding the difficulties faced by current theories. My central purpose is to articulate and defend such a factor. 

Before describing the factor itself, I summarize the necessary background for evaluating a solution to the 
problem of neurosemantics. The resulting analysis results in thirteen questions about representation. I provide a 
methodological critique of the traditional approach to answering these questions and argue for an alternative 
approach. I discuss evidence that suggests that this alternative provides a better means of characterizing 
representation. 

After having established the nature of the problem and a preferred methodology, I briefly describe my 
theory of content. I then outline a neurobiologically motivated theory of neural computation that I and others 
have helped Charles H. Anderson develop. I use the computational theory show how to mathematically define the 
relations relevant to understanding representational content at various levels of analysis. I then show how this 
theory can be made philosophically respectable and integrated with the theory outlined earlier. I then answer each 
of the thirteen questions about representation.  

In conclusion, I defend this theory from potential philosophical criticisms. This defense includes an 
explication of how concepts are to be accounted for on this theory, and a consideration of the problem of 
misrepresentation. I also show how this theory is immune to the standard critiques facing each of causal, 
conceptual role, and two-factor theories of content. 
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CHAPTER 1 

Setting the Stage 

God is in the details. – Mies van der Rohe (1886-1969) 

1 In the beginning 

God, some say, is in the details.  Others think that is where the Devil resides.  In the case of cognition, the details 
are details about the brain.  Surprisingly, perhaps, both views are right; these details are beautiful and difficult.  
There are few, if any, philosophers and neuroscientists who would disagree on this point.  Nevertheless, there are 
many philosophers and neuroscientists who think that these same details, no matter how beautiful or difficult, 
have nothing to do with a proper characterization of our mental lives.  The debate between reductionists and anti-
reductionists regarding mental function focuses on just this issue: mental function can be reduced to neural 
function, or it cannot be.   

This is not, as some may suspect, a conflict between neuroscientists and philosophers.  There are those 
philosophers who think neuroscience is the only way to properly explain mental function (see e.g. Churchland 
1981), and there are those neuroscientists who think neuroscience won’t ever succeed in explaining aspects of 
mental function (see e.g. Eccles 1974).  In the middle of these two extremes lies the position I would like to 
assume as a working hypothesis; namely that neuroscience is at least relevant to helping us solve some problems 
about mental function.  This, I take it, is a weak enough position so as to be as untendentious as any.   

Even those, like Jerry Fodor (1975), who famously argue against there being any priority to neuroscience 
when it comes to understanding cognition, admit that knowing neuroscience may help us know things about 
mental function: brains, after all, “do their mental stuff” (1998, p. 89).  As Fodor (1975) is at pains to point out, 
however, admitting that much is not admitting very much at all: while physical brains may do mental stuff, it 
doesn’t follow that mental objects and relations can be reduced to physical objects and relations (p. 17).  While 
this may be logically true, it is methodologically naïve to conclude from this that we should rhetorically wonder 
“Why, why, does everyone go on so about the brain?” (Fodor 1999).  It seems rather obvious why “everyone” 
interested in mental function goes on so about brains: brains are the only agreed upon instances of physical 
systems exhibiting mental function.  Methodologically speaking, if we get a good theory about how brains 
perform the mental functions they do, we have at the very least a partial theory of how physical things give rise 
to mental things (or realize mental relations).  Such a partial theory would be a great improvement over what is 
currently on offer, even if it is only partial.  And, of course, there is always the prospect that such a theory can be 
generalized to cover more than brains: we can’t rule out this possibility without having seen such a theory to start 
with.  These, I take it, are good reasons for thinking that knowing neuroscience will help unravel some of the 
mysteries of our mental lives. 

In particular, I believe that one of the problems neuroscience can help solve is that of characterizing the 
relationship between mental representations and the world they represent.  This is not a unanimous belief.  
Drestke (1995), for example, claims: “A working premise behind the Representational Thesis is that a better 
understanding of the mind is not to be obtained by knowledge – no matter how detailed and precise – of the 
biological machinery by means of which the mind does its job” (p. xiv).  In other words, thinking of mentality as 
being centrally representational is logically independent of what we know about brains (Fodor would agree).  
Notice that Dretske doesn’t deny the utility of neuroscience, he denies that neuroscientific data alone can suffice 
to explain all possible mental representation.  Put this way, neuroscientists should not have problem with 
Drestke’s claim for two reasons.  First, neuroscientists don’t just generate data, they also generate theories which 
explain the data.  Second, neuroscientific theories may be theories about mental representation without theories 
of mental representation being neuroscientific theories.  Thus, if a theory generated by a neuroscientist speaks to 
the problem of mental representation (as it can), it can’t be dismissed just because a neuroscientist generates it – 
that would be pure ad hominem.  We can conclude from this that philosophers and neuroscientists can both 
generate theories about representation and, whatever the theory, it must respect neuroscientific data.  In this 
respect at least, philosophers and neuroscientists might share some research territory. 

In fact, philosophers and neuroscientists do both generate theories about representation in 
neurobiological systems (Millikan 1984; Dretske 1988; Miller, Jacobs et al. 1991; Abbott, Rolls et al. 1996; 
Rieke, Warland et al. 1997; Fodor 1998).  However, there have been few attempts to provide theories spanning 
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these disciplines.  Indeed, neuroscientists and philosophers of neuroscience have both commented on the 
surprising lack of attempts to provide such a theory in any detail (see, e.g., Churchland 1993; Crick and Koch 
1998, p. 103).  Neuroscientists tend to be preoccupied with anatomical and physiological connections between 
stimuli and their neural effects (see, for example, any recent issue of The Journal of Neuroscience), while 
philosophers concentrate on questions concerning content or meaning of mental states (see, for example 
Cummins (1989), or any recent issue of The Journal of Philosophy).  Conversely, neuroscientists seem to be 
uninterested in the metaphysical status of representations and the representation relation, while philosophers tend 
to assume that they can “leave the details to the neurophysiologist” (Dennett 1969, p. 42; Dretske 1988, esp. ch. 
3;  see also Fodor 1998, pp. 7, 73).   

Given these divergent interests, we might think that neuroscientists and philosophers are both interested 
in representation, but they are interested in quite different questions concerning representation.  Perhaps the 
central questions of these two disciplines are independent.  Philosophers have, indeed, argued that neuroscience 
isn’t relevant to theories of representational content (Fodor 1975; Dretske 1995).1  This seems false in two ways.  
First, if what is meant by ‘neuroscience’ is just ‘neuroscientific data, simpliciter’, then neuroscience may not 
determine theories but this data is certainly relevant; if your theory predicts lots of things that conflicts with lots 
of accepted data, so much the worse for your theory.  Second, it seems even less reasonable if what is (more 
reasonably) meant by ‘neuroscience’ is ‘theoretical and empirical work in neuroscience’.  Arguing that 
theoretical work in neuroscience isn’t relevant to theories of representation seems a bad idea simply because 
neuroscientists clearly have theories which quantify over representations.  Neuroscientists characterize lots of 
representation relations (Gross, Rocha-Miranada et al. 1972; Bialek, Rieke et al. 1991; Warland, Landolfa et al. 
1992; Rieke, Warland et al. 1997).  They are more than comfortable claiming things of the form ‘X represents Y’.  
This, of course, doesn’t mean that neuroscientists have the right theory of representation, but they do seem to be 
assuming some account of what the representation relation is and what representations are.  If philosophers are 
out give a theory of what the representation relation is and what representations are, work neuroscience is 
relevant because those philosophers will have to either say how neuroscientists are misusing the term, or how 
they are correctly using the term.  Either way, philosophers should not assume that neuroscience is irrelevant to 
their theories of representation. 

The converse is also true: neuroscientists should not assume that philosophy is irrelevant to their theories 
of representation.  As I have noted above, quantifying over representations and engaging in representational talk 
doesn’t entail a correct theory of representation.  Theories of representation, be they philosophical or 
neuroscientific, should address a number of concerns – most commonly voiced by philosophers.  For one, any 
theory of representation must be able to explain misrepresentation: How is it that some neural state, for example, 
can be about some state of affairs (e.g., a dog) when it is caused by a different state of affairs (e.g., a cat)?  For 
another, a simple causal theory of representation (assumed by much of neuroscience) won’t do.  We can’t, in 
other words, say ‘X represents Y’ just in case ‘X causes Y’.  The problem is simply that causal relations are far 
more common than representational relations.  Not only, for example, does the dog cause my ‘dog’ 
representation, but so do intervening states such as the photons hitting my retina, and so do preceding states such 
as the dog’s ancestors.  Where and how, philosophers ask, should we draw the line? 

What do these considerations show?  It seems to me that they show that the time has come for 
philosophers to take neuroscientific details seriously and for neuroscientists to address the kinds of questions 
philosophers pose about representation.  Of course, this conclusion is sound only if neuroscience and philosophy 
really do have a problem to share.  The best way to show unequivocally that this is to figure out what that 
problem is.  In the next section I consider the history of inquiry into the nature of mental representation, with an 
eye to discovering what might concern both neuroscientists and philosophers.  I then argue that these disciplines 
share a common interest in what I call the ‘problem of neurosemantics’ – the problem of how neurons mean.  I 
then argue that, despite philosophy’s traditional reliance on language as the route to understanding mental 
meaning, it makes more sense to approach the problem of meaning from a neuroscientific perspective.  In the 
final section of this introductory chapter, I outline how the remainder of this dissertation is structured.  As will 
become apparent, my goal is to provide a solution to the problem of neurosemantics that is of interest to both 
neuroscientists and philosophers. 

                                                      
1  Conversely, it’s hard to find neuroscientists dismissing the importance of philosophy.  However, neuroscientists also don’t 

dismiss the importance of economics to neuroscience, so it is largely unclear if they think philosophy is at all relevant to 
their work (thanks to Brian Keeley for pointing this out).   
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2 A brief history of mind 

For thousands of years we have been trying to understand how our perceptual experiences relate to the world that 
causes them.  In this section, I examine a small subset of these attempts in order to show that contemporary 
neuroscientific and philosophical inquiries into mental representation are both concerned with similar problems.  
I will show, in other words, that neuroscience and philosophy share a common ancestry when it comes to 
representational problems.  If this is indeed the case, perhaps it will be less surprising that theories of mental 
content, like the one I propose in chapters 5-8, can adopt insights from both disciplines.  The exemplar theories I 
have chosen span the approaches taken to understanding mentality in the Western tradition and include theories 
committed to dualism, materialism, empiricism and rationalism. 

Over a thousand years ago Stoicism, a philosophical school founded by Zeno (334-262 B.C.E.), 
developed a unique, materialistic theory of content.  The Stoics held that mental representations – what they 
called ‘impressions’ – were of at least two kinds, sensory and non-sensory:  

Sensory impressions are ones obtained through one or more sense-organs, non-sensory are ones 
obtained through thought such as those of the incorporeals and of the other things acquired by 
reason (Diogenes Laertius 7.49-51).2 

The roots of sensory impressions are in objects in the world that the Stoics label “impressors” (Aetius 4.12.1-5).  
Cicero, in his Academia, discusses how these sensory impressions inform non-sensory impressions that are then 
employed by the mind to build up complex representations, and eventually concepts, or “conceptions” (2.21).  
Impressors, as a class, are distinguished from “figments,” which cause “imaginations” and occur in “people who 
are melancholic and mad” (Aetius, 4.12.5).  A difficulty arises in distinguishing imaginations from conceptions 
because both have no impressor; e.g., there is no generic dog.  The Stoics solve this problem by claiming that 
conceptions, presumably unlike imaginations, are either “naturally” and “undesignedly” or “through instruction 
and attention” (Aetius 4.11.1-4) constructed from sensory impressions that are “arranged by their likenesses” 
(Cicero, 2.30-1).  This link to sense perceptions allows conceptions to be properly classified as non-sensory 
impressions. 

However, this solution raises a further question: How are those sense impressions related to sensory 
impressors?  The Stoics considered this question explicitly.  Diogenes Laertius, for example, suggests that 
“confrontation” is the link between impressors and sensory impressions (7.53).  Cicero speaks of impressions 
being “activated” by impressors (2.30-1).  Both solutions seem plainly causal: we have impressions of impressors 
because they cause those impressions in us. 

Having identified this relation, Laertius goes on to claim that there are many other kinds of links between 
impressions (sensory and non-sensory) themselves, including “similarity”, “analogy”, “magnification”, 
“diminution”, “transposition”, “combination”, “opposition”, “transition”, and “privation” (7.53).  So, for 
example, similarity of impressions can result in our tokening one when we token the other “like Socrates on the 
basis of a picture” (7.53).  For each kind of link, there is a different sort of rule relating impressions.  I will call 
such relations between representations transformations.  Transformations, then, are manipulations of 
representations in accordance with some rule.3  The Stoics took such transformations to be an important part of 
the explanation of our cognitive abilities. 

Whatever we may think of the Stoics’ classificatory framework or their characterization of possible 
transformations, it is of interest what they take their main problems to be.  There are three main concerns for the 
Stoics.  First, they are concerned with getting the right classification.  That is, they are attempting to identify 
different kinds of mental objects.  Second, they felt a need to posit the relation between those objects and the 
world.  For the Stoics, this link was a causal one.  These two concerns come together when the Stoics claim, for 
instance, that sensory impressions are directly caused by objects, whereas conceptions are more distantly related 
to the sensory impressions that give rise to them.  The Stoics, then, are interested in understanding the objects of 
thought and their relation to the world; i.e., mental representations and the representation relation.  Third, the 
Stoics are concerned about characterizing the relations between mental objects.  They want to account for how 
some impressions can give rise to others.  How, they wonder, do we get from mere “confrontation” to 

                                                      
2  All quotes are taken from (Long and Sedley 1987, pp. 236-253). 
3  It is unimportant, for my purposes, whether we consider transformations as relations between two representations, or as 

processes of manipulating a single representation. 
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conceptions?  In other words, they are interested in understanding the kinds of transformations that impressions 
can undergo.  In summary, then, the Stoics wondered 1) what the mind works on, 2) how that ‘mental material’ is 
given to us, and 3) how the mind does its work on that material. 

A thousand years later, empiricists and rationalists also wondered about human cognition.  Descartes, a 
rationalist, wanted to show that reason is less fallible than the senses.  The framework he relies on in arguing for 
this conclusion divides our mental life in to three separate, but related, “grades of perception”: 

In order rightly to see what amount of certainty belongs to sense we must distinguish three grades 
as falling within it.  To the first belongs the immediate affection of the bodily organ by external 
objects… The second comprises the immediate mental result, due to the mind’s union with the 
corporeal organ affected… Finally the third contains all those judgments which, on the occasion 
of motions occurring in the corporeal organ, we have from our earliest years been accustomed to 
pass about things external to us (Descartes 1641/1955, p. 251). 

The first grade, which Descartes calls “cerebral motion”, is the “passive” physiological transduction of sensory 
stimuli.  The second grade of perception arises in the mind because it is “intimately conjoined with the brain” 
(ibid., p. 252).  This grade of perception results from the mixture of the physical and mental.  It is here, in the 
second grade, that mental representations or “ideas” arise for Descartes (ibid., p. 52).  The third and last grade, 
called “judgment” by Descartes, serves to interpret the possibly misleading picture of the world presented via the 
two previous grades.  In cases of perceptual illusion (e.g., a straight stick that looks bent when placed into water), 
judgment can sometimes rectify the misleading representation presented by the first two grades. Judgment, for 
Descartes, serves to map our perceptions onto true or false propositions.  It is these propositions, present in our 
“understanding”, that Descartes is most interested in.  Nevertheless, as someone trying to understand the mind, he 
feels compelled to give a story of how judgments are related to the senses. 

Notably, Descartes’ three-part distinction was adopted by many subsequent perceptual theorists including 
Malbranche, Berkeley, and Reid (Atherton in press).  More importantly, despite providing a somewhat different 
picture of cognition than that adopted by the Stoics, Descartes has similar concerns.  Descartes wants to say how 
we get to our final, true/false judgments.  To repeat, his story is that we are physiologically “affected” by objects 
resulting in “sensations”, these then cause an “immediate mental result” (“perception”), via the pineal gland 
(Descartes 1641/1955, pp. 345-6), and finally we use such perceptions to form judgments about the world.  
Specifically, Descartes posits internal physiological representations, or “images,” in the first grade of perception 
(Descartes 1641/1955, p. 52), and properly so-called mental representations, or “ideas,” in the second.  Descartes 
also discusses how the mental representations are transformed into true or false judgments.  A judgment, it 
seems, is some kind of complex transformation that maps representations of perceived properties onto 
representations of actual properties.  Descartes discusses the example of seeing the sun as a small yellow disk 
about the size of our thumbnail, yet judging the sun to be a large sphere many times bigger than earth (Descartes 
1641/1955, p. 161).  Therefore, though Descartes’ story is significantly different than the Stoics, like them he 
posits mental representations, a relation between those representations and the world, and transformations of 
those representations to explain our mental life. 

Though on the other side of the rationalist/empiricist debate, John Locke (1700/1975) similarly 
characterizes the problems he is interested in.  He distinguishes between what he calls “simple” and “complex” 
ideas, and claims that the simple ideas are joined, by various means, to form the complex ones: 

For having by Sensation and Reflection stored our Minds with simple ideas…all our complex 
Ideas are ultimately resolvable into simple Ideas, of which they are compounded, and originally 
made up, though perhaps their immediate Ingredients, as I may so say, are also complex Ideas (II, 
22, 9). 

Though Locke is often criticized for his overly liberal use of the term ‘ideas’, which results in him conflating 
representations with their contents (see, e.g., Yolton 1993, p. 91-2), he clearly has some notion of mental entities 
that are causally derived from sensory receptors and that help explain mentation.  Locke, himself, occasionally 
refers to ideas as representations of things (II, 30, 5; II, 31, 6).  In particular, he thinks of simple ideas as 
“sensible representations” of the external world (IV, 3, 19) that are compounded to form all other ideas. 

Locke is greatly interested in the various means by which the ideas may be compounded.  He suggests a 
number different transformations (or “first Faculties and Operations of the Mind”) which ideas might undergo, 
including (much like the Stoics) “Composition,” “Enlarging,” “Abstraction,” and “Comparing” (II, 11, 4-14).   In 
particular, Locke, like Descartes, places much emphasis on the role of judgment, which, he suggests, “alters the 
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appearances into their causes” (II, 9, 8).  As an example of the role of judgment, Locke discusses “perceiving” a 
small golden globe, even though only (the idea of) a flat, shadowed circle is “imprinted” (II, 9, 8).  Judgment 
performs the important task of determining the actual properties of things from the properties we “receive”.  So, 
the basic features of Locke’s theory of mind are much like those of Descartes, and thus much like those of the 
Stoics: mental representations, causally related to external objects, are transformed by various means. 

Having survived over a thousand years, it is not surprising that this picture has survived three hundred 
more, to the present day.  Consider, for instance, the theory of mental representation espoused by Fodor (1975; 
1987; 1994; 1998).  Though Fodor’s theory of content has changed, the problem he is addressing remains 
essentially the same:  

[This], I suppose, is the problem of perception … For though the information provided by causal 
interactions between the environment and the organism is information about physical properties 
in the first instance, in the last instance it may (of course) be information about any property the 
organism can perceive the environment to have (Fodor 1975, p. 47). 

Fodor has unequivocally and consistently held a “representational theory of mind” (1998, p. 1).  He is quite 
explicit that this theory posits mental representations and that our mental life stems from computations over those 
representations (ibid., pp. 7-9).  Computations, of course, are a computer-age versions of transformations; mental 
computations are mental processes which modify (e.g., compound, associate, etc. (ibid., pp. 9-12)) mental 
representations.   

One important difference between Fodor’s inquiry and the historical inquiries I’ve considered so far is 
that Fodor, like most of his contemporaries, is more concerned about the representation relation than about 
representations or transformations.  The Stoics, Descartes, and Locke all assumed that the causal relation just 
automatically determined what mental representations were about; mental representations are about the objects 
that cause them.  Fodor and his contemporaries have realized that simple causation won’t properly explain what 
representations are about (see e.g. Dretske 1988, p. 74; Fodor 1998, p. 73).  If I am given a picture of a dog, for 
example, it is the picture that causes my mental representation, but it is the dog that my representation is about; 
representational content and cause can come apart.   

Fodor thinks that content is determined by “nomic relations” (ibid., p. 73).  So, for example, he claims 
that “‘dog’ [the word] and DOG [the concept] mean dog because ‘dog’ expresses DOG, and DOG tokens fall 
under a law according to which they reliably are (or would be) among the effects of instantiated doghood” (ibid., 
p. 75).  Fodor, then, posits some other kind of metaphysical regularity to underwrite the meaning of mental 
representations.  So, the picture of a dog may cause me to token my ‘dog’ representation, but that representation 
has a nomic relation with dogs, not pictures of dogs.  Therefore, that representation is about dogs, and not dog 
pictures. 

I have been tracing the history of these problems in order to show that neuroscience and philosophy share 
their genealogy.  But so far I have said little about neuroscience.  Notice, however, that the explanation provided 
by each of these schools of thought is progressively more ‘mechanism conscious’; i.e., the way sensation happens 
is becoming more important.  The Stoics compared perception to the imprinting of ring seals into wax (Laertius, 
7.49-51), and provided no explanation of how transformations occur.  Descartes (and even more so Malbranche 
(Atherton in press)) had a reasonably sophisticated physiological explanation (discussed in his Dioptrics), of how 
external motions were transduced into internal motions that were images of sensory stimuli.  Despite the very 
mechanistic view of the first two grades of perception, Descartes did not think it possible to give a mechanistic 
account of the third grade.  Locke, writing only a few years after Descartes, has a similar kind of story to tell.  
Fodor, though no friend of neuroscience (see e.g., Fodor 1995), has a very mechanistic view of mentation 
throughout.  For Fodor, representations are transduced by some purely physical process.  Furthermore, he 
supposes thinking to be computation (where by ‘computation’ Fodor means Turing-like discrete symbol 
manipulation (1998, pp. 10-11)).  Fodor has chosen, then, to adopt the mechanisms important for cognition from 
the field of computational theory (coupled with psychology).  Others choose to find the relevant mechanisms in 
neuroscience (Churchland 1989; Churchland and Sejnowski 1992; Akins 1996; Rieke, Warland et al. 1997). 

There are good reasons to look to neuroscience rather than to traditional computational theory.  Most 
importantly, computational theory places no constraints on what functions can be computed, and what the 
computations are defined over.  This leaves the problem of what and how things can be represented completely 
undetermined.  Neuroscience, on the other hand, is in the business of figuring out what constraints there are on 
neural processing: How many, and which, neurons represent what parts of the environment?  What intensity of 
external stimuli is needed to drive neurons?  What can neurons do (and what can’t they do)?    Neuroscientists, 
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then, take single neurons and groups of neurons to be representations (Gross, Rocha-Miranada et al. 1972; 
Felleman and Van Essen 1991; Abbott, Rolls et al. 1996).  Neuroscientists characterize the relation between 
these representations and the outside world (Rieke, Warland et al. 1997).  And, neuroscientists are interested in 
knowing what kinds of transformations the brain can perform on these representations (Andersen and Zipser 
1988; Zipser and Andersen 1988).  In each case, neuroscientists are asking the same sorts of questions as Fodor, 
Locke, Descartes, and the Stoics and, in each case, they are turning to the brain for constraints on the kinds of 
answers they can provide.  Unlike traditional computational theory, then, the solutions proposed by 
neuroscientists are constrained.  More importantly, these solutions are constrained by a system that is known to 
have the property we are trying to explain.  This doesn’t mean that computational systems can’t have meaning.  It 
does mean, however, that rather than assume something about the brain based on our computational theories, it 
makes more sense to try and understand computation as it relates to the brain (Churchland and Sejnowski 1992; 
Bower 1998).   

Psychology can help Fodor here.  In particular, psychologists discover constraints on mental processing 
by looking at real, thinking systems.  These are constraints that can be incorporated into theories of mental 
processing without turning directly to the brain.  But, we should notice something important about the current 
state of psychology: one of the most rapidly expanding sub-fields is cognitive neuroscience.  Even psychologists, 
Fodor’s one-time allies, are turning to the brain to get a better handle on the right mechanisms.  The mental 
vocabulary of these psychologists, much to Fodor’s chagrin, is quickly becoming permeated with terms from 
neuroscience: mental objects and processes are becoming understood in terms of (and type-identified with) 
physical objects and processes.  These psychologists, then, have accepted the conclusions of the methodological 
argument I presented in the first section: we should look at the brain to understand mental processes.  To 
summarize: even though we may agree with Fodor that computation, in some sense, is important for 
understanding mental processes, we need to turn to the brain to understand what that sense is. 

Historically speaking, it is perfectly natural to combine our best details about mechanisms in the brain, 
with our theories about mental representation.  Neuroscience, currently, provides those details.  I’m suggesting 
that we do the scientifically respectable thing and bring the evidence to bear on our theories, even on our 
metaphysical theories (see, e.g., (Quine 1960) for arguments to the effect that this is unavoidable).  Fodor is, 
again, right that all the details in the world about the brain won’t determine what content is, but whatever content 
is, it better be consistent with those details.  Perhaps, then, one good way to generate a theory of representational 
content that is consistent with these details is to keep the details in mind while generating the theory.  This is 
precisely what I propose to do. 

3 The problem of neurosemantics 

I propose, then, to tackle the same problem that the Stoics, Descartes, Locke, and Fodor are interested in, while 
paying heed to what we know about the brain.  Given recent developments in neuroscience, including brain 
scanning techniques such as PET and fMRI, long term inter-cellular recordings, and new theories on neural 
coding, there is good reason to believe that we are currently in a unique position to address this age-old problem. 
But what, precisely, is this problem? 

Recall that each approach I examined is concerned with three things: mental representations, the 
representation relation, and transformations of these representations.  Thus, they share a related family of 
questions.  Here are formulations of what I take to be central questions for each approach, formulated in their 
own terminology: 

Stoics: What is the nature of our various kinds of impressions?  How are they related to the world?  
And, how are the impressions related to each other?   

Descartes: What are sensory images and what are mental perceptions and how, precisely, are they 
formed?  What are the relations between sensed objects, sensory images, perception and 
judgment?  And, how does our judgment act on perceptions?  

Locke: How are simple ideas different from complex ideas?   What is the relation between our ideas 
and what they are ideas of?  And, how do our simple ideas combine to form complex ideas? 

Fodor: What properties do mental representations have?  What, if anything, underwrites the 
nomological relations between these representations and their contents?  And, what class of 
computations operate on these representations? 
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Neuroscientists: How do single neurons or groups of neurons represent? What is the relation between 
the neural representation and the external environment? And, what kinds of computation can 
biological systems perform on these representations? 

Some of these questions are never explicitly posed by a given school, but all either assume, assert or 
argue for an answer, and all are appropriate questions to ask.  As well, there is a common thread linking these 
problems together.  The common thread is the subject of these questions – us.  Human beings are, as far as each 
of these positions is concerned, an undeniable subject to which their concepts apply.  Furthermore, we, assuming 
materialism is correct, are neurobiological systems.4  Therefore, one problem these positions definitely share is 
the problem of how we, qua neurobiological system, have representational content.  As Dennett (1969) has put it: 
“What, if anything, permits us to endow neural states with content?” (p. 44).   This, I take it, is the ‘problem of 
neurosemantics.’ 

A few comments are in order.  First, I presume that a number of other questions will have to be addressed 
in order for this problem to be satisfactorily solved.  For example, what are neurobiological representations?  
How are the representations related to their contents?  How are contents related to one another (i.e., what 
transformations can be realized by neural computations)?  In other words, I take it that the problem of 
neurosemantics can only be solved if each of the three kinds of historical questions is answered.  I dedicate part 
of chapter 3 to deriving and posing a more complete set of questions. 

Second, I don’t intend to specify the particular transformations that obtain between our representations.  
A completed neuroscience is needed to do that.  What I do intend to provide is a framework that will help us 
identify, describe, and explain the kinds of transformations neurobiological representations can enter into.  
Recent theoretical advances in the neurosciences help provide (as I show in chapter 6) just this kind of 
framework.  These advances suggest a theory of content ascription that I outline and defend in chapters 5, 7 and 
8. 

Third, I would like to repeat a point I made in the first section of this chapter: although the problem of 
neurosemantics is possibly more limited than a problem about psychosemantics (to use Fodor’s term), this isn’t 
necessarily the case.  There are three well-known possibilities of the relation between these two problems: 1) the 
former may reduce the latter (Place 1959); 2) the former may eliminate the latter (Churchland 1981); or 3) the 
former can only ever provide a solution to a very limited and uninteresting subset of the latter (Fodor 1975).  
Only the last possibility entails that neurosemantics is a more limited problem.  Furthermore, it is possible that a 
theory of neurosemantics could be generalized to satisfy those who hold the third position.  I want to remain 
officially agnostic as to which of these relations holds between neural and psychological theories.  However, it 
should be clear by now that my hunch is that the third position can’t be right. 

4 Mental content 

In the last twenty or so years, there have been a plethora of philosophical theories trying to answer questions 
about mental content (see chapter 2).  They have run the gambit from covariance theories (Dretske 1981; Fodor 
1981; Dretske 1988; Fodor 1998), to functional role (Harman 1982; Block 1986; Harman 1987), to adaptational 
role (Millikan 1984; Dretske 1988; Dretske 1995).  These theories aren’t particularly concerned with neurons, but 
rather with mental states, mental representations, and concepts.  But, because these theories assume materialism 
to be true, there is a very clear sense in which they are assigning content to neurons.  In the remainder of this 
section I provide a brief characterization of what content is, such that it is assignable to neurons (as well as to 
concepts). 

Generally speaking, contemporary theories of mental content are part of a tradition concerned with 
linguistic content.  In this tradition, the content or meaning of a sentence is the abstract proposition that the 
sentences expresses.  Thus, the sentence ‘The star is bright’ expresses the same content as ‘Der Stern ist hell’ and 
‘L’étoile est lumineuse’ even though the sentence types are different.  For mental states, it would be the thought 
‘The star is bright’ that has this same content.  Content, then, is what a representation tells you about what it 
represents.  An equivalent way of saying this is that content is the set of properties ascribed to something by its 
representation.  Given this definition, two aspects of content become evident: there is the set of properties and the 

                                                      
4  Notably, Locke and Descartes did not hold materialism to be true.  However, this is essentially irrelevant to what they take 

the important problems to be; the metaphysics changes, but the questions don’t.  Of course, what counts as a good solution 
will be quite different. 
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thing they are ascribed to.  These two aspects have gone by the names of ‘sense’ and ‘reference’, ‘intension’ and 
‘extension’, and ‘meaning’ and ‘denotation’.  Whatever the choice of terms, there seem to be two different 
problems that need to be solved.  The first is the problem of fixing content, i.e., figuring out what the 
representation refers to.  The second is the problem of determining content, i.e., figuring out what properties are 
assigned to the object of the representation.  

To illustrate the difference between these two aspects of content, consider a variation of Frege’s 
(1892/1980) now famous ‘evening star’ example.  If I tell you that ‘The evening star is Venus’, then there is a 
possibility that I am telling you something new.  You may, in fact, quickly deduce that, since the morning star is 
Venus, the morning star is the same as the evening star.  The two aspects of content come apart in this example as 
follows: even though ‘the morning star’ and ‘the evening star’ are about the same thing, namely Venus, it may 
not be the case that the properties ascribed by someone’s representations ‘the morning star’ and ‘the evening 
star’ are the same.  So, even though the content may be fixed to the same thing, the content may be determined to 
be different.  My seeing the morning star and my seeing the evening star may both cause my content to be fixed 
to Venus, but I may ascribe different properties in each case (e.g., that one appears in the morning and the other 
in the evening). 

One way my talk of property ascription differs from standard accounts is that it is often thought that 
properties alone aren’t enough to understand content determination.  So, for example, even if all the properties I 
ascribed to the morning star and the evening star are the same, the claim would be that they still have different 
‘senses’.  This complaint can’t remain, however, once we realize that one of the properties ascribed by a 
representation to its object in virtue of its representing that object is that that particular representation ascribes 
those properties.  As tautologous as that may sound, it shows a minimal sense in which no two syntactically 
different terms could have identical senses; this is precisely the result that is desired by those lodging the 
complaint to begin with.  What they have failed to realize, it seems, is that claiming that all properties ascribed 
by two representations are the same entails that the property of being represented by that particular representation 
is the same (i.e., the syntax is the same).  Thus, it is impossible for the all of the properties to be the same and the 
senses to be different.  Therefore, it is perfectly acceptable to identify senses with the properties ascribed by a 
representation. 

So, how can neurons ascribe properties?  Consider a system of peripheral sensory neurons like those 
found in the eye.  These cells transduce light intensities and transmit a series of discrete, rapid, nearly identical 
voltage discharges (called ‘neural spikes’) down the optic nerve.  The pattern of spikes transmitted varies as a 
result of changes in light intensity.  If content is the set of properties ascribed to something by its representation, 
then the retinal ganglia neurons have content.  In particular, they ascribe the property of there being a certain 
temporal and spatial density of photons at a certain retinal location.  But, the real question is, can neurons have 
interesting content, i.e., content rich enough to underwrite our mental abilities?  Can we figure out how neurons 
might support not only a humdrum content at the sensory periphery but also the ‘full-blooded’ content of morning 
stars?  I think the answer to both questions is ‘yes’ (see chapters 5-8).  Notably, the term ‘content’ is often 
reserved solely for language, or language-like mental structures.  However, I will use the term ‘content’ more 
broadly, and take it as part of my project to show how a notion of ‘content’ can apply both to what is found in 
single neurons and to what is found in language-like mental structures; I am interested in understanding what 
unifies content, so understood. 

5 Language and meaning 

Frege’s distinction between ‘sense’ and ‘reference’ stems from his work on language.  For many philosophers, it 
is natural to extend insights about language to the mental realm.  The reasons are various.  For example, it is 
often argued that we think in a ‘language of thought’ that has all the structural properties of natural language (see 
e.g. Fodor 1975).  If this is true, any insights we gain about natural language apply equally to our mental 
language.  As well, some have argued that the purpose of language is to express our thoughts (see e.g. Chisholm 
1955).  In this case, studying the product of thought may give us insight into the processes that produce it.  
Nevertheless, I think there are better reasons not to rely heavily on insights about language for understanding 
thought.  In this section I show, contrary to the traditional approach in philosophy, why language is secondary to 
understanding mental content.  Although linguistic abilities must be accounted for by a theory of mental content, 
there are reasons to think we should avoid taking language as a starting point. 

Many philosophers who have proposed semantic theories have focused on the propositional content of 
beliefs and language (see e.g. Loar 1981; Evans 1982; Harman 1982; Lycan 1984; Block 1986; Fodor 1998).  
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This project has been less than obviously successful.  As Lycan (1984), a proponent of the approach, has put the 
point: 

Linguistics is so hard.  Even after thirty years of exhausting work by scores of brilliant theorists, 
virtually no actual syntactic or semantic result has been established by the professional 
community as known (p. 259). 

But Lycan, like most, is determined to continue with the project using the same methods, and shunning others: 
“And there must be some description of this processing that yields the right predictions without descending all 
the way to the neuron-by-neuron level” (ibid., p. 259).  After thirty (forty-five by now) years of difficulty, it 
seems rather likely that those neuron-by-neuron details actually do matter to a good characterization of the syntax 
and semantics of mental representations (and perhaps, through them, language).   

There are reasons other than a simple lack of success to think that language may not be a good starting 
point for such theories.  For one, many theorists agree that mental content should be naturalized.  That is, content 
deserves a scientific explanation that refers to objects found in nature.  Linguistic objects, like words, are 
presumably one kind of object found in nature.  But, it is a mistake to give an explanation of content in terms of 
words since this is to explain one poorly understood natural concept in terms of another.  In fact, such an 
explanation would be perfectly circular if we were giving an explanation of content that relied on the content-
carrying capacity of words. 

Worse yet, language is only one small domain of the application of natural content.  Language, as most 
linguists understand it, is a human specialization.  Thus it is unique to one species in millions.  This is a good 
reason to think that starting with language, or focusing on language, when constructing a theory of content is a 
dangerous tactic.  This is true unless we have prima facie evidence that most non-human animals don’t have 
internal representations; but we don’t.5  Furthermore, there is clear evidence that language is not necessary for 
content.6  People who have had the misfortune of growing up without natural language, but later learn language, 
are able to recall events that preceded their linguistic competence (Nova 1997).  So, we need a theory that can 
account for content in the absence of natural language.  Furthermore, the use of symbols for communication in 
the animal kingdom is rampant.  Bee dances, monkey calls, whale songs, bird songs, etc. are all instances of 
communicating properties of the environment via symbols that refer to the things having those properties.  So, it 
seems likely that it is much more common for there to be content without language than content with language.  
Content, it seems, is prior to language. 

In addition, if we think that linguistic capacities are the result of a somewhat continuous evolutionary 
process, then the fact that language is a human specialization suggests that it is a far more complex phenomenon 
than “merely” having neural states with content.  Even those, like Chomsky (1986), who think that language is a 
specifically human ability that doesn’t have evolutionary precursors, argue that language is particularly complex.  
Being able to deal with linguistic complexity suggests uniquely powerful computational abilities.  Thus humans, 
by all indications, have the most computationally powerful brain of any animal.  To begin explorations of content 
by examining a phenomenon found solely in the most complex exemplar systems with content just seems a bad 
tactic (Bechtel and Richardson 1993).  This, in fact, might serve to explain the lack of progress noted by Lycan.  
If language were taken to be an endpoint in a continuum of content complexity, then the fact that our theories of 
language are not compelling, as Lycan suggests, would be expected rather than surprising. 

These are all reasons to think that constructing a theory of content beginning with language should be 
exceedingly difficult, as has proven to be the case.  And, even if a successful language-based theory of content is 
constructed, these are then reasons to be unsure about how such a theory will apply to non-linguistic cases – 
which are the majority.  Starting at the “neuron-by-neuron” level avoids such difficulties.  We have quite good 
naturalistic descriptions of neurons (especially compared to words).  We don’t yet have any clear examples of 
‘interesting’ content in non-neural systems.  And, the complexity of neuron (not neural) function is far less than 
that of the brain areas involved in language production.  So, starting at the neuron-by-neuron level should not be 
so quickly shunned.  Rather, it may be more naturalistic, more widely applicable, and more likely to succeed. 

                                                      
5  Notably, positing an ‘internal language’ for animals raises the problem of why there is no behavioral evidence that animals 

have a representational system approaching the complexity of human language, proper. 
6  The debate as to whether language is sufficient for content is one that focuses on the abilities of machines.  Some, most 

famously Searle (1992), claim that a computer could master a natural language yet not have content.  Many others disagree 
(Turing 1950; Hofstadter and Dennett 1981; Thagard 1986; Churchland and Churchland 1990). 
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A terminological consequence of my rejecting linguo-centrism about mental representations is that I will 
use the terms “meaning” and “content” interchangeably, as others have done (Dretske 1988, p. 52; Cummins 
1989, p. 12).  It is important to point this out because there are those who distinguish content from meaning 
where the former is mental and the latter linguistic (Loar 1981, p. 1; Peacocke 1986, p. 3). 

6 The plan of attack 

My primary goal is to work out a tenable solution to the problem of neurosemantics.   A more modest secondary 
goal is to show how I think such a solution should be constructed.  My aims are two-fold then; partly theoretical 
and partly methodological.  Before attempting to realize either goal directly, in the next chapter I critically survey 
current contemporary theories of content.  As a result of this analysis, I propose a strategy for avoiding the 
difficulties contemporary theories have.  In addition, this survey presents the philosophical background for the 
ensuing discussion.   

In the subsequent chapter (chapter 3), I begin to address the methodological project.  In particular, I 
analyze the problem of neurosemantics in terms of the representation relation.  This analysis highlights thirteen 
questions that must be answered in order to successfully solve the problem.  I again argue there, as I have here, 
that these are questions of interest to both philosophers and neuroscientists.  Continuing with the methodological 
project in chapter 4, I discuss a non-traditional approach to understanding the representation relation.  I show that 
the traditional approach, assumed by philosophers and neuroscientists alike, can result in unduly complex 
characterizations of the representation relation.  Drawing from recent theoretical and experimental work in 
computational neuroscience, I discuss an alternative approach – what I call ‘taking the animal’s perspective’ – 
that improves such characterizations.  Given the successes of this new approach, I adopt it for the remainder of 
the thesis, and show how it can inform a theory of content (via what I call the ‘statistical dependence 
hypothesis’). 

In the fifth chapter, I begin the theoretical part of my project.  The first half of this chapter is dedicated to 
explicating the basic assumptions of my theory of content, with particular emphasis on defending an appropriate 
theory of cause.  In the second half of chapter 5, I briefly outline the theory of content that I articulate and defend 
in chapters 6 through 8.  This outline is intended to motivate the ensuing discussion of a neurocomputational 
theory that, I believe, is an integral part of a solution to the problem of neurosemantics. 

In chapter 6 I provide enough detail of the neurocomputational theory to show how it underwrites a 
solution to the problem of neurosemantics.  In particular, I describe a means of characterizing the relation 
between representational levels that defines the transformations supported at those levels and the causal relation 
to the external world.  The computational theory I present is based on the work of a number of computational 
neuroscientists including Rieke and Bialek (1997), Miller (1991), Georgopoulos (1986), and more directly that of 
Anderson (1994; 1998; Eliasmith and Anderson 1999; Eliasmith and Anderson forthcoming; Eliasmith and 
Anderson in press).   

With these details in hand, I revisit the theory outlined at the end of chapter five in order to provide a 
fuller account.  This, then, is where the neuroscientific details and philosophical considerations meet.  I discuss 
how, on the basis of the neurocomputational theory I adopt, the representation relation can be understood, and I 
answer each of the questions about representation posed in chapter 3.  In addition, I provide a detailed example of 
the application of the theory. 

In the final chapter, I defend this account against the philosophical concerns that have posed difficulties 
for previous theories of representational content as I discuss in chapter 2.  Most importantly, this defense 
includes an explication of how concepts are to be accounted for on this theory, and a consideration of the 
problem of misrepresentation.  I suggest that the plausibility of this account is due to its reliance on both 
philosophical and neuroscientific results concerning the nature of representation.   

Churchland and Sejnowski (1992), a philosopher and a neuroscientist respectively, note that “‘Data rich, 
but theory poor’ is a description frequently applied to neuroscience” (p. 16).  I think it may be fair to say the 
opposite of philosophy.  Perhaps, then, neuroscience and philosophy aren’t nearly as strange bedfellows as many 
would think.  Perhaps, too, neuroscience and philosophy should combine forces to understand cognition; 
especially since they share a common problem.  I am not merely interested in claiming that this should happen, 
I’m interested in showing how it can. 



 

 

CHAPTER 2 

Contemporary Theories of Content 

Do not believe in anything merely on the authority of your teachers and elders. – Buddha 

1 Introduction 

In this chapter I survey a variety of theories of content proposed by contemporary philosophers.  I also discuss the 
difficulties that each of these theories faces.  This brief survey divides the theories currently on offer into three 
categories: causal theories, conceptual role theories, and two-factor theories.  I discuss each of these kinds of 
theories by choosing two influential proponents from each.  Though by no means exhaustive, this survey covers 
by far the majority of positions available regarding the nature of content.  To conclude this chapter, I suggest a 
strategy for avoiding the problems faced by contemporary theories.  Although the strategy is admittedly vague, I 
show how adopting it can result in a precise theory of content in chapters 5-8. 

2 Causal theories 

Causal theories of content have as their main thesis that mental representations are about what causes them.  My 
‘dog’ thoughts mean dog because dogs cause me to token them.  The theories of content proposed by Jerry Fodor 
(1990; 1998), and Fred Dretske (1981; 1995) are influential examples of the two most common kinds of causal 
theories; synchronic and diachronic.  Synchronic theories, like Fodor’s, do not depend on the history of the 
system to determine representational content.  Diachronic theories, like Dretske’s, do.  In both cases, however, 
the meaning of a mental representation is determined by its causal relations to the external environment.  For this 
reason, causal theories are also called ‘externalist’ theories of meaning. 

The motivations for holding an externalist theory are varied.  Historically speaking, both Descartes (with 
his ‘immediate affection’ relation) and the Stoics (with their ‘confrontation’ relation) implicitly assumed that 
causation was important for determining meaning.  The intuition that motivated their outright assumption that 
cause determined meaning is enshrined in contemporary causal theories.  However, philosophers have more 
recently realized that a naïve causal theory is problematic and have thus proposed various extensions to a simple 
causal theory (see section 2.2). 

A more recent motivating factor for causal theories lies in a series of thought experiments invented by 
Hilary Putnam (1975) and extended by Tyler Burge (Burge 1979).  These so-called ‘Twin Earth’ thought 
experiments have served to make externalism compelling to many philosophers of mind and language.  A simple 
example is as follows: Suppose there is a molecular duplicate of earth somewhere far away, call it Twin Earth.  
On Twin Earth, the entire population of earth is reproduced down to every last neural connection.  In fact, the 
only difference between Twin Earth and earth is that the substance we call water has a microstructure of XYZ 
rather than H2O.  Notably, all of the phenomenal properties of XYZ and H2O are the same, only the chemical 
makeup is different.  Now, let us consider a pair of earth/Twin Earth twins, Hilary and Twin Hilary.  Notice that 
on earth, Hilary’s ‘water’ thoughts refer to H2O but on Twin Earth, Twin Hilary’s ‘water’ thoughts refer to XYZ.  
In fact, if we brought a sample of XYZ to earth and Hilary called it water, we would want to say that Hilary was 
wrong.  It isn’t water, it’s Twin water because it’s XYZ and not H2O.  What this means, then, is that Hilary’s 
‘water’ thoughts mean something different than Twin Hilary’s ‘water’ thoughts (namely, H2O instead of XYZ).  
Since the only difference, ex hypothesi, between Hilary and Twin Hilary are their causal relations (Hilary is 
causally related to H2O and Twin Hilary is related to XYZ), we know that cause has to determine meaning. 

A third motivation for causal theories is their success at explaining communication and shared meanings.  
Putnam has also discussed the consequences of such intuitions in a social setting.  Analogous to the Twin Earth 
thought experiment, Putnam constructs a thought experiment in which a person (say Hilary, again) is unable to 
perceptually distinguish between elm trees and beech trees.  Putnam claims that Hilary would be considered to be 
wrong if he called elms ‘beeches’ or vice versa.  The only way this intuition can be explained is by appeal to an 
externalist theory of meaning; or, more precisely, to an externalist theory that relies on a group of experts to 
determine the meaning of certain terms (like ‘elm’ and ‘beech’).  Under this sort of theory, communication and 
shared meanings can be explained because members of the same communities will have the same experts (and 
environments) determining the meanings of their terms.  We can then explain communication by appeal to these 
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socially determined meanings.  In particular, we successfully communicate when our usages align with those of 
experts (i.e., when our terms mean the same thing). 

3 Problems with causal theories 

The biggest problem for causal theories is explaining misrepresentation.  Consider, for instance, my looking at a 
cat that I represent as a dog.  Intuitively, we want to consider this a typical case of misrepresentation.  However, a 
naïve causal theory wouldn’t clearly show why this is misrepresentation as opposed to the correct representation 
of the disjunction of the set of cats with that of dogs (i.e., cats or dogs).  Since, in other words, a cat is causing 
me to token this representation according to a causal theory, the representation is about the cat.  However, a dog 
also causes me to token the same representation.  So now this representation is causally related to the set ‘cat or 
dog’.  How can we explain representational mistakes under such a theory? 

Clearly we can’t.  This is why the main focus of contemporary theories has been to better understand the 
nature of the representation relation.  In particular, if this relation isn’t just causal, what other ingredients do we 
need?  In the remainder of this section, I consider two solutions to this ‘problem of misrepresentation’, one from 
Fodor and one from Dretske.  I also show why each is unsatisfactory. 

Fodor posits what he calls ‘nomic’ relations to explain representation.  These are lawful causal relations 
that obtain between a representational state and what it is about.  So, there is a nomic relation between my ‘dog’ 
representation and dogs.  In order to explain misrepresentation, Fodor further posits a particular kind of relation 
between these relations; i.e., a second-order relation between first-order relations.  Specifically, he suggests that 
there is an asymmetric dependence between misrepresenting nomic relations and correctly representing nomic 
relations.  In the above example, there is a nomic relation between cats and my ‘dog’ representation.  There is 
also a nomic relation between dogs and my ‘dog’ representation.  Fodor holds that the cat nomic relation is 
dependent on the dog nomic relation.  He also holds that this dependence is asymmetric because the dog nomic 
relation doesn’t depend on the cat nomic relation.  Presumably we can take ‘dependence’ as meaning something 
like ‘wouldn’t exist without’.  The claim, then, is that misrepresentation occurs whenever we have this kind of 
asymmetric dependence. 

The biggest difficulty with this ‘theory’ of misrepresentation is that it is too vague.  This is true in two 
senses.  First, as Cummins (1989) and Hutto (1999) have pointed out independently, Fodor’s solution seems more 
like a redescription of the problem that is supposed to be solved than an actual solution.  Fodor (1987) admits as 
much “The treatment of error I’ve proposed is, in a certain sense, purely formal … it looks like any theory of 
error will have to provide for the asymmetric dependence of false tokenings on true ones” (p. 110). The point of a 
solution is to say what determines those dependencies.  Fodor has left it open as to whether the asymmetric 
dependence is determined by evolutionary facts about a representer, or the representer’s learning history, or 
naming ceremonies, or some kind of dispositions, or, for that matter, statistical dependence relations.  Hutto 
(1999) complains that “in absence of this vital detail [the asymmetric dependency thesis] is of no use to the 
naturalist” (p. 47) and that Fodor “fails to give a scientifically respectable explanation of the dependency 
relationship” (p. 48).  Fodor does add the extra constraint that the dependence must be synchronic, but there is 
nothing about asymmetric dependencies in particular that supports the additional constraint.  Second, Fodor 
provides no principled means of determining what nomic relations depend on which others.  He provides 
examples, but not a way of knowing when such relations hold.  Why, for example, would there not be an 
asymmetric dependence between stereotypical dog nomic relations and atypical dog nomic relations?  Or, better 
yet, between atypical doorknob nomic relations and typical doorknob nomic relations (see Fodor 1998). 

Dretske (1988) has a very different solution to the problem of misrepresentation.  He claims that mental 
representations have evolutionarily determined functions.1  The function of a ‘dog’ representation is to represent 
dogs because, over the course of evolutionary history, that kind of representational state has been used to 
represent dogs.  Given this account, we can pick out cases of misrepresentation because only in such cases do 
representations not perform their function.  Cats might cause my ‘dog’ representation to be tokened, but my ‘dog’ 
representation doesn’t have the function of representing cats, therefore it is a case of misrepresentation. 

Again, two difficulties arise for this theory.  First, much like Fodor, Dretske’s theory is vague in that it 
doesn’t give any detail as to how we can determine what the function of a particular state is.  Obviously, 
evolutionary (and learning) histories have some cases of misrepresentation during the function-fixing phase.  
                                                      
1  Dretske often relies on learning history rather than evolutionary history to fix functions, but in either case his theory is 

diachronic. 
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How many correct cases are needed to determine the function of a neural state?  How are the correct and 
incorrect cases to be distinguished during this process?   

A second and independent concern is that diachronic theories conflict with central intuitions about 
meaning.  This conflict can best be highlighted by considering Donald Davidson’s (1987) swampman thought 
experiment.  In this thought experiment we are asked to suppose that someone, say Don, is standing beside a 
swamp.  Suppose also that a large bolt of energy strikes Don, eliminating him, and independently strikes the 
swamp, causing a molecular doppelganger of Don to appear.  We would suppose that Swamp Don, when he goes 
out into the world, behaves in all the same ways that Don would have behaved.  We would thus also suppose that 
Swamp Don represents things (and misrepresents them) in just the ways that Don does.  However, according to 
Dretske’s theory, Swamp Don doesn’t have representations or meanings anything like those had by Don.  The 
reason Dretske thinks this is acceptable is because “such [internalist] premises are suspect when applied to 
fantastic situations” (Dretske 1995, p. 148).  He thinks, in other words, that intuitions that meanings should be the 
same for both Don and Swamp Don are more fallible than his theory.  However, despite Dretske’s being appalled 
by ‘fantastic’ thought experiments, a similar story can be recreated in the ‘scientific’ language of artificial neural 
networks.  Suppose networks are randomly generated until one is found that has all the same weights as some 
trained network.  The first network will have the same behavior, but a very different history than the second.  Our 
intuitions about meaning are just as strong in this second, far more realistic case; we wouldn’t think that one 
network has meanings if the other doesn’t.  It seems, then, that we should be more concerned about the viability 
of diachronic theories than with the applicability of intuitions to fantastic situations. 

4 Conceptual role theories 

Conceptual role theories hold that the meaning of a term is determined by its overall role in a conceptual scheme.  
As I use the term, ‘conceptual role theory’ can denote any theory that ascribes the meaning on the basis of a 
causal, computational, functional, inferential, or conceptual role.  Theories of this sort have been proposed by 
Gilbert Harman (1982) and Brian Loar (1981), and are often called ‘internalist’ theories of content because they 
depend on factors internal to an agent to determine meaning.  Under such theories, the meaning of a term is 
determined by the inferences it causes, the inferences it is the result of, or both.  So, for example, ‘dog’ means 
dog because we use it to infer properties like ‘has four legs’, ‘is furry’, ‘is an animal’, ‘is friendly’, etc. all of 
which are properties of dogs. 

A motivation for this kind of theory may be that, historically speaking, the deepest insight of the Stoics 
and Descartes into the nature of meaning was that transformations matter.  The Stoics and Locke were explicitly 
concerned with transformations such as magnification, analogy, and combination (Laertius, 7.53).  Descartes, 
too, discusses the mappings of perceptions onto judgments (1641/1955, p. 161).  What these philosophers are 
doing is trying to understand the relations between mental representations.  They think, in other words, that 
transformations help determine meaning.  Conceptual role theories take this one step further and insist that such 
relations are all there is to meaning. 

A second, more recent, motivation driving such theories can be seen by reconsidering Frege cases (see 
section 4 of chapter 1).  Recall that Frege (1892/1980) considers the possibility that when we are told that 
‘Hesperus’ (the evening star) refers to the same thing as ‘Phosphorus’ (the morning star), we learn something 
new.  Or, more generally, when we are told of the coreference of two terms, their meanings might change.  A 
causal theory can’t account for this intuition because we know that Hesperus and Phosphorus have the same 
referent (Venus) and reference is all there is to meaning under such a theory.  The idea is that even when causes 
are the same, meanings can be different.   

A conceptual role theorist can explain our intuition quite easily by noting that the inferences warranted 
by each term can be quite different.  ‘Hesperus’ warrants the inference ‘will be seen in the evening’ whereas 
‘Phosphorus’ warrants the inference ‘will be seen in the morning’.  Thus the terms differ in meaning and when 
we are told of their coreference we learn something.  In particular we learn that the inferences for one are 
warranted for the other, so the meanings of both terms change appropriately. 

A final motivation for conceptual role theories is their explanatory success.  Consider Twin Earth again.  
In the Twin Earth case, we would expect Hilary and Twin Hilary to behave in exactly the same way.  Of course, 
ex hypothesi, causes are different in the two cases.  It seems unlikely, then, that we can explain the sameness of 
behavior in terms of causes given this difference in cause.  However, we can explain sameness of behavior given 
a sameness of conceptual role.  In particular, the internal states of the twins are identical, so Hilary’s ‘water’ 
representation will have all of the same inferential (and therefore behavioral) consequences as Twin Hilary’s 
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‘water’ representation.  If we expect what we mean to determine how we behave, we should consider conceptual 
role theories a success. 

5 Problems with conceptual role theories 

The two main problems with conceptual role theories are their inability to account for truth conditions, and their 
vulnerability to charges of relativism (for a review of other problems see Fodor and Lepore 1992).  Truth 
conditions are a problem for conceptual role theories precisely because such theories deny any importance to 
causes in determining meaning.  If we think that truth determines meaning in some way, then conceptual role 
theories are in trouble.  For example, if we think that my pointing to H2O and saying ‘water’ and my pointing to 
XYZ and saying ‘water’ are instances of my being right and wrong respectively, then we think that truth 
determines meaning.  This follows because, in the second case, my being wrong depends on the meaning of my 
term referring to something else, namely H2O.  Conceptual role theories say nothing of a connection between my 
concepts and their referents in the world.  These theories can’t explain, then, why I’m right in one case and 
wrong in the other.2  In this sense, conceptual role theories entail that meaning is cut off from the environment.  
Thus, these theories can’t explain how we refer to actual objects rather than to sets of inferences. 

The second difficulty for conceptual role theories is the problem of relativism (see Fodor and Lepore 
1992).  Given that the meaning of a term depends on its overall role in a conceptual scheme, it’s not clear that 
any two individuals ever have the same meanings.  Presumably individual differences in conceptual schemes are 
quite common.  You might know a lot more about poodles than I do.  In other words, you might draw many more 
inferences based on your ‘poodle’ representations that I ever would.  If this is the case, we clearly don’t share the 
meaning of the term ‘poodle’.  But, things are worse.  Not sharing the meaning of ‘poodle’ means we don’t, given 
a conceptual role theory, even share the meaning of the term ‘two’.  Since the meaning of a term like ‘two’ 
depends on its relation to all other terms in a conceptual scheme (including ‘poodle’), and you and I have 
different inference-individuated terms (i.e., versions of ‘poodle’) in our conceptual schemes, the meanings of all 
of our terms are different.  Furthermore, the meanings of my terms right now will be quite different from the 
meanings of my terms a few days from now (assuming I learn at least one new inference).  Given this sort of 
criticism, Lepore (1994) concludes that conceptual role theorists must endorse the claims that “no one can ever 
change his mind; and no two statements or beliefs can ever be contradicted (to say nothing of refuted)” (p. 197).  
This extreme form of relativism would make explaining such important cognitive phenomena as communication 
and conceptual change impossible. 

6 Two-factor theories 

A common theoretical move to make in philosophy of mind has been to avoid the problems of causal theories and 
the problems of conceptual role theories by combining these two kinds of theories into one ‘two-factor’ theory.  
Exemplars of this sort of theory are those proposed by Ned Block (1986) and Hartry Field (1977).  On these 
theories, causal relations and conceptual role are “two distinct components” or two independent aspects of the 
meaning of a term (Field 1977, p. 380).  However, these are taken to be two parts of one thing: “the two-factor 
approach can be regarded as making a conjunctive claim for each sentence” (Block 1986, p. 627) or “referential 
meaning is part of meaning” (Field 1977, p. 399, italics added).  In other words, both aspects of meaning, be they 
reference and sense, extension and intension, denotation and connotation, or what ever we would like to call 
them, are part of meaning generally. 

If we look again at the problems of meaning that were historically of greatest concern, we notice that 
there are, in fact, two problems.  There is the problem of understanding the world/mind relation and the problem 
of determining the nature of internal, mental transformations.  Perhaps, then, it makes the most sense to consider 
both problems when constructing a theory of meaning.  This, of course, is precisely the route taken by two-factor 
theorists.  That, then, is one possible motivation for holding such a theory. 

A second possible motivation is one that I have already hinted at.  If we have a two-factor theory, we 
should be able to solve all of the problems of causal theories and conceptual role theories.  Notice that the 
problems faced by these theories are mutually exclusive.  In other words, problems for causal theories are solved 
by conceptual role theories and vice versa.  This means that if we can successfully combine these two kinds of 

                                                      
2  Harman (1987) avoids such criticisms by allowing his ‘causal’ roles to extend out into the world.  However, Block (1986) 

shows that this makes his theory a two-factor theory, which means it has other difficulties to deal with (see section 2.5-6). 
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theories we will have the best of both worlds and thus a theory that solves all the problems.  However, things 
aren’t so easy. 

7 Problems with two-factor theories 

It is central to two-factor theories that the factors are independent.  However, this raises a grave difficulty for 
such theories.  In criticizing Block’s theory, Fodor and Lepore (1992) remark “We now have to face the nasty 
question: What keeps the two factors stuck together?  For example, what prevents there being an expression that 
has the inferential role appropriate to the content 4 is a prime number but the truth conditions appropriate to the 
content water is wet?” (p. 170).  If, in other words, there is no relation between the two factors it is quite possible 
that massive misalignments between causal relations and conceptual role occur; I will call this the ‘alignment 
problem’.   

It is clear that two-factor theorists take themselves to be explaining one thing (i.e., meaning), but given 
the alignment problem it is not clear what could possibly be the meaning of a given neural state.  In what sense 
could a meaning be defined by the conjunction of ‘4 is a prime number’ and ‘water is wet’.  The only sense in 
which the referential aspect is part of meaning is the same sense in which Venus is part of the set of ‘me and 
Venus’ – by stipulation.  If we really think meaning is unified, as even two-factor theorists seem to think, the 
alignment problem is a serious problem indeed. 

There is a second difficulty with two-factor theories.  Lepore (1994) has pointed out that if meaning is to 
be a conjunction of a causal and a conceptual role factor, then the relativistic problems that confronted 
conceptual role theories will be problems again.  If we think meaning is determined, even partly, by conceptual 
role then any change in conceptual role is a change in meaning.  As we saw in section 5, this sensitivity to 
changes in conceptual role makes shared meanings, conceptual change, and communication difficult to explain – 
at least more difficult to explain than on a straight causal theory. 

8 A strategy for constructing a theory of content 

Given the difficulties with each of causal, conceptual role, and two-factor theories what options are left for a new 
theory of content?  Before I answer this question, I would like to consider the problems themselves in a little 
more detail.  Note, in particular, that two-factor theories seem to almost have all of the resources needed to solve 
standard problems with content.  There are two difficulties that remain, however, the alignment problem and 
problems with relativism. 

Consider the difficulties with relativism first.  What, exactly, is the problem that is faced by conceptual 
role and two-factor theories when it comes to relativism?  Recall that the meanings of all terms in a conceptual 
scheme are relative to that scheme according to these theories.  The problem, according to critics, is that this 
entails that for any two people (or the same person at two times) the meaning of a given term is never the same 
for both people.  However, that isn’t obviously a problem in itself.  It’s only a problem if we think meanings 
should be the same in the first place.  Thinking that meanings should be exactly the same has a number of 
untoward consequences for causal theorists. 

Proponents of causal theories note the ease with which causal theories can explain communication and 
shared meanings.  If meanings are causes, the story goes, meanings are shared because causes are shared.  Even 
ignoring problems with individuation of causes, there is still something odd about this claim.  In particular, 
meanings don’t seem to be things of the you-have-it-or-you-don’t variety.  The vast literature on vagueness hints 
at this fact (Fine 1975; Dummett 1978; Fuhrmann 1988; Williamson 1994).  If the meaning of a term is its 
causes, and causes aren’t vague, meanings shouldn’t be vague because causes aren’t.  If, in other words, piles 
cause me to token my ‘pile’ representation, then the meaning of the term ‘pile’ is quite determinate; it’s all those 
things that make me token that representation.  Of course, the meaning of the term isn’t determinate, it’s vague.  
This means that if causal theorists think causes aren’t vague, causal theories of meaning can’t explain a 
ubiquitous property of semantics. 

Perhaps, then, causes are vague.  But, what would this claim mean for a causal theorist?  It would amount 
to the claim that nomic relations between classes of objects and our concepts would have to be imperfectly fixed.  
In other words, some dogs would not token our ‘dog’ concept (if all dogs did token our dog concept, then the 
previous problem would arise).  What does it mean for our concept to be imperfectly fixed?  It would mean that 
some people token their ‘dog’ concepts for some dogs that other people don’t token their ‘dog’ concept for.  This 
would account for the type-level ‘dog’ concept being imperfectly fixed on the type-level set of dogs.  However, 
and here is the problem, this also means that two people seldom actually share the concept ‘dog’.  Under such a 
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picture, two people on share the ‘dog’ concept if and only if they call all and only the same things dogs.  This, it 
seems, is probably an unlikely state of affairs.  Of course, relativism of one concept, like ‘dog’, doesn’t entail 
relativism for all concepts as in the case of conceptual role theories.  But, given the problem with the ‘dog’ 
concept, there’s little reason to think that any two people will share any concepts.  Therefore relativism is just as 
much a problem for such causal theories. 

What all this means is that the causal theorist faces a dilemma.  Either causes are determinate and 
vagueness can’t be accounted for, or causes are vague (i.e., imperfectly fixed) so vagueness can be accounted for, 
but people seldom share the meaning of their concepts.  So, causal theorists can either explain vagueness and be 
subject to relativist concerns, or not explain vagueness at all. 

It seems clear to me which horn of the dilemma should be embraced: charges of relativism should fall on 
deaf ears.  Rather, meanings should be taken to be more like body parts.  Two body parts can be the same (e.g., 
your body part ‘nose’ and my body part ‘nose’ are the same body part), even if non-identical (e.g., our noses are 
differently shaped).  Similarly, meanings can be the ‘same’ even if non-identical.  Notably, in both cases, 
‘sameness’ is a matter of degree.  Given the characterization of meanings (or senses) in section 4 of the last 
chapter, there is a natural hypothesis about how to determine the sameness of meanings.  In particular, meanings 
will be similar to the extent that they ascribe the same properties to their referents.  Of course, under such a 
characterization of sameness of meanings we will need a different theory of communication, shared meanings, 
etc.  Such theories will need to show how, for example, communication is possible despite non-identical 
meanings.  Such a theory would presumably have a much easier time explaining different degrees of 
miscommunication since it would be based on a theory with degrees of sameness of meaning.  Explorations of 
theories of communication are clearly beyond my scope, but I take it that it isn’t prima facie unlikely that a 
theory of communication (and concept change, etc.) can succeed even if meanings are never strictly speaking 
identical.  If this is at least a live option, I think we can safely ignore charges of relativism like those voiced by 
Lepore (1994). 

These considerations make a good case for disregarding the problems of relativism.  This is a benefit for 
both conceptual role and two-factor theories.  However, I think it is more of a benefit to two-factor theories 
because there are no resources available to conceptual role theories that can explain the relation between 
meanings and truth conditions.  In other words, I don’t think conceptual role theories can solve their remaining 
problem.  However, I do think that the alignment problem of two-factor theories can be solved, but it won’t be 
solved by a traditional two-factor theory. 

In particular, alignment won’t be a problem if we can describe each of the two factors in terms of a third 
underlying factor.  If we can provide a unified description of conceptual role and causal relations, then we know 
precisely how these two factors are aligned.  They are aligned because they are simply two different 
consequences of the same underlying process.  If such a factor exists, it will provide for a unified explanation of 
meaning.  The strategy I will adopt in constructing a theory of content, then, will be one of attempting to find 
something that can fill this role.  However, I won’t return to an explicit consideration of what this factor might be 
until chapter 5.  In the meantime, I will show, more specifically, what kinds of questions such a factor must be 
able to help us address (chapter 3) and discuss how I think we should go about finding such a factor (chapter 4). 

9 Summary 

I have surveyed contemporary theories of content and outlined the difficulties faced by each.  I have shown that 
current causal theories don’t provide a satisfactory solution to the problem of misrepresentation.  Conceptual role 
theories, in contrast, suffer from the inability to satisfy intuitions that meaning and truth are closely related.  
Two-factor theories, while solving these problems independently, cannot account for the unified character of 
content.  In particular, two-factor theories suffer from the alignment problem; i.e., the problem of showing how 
the factors relate.  I have suggested that two-factor theories hold the most promise for solving the difficulties 
faced by other theories.  In order to solve the problems of two-factor theories, I have proposed that we should 
seek an explanation of each factor in terms of some other underlying factor.  If we can find such a factor, the 
alignment problem will be solved because the two factors will simply be descriptions of some one underlying 
process – a process that underwrites meaning generally. 



 

 

CHAPTER 3 

Family Ties 

And 't is a shameful sight / When children of one family / Fall out, and chide, and fight. – Isaac 
Watts (1674-1748) 

1 Introduction 

It is often as important to ask good questions, as it is to give good answers.  In both philosophy and science, 
conceptual revolutions have occurred because of good questions.  Descartes ushered in much of modern 
epistemology and metaphysics by asking: “[H]ow do I know that He has not made it so that there would be not 
earth at all, no heavens, no extended thing, no figure, no magnitude, no place and yet that all these things would 
seem to me to exist not otherwise than they seem to now?” (Descartes 1641/1990, p. 93).  Einstein reconceived 
physics by asking: “Are two events (e.g., the two strokes of lightning A and B) which are simultaneous with 
reference to the railway embankment also simultaneous relatively to the train?” (Einstein 1961, emphasis 
original).  Both questions are good because they suggest new ways of thinking about problems. 

In all likelihood, the questions I am interested in answering are not nearly so monumental.  It is 
nevertheless important to say what, precisely, the questions are.  We have already seen, in the last chapter, some 
of the answers philosophers have provided for the question “What is content?”  But, I take it, if we better define 
the questions that need to be answered by a theory of content, then we might be able to find specific ways to 
avoid the problems had by these theories.  I have outlined a general strategy to avoid these problems, now I 
would like to be specific enough about the questions that need to be answered to be able to construct a theory that 
reaps the benefits of adopting that strategy. 

I have a second major goal in this chapter as well.  I am interested in showing why the questions I pose 
should interest both philosophers and neuroscientists.  So far I have focused on the philosophical accounts of 
content.  But, there are reasons to think that ‘purely’ philosophical accounts are unlikely to provide a satisfactory 
solution to the problem of neurosemantics.  This is especially true if the problem itself spans philosophy and 
neuroscience.  If, in other words, I can show that neuroscientists and philosophers are interested in the same 
questions, then neither philosophy nor neuroscience is more likely to solve such problems.  In fact, it is likely that 
a satisfactory solution will have to depend on insights from both fields. 

In this chapter I set about the two tasks of defining the questions and showing that they should interest 
both disciplines, by first characterizing representation in general.  I then argue that, for a complete understanding 
of representation, we need to address representational problems in both neuroscience and in philosophy that are 
often wrongly thought to be distinct.  Finally, I pose the set of questions that need to be answered in ordered to 
solve the problem of neurosemantics.  In sum, the purpose of this chapter is to carefully define the problem I am 
trying to solve in the remainder of the dissertation. 

2 Representational in-laws 

Representations are everywhere.  In particular, they are everywhere in neuroscience and philosophy of mind.  
But, are they everywhere the same?  On the face of it, it seems not.  Neural spikes, firing rates, neural 
populations, images, syntactically structured symbols, and abstract concepts are all called ‘representations’.   But, 
why are they all called representations?  That is, what characteristics, if any, do they share?  In this section, I 
argue that they prima facie share (along with many other things), the ability to enter into a particular kind of 
relation; the representation relation.  And, more than this, they are commonly taken to do so. 

The representation relation is at least a three-place relation: {X} represents {Y} with respect to {Z}.  I say 
‘at least’ here because it is possible to characterize representation as a higher-order relation (e.g., {X} represents 
{Y} with respect to {Z} with {W} for the purpose of {V}).  However, to solve the problem of neurosemantics we 
only need a theory that accounts for the first three relata; moreover, any fewer is insufficient.  It is true that in 
many cases, ‘represents’ is used as if it were a two-place relation: e.g., “This pen represents a dog.” However, in 
cases of ‘representation designation’ (i.e., “I hereby declare this thing to represent that thing”) there needs to be a 
designator.  In the pen/dog case, the designator either assumes the role of the third relata, i.e., “This pen 
represents a dog to me,” or has left the third relata elliptical, i.e., “Let this pen represent a dog to you.”   
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But who would play the role of such a designator in the case of mental representations?  In other words, 
why can’t we say that a mental representation just represents something (by virtue of its functional role, or causal 
relations, etc.)?  Wouldn’t it be careless to posit a ‘someone’ that the mental representation is ‘to’?  Clearly, that 
would lead to an infinite regress.  In fact, I think it would be careless to posit a ‘someone’.  But notice that 
‘something represents something to someone’ is not the characterization I have suggested.  Rather, I take it that 
whenever a mental representation represents something, it always does this with respect to some system.  
‘Systems’ are much different that ‘someones’ and the representing isn’t ‘to’ a system, it is ‘with respect to’.  The 
latter denotes a context, not an agent.   

Consider two common theories of representation: causal role theories and conceptual role theories.  Each 
clearly identifies a three place relation in describing representation: for causal role theories there is the 
representation, the thing it represents, and the context under which it is a representation and not just an effect1; 
for conceptual role theories, there is the representation, the thing it represents, and the role it plays (i.e., its 
context as defined by the system of concepts).  So, claiming that representation is a three-place relation is nothing 
new. 

One of the reasons that the three place relation is so ubiquitous stems, I believe, from the nearly universal 
commitment amongst philosophers and neuroscientists to understanding neurobiological systems as information 
processing systems (see e.g. Dretske 1981; Bialek and Rieke 1992; Van Essen and Anderson 1995; Rieke, 
Warland et al. 1997; Fodor 1998; Koch 1998; Eliasmith in press).  Formally, the information relation is a three 
place relation: {channel} carries {information} with respect to a {receiver} (Reza 1994, p. 2).  These three places 
are necessary and sufficient for an adequate and general definition of Shannon and Weaver-style information 
(Shannon 1948/1949).  Also notice that they loosely align with the three places of the representation relation as 
defined above (i.e., channels and vehicles carry information and content with respect to receivers and systems).  
So, construing neurobiological systems as information-processing systems that represent naturally leads to a 
commitment to a particular kind of representation relation.  In particular, it’s not surprising that both the 
representation relation and the information relation are three place relations since the nature of the latter informs 
intuitions about the nature of the former given such a (rather common) commitment. 

In addition, there is evidence that neurons represent extrinsically, as opposed to intrinsically.  In other 
words, they represent because of their place in the system as a whole, not because of some fundamental property.  
There are at least three good sources of evidence for this claim.  First, the general plasticity of the brain has been 
well catalogued (Karni, Meyer et al. 1995; Rauschecker 1999).  One example comes from the ability of motor 
cortex to ‘rewire’ when an appendage such as a finger is lost; the neurons representing the finger are recruited to 
represent other, neighboring body parts (Wall, Kaas et al. 1986).  Second, there are only a few classes of cells 
compared to the many representational roles they play.  For example, pyramidal cells that represent, say, edges in 
early visual cortex are physically indistinguishable from pyramidal cells that represent motion later on in visual 
cortex.  Third, the amount of cortex devoted to a representation can vary with changes in experience, but there is 
no evidence that the cells themselves change (Rauschecker 1999).  Given this evidence, and given that neurons 
participate in representational relations, we should think that their place in the system is important for defining 
that relation. 

If my argument from authority (i.e., all the other representational theories assume three places), my 
argument from analogy (i.e., neurobiological systems are information processors, information theory demands a 
three place relation, so neurobiological information processing (via representations) unsurprisingly depends on a 
three place relation), and the empirical evidence are not convincing, then perhaps the best support for the claim 
that representation is usually assumed to be a three place relation will come in the next chapter, where I describe 
how researchers actually characterize the relation.  It is clear that in practice the representational relation is three 
places (see section 2). 

Given, then, that there are three places, I’d like to suggest the following schema for the representation 
relation (the ‘representation schema’):  

A {vehicle} represents a {content} with respect to a {system}.   

Terminologically I have adopted the traditional names to the first two relata, ‘vehicle’ and ‘content.’  I call the 
third relata the ‘system’ simply in an attempt to be general.  However, researchers in neuroscience and 
philosophy of mind tend to narrow the scope of this schema to include only natural biological systems 
                                                      
1  For Fodor, such a context is defined by the nomic relations that obtain.  In particular, those that have asymmetric 

dependencies and those that do not.  For Dretske, the context is determined through an evolutionary and learning history. 
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(particularly human beings).  In other words, they are not interested in representation writ large, but only in 
neurobiological representation.  I adopt this narrower perspective as well.  So, the third element of the schema 
will be, for my purposes, ‘the (complete) nervous system’.  This is in contrast to understanding ‘system’ as either 
a more general physical system or as an abstract representational system (like a language) (see e.g. Goodman 
1968). 

The overlapping research programs of neuroscience and philosophy can be understood in terms of a 
mutual interest in explaining the elements of this schema and the relation it defines.  Neuroscience, for example, 
tries to determine the properties of neurons and the complex systems they form, ever with an eye to 
understanding how both the elements and their amalgamation work.  Talk of representation in neuroscience is 
undeniably rampant (see e.g. Felleman and Van Essen 1991).  For example, if a neuron fires relatively rapidly 
when an animal is presented with a certain set of stimuli, the neuron is said to “represent” the property that the 
set of stimuli share (see e.g. Desimone 1991).  Of course, a neuron that normally responds to, for example, faces 
while it is in visual cortex won’t respond to faces when the neuron isn’t in the visual cortex.  Therefore, the 
neuron’s systemic relations are important.  So, neuroscientists are interested in the elements of the representation 
schema: neurons (vehicles) represent the stimulus (content) with respect to (in the context of) the brain (system). 

Philosophers, too, are deeply interested in representation.  In fact, they have been asking questions about 
representations since the time of Aristotle.2  Perhaps it is not surprising, then, that no aspect of the representation 
schema has gone unexamined by philosophers.  Contemporary philosophers have spent time wondering about the 
various properties of different kinds of vehicles (Haugeland 1991), the nature of representational systems 
(Dretske 1988), but probably the most effort has been spent trying to understand how to determine what a 
representation is of (i.e., the content) (Dennett 1969; Millikan 1984; Fodor 1987; Dretske 1988).  Philosophers, 
then, abstractly probe the elements of the representation schema: various kinds of representations (vehicles) 
represent things (content) with respect to a representational system (system). 

Being able to characterize, even this roughly, both neuroscience and philosophy in terms of the 
representation schema shows something of their family ties.  Each is determined to better understand the relata 
and relation defined by the schema.  However, for those convinced (by Fodor for one; see chp. 1) that this is a 
mere similarity that is hiding deeper differences, more argument is necessary.  That is the purpose of the next 
section. 

3 Sharing the problem of neurosemantics 

Robert Cummins (1989) has identified what he feels are the traditional scientific and philosophical problems of 
representation.  They are the “Problem of Representations” and the “Problem of Representation” respectively:3   

1. Problem of Representations (Scientific) – When confronting the Problem of Representations, we 
try to determine “which states and processes are involved in which [representational] activities 
and how” (ibid., p. 1).  Cummins argues that this is a problem for empirical science (ibid., p. 1).   

2. Problem of Representation (Philosophical) – When confronting the Problem of Representation, 
we attempt to account for the “nature of the (mental) representation relation” (ibid., p. 2).  
Cummins thinks this is a philosophical problem (ibid., p. 1).  

Although this distinction might capture the relative emphases of science and philosophy, I think that the 
identification of one problem as philosophical and the other as scientific goes against the demonstrably common 
goal of neuroscience and philosophy to fill in the representation schema.   

As I showed in section 1, both neuroscientists and philosophers are engaged with both kinds of problems.  
Neuroscientists explore solutions to the ‘philosophical’ Problem of Representation by making representational 
claims about neural firing rates.  In particular, they try to discover what kind of causal relation the representation 
relation is.  Similarly, philosophers construct representational theories that depend on the particular processes 
and states they posit.  In fact, one might characterize the philosophical debate between connectionists, 
symbolicists, and dynamic systems theorists as a debate over the importance of various kinds of processes and 
states to cognition (Newell 1990; Churchland and Sejnowski 1992; van Gelder and Port 1995; Eliasmith 1996).  
                                                      
2  See Cummins (1989) for a brief history of theories of representation in philosophy.   
3  Dretske also has something like this in mind with his distinction between “representational facts” versus “facts about 

representation” (Dretske 1995, p. 3). 
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Thus, no one field has anything like a monopoly on either of these representational problems.  Rather, solutions 
to either of the representational problems are informed by solutions (perhaps partial) to the other.4 

What Cummins has, in effect, proposed, is that understanding the representation relation and 
understanding the relata of the representation relation (representations) are two independent problems.  If the 
problems are independent, then there may be grounds for claiming that one is philosophical and the other 
scientific.  However, I would like to show that there are good reasons for thinking that there is no such 
independence in the first place. 

There are at least four arguments against this independence.  The first is a historical argument.  
Historically speaking, all of those interested in either problem have posed solutions to both.  The Stoics, for 
example, identified impressors, impressions, and a causal connection.  Descartes identified sense objects, 
perceptions, and a causal connection.  Fodor has identified physical objects, mental representations, and a nomic 
connection.  Neuroscientists have identified stimuli, neural firings, and a causal connection.  So, given that prior 
solutions have not been provided independently we shouldn’t expect to generate solutions independently.  
However, technically speaking, this argument contains a logical fallacy (i.e., argumentum ad verecundiam). 

So, for those inclined to disregard the preceding argument as fallacious, perhaps a more logical argument 
will suffice.  Technically speaking, a relation in first-order logic is defined by a set of ordered n-tuples of objects 
in the universe.  This is a very straightforward way in which the relata (elements of the ordered n-tuples) and 
relation (the set of those ordered elements) are not independent.  You simply can’t have the relation without 
relata. 

For those inclined to think that this argument from first-order logic doesn’t have much to do with 
relations in natural language, perhaps epistemological considerations will help.  Epistemological theories 
generally fall into one of three categories: coherentist, foundationalist, or a combination of the two (sometimes 
called ‘foundherentist’ (Haack 1993)).  Anyone who holds a standard form of coherentism will grant that 
relations are closely tied to their relata because knowledge about either is conceptually tied to the other (Lehrer 
1974; BonJour 1985).  Anyone who holds a version of foundherentism will outright grant that empirical (i.e., 
scientific) data can make an important difference to your metaphysics (i.e., philosophy) (Quine and Ullian 1970; 
Thagard 1992). 

Lastly, for those who find appeals to historical precedence arbitrary, think first-order logic is a poor 
model of natural language, and hold a foundationalist theory of epistemology, consider the following (I will use 
Fodor’s theory to give examples of the following premises):5 

a) The representation relation must be defined by necessary and sufficient conditions (i.e., 
intensionally as opposed to extensionally in the case of logic). Example: x represents y iff x 
is nomologically related to y. 

b) The foundations that justify the definition of the relation must be independent of the 
foundations that justify identification criteria of the relata.  Example: Reasons for accepting 
the nomological definition of representation can’t be reasons for accepting that certain 
objects can fill the roles of x and y.   

c) Therefore, if philosophy is just in the business of offering definitions of relations, 
identification criteria for relata can’t help determine what definitions are right.  Example: 
What x and y are, or can be, can’t determine the correctness of relational definition. 

d) For a relational definition to be right, it must allow only certain kinds of entities to enter into 
the relation.  Example: One of the reasons nomological relations might be right is because 
only things with physical properties can be representations and only things with physical 
properties enter into such relations. 

                                                      
4  Cummins (1989) also has a sense that the problems are closely related, claiming of the Problem of Representation that 

“this question ... can be answered only by examining the scientific theories or frameworks that invoke mental 
representation” (p. 26).  However, it is not clear that Cummins sees the relation going both ways or that their 
interdependence is as strong as I suggest. 

5  An analogous argument can be offered to show that science is interested in the relation as well as the relata. 
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e) Therefore identification criteria (e.g., has physical properties) help determine which 
definitions are right. 

f) Therefore philosophy is not just in the business of offering the correct relational definitions. 

In a sense, this is a weaker version of argument number 2 (the first-order logic argument).  In this case, 
the claim isn’t that relations just are sets of ordered pairs; i.e., that every property of the relata help define the 
relation (since every property determines the identity of the objects in the relation).  Rather, the claim is that at 
least some properties of the relata inform how we define the relation. 

I have presented four reasons for thinking that Cummins is mistaken when he distinguishes scientific 
problems about the representation relata from philosophical ones about the representation relation.  So, in order 
to completely characterize either the relata or the relation, it is necessary to address both representational 
problems.  But, in order to solve both problems, we have to ask good questions.  Not surprisingly, these questions 
will cross the traditional boundaries between philosophy and neuroscience. 

4 Basic vehicles, higher-order vehicles and thirteen questions about representation 

4.1 Two kinds of vehicles 

The main purpose of this section is to be explicit about the questions we must answer in order to solve the 
problem of neurosemantics; i.e., to understand how neurobiological representations have the many kinds content 
they do.  Before posing these questions in section 4.2, however, it will be useful to draw the distinction between 
basic vehicles and higher-order vehicles.  This distinction gives a sense of what everyone interested in 
neurosemantics agrees on.  Furthermore, it is a distinction that will help to shape the questions in the next 
section. 

Notice that in the examples I provide in section 2 vehicles are neuronal firings for neuroscientists, while 
for philosophers of mind, vehicles are anything that supports a representation (including words, sentences, and 
images).  Vehicles in these two cases seem to be quite different.  However, both disciplines are committed to the 
materialist position that the brain underlies all vehicles.6  In this simple sense, then, both disciplines are 
committed to neurons being the vehicles on which all other vehicles depend in neurobiological systems: if there 
were no neurons, there would be no words, sentences, or images.  Of course, the same claim holds for certain 
chemical compounds, or electrons and other elements of matter.  Why not draw the ‘basic’ line somewhere else?  
The reason, I think, is that neurons have a unique spatial and temporal discontinuity within neurobiological 
systems.  They are the largest physically distinct objects that don’t themselves contain strong spatial 
discontinuities.  And, their temporal behavior is salient at the same scale because of the strong temporal 
discontinuities between neural spikes.  In addition, neuroscientists and philosophers take neurons to be basic 
because neuroscientists have had success already under this assumption.  Neurons, as functional units, are 
something of a highest common denominator among a vast array of neurobiological systems.   

The privileged place of neurons in current neuroscience (and accepted by philosophers (see e.g. Dennett 
1969; Dretske 1988)) suggests a distinction between ‘basic vehicles’ and ‘higher-order’ vehicles.  With respect to 
our mental lives, the basic vehicles are neurons and higher-order vehicles are the likes of mental images, words, 
and mathematical variables.  Notably, I don’t distinguish the physical neurons themselves from their behavior 
(e.g., output signals or spikes).  So neurons are basic as a functional object, not a physical one.  This avoids 
questions of whether the neurons are vehicles or whether neural responses are vehicles.  I take it that both are 
vehicles, and thus group them by considering neurons as functional units. 

Basic vehicles, then, are those vehicles that ultimately support all neurobiological representation.  A 
simple consequence of this is that if someone were to posit a vehicle that could not possibly be supported by 
neurons, it would be ruled out as a representational vehicle in neural systems.  In addition, it is presumably the 
case that anything that does not change neurons’ behavior does not change the representations in a system.  For 
example, if a blow to the head doesn’t affect neuronal function (and doesn’t change sensory input, of course), 
then it’s irrelevant to the representations in the head.  So, we can consider neurons as ‘basic’ because in every 

                                                      
6  Of course, many researchers are not materialists (e.g. Eccles 1974; Nagel 1974; Jackson 1986), but I am assuming 

materialism for the course of the thesis as it seems to be the most promising and widespread hypothesis (c.f. Churchland 
1993). 
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unequivocal case of mental representation, neurons are there.  In other words, neurons are necessary for the 
existence of higher-order vehicles and mental representations in neurobiological systems. 

In contrast, what counts as a higher-order vehicle is definitely more ‘up for grabs.’  It is these higher-
order vehicles that are at issue in many debates: e.g., the feature detectors/filters debate in neuroscience (Van 
Essen and Gallant 1994) and the symbolicism/connectionism/dynamicism debate in philosophy (see e.g., Newell 
1990; van Gelder and Port 1995; Eliasmith 1996; Eliasmith 1997).  However, we do know that higher-order 
vehicles must be constructed, in some sense, out of basic vehicles.  In other words, relations between basic 
vehicles will determine how they constitute the relevant higher-order vehicle.7  The utility of this distinction will 
become clearer in chapters 5-8.  However, this brief characterization should suffice to make it clear what the 
distinction is and why it might be important. 

4.2 Thirteen questions 

Given the preceding considerations concerning the nature of the representation schema, its interest to both 
philosophers and neuroscientists, and the distinction between basic and higher-order vehicles, answering the 
following five questions should result in a theory of how to complete the representation schema and thus solve 
the problem of neurosemantics (to the satisfaction of both philosophers and neuroscientists): 

1. What are the basic vehicles? 

2. What are the higher-order vehicles? 

3. What determines the content? 

4. What is the system? 

5. What relations hold between vehicles, contents, and the systems they are in? 

This last question can be clarified by identifying the six addition questions it subsumes: 

6. What is the relation between basic and higher-order vehicles? 

7. What gives a basic vehicle its content? 

8. What is the relation between the basic vehicles and the system it is in? 

9. What gives a higher-order vehicle its content? 

10. What is the relation between a higher-order vehicle and the system it is in? 

11. What is the relation between a vehicle’s content and the system it is in? 

These eleven questions can be pared down to nine.  Most obviously, question 5 is now redundant.  
However, question 3 is also redundant for a more subtle reason.  If taken to ask “How, in general, do we identify 
the content of a representation?”, then question 3 is asked in a more detailed way by the combination of questions 
7, 9 and 11.  If each of 7, 9 and 11 are answered satisfactorily, there would be nothing left to know about question 
3; i.e., we’d know that the content of the vehicle just is what is given to the vehicle in such-and-such a way 
(questions 7 and 9) as determined by such-and-such a relation to the rest of the system (question 11). 

So, re-arranging the questions into a more logical order, and taking questions 3 and 5 to be redundant, we 
are left with the following nine questions about representation in the brain: 

1. What are the basic vehicles? 

2. What are the higher-order vehicles? 

3. What is the relation between basic and higher-order vehicles? 

                                                      
7  The ‘order’ of a relation is simply the number of levels of relations entering into a given relation plus one.  So, a first order 

relation is of the form ‘X {relation} Y’ where X and Y are not relations.  A second  order relation is of the form ‘X 
{relation} Y’ where X and Y are either or both relations, and so on. 
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4. What is the system? 

5. What is the relation between the basic vehicles and the system they are in? 

6. What is the relation between the higher-order vehicles and the system they are in? 

7. What gives a basic vehicle its content? 

8. What gives a higher-order vehicle its content? 

9. What is the relation between a vehicle’s content and the system it is in? 

These questions capture much of what we wish to know about the brain itself, but ignore the important 
role of the external environment (see chapter 2).  Any discussion of content is going to be incomplete without 
reference to the relation between the system, its representations, and the world.  Representations are about things 
in the world, after all.  For these reasons, content has traditionally been considered, at least partly, a world-brain 
relation (see chapters 1 and 2).  These considerations give rise to four more questions, bringing the total to 
thirteen: 

10. What is the relation between the basic vehicle and the external environment? 

11. What is the relation between the higher-order vehicles and the external environment? 

12. What is the relation between content and the external environment? 

13. What is the relation between the system and the external environment? 

Notably, these last four questions may also be redundant.  In fact, certain theories currently on offer 
assume that they are.  For example, given a causal theory, if we know what gives a vehicle its content (questions 
7 and 8) then we know what the relation is between the vehicles and their environment (questions 10 and 11) – 
the answer in both cases is cause.  However, it isn’t obvious that these questions are necessarily redundant 
because, for instance, a two-factor theory distinguishes the content-determining conceptual role relations from 
the representation-environment causal relation.  I take it that whether these questions are redundant or not will 
only become clear given a satisfactory theory of content.  So, it is best to retain them until it becomes obvious 
one way or the other. 

Note that formulating the questions in this way makes the interdependence of Cummins’ two problems 
about representation more evident.  Questions 5 and 6, in particular, are about neither representations nor content 
exclusively, they concern both.  This is clear when we consider two contemporary theories of content.  
Proponents of conceptual role theories hold that once we know the relations between a vehicle and the system, 
we know what the content of the vehicle is (Block 1986; Cummins 1989).  In this case, questions 5 and 6 would 
be about content.  However, we may think instead that content is causally determined.  And, we may still be 
functionalists about vehicle individuation.  In this second case, questions 5 and 6 would be about characterizing 
vehicles.  So, our answers these more specific questions may be answers to either of the two representational 
problems (depending on our answers to other questions).  This, then, is another example of how representational 
problems are not independent as Cummins suggests. 

The only one of these thirteen questions which neuroscientists and philosophers agree on an answer to is, 
somewhat by definition, the first: neurons are the basic vehicles.  Both neuroscientists and philosophers have 
suggested or assumed answers to the remaining questions, though perhaps focusing on a subset.  Nevertheless, 
the disciplines share the common underlying goal of answering all of these questions because they share the 
common problem of neurosemantics.  Another way of stating the goal of this thesis is that it is an attempt to 
provide a framework for  answering all of these questions (and perhaps providing satisfactory answers to at least 
a few).   

5 Summary 

I began by arguing that representation is a three-place relation.  In particular, the relation can be captured by the 
representation schema: A {vehicle} represents a {content} with respect to a {system}.  This representation 
schema, I suggested, can be used to describe the problem of neurosemantics in both neuroscience and philosophy.  
To show this, I provided examples of the application of this schema by both neuroscientists and philosophers.  I 
then provided additional arguments to show that problems about what the representations are (a ‘scientific’ 
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problem) and problems about what the representation relation is (a ‘philosophical’ problem) are not independent 
as has often been presumed.  This means that the problem of neurosemantics is best addressed by considering 
insights from both neuroscience and philosophy. 

In the last section, I suggested that philosophers and neuroscientists have already reached some measure 
of agreement about representation in neurobiological systems.  In particular, both presume neurons (qua 
functional units) are basic vehicles; i.e., are the parts out of which all other, higher-order, vehicles are somehow 
built.  Given this distinction, and the previous considerations about representation, I posed thirteen questions that, 
if answered, would solve the problem of neurosemantics.  The remainder of this thesis is dedicated to describing 
a methodological and theoretical framework for answering these questions. 



 

 

CHAPTER 4 

A New Perspective on Representational Problems 

The many truths we cling to depend greatly on our point of view.  
– Obi-Wan Kenobi 

1 Introduction 

In this chapter, I am concerned with determining the right way to answer the thirteen questions about 
representation.  There are reasons to think that neuroscientists and philosophers share not only an interest in the 
representational problems I have outlined, but that they also share an approach to solving these problems.  In this 
chapter I argue that their shared approach is flawed, or at least incomplete.  More importantly, exposing this 
methodological flaw provides insights into constructing a theory of content.  Although the considerations I 
present in this chapter may occasionally seem far a field of a theory of representational content, I show, in the 
end, how these very same methodological considerations provide a deeper theoretical understanding of what is 
important to such a theory.  More specifically, I propose the first major piece of the theory I am constructing; the 
statistical dependence hypothesis.  This hypothesis tells us how we can determine what a given representation is 
about. 

But first it is important to see why traditional approaches to characterizing representation by both 
neuroscientists and philosophers are problematic.   The difficulty stems from the shared assumption that the best 
way to characterize the representation relation is from what I call the ‘observer’s perspective,’ instead of what I 
call the ‘animal’s perspective’.  I eventually discuss the close relation between the observer’s and animal’s 
perspectives in section 5, but I begin by distinguishing them in order to highlight the limitations and strengths of 
adopting either perspective exclusively.  In section 3, I present examples from both neuroscience and philosophy 
that capture this methodological prejudice in favor the observer’s perspective.  In section 4, I show why assuming 
this perspective can hinder our understanding of the representation relation.  By way of contrast, I provided a 
detailed example of how adopting the perspective of the animal can result in a simpler characterization of the 
representation relation.   Then, in section 6, I show how these considerations lead to a characterization of the 
relation between vehicles and what they are said to be about. 

2 Two perspectives, one problem 

When faced with scientific problems, such as the problems of representation, we have had great success in 
dealing with them from a third person perspective.  Given such successes, a methodological bias in favor of the 
observer’s perspective is only natural.  This is, in general, an important perspective to adopt in order to construct 
objective solutions to many problems; solutions, that is, that we can easily share with others.  However, when it 
comes to representational problems, it isn’t so clear that this is an appropriate viewpoint to take.   

Consider, again, the problem of neurosemantics described in chapter 1.  It is about the nature of 
representations inside a neurobiological system.  The information-processing neurobiological system is the locus 
of concern.  This scientific question, unlike questions about quarks, molecules, or tectonic plates, concerns 
something that may have a perspective of its own.  If it does have a perspective, and that perspective is relevant 
to answering the questions we need to ask, then we may be able to adopt either perspective – that of the observer, 
or that of the neurobiological system – when addressing representational problems about that system. 

My use of the term ‘perspective’ may bring to mind concerns with subjective experiences or 
consciousness (e.g., along the lines of Nagel 1974), but I mean to avoid such discussions.  I have in mind 
something much weaker than a conscious perspective.  A ‘perspective’, as I shall use the term, is a relation 
between an information processor and a transmitter of information.  Perspective is determined by what 
information is available to an information processor from a transmitter.  Notably, we don’t have to know what the 
information is about in order to distinguish one set of informational states from another.  This is because 
information-theoretic descriptions are descriptions of energy transfer, and we do have a way of tracking energy 
flow without reference to ‘aboutness’ (Fair 1979, p. 228).  So, by distinguishing ‘perspectives’ I mean to 
distinguish information-theoretic descriptions of energy flows.  This means that perspectives are commonplace 
(presumably, more so than consciousness) and can be attributed to individual neurons and brain areas as well as 
to entire brains.   



26 

 

To claim that there is a difference between the observer’s and the animal’s perspective, then, is to claim 
that animals and observers have access to different information in a given situation.  An animal (and each of its 
information processing sub-components) can only access information available through sensory receptors.  
Properly situated observers can access that information, as well as information available through their own 
sensory receptors about the same situation.  In other words, the observer has two sources of information; the 
animal’s receptors, and their own.1  Given the current state of neuroscientific inquiry, only a small number of 
neurons can be recorded from simultaneously.  Thus, the ‘animal’s perspective’ as I am using the term, generally 
refers to a tiny part of the total information available to an animal.  Nevertheless, I think there is an important 
lesson to learn even from this limited access to the animal’s ‘total’ perspective. 

Most neuroscientists and philosophers concerned with representation have adopted the observer’s 
perspective.  However, there have been notable exceptions.  For example, Fitzhugh (1958) describes a means of 
determining the nature of the environment given the response of nerve fibers.  Just as a brain (or its parts) infer 
the state of the world from sensory signals, Fitzhugh attempts to determine what is in the world, once he knows a 
nerve fiber’s response to an unknown stimulus.  He purposefully limits the information he works with to that 
available to the animal.  The ‘extra’ information available via the observer’s perspective is only used after the 
fact to ‘check his answers’; it is not used to determine what the animal is representing.  Fitzhugh’s is one of the 
first in a significant line of experimental approaches that has recently been extended in the book Spikes: 
Exploring the neural code (Rieke, Warland et al. 1997).  One of the main themes of this book is echoed in this 
chapter: our theories can change when we adopt the perspective of the animal.   

In his book Content and Consciousness, philosopher Daniel Dennett (1969) also realized that the 
animal’s perspective is the more natural one:  

Whereas we, as whole human observers, can sometimes see what stimulus conditions cause a 
particular input or afferent neuron to fire, and hence can determine, if we are clever, its 
‘significance’ to the brain, the brain is ‘blind’ to the external conditions producing its input and 
must have some other way of discriminating by significance (p. 48).   

However, Dennett does not appear to have realized that adopting the animal’s perspective may have important 
consequences for a theory of content, because he assumes the standard perspective elsewhere in the same book: 
“[T]he investigators working with fibres in the optic nerves of frogs and cats are able to report that particular 
neurons serve to report convexity, moving edges, or small, dark, moving objects because these neurons fire 
normally only if there is such a pattern on the retina” (p.76, my italics; see also pp. 42, 126).  In this second 
quote, and elsewhere, Dennett has assumed that the pattern, as determined from the observer’s perspective, is 
what is being represented.  However, as he noted in the previous quote, bits of brains don’t necessarily represent 
what whole human observers do. 

In contrast to Dennett’s ambiguous commitment to the animal’s perspective, work in artificial 
intelligence has generally embraced that perspective.  Researchers in this field realize that the problems that 
agents solve must be solved given only one source of information – sensory input.  For example, this kind of 
‘first-person’ strategy is adopted by the influential tradition in machine vision of constructing three-dimensional 
scenes from basic features (Marr 1982).  However, biologically reasonable theories of representational content, 
i.e., theories of the kind I am interested in constructing, have decidedly not taken a cue from such traditions in 
artificial intelligence.  This is, perhaps, not surprising given that researchers in artificial intelligence often 
distinguish their pragmatic concern for understanding how to solve a given problem, from concerns of how the 
brain actually solves such problems.  This, of course, doesn’t stop such research from suggesting hypotheses 
about how the brain might solve such problems (but, for a neurobiologically motivated critique of some such 
hypotheses based on Marr’s program see Churchland, Ramachandran et al. 1994).   

Artificial intelligence researchers, then, tend to share the conviction that trading the third person 
perspective for a first person perspective not only makes sense given the kinds of problem at hand, but is also 
necessary for avoiding unwarranted assumptions about the nature of the environment.  In characterizing 
neurobiological systems, however, most neuroscientists and philosophers adopt a third person perspective.  In 
particular, neuroscientists tend to assume a set space of possible distal stimuli and try to determine how the 
system reacts to those distal stimuli (and philosophers tend to assume that neuroscientists have a good 
                                                      
1  It is irrelevant to the point being made here that the observer must access the information available from the animal 

through the observer’s sensory apparatus.  The fact remains that the observer’s perspective includes two distinct sources of 
information, only one of which the animal’s perspective includes. 
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methodology).  This, however, isn’t the problem that an animal must solve in the real world.  Rather, the set of 
possible stimuli is unknown, and an animal must infer what is being presented given various sensory cues.  In the 
next three sections, I contrast these two ways of answering questions about the representation relation. 

3 One way to find some answers 

The standard methodology for approaching representational problems is the intuitive one.  If you were asked to 
determine what states or processes played a representational role in a given system (i.e., to solve the Problem of 
Representations (Cummins 1989)) a natural approach would be to present the system with various things it would 
have to represent and to look for the processes and states that are activated by the presentation of those stimuli.  
This is precisely the current methodology in neuroscience, and one endorsed by many philosophers.   

Experiments adopting this methodology are performed to characterize shape-related responses in neurons 
in early parts of visual cortex such as V1, V2 and V4 (Knierim and Van Essen 1992; Gallant, Braun et al. 1993; 
DeYoe, Carman et al. 1996; Callaway 1998).  First, a neuron is found with a recording electrode and its receptive 
field is determined.  The receptive field of a neuron is the part of the visual field that, when occupied by a 
stimulus, causes the neuron to respond (i.e., to fire above its base firing rate).  The neuron’s preference for color 
and other non-shape related features is also determined.  All the stimuli presented to the neuron have the non-
shape related features it prefers.  Now, a set of predetermined stimuli, such as crosses, oriented bars, spirals, and 
sinusoidal gratings, are presented to the neuron and its responses are recorded.  The experimenter then proceeds 
to characterize the responses of the neuron over a series of trials in order to account for the variability of 
responses to the same stimuli.  What the experimenter is constructing, then, is the conditional probability 
function that a certain neural response occurs given a stimulus.  So if we are told, for example, that a spiral is in 
some neuron’s receptive field, we can use the probability function we have constructed to predict how that 
neuron is likely to behave.  Presumably, if the experimenter picks enough different stimuli to present to a neuron, 
he or she will be able to get some sense of what the neuron is representing, that is, to what dimensions (e.g., 
curvature, length, etc.) it responds.   

This kind of experiment has been performed since Hubel and Wiesel’s (1962) classic experiments in 
which they identified cortical cells selective to the orientation and size of a bar in a cat’s visual field (such 
neurons are often problematically called ‘edge detectors’).  The ‘bug detector’ experiments of Lettvin et al. 
(1988/1959), perhaps better known to philosophers, take a similar approach.  In the ‘bug detector’ experiments, 
retinal ganglion cells (i.e., ‘bug detectors’) were found that respond to small, black, fly-sized dots in a frog’s 
visual field.  More recently, this method has been used to find ‘face-selective cells’ (i.e., cells that respond 
strongly to faces in particular orientations) in monkey visual cortex (Desimone 1991).  In all of these cases, what 
is deemed important is recording how a neuron responds to known stimuli.  In other words, the observer’s 
perspective is adopted, since both the neuron’s response and the nature of the stimulus (e.g., edges, flies, and 
faces) are used to characterize the neuron’s behavior.   

This method has dominated, and still dominates, neurophysiological research (Gross, Rocha-Miranada et 
al. 1972; Zeki 1980; Felleman and Van Essen 1991; Roelfsema, Lamme et al. 1998).  It is also the method used 
by neuroscientists to determine the relata of the representation relation (i.e., to solve the Problem of 
Representation (Cummins 1989)).  In the case of face-selective cells, the representation schema introduced in 
chapter 2 would be completed as follows: {the neuron that is being recorded from} represents {that face x 
degrees from y degrees (where y degrees is the preferred orientation of the cell)} with respect to {the monkey’s 
brain}.  These are presumed to be the right relata because, in order, the neuron responds to the stimulus, the 
observer knows that the stimulus is a face at x degrees from y degrees, and the neuron doesn’t respond that way 
outside of the monkey’s brain.  Notice the central role of the observer’s perspective in determining the relata in 
the representation relation.  The precise content of a given neural firing is determined by the observer’s 
independent knowledge of the stimulus.  It is, in general, dangerous to have such a priori (with respect to the 
animal) commitments determine the results of an investigation.  In section 4, I discuss how I think we can, at least 
partially, avoid this result by adopting the animal’s perspective. 

Before I do, however, it is important to show that philosophers, too, have adopted related tactics in trying 
to characterize the representation relation.  Consider, for example, Fred Dretske’s (1988) approach.  He argues 
for a distinction between three types of representational systems: 

Type I – Systems with no intrinsic power of representation at all; e.g., a pen used to stand for a 
unicorn. 
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Type II – Systems that use natural signs as conventional representations; e.g., falling sand particles 
used to represent time. 

Type III – Systems that use their intrinsic indicator functions as representations; e.g., the ‘bug 
detector’ cells representing bugs to a frog. 

In fact, the Problem of Representation arises only in the third case because in type I and type II systems 
the representational relationship is stipulated by a user (what I called ‘representation designation’ in section 1 of 
the last chapter).  So how does Dretske come to understand the representational relationship in type III 
representational systems?  He calls neuroscience to his aid.  He accepts ‘bug detectors’ as representations of 
edible bugs because neuroscience has shown that particular cells fire when given bug-like stimuli (ibid., pp. 68-
9).  So the representational relation is the causal one between bugs and neural firings; the causal relation that is 
described by the conditional probability of the neural firings given the presence of bugs.  Dretske is not alone in 
this kind of appeal to neuroscience.  Philosophers have often thought that the details of cognitive function could 
be left to neuroscientists (see e.g., Dennett 1969; Millikan 1984; Churchland 1986; Churchland 1989; Dennett 
1991). 

But, Drestke is a particularly interesting case because he seems to be interested in the conditional 
probability that there is a stimulus in the environment given a response (i.e., P(s|r)), not the related, but converse 
probability function which neuroscientists are constructing (i.e., p(r|s)).2  This is important because, as I discuss 
in more detail in the next two sections, I think p(s|r) has been wrongly ignored.  But, if Dretske talks about P(s|r), 
how can I claim that the related probability function has been ignored?  The reason is that Dretske (1981) claims 
that P(s|r) has to be unity, i.e., that there has to be the stimulus in the environment given a particular neural 
response (and given background knowledge and certain channel conditions) in order for that response to carry 
information about the stimulus.  This is to say that if there is a given neural response then there is a given 
stimulus.  In effect, then, Dretske has turned the probability statement into a logical one by forcing the unity 
criteria on the probability.   

There are two problems with this result.  First, from an experimental point of view, this condition on 
neural meaning prevents Dretske’s analysis from having any methodological import.  It is never the case, after all, 
that probabilities of this kind, as measured experimentally, are one.  Therefore, on Dretske’s analysis it is never 
the case that a measured neural response can be said to carry information about a stimulus.  Dretske may claim 
that his is a metaphysical reduction of the notion of representation, but he then must explain why all empirically 
characterized representation relations, none of which meet his criterion, are still considered representation 
relations.  And, even if he succeeds in offering such an explanation, he must tell us why the original criterion in 
conjunction with this explanation should be preferred over an account that doesn’t necessitate further explaining 
(like the account offered in chapter 7).   

Second, and more importantly for my purposes, Dretske’s criterion can only be satisfied by adopting a 
rather extreme form of the observer’s perspective; the observer must be ideal.  In particular, the observer must 
have complete knowledge of channel conditions, the animal’s background knowledge, and the state of the 
stimulus in order to verify that a given response carries information about a stimulus.  For these reasons, 
Dretske’s theory does not adopt what I have been calling ‘the perspective of the animal’.  That is, Dretske’s 
theory eliminates the perspectival nature of P(s|r) by forcing a criterion of a unitary conditional probability; all 
relevant information must be available in order to determine that this conditional probability is one.  Since the 
animal’s perspective is defined by a limit on information available from a transmitter, and there are no limits on 
the information available to the ideal observer, Drestke’s theory clearly does not adopt the animal’s perspective 
in the relevant sense. 

Even those philosophers who, unlike Dretske, reject neuroscience as the arbiter of cognitive theories 
have generally accepted the standard methodology, normally by placing psychology in neuroscience’s stead.  
Quine (1960), for example, motivated by his behavioristic tendencies, warns that we should steer clear of looking 
“deep into the subject’s head” or at the subject’s “idiosyncratic neural routings” (p. 31).  In contrast, Quine 
describes in great detail experiments in which we are asked to evaluate the response of a subject given some 
stimuli (e.g., a rabbit).  In effect, Quine argues that even if the conditional probability of some response (e.g., the 

                                                      
2  It is important to note the difference between P(x,y) and p(x,y).  The former is a particular, real valued probability (i.e., the 

probability that specific events x and y occur together), whereas the latter is a function which describes the likelihoods for 
all combinations of the random variables X and Y (i.e., the probability function that maps the events X=x and Y=y for all x 
and y to their probabilities).  Of course, the two are closely related since p(xk,yk)=P(X=xk,Y=yk)=pk. 
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word ‘gavagai’) given some stimulus (e.g., a rabbit) is equal to one, we still can’t make claims about what the 
stimulus is being seen as (e.g., a rabbit, or undetached rabbit parts).  What is important for my purposes is that 
the conditional probability that behaviorists like Quine are interested in is still that of the response given the 
stimuli; it is this conditional probability that is constructed under the standard methodology.   

The same is true of philosophers motivated by cognitive psychology, such as Fodor (1975, p. 34-7).  For 
example, in Fodor’s discussion of concept learning, he takes it that a subject’s response profile is what is 
modeled by psychological theories.  What psychologists are doing, then, is recording the subjects’ responses to a 
known set of stimuli.  This allows them to achieve their goal of predicting subjects’ responses knowing the 
presented stimuli.  In order to do this, they have effectively constructed the same conditional probability function 
as the behaviorists: the probability of a response given a stimulus. 

These examples from neuroscience and philosophy, though only a small sample, show a convergence on 
a particular methodology for characterizing the representational properties of cognitive systems.  They depend on 
the assumption that constructing the conditional probability function of the likelihood of a response given a 
stimulus is the best way to characterize the relation between representations and sensory stimuli.  In the next 
section, I discuss some of the problems with adopting this assumption.  In the section following that, I describe an 
alternative methodology for approaching representational problems that avoids these difficulties. 

4 The strangeness of taking the familiar route 

Neuroscientific experiments such as those discussed above are intended to address both representational 
problems because they help to characterize a physical process that is correlated with external stimuli, and they 
use that correlation to determine the relata of the representation relation.  This experimental paradigm is geared 
towards characterizing the neural response objectively, that is, for a third party observer.  This is the natural 
perspective for us, as scientists, to take.  We have a system we are interested in understanding, we know what we 
are presenting to the system, and we have a means of measuring the system’s output.  Because there are so many 
sources of uncertainty when applying this kind of approach to a complex system, the measurements of the output 
vary, even with well-controlled inputs (see section 5 for a simple example).  Not surprisingly then, we construct 
histograms that tell us the probability of getting a particular output given the input.  From this third person 
perspective, the inputs are well defined and the outputs are probabilistically related to the inputs.  In other words, 
it just makes sense to construct the conditional probability of the indeterminate output given the determinate 
input.  That probability function, what I have been calling p(r|s), is a means of describing the physical processes 
inside the system we are probing. 

If we take a step back for a moment and think carefully about the problem neuroscientists and 
philosophers are both trying to address, this approach begins to seem a little odd.  In the end, we are interested in 
understanding the problem of neurosemantics.  That is, we want to know how, and in what way, animals (or their 
information processing parts) rely on internal states to stand for things in the outside world.  And, we want to 
know what the relation is between those internal states and the things in the outside world.  We don’t want to 
know (just) how to cause certain internal states in an animal.  But, constructing conditional probabilities of the 
response given the stimulus tells us how to control the animal with known stimuli, not how the stimuli could be 
inferred from the responses, or, more importantly, what the relation is between the two. 

This response-given-stimulus conditional probability may make sense from our perspective, but, and this 
cannot be overemphasized, that conditional probability makes no sense from the perspective of the animal.  In 
the real world, an animal (or its information processing parts) must try to coordinate behaviors based on the 
neural firings from its sensory apparatus.  There is no sense in which the animal could know what stimulus is 
being presented prior to having some set of neurons activated; this far, Dennett (1969) is right.  This is important 
for characterizing the representations in neurobiological systems because, in the frog for example, that neural 
activity is used by subsequent neurons to detect and react to bugs; bugs aren’t somehow used to cause neural 
firings. 

Another way of thinking of this difference is to realize that constructing the response-given-stimulus 
conditional, p(r|s), captures the process that generates neural responses.  If we present a certain stimulus to a 
neuron, we can (approximately) determine the response we will expect the neuron to generate.  This is a different 
problem from inferring the stimuli in the world from the neural response.  In this second case, we would try to 
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(approximately) determine what stimuli had caused the response we see.3  If we want to understand how an 
animal can use its neural representations, we want to understand how it can make such inferences, not just how 
spikes are generated. 

Perhaps the reason neuroscientists and philosophers haven’t tried to understand neural function in terms 
of the conditional probability I am arguing for (i.e., p(s|r)) is a methodological one.  Perhaps, in other words, it is 
just easier to find p(r|s) than p(s|r) and that explains why we have to adopt the perspective supported by former 
instead of that supported by the latter.  But this doesn’t seem to be the case. 

First, we must realize that the statistical relation that we are most interested in capturing is the combined 
(or joint) probability function that describes the likelihood of a stimulus and a response, p(s, r).  This function 
describes the probability that the stimulus, s, and the response, r, occur together (or with some suitable delay).  
The reason we are most interested in this joint probability function is because it captures all there is to know 
about the probabilistic relation between a stimulus and a response.  From the joint probability function we can 
determine the marginal probability functions (p(s) and p(r)) as well as either conditional probability function 
(p(s|r) and p(r|s)).  In other words, there is nothing more to know about the relation between the two variables r 
and s than what there is to be found in the joint probability function. 

There are three ways of determining (or, more realistically, approximating) a joint probability function.  
The first is to determine it experimentally.  That is, we can randomly present a set of stimuli that drive a cell, 
record the firings and construct the joint histogram.  Notably, this is not the same as showing stimuli and 
constructing a histogram of the response probabilities for each stimulus (i.e., the standard methodology).  In the 
next section I discuss a specific example of this difference.  The second and third ways of determining the joint 
probability function are either: 1) to find it from the response-given-stimulus probability, p(r|s), if we know the 
probability of the stimulus, p(s) as in equation (1); or 2) to find it from the stimulus-given-response probability, 
p(s|r), if we know the probability of the response, p(r) as in equation (2). 

)()|(),( spsrprsp ⋅=  (1) 

)()|(),( rprsprsp ⋅=  (2) 

Given these three ways of determining the joint probability function, we can learn something quite 
interesting about the methodological assumptions of traditional neuroscience and philosophy.  Namely, that 
efforts have been focused on characterizing only part of the relationship between stimuli and responses.  In 
particular, p(r|s) has been characterized, but this isn’t all there is to know about the relation between a stimulus 
and a response.  In order to completely characterize the relationship, we also need to know p(s) as in (1). 

The importance of the probability of a stimulus occurring, p(s), is often overlooked by the standard 
methodology.  If we aren’t careful about p(s), then our choice of stimuli to present to a neuron can greatly skew 
our estimate of the joint probability function and we will mischaracterize the relationship between stimulus and 
response.  For example, if I present only one stimulus over and over, the probability of that stimulus will be one, 
and the joint probability will be equal to the conditional probability, p(r|s).  This, of course, isn’t because that’s 
what the joint probability really is, but rather because my choice of p(s) is a particularly bad one, one that is 
unlikely to represent the probability of naturally occurring stimuli.  In order to get a good estimate of the joint 
probability, we need to have a guess as to what p(s) is.  As important and difficult as generating that guess may 
be, it is not relevant for my purpose of showing that the standard methodology isn’t simpler.  What is important is 
that we must put a lot of work into determining p(s), or we will poorly characterize the relationship we are after. 

In the case of determining p(s|r), we seem, on first glance, to be at a methodological disadvantage.  We 
can’t, after all, force the neuron to have a response and then see what the stimulus that caused it was.  However, 
from (2), it is plain that we can characterize this conditional probability if we characterize the joint probability 
function first.  Furthermore, we don’t need to worry about p(r) here (as we needed to worry about p(s) under the 
traditional methodology) because it can be calculated directly from our estimate of p(s, r) (by marginalizing the 
joint probability function).  But, estimating the joint probability function isn’t easy.  We need to present the 
neuron with a good selection of stimuli, and to record the responses of the neuron.  What do I mean by a ‘good 
selection’?  Well, the naturally occurring p(s) would be a good selection.  That, of course, is just what we needed 
to know in order to properly characterize the relationship between stimulus and response in the traditional 
methodology.  In other words, we need to know just as much about the probabilistic relationships (i.e., we have to 
                                                      
3  This can be undertaken by an observer, and nevertheless not adopt an observer’s perspective about what is being 

represented.  I discuss this more fully in section 5. 



31 

 

make the same tough guesses) in determining p(s|r) from (1) via the joint probability function, as we need to 
know in order to properly characterize the stimulus/response relationship under the standard methodology. 

In sum, characterizing the complex relationship between the environment and an animal’s internal 
representations is no more difficult from one perspective than from the other.  Furthermore, there are a number of 
considerations in favor of adopting the animal’s perspective.  In particular, it’s what the animal must do, and that 
is what we are interested in understanding.  So, taking the third person perspective, that is, adopting the 
traditional methodologies of neuroscience and philosophy, may not be the best bet in solving the interesting 
representational problems.  The alternative is, of course, to adopt the perspective of the animal. 

5 The other way to find some answers 

Though constructing the response-given-stimulus conditional probability, p(r|s), is by far the most prevalent 
means of trying to understand representation in neurobiological systems, it is not the only one.  The alternative, 
as just discussed, is to construct the stimulus-given-response conditional probability, p(s|r).  Fitzhugh (1958) 
suggests embracing this latter approach, though his suggestion does not seem to have attracted much interest until 
recently (Bialek, Rieke et al. 1991; Theunissen and Miller 1991; Abbott 1994; Mainen and Sejnowski 1995; 
Rieke, Warland et al. 1997).  In this section I discuss a specific example that shows the difference adopting one 
perspective over the other can make. 

I have already suggested a few reasons why the animal’s perspective may be important for characterizing 
representation.  But are there reasons to think the animal itself could or does use the stimulus-given-response 
conditional?  For the animal to do so, according to equation (1), it would need to take advantage of the joint 
probability function (or an estimate of the joint probability function) and the probability of a response occurring.  
In other words, before anything else, the animal (or its information processing parts) needs an internal statistical 
model of the environment’s relation to its neural responses.  The simple fact is, we have to start with a model of 
the stimulus before we can construct the probability of a stimulus given a response.  Fortunately, there is 
evidence that young animals, including children, do have a sense of the statistical structure of their world (Soja, 
Carey et al. 1991; Spelke and Van de Walle 1993).  For example, there is evidence that children, at the tender age 
of three months, perceive object unity (Spelke and Van de Walle 1993, p. 134).  These sorts of results suggest 
that animals come into the world with innate mechanisms that help them guess at what stimulus in the 
environment causes some particular neural firings.4  Of course, these initial models can be updated on the basis 
of experience.   

Having to begin life with a statistical model of the world may seem unduly nativist to many.  However, 
such models don’t need to be very detailed (or even very good) to be useful.  Researchers in machine vision have 
taken advantage of this fact and applied it to object recognition.  They have turned from traditional ‘descriptive’ 
models that are learned from scratch to ‘generative’ models that assume an initial model and then build up better 
representations on the basis of that assumed model and experience (Frey and Jojic 1999).  Using these new 
approaches, researchers have been able to solve some traditionally difficult problems with computationally 
simple algorithms and very general models of the statistical structure of the world.  So, not only is it possible to 
construct stimulus-given-response conditional probabilities (as outlined in the last section), but doing so is both 
biologically reasonable and has lead to advances in fields solving related problems.  These are two good reasons 
to think this may be a fruitful approach. 

But, what about an actual neurobiological system solving an actual neurobiological problem?  Since 
1988, Robert de Ruyter van Steveninck and William Bialek have worked to characterize the motion processing 
system in the blowfly (de Ruyter van Steveninck and Bialek 1988; Rieke, Warland et al. 1997).  The neurons they 
are particularly interested in are called H1 neurons and are about 4 synapses away from the fly’s photoreceptors.  
These neurons show a high sensitivity to the velocity of stimuli in the fly’s environment. 

By tethering a fly, and recording from an H1 neuron for an extended period, these researchers were able 
to build up a good estimate of the joint probability of velocity and firing rate.  With this data, they directly 
compared the difference between using the stimulus-given-response conditional probability and the more 
traditional response-given-stimulus conditional probability (see Figure 1). 

                                                      
4  This innateness claim is actually quite weak and is generally admitted by both ‘nativists’ and ‘non-nativists’ alike 

(Chomsky and Katz 1975, p. 70; Fodor 1981, p. 275). 
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Figure 1: Joint, marginal, and conditional probability functions (a, b, c, d, e), and the differing 
characterizations of the stimulus/response relationship (f, g, h, i) depending on the conditional 
used (from Rieke, Warland et al. 1997). 

Figure 1 demonstrates the important differences that can arise from taking the observer’s perspective 
versus the animal’s perspective.  Beginning at the bottom of this figure, (a) and (b) show the probabilities of a 
stimulus (velocity) and of a response (number of neural spikes in a time window) respectively, for some H1 
neuron.  These are the marginal probability functions of the joint probability of the variables, which is shown in 
(c).  From (c) we can discern that there is a statistical dependence between the two probabilities in (a) and (b) 
since p(n, v) ≠ p(v)⋅p(n).  This is as we would expect if the neural response is related to the velocity.  The next 
two graphs, (d) and (e) are generated using equations (1) and (2) of the previous section, and show the 
conditionals p(v|n) (i.e., p(s|r)) and p(n|v) (i.e., p(r|s)) respectively.  A graph of the best estimate of the velocity 
given some response is shown in (f) and (h).  As is standard practice, this best estimate is presumed to be the 
average.  These two graphs, then, characterize the problem from the perspective of the fly.  The best estimate of 
the response given some velocity is shown in (g) and (i).  This is the problem as solved from the observer’s 
perspective.   

As can be seen by comparing graphs (h) and (i), adopting the fly’s point of view results in a much more 
linear relation between the stimulus and response (i.e., the function from one to the other is nearly a straight line) 
than does adopting the third person perspective.  In fact, (i) looks much like the standard sigmoid function used in 
many artificial neural networks, and determined by many neurobiological experiments.  This relation between 
stimulus and response, found by adopting the observer’s perspective, is extremely nonlinear.  In general, if we 
can characterize a system as linear, it will be much easier to analyze than if we have to deal with the inherent 
complexities of nonlinear responses.  In this sense, our description of the problem is much simpler if we adopt 
the animal’s perspective over that of the observer.  As well, this result is encouraging because it suggests that 
particular instances of the representation relation in neurobiological systems may not be unduly complex (i.e., 
nonlinear instead of linear) if we adopt the appropriate perspective. 

If the animal’s perspective is advantageous, as this result suggests, should we abandon neuroscience, 
psychology and philosophy as traditionally done?  The answer is no.  I have been intentionally overstating the 
case for the differences between these two methodologies to show the strengths of the alternative.  In fact, the 
two approaches are deeply connected.  If we look again at equations (1) and (2), we can see precisely what that 
connection is.  In particular, equating the right hand sides of both equations leads to: 
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This equation is known as Bayes’ rule.  What it tells us is that if we can completely characterize one of 
the conditional probability functions, along with p(s) and p(r), then we can completely characterize the other.  
However, complete characterization of unknown probability functions through sampling is extremely difficult.  
So, rather than discarding one methodology in favor of another, we should try to characterize these probability 
functions in as many ways as possible.  This gives us multiple means of discovering the same underlying 
probability function, p(s, r).  And this kind of cross-validation is an invaluable tool for any scientific enterprise. 

So far, however, researchers have approached the problem from mainly one standpoint – that of the 
observer.  Not only would it be more ecumenical, but it would also be better science to use all of the tools we 
have available.  If our estimates of the joint probability function converge, then our confidence in the accuracy of 
the estimate would be significantly greater than an estimate from only one source.  Convergence is never a bad 
thing. 

The tight relation between p(s|r) and p(r|s) also helps show what the real difference is between the two 
approaches.  As I argued in the last section, the amount of work involved in getting at either conditional is about 
the same.  So, this methodological switch wouldn’t be about saving time.  Rather, it is about constructing the 
right conditional probability in the right way, or more importantly, under the right assumptions.  Dretske argued 
for constructing the right probability, but his assumptions about the nature of that probability lead to difficulties.  
We must not only construct this probability, but also do so under the assumption that the animal has no a priori 
access to the nature of the stimulus.  The animal may have some innate statistical model, but it doesn’t have to be 
one that exactly mirrors the statistical structure of stimuli in the environment as Dretske’s criterion mandates. 

Another way of stating this ‘no a priori access’ assumption is: we should not adopt the observer’s 
perspective about what is being represented.  So far, I have been suggesting this by claiming that we must take 
the animal’s perspective and not the observer’s perspective.  But, strictly speaking, we can’t literally adopt the 
perspective of the animal, because we aren’t literally the animal.  Rather, we must take an observer’s perspective 
because we are observers.  What I mean to say, then, is that we should direct our third person perspective 
through the animal.  This is the real difference between the two perspectives.  The observer’s perspective is a 
third person perspective, simpliciter.  What I have been calling the animal’s perspective is still technically a third 
person perspective, but it is ‘filtered’ through the animal; we limit our access to the animal’s information channel 
when representing the world (even though we can use our channel to help verify the inferences we make on the 
basis of the animal’s perspective).  And, this is a difference that can make a difference, as the blowfly example 
shows. 

In section 2, I promised to discuss how we could avoid having a priori commitments determine detailed 
content ascriptions.  In the case of the monkey face-selective cells, taking the standard perspective leads to a 
characterization of the representation relation as: {the neuron that is being recorded from} represents {that face x 
degrees from y degrees} with respect to {the monkey’s brain}.  Notice, of course, that this content is completely 
determined by the stimulus presented by the observer.  In other words, the content is {that face x degrees from y 
degrees}, because the observer knows that the stimulus is x degrees from y degrees, having presented that as the 
stimulus.   

If, instead, we attempted to determine the representation relation from the animal’s point of view, we 
would first construct the joint probability function of, say, the firing rate and the orientation of the stimulus.  We 
would then find p(s|r) and, given a firing rate, we would determine the best guess as to s.  So, the representation 
relation would look much the same: {the neuron that is being recorded from} represents {that there is a face x 
degrees from y degrees} with respect to {the monkey’s brain}.  However, notice the slight difference in the 
content in these two cases. Under the standard methodology the content is {that face x degrees from y degrees}.  
Under the alternate methodology the content is {that there is a face x degrees from y degrees}.  This difference 
can be expressed by noting that in the first case, the content is identical to the referent, but in the second case, the 
content is a property ascription in the form of an hypothesis about the world.  So, the referent is the same in both 
cases, but the content is different.  Another way of understanding this difference is to notice that what the 
displacement, x, is, is determined in a much different way in each case.  Under the standard methodology, it is 
determined by a priori knowledge about what is being presented to the cell.  Under the alternate methodology, 
the displacement is determined by statistical inference from a firing rate to a likely stimulus.  Thus, the 
displacement determined by this second method could be different from that of the actual stimulus.  This is not so 
under the standard methodology.  These, then, are definitely not the same characterization of the representation 
relation.   
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6 The statistical dependence hypothesis 

Taking the alternate methodology seriously provides important insights into the nature of representational 
content.  Recall two things that we have learned along the way: 1) the joint probability distribution completely 
characterizes the relation between stimulus and response variables; and 2) neurons are said to represent what they 
have statistical dependencies with (under both methodologies).  I think we can put these claims to work for a 
theory of content. 

First, given that joint probabilities fully characterize the relation between stimuli and responses, if we 
had the set of all joint probabilities between any stimulus and the responses of some neuron, we would have a 
complete characterization of how that neuron relates to any particular stimulus.  Second, responses are said to 
represent what they have dependencies with.  Presumably then, it makes sense to say that the things (objects, 
events, properties) a neuron best represents is what it has its highest statistical dependency with.  Furthermore, a 
neuron can be a better ‘stand-in’ for what it has the highest statistical dependence with than for anything else.  
Since representation is  ‘standing-in’, and content is partly what is ‘stood-in’ for, we would say that a neuron’s 
content is (at least partly) what it has this highest statistical dependence with. 

Putting these two claims together results in a hypothesis about the nature of meaning in a neurobiological 
system.  I will call this the statistical dependence hypothesis: 

The set of events relevant to determining the content of neural responses is the causally related 
set that has the highest statistical dependence with the neural states under all stimulus 
conditions.5 

Notice that the hypothesis suggests that content is determined by responses, not a single response.  Response 
profiles statistically depend on sets of causes, not momentary responses.  It is well known that neurons have 
graded responses to stimuli.  In this sense it is misleading to call them ‘detectors’ of any kind.  Neurons don’t 
‘detect’ things (i.e., they don’t determine that there is an edge or there isn’t one), they respond selectively to 
input; the more similar the input, the more similar the response.  The statistical dependence hypothesis relies on 
this ubiquitous property of neurons. 

The statistical dependence hypothesis says that given a complete characterization of how a neuron (or a 
group of neurons) responds via the set of all joint probabilities (i.e., the set of joint probabilities under all 
stimulus conditions6), the causes relevant to content of that neuron’s (or group’s) response are those that its 
(their) response profile corresponds to the best.  We would expect content to be (at least partly) determined by 
the best corresponding neural responses because those responses carry the most information about the relevant 
causes.  Notably, this doesn’t assume that representations are ‘normally right’ – representations have all kinds of 
statistical dependencies, not just the best one.  But, neural responses are, in a sense, about what they are the best 
at being about. 

The statistical dependence hypothesis is about what we should take neurons to mean; i.e., how we should 
determine their content in general.  But, what about active, real-world representing?  How do we know what this 
particular representation that is active right now is about?  How do we know what it has as a referent?  I think a 
more limited version of the same hypothesis helps answer these questions.  I’ll call this corollary the occurent 
representation hypothesis: 

The referent of an occurent representation is the causally related event that has the highest 
statistical dependence with the representation under the particular stimulus conditions in which 
it is occurent. 

                                                      
5  Hyvarinen (1999) notes: “The mutual information is a natural measure of the dependence between random variables.” (p. 

107).  Average mutual information between random variables is defined as 
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I discuss examples of both perceptual representation and motor representation in chapters 6 and  7. 
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This hypothesis, then, serves to tell us that, right now, this representation is about that thing in the world. 

Perhaps a simple example will help to clarify the application of both the statistical dependence 
hypothesis and its corollary.  Consider, again, an H1 neuron in the blowfly.  According to the statistical 
dependence hypothesis, the meaning carried by this neuron is determined by its highest statistical dependence 
under all stimulus conditions.  Given past experiments, the response profile of this neuron is most highly 
dependent on horizontal velocity in the visual field under all stimulus conditions.  Now, what do we say when a 
particular stimulus is moving in the visual field?  We say that the referent of the representation is that stimulus, 
since, under these conditions it has the highest statistical dependence with the neural response.  And, we say that 
the neuron means that there is such-and-such a velocity in the visual field.  If, however, we flashed a number of 
stimuli in quick succession, providing the illusion that there was movement7 and resulting in a response from this 
H1 neuron, things would be different.  We would then say that the referent of the response was the set of stimuli 
events (since they have the highest statistical dependence with neural firings under these conditions).  However, 
we would still say that the neuron means that there is such-and-such a velocity in the visual field (even though 
there isn’t) because under all stimulus conditions it is velocity that this neuron picks out.8  This is simply a case 
of misrepresentation. 

There are many more things that need to be said about the statistical dependence hypothesis, but I will 
leave further discussion until chapters 5-8 where it can be put in the context of a more complete theory of 
content, and thus better defended.  The reason I have introduced the hypothesis here is that its initial formulation 
relies on what we have learned from considering the problematic methodology assumed by most neuroscientists 
and philosophers.  One way to understand the flaw in adopting the observer’s perspective is that it results in a 
blurring of referent and content.  Notice that the perspective of the observer incorporates two sources of 
information when determining content; i.e., both what the observer takes the stimulus to be and how the animal’s 
perceptual system responds to the stimulus are included.  Adopting the animal’s perspective makes it quite clear 
why and how we should keep these two sources separate.  Similarly, the statistical dependence hypothesis and its 
corollary provide a way to understand meaning that makes this distinction explicit. 

7 Summary 

There are significant shortcomings of the traditional methodology employed in neuroscience and philosophy, and 
there is an important alternative worth investigating in greater detail.  I have characterized the difference between 
methodologies as one in perspective; the observer’s perspective versus the animal’s perspective.  There is 
evidence that adopting the animal’s perspective can simplify the project of characterizing the representation 
relation.  As well, the distinction between perspectives puts important constraints on our theory of meaning.  The 
statistical dependence hypothesis is one aspect of a theory of meaning that is consistent with these constraints.  
The remainder of this thesis is engaged in the project of further exploring exactly what kinds of insight we can 
gain into the representational problems faced by philosophy and neuroscience when we adopt the perspective of 
the animal. 

                                                      
7  This effect is called the phi phenomenon by psycholgists and is well exemplified by a marqee (see Sarris 1989). 
8  Of course, this raises the deep philosophical worry about how we can justify distinguishing ‘velocities’ from ‘nearby 

flashes’ as distinct sets of causes.  I consider these worries in more detail in chapter 6. 



 

 

CHAPTER 5 

A Theory of Content 

A theory is something nobody believes, except the person who made it. – Attributed to Albert 
Einstein (1879-1955) 

1 Introduction 

So far, I have proposed a series of somewhat disconnected considerations regarding a theory of content.  I have 
suggested that a good strategy for building such a theory is to look for a single factor that underlies both causal 
and conceptual role factors (chapter 2).  I have argued that a theory of neurosemantics will have to consider both 
philosophical and neuroscientific results regarding the nature of content and have proposed a precise set of 
questions both disciplines are interested in answering (chapter 3).  And, in the last chapter, I suggested that we 
should adopt the animal’s perspective and the statistical dependence hypothesis when constructing a theory of 
content.  Together, then, these chapters show that we need to consider philosophical and neuroscientific results: 
chapter 2 being an example of the former and chapter 4 being an example of the latter.  In this chapter, I begin the 
process of bringing these considerations together to develop a theory of content. 

2 Some assumptions 

To begin, I will be explicit about what I assume in constructing this theory.  I take the assumptions to be non-
controversial for the majority of contemporary philosophers of mind and neuroscientists.  They are explicitly 
shared by at least Fodor (1998), Dretske (1988), Harman (1982), Millikan (Millikan 1984), Block (1986), 
Cummins (1989), Churchland (1989), and Dennett (1987).  They are so common in neuroscience as to be 
unarticulated; they are background hypotheses paradigmatic of science. 

First, I assume materialism.  I take materialism to be the thesis that all there is, is matter.  Matter is 
whatever has physical properties and enters into physical relations.  Physical properties and relations are the 
properties and relations that can be characterized by the physical sciences.  As regards mental phenomena, this 
means that every mental token is a physical token.  But, as mentioned earlier (see chapter 1), I remain agnostic as 
to whether the relation between mental and physical types is one of reduction, elimination, or independence. 

Second, I assume that I am offering a naturalistic theory of meaning.  That is, a theory that is expressible 
without either ‘that’-clauses or semantic terms.  A theory, in other words, that doesn’t use terms like ‘understands 
that’, ‘believes that’, ‘means that’, ‘denotes’, or ‘refers to’ except insofar as to explain those terms.  Naturalistic 
theories are intended to show how meaning or representation relations are part of the natural order.  It would, of 
course, be circular to employ meaning-related terminology to explain how meanings are, in some sense, reducible 
to non-meanings. 

From the first two assumptions, it follows that causes are probably going to be important for explaining 
content.  If we want to explain meanings in terms of non-meanings and non-meanings are things that have 
physical properties and enter into physical relations, where cause a central physical relation, then we likely want 
to be explaining meanings in terms of causes.  Now, this says nothing of what the important sets of causes are: 
they may be internal or external, personal or social, or possible or actual.  The point of a theory of content is to 
say precisely which causes are relevant to content determination.  Of course, such a theory may also say 
something about other kinds of physical relations that are important for meaning, but I presume cause is one that 
must be addressed; especially since the natural order is usually taken to be, at bottom, a causal one. 

3 Causes and conceptual roles 

To say that I will assume cause plays an important role in content determination is not to say anything very 
specific.  The purpose of this section is to be more specific.  It is surprisingly common for philosophers offering a 
theory of content that relies on cause not to offer a theory of cause.  It is surprising because if the theory of cause 
is a bad one, any theory of content dependent on it should be expected to have serious difficulties.  It is even 
surprising for conceptual role theorists not to offer a theory of cause.  Since most such theorists are offering 
naturalistic theories, they are still in the business of explaining meaning in terms of causes, it just happens to be 
that internal causes are the important ones.  For them not to worry about what causes are, is for them not to worry 
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about the limitations on the possible (inferential, causal, computational) relations between concepts.  So, despite 
the title of this section, I will be most concerned with defending a theory of cause.  I take it that naturalistic 
descriptions of other kinds of relations will be essentially causal ones as well. 

What we need from a theory of cause is two things: 1) a token-level causal account; and 2) a type-level 
account of lawful dependencies.  We need both aspects because a workable naturalistic theory of content will 
depend on causal regularities.  Causal regularities are both causal and regular.  Explaining token-level causes 
will account for the ‘causal’ part, and explaining lawful dependencies will account for the ‘regular’ part.  The 
account I offer here tightly interweaves these two aspects of a causal theory for representational content. 

Cause is sometimes called “the cement of the universe,” and has been analyzed in numerous conflicting 
ways since the ancient Greeks (Mackie 1974).  There are a number of theories currently on offer, including 
Humean-inspired ‘constant conjunction’ theories, the identification of causes with necessary and sufficient 
conditions (or the more sophisticated INUS (insufficient but necessary, unnecessary but sufficient) conditions), 
and probability-based theories of casual relations (see Sosa and Tooley 1993).  It is not clear that any of these 
analyses have succeed in capturing the notion of causation, leading some to the conclusion that “[t]he attempt to 
‘analyze’ causation seems to have reached an impasse; the proposals on hand seem so widely divergent that one 
wonders whether they are all analyses of one and the same concept” (Kim 1995).  Notably, I don’t need to 
analyze the notion of causation; I’m not concerned with explaining every possible notion of cause.  Rather, I need 
only a scientifically and philosophically respectable notion that will underwrite a theory of content. 

Let me begin, then, by examining the notion of lawful dependency.  Hume was right to say that all the 
evidence we can ever get for causation comes from what he calls “constant conjunction.”  In particular, I agree 
that, at least prima facie, “[t]he constant conjunction of our resembling perceptions [i.e., impressions and ideas], 
is a convincing proof, that the one are the causes of the other” ((Hume 1739/1886, I, 314).  I agree, in other 
words, that representations are closely related to lawful dependencies, and that all the evidence for lawful 
dependencies comes in the form of constant conjunctions.  Because things in the world result in our seeing them, 
we say that they cause us to represent them: this dog is constantly conjoined with my representing this dog. 

But, how constant is ‘constant’?  One of Hume’s fundamental insights is that we are in an 
epistemological predicament.  Whatever the metaphysical state of the universe, we are limited in such a way as to 
only have finite data about causal relations.  If we notice ‘nearly whenever this happens, that happens’ we are 
entitled to infer lawful dependencies between this and that.  Of course, this doesn’t mean that that is all there is to 
cause.  Hume, for one, thought otherwise.1  

Nevertheless, under this empiricist characterization of our relation to causal regularities, we can at least 
begin to identify lawful dependencies by there being a somewhat constant conjunction between causes and 
effects.  One way to write this more precisely is as follows: 

Event A is causally related to event B if and only if P(A,B) ≠ P(A) × P(B). 

Or, in other words: 
Event A is causally related to event B if and only if ¬ (P(B|A) = P(B) & P(A|B) = P(A)). 

These definitions are equivalent.  They mean that two events are in a lawful dependency relation if and only if 
they are not probabilistically independent.  This kind of definition is Humean in the sense that it presumes that 
the fact that two events happen together more than by chance (i.e., they are conjoined) is evidence that they are 
lawfully related.  The conjunction in this case is probabilistic and may not be ‘constant’ or ‘necessary’ in Hume’s 
sense, but the definition is very much in the Humean spirit.2 

This account is clearly unsatisfactory because it is perfectly symmetrical.  If you notice a probabilistic 
dependence between two events, you don’t know which caused which or if they were just caused by some third 

                                                      
1  Hume says: “An object may be contiguous and prior to another, without being considered as its cause. There is a 

NECESSARY CONNEXION to be taken into consideration; and that relation is of much greater importance, than any of 
the other two above-mention'd” (ibid., I:378).  However, Hume also realized that the notion of a ‘necessary connection’ is 
not one directly accessible to us: “From the mere repetition of any past impression, even to infinity, there never will arise 
any new original idea, such as that of a necessary connexion” (ibid., I:389).   

2  In fact, a probabilistic definition is preferable to Hume’s, as he has conflated causation with a necessary connection; 
presumably cause is just as relevant to nondeterministic processes (see e.g. Dretske and Snyder 1972; Anscombe 1993). 
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event C: this won’t do for a general understanding of causation.  What we need, then, is a means of directing 
causal relations.  This is where a theory of token-level causes comes in. 

David Fair (1979) has suggested that the transfer of energy-momentum (just ‘energy’ from now on) can 
provide the ingredient we need.3  He argues for a physicalist reduction of the notion of cause to the concept of 
energy-momentum transfer as applied in physics.  So, for example, gas tanks cause gas gauges to register gas 
levels because there is a transfer of energy-momentum between gas tank levels and gas gauges.  Perhaps the 
buoyancy of the gas transfers energy-momentum to a bob in the gas tank, which transfers energy-momentum to a 
lever, which transfers energy-momentum to the gauge needle.  Notably, this is a theory of cause independent of 
any probabilistic relations – and that is why it will do for token-level causes.  Energy-momentum, then, isn’t only 
a necessary ingredient for directing causes in a probabilistic theory; it’s the substrate of cause itself.  Still, 
probabilistic dependencies are a means of identifying that some energy-momentum transfer has occurred, and 
thus they are a means of discovering lawful dependencies.  In fact, some scientists argue that these correlations 
stem from energy-momentum transference (Prigogine 1996, p. 78-81). 

Fair’s kind of physicalistic reduction of cause raises a number of concerns, many of which (including the 
individuation of energy-momentum transference, an acceptance of a purely physical object ontology,4 and 
identification of energy-momentum across time) he has handled deftly.  However, Sosa and Tooley (1993) raise 
three criticisms which Fair does not adequately address, but which I would like to deflect.  The first is a concern 
about the analysis of the concept of cause.  One may claim that causation must be an intrinsic relation and thus 
that it must be the same in all possible worlds.  If this is the case, it is easy to dream up possible worlds in which 
there is cause and not, for example, transfer of energy.  If the identification of cause with energy-momentum 
transfer is contingent, then it provides no hope for analyzing the concept itself.  Whatever we may think of 
possible worlds in general,5 the possible worlds necessary to support this argument are particularly problematic.  
They are, for one, more subject to Dennettian ‘inconceivability’ criticisms than most (Dennett 1991; Dennett 
1995): whatever our intuitions tell us about a world that differs from the actual one with respect to one of the 
most fundamental quantities, they probably don’t tell us much.  But, there is a deeper difficulty: such worlds, I 
think, are impossible worlds.   

In order to have a world in which anything happens at all (i.e., in which things are caused), we need at 
least two things: 1) a world and 2) change.  It seems unlikely that we can have either of these without energy-
momentum (just ‘energy’ from now on) transfer.  If there is any ‘stuff’ in our world, then there is energy in our 
world because energy is just that stuff: energy just is mass, heat, charge, etc.  If there is change in our world, then 
some stuff turns into other stuff and we get energy transfer: adding change to energy gives power, motion, 
current, momentum, etc.  We can call energy whatever we like, but the fact remains that it is a fundamental 
characterization of any changing world.  Energy transfer, understood in this way, is a functional role of sorts.  
But, it is so basic that it is the functional role.  Nothing functions without energy transfer.  To claim that you can 
conceive otherwise (see e.g. Sosa and Tooley 1993) is like claiming you can conceive round squares.  Or, another 
way of putting it: To try and conceive of a changing world without energy transfer is like trying to conceive of a 
square without a geometry (not a particular geometry, any geometry).  Not only are such worlds hard to conceive, 
they are impossible. 

A second concern about Fair’s reduction is that while someone may claim “it is true of any enduring 
object in this world that its temporal parts are causally interrelated” this “does not involve any transference of 
energy or momentum from one object to the other” (Sosa and Tooley 1993, p.4).  In other words, because 
temporal parts of an object are causally related, but there isn’t any energy transfer between temporal parts, 
energy transfer can’t explain causal relations.  Such concerns are best answered by noting that the assumed 
distinction between objects and energy is invalid.  This is to say, as Strawson (1987 p. 260) does, that objects and 
energy aren’t different things, they concurrently constitute the world.  This is what Einstein’s famous equation, 
E=mc2, tells us.  So we can answer the objection as follows: if we allow objects to be identifiable by space and 
time co-ordinates, then there are two objects (the object at time 1 and the object at time 2), and there is energy 
transference; in particular, all or most of the energy at the spatial co-ordinates is transferred from time 1 to time 

                                                      
3  Similar theories are suggested by Strawson (1987), Castaneda (1984), and Aronson (1971). 
4  These considerations also show how my talk of ‘events’ above relates to a causal theory which assumes an object 

ontology.  Events, then, are particular configurations of energy whose form or state determines which objects and 
properties are involved in causal relations (Fair 1979, p. 233-4). 

5  Fair (1979) doesn’t seem to think much of them: “Bizarre possible worlds rarely concern us” (p. 232). 
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2.  Identity over time of the object is explained by identity of the energy transferred between these two times.  
That, then, is the causal relation demanded by Sosa and Tooley. 

The third objection offered by Sosa and Tooley (1993, p. 4) is that energy relations don’t have the right 
kind of directionality.  Fair, upon realizing this, suggests that time plays the requisite role; time directs causes.  
However, if the direction of time is to be explained by the direction of causation, as Sosa and Tooley rightly 
suspect, Fair is relying on a vicious circularity.  However, all is not lost.  Prigogine (1996, especially chp. 3) 
argues that the ‘arrow of time’ is a result of the correlations between particles that exchange energy.  If this is 
true, perhaps Fair was too quick to appeal to time to enforce a direction on causation.  The direction of time is to 
be explained by causation as Sosa and Tooley suggest.  However, the notion of causation that is used to explain 
time, is precisely that which identifies causes with energy transfer.  So, in fact, Sosa and Tooley (and Fair) were 
wrong to think that the directionality of causation needs to be explained in addition to an energy transfer theory 
of cause. 

So, with this slight modification of Fair’s original theory, we have just the tool we need for 
understanding representational content.  Lawful dependencies are directed probabilistic dependencies, and the 
direction is determined by energy transfer.  Token causal events are instances of energy transfer.  In sum, any two 
events are lawfully dependent if and only if they are statistically correlated, where the effect is the event that 
receives energy from the cause, and the cause is the event that loses that energy. 

Now I have said something more specific about what I take causes to be.  However, I still haven’t said 
what role such causes play in a theory of mental meaning.  That, at least partially, is the job of the next section. 

4 A skeletal theory 

The theory I outline here is only a skeletal theory of content.  The purpose of this section is not to convince you 
that the theory I present will work as it stands, but rather to show the general shape of the theory, and convince 
you of where further detail is needed.  For example, I will concern myself mainly with what I will call ‘occurent 
intentionality’; that is, the aboutness and meaning of currently active perceptions of current states of the world.  
Concerns with occurent intentionality lead us to ask: why is my representation of this dog about this dog, and 
what does it mean?  This is in contrast to what I will call ‘conceptual intentionality’ which leads us to ask: why is 
my concept ‘dog’ about dogs and what does it mean?  How to get from a theory of occurent intentionality to one 
of conceptual intentionality will be a major theme of chapter 8 and partially addressed in chapter 7.  But I 
presume that a theory of occurent intentionality should get us on the right track, so I’ll begin with one.  As well, 
the details of the single underlying factor that I propose (and call a ‘computational factor’) are left to the next 
chapter.  And, finally, worries about more subtle aspects of the theory, and the integration of the theory with the 
details I present in chapter 6, are left to chapter 7. 

To begin, then, there are four important theoretical objects for explaining the representation relation: 
vehicles, contents, systems, and referents.  Three of these, vehicles, contents, and systems, are taken directly from 
the representation relation.  The third, referents, may or may not be distinguished from contents in a theory of 
content (Fodor (1998) and Dretske (1995, p. 30), for example, don’t whereas Block (1986) and Cummins (1996), 
for example, do).  Roughly speaking, referents are the same as the sensory objects posited by the Stoics and 
Descartes.  They are the things in the world that the representations are about.  Prima facie reasons for thinking 
they might be distinct from contents are: 1) the kinds of reasons that give rise to questions about the relation 
between the environment and a representation, independent of its content (i.e., questions 10-13 in chapter 3); and 
2) the kinds of reasons that have inspired conceptual role theorists and two-factor theorists to claim that meanings 
are determined (or partially determined) by internal inferential relations (see chapter 2, sections 4 and 6).  So, 
what a representational theory must do is explain what these four theoretical objects are and what the relations 
are between them.   

Of the four, identifying the system is perhaps easiest.  It is easy because the definition of the problem at 
hand (i.e., the problem of neurosemantics), determines the system of interest; it is the nervous system.  
Explaining the other three is where the most work lies.  And, because a theory of content is necessary for 
explaining the representation relation, and content is the most difficult of the three to explain, let me begin with 
the other two.  What, then, are vehicles and referents? 

Vehicles are the internal physical objects (i.e., ‘representations’) that lie in causal/computational 
relations to one another and to the outside world.  I am interested in internal vehicles (where ‘internal’ simply 
means ‘inside the nervous system’) because internal representations are the focus of the problem of 
neurosemantics.  There are many kinds of internal vehicles.  In chapter 3, I divided them into two groups, basic 
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vehicles and higher-order vehicles.  It is important to note that the distinction between basic and high-order 
vehicles is an overly simplified one.  There are, in fact, many orders of vehicles and thus many levels at which 
content may be ascribed.  As well, a vehicle of a given order may participate in any number of higher-order 
vehicles.  Analogously, letters of the alphabet are vehicles, words are vehicles, sentences are vehicles and books 
are vehicles; they may all have content and they may help constitute each others’ content, but it might not be, in 
any obvious sense, the same content or even content of the same kind. 

I take the basic vehicles to be neurons as functional units (i.e., including their output, or spike train).  
Neurons are basic vehicles in the sense that they are an agreed upon minimal functional unit necessary for 
understanding content generally.  Notably, being ‘basic’ in this sense doesn’t tell us much about the kinds of 
content that a particular neuron may be carrying.  Initially, we might argue that basic vehicles carry a basic kind 
of content; content about their immediate input signal.  The reason, we could argue, that they carry content about 
the input signal is because their output signal has the highest statistical dependency with their input signal.  
However, given that we are interested in explaining internal representation of the external world, this immediate 
input/output description will only be a valid one at the sensory periphery.  Under this description, non-peripheral 
neurons would only ever carry content about other internal states, but that’s not what we want to explain.    So, 
individual neurons (i.e., basic vehicles) can have more complex kinds of contents as well; i.e., they can be about 
more than just their immediate input signal.  If, for example, a neuron in late visual cortex has a highest statistical 
dependency with motion in a certain are of the visual field, then it is about motion in that part of the visual field. 

Higher-order vehicles are, practically speaking, ‘just’ groups of neurons.  However, theoretically 
speaking, they are not just any groups of neurons.  They are groups of neurons that together ascribe complex 
statistical properties (perhaps even incredibly complex properties such as ‘a situation that is just’, though I will 
limit my discussion to perceptual examples).  Which neurons comprise the higher-order vehicles is a question 
that must be left to empirical investigation and theory building.  The right set of higher-order vehicles will be the 
set that allows us to accomplish our explanatory goals, such as explaining the system’s behavior. 

Now on to referents.  As I noted earlier, referents are the external objects that representations are about.  
The traditional way of picking out referents has been to rely on causes.  Not surprisingly, then, the theory of 
cause outlined in the last section will play an important role in determining referents.  However, having a theory 
of cause is not all there is to finding the right referents.  As Dretske (1981, p. 26-33) rightly notes, a theory of 
cause doesn’t tell you which causes are important for representational content; i.e., which causes are referents.  
Given the probabilistic theory proposed above, we must ask: which of the statistical dependencies is important 
for representational content?  But, this question has already been answered in chapter 4 by the statistical 
dependence hypothesis.  The right causes are those that have the highest statistical dependence under all stimulus 
conditions.  Referents, then, are those things to which the vehicles are causally related and with which the 
vehicles have the highest statistical dependence.  So they are the things that transfer energy to vehicles and, in 
situations of a given type, have the highest statistical dependence with the vehicles.   

Notably, the referent under this theory is not necessarily what is determined by the more traditional 
reference relation.  Reference, for one thing, is traditionally used to describe a property of the meaning of 
sentences and words, not neural states.  So, the sentences ‘water is wet’ and ‘H2O is wet’ share their reference, 
although they differ with respect to sense.  They share reference because both are about the same stuff in the 
world, but they differ in sense because someone agreeing to one of them may not agree to the other.  It is not at 
all clear, however, that we can speak of the reference of neurons.  Kripke (1977), for example, notes a difference 
between speaker’s reference and semantic reference.  If a speaker gestures towards a glass of vodka and says ‘the 
glass full of water is mine’, Kripke wants to say that the speaker’s reference is the glass, but the semantic 
reference is indeterminate (or non-existent), since there is no glass full of water.  At the level of neurons firing, 
however, such a distinction does not even begin to make sense (in a different sense of ‘sense’).  Perhaps it 
doesn’t make sense in this case because Kripke is working with a entirely linguistic notion, and I am not (for 
reason argued in chapter 1 section 5).  In any case, because reference can be so subdivided and referents cannot, 
referents are not what are determined by reference, so understood.  Furthermore, even for those who use 
reference in a non-linguistic way, it is a relation that can hold between representations and things we are not in 
causal contact with (e.g., dogs beyond my light cone).  Referents, in contrast, are always in causal contact with 
what refers to them.  So, in some ways my notion of referent is more general than reference, since things like 
neural firings can clearly have referents.  And, in other ways my notion is less general because it depends strictly 
on causal connections, and not on a more general notion of ‘aboutness’. 

Finally, there is content.  The notion of content, as Cummins (1989) points out, is neither clear nor 
simple in contemporary philosophy of mind.  He suggests, that it can be (vaguely) understood as “whatever it is 
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that underwrites semantic and intentional properties generally” (p. 12).  Semantic properties are like Dretske’s 
(1995, p. 3) “representational facts” in that they tell us about the semantic (or representation) relation, not about 
things that are semantic (or representations).  Content, so understood, underwrites meaning and the representation 
relation in much the same way; so providing a theory of content goes hand in hand with providing a theory of the 
representation relation.  In this sense, understanding content is central to understand the representation schema as 
a whole.  Recall that in chapter 1, I argued that content is the set of properties ascribed by a representation to a 
referent.  Explaining content, and thus the representation relation, comes down to explaining how a set of 
properties is ascribed by a representation to a referent. 

The basic theory I hold of how this occurs is nothing earth shattering.  I think that content ascription is 
determined by the relations between vehicles and referents and the relations between vehicles themselves.  These 
vehicular relations include relations between and within the ‘orders’ of vehicles.  This view is, of course, 
reminiscent of a standard two-factor theory view.  I have identified an internal factor (relations between vehicles) 
and an external factor (relations between vehicles and referents).  However, the big difference between this 
theory and others is that I explain both factors in terms of a single, underlying ‘computational factor’.  In other 
words, I show that causal relations to the external world and internal transformational relations between vehicles 
can be described in terms of a single computational framework.  Showing this is the job of the next chapter. 

For now, I would like to point out some ways in which the two factors I am interested in explaining are 
atypical.  First, the external factor in this theory is strictly causal.  If something hasn’t transferred energy to the 
vehicle, it isn’t a candidate referent.  This, as I just noted, is quite different from what many philosophers have 
taken to be external factors.  Standard external factors are taken to bind my representations with anything my 
thoughts can be about.  Thus, external factors can normally be related things I’ve never been in causal contact 
with (e.g., dogs beyond my light cone).  I’ll address concerns that this stricter constraint on external factors may 
raise in chapter 8. 

The internal factor is also somewhat non-standard.  I have claimed that the internal factor must account 
for transformations relating internal vehicles.  I’ve also said that I will show how we can describe transformations 
as computations.  Thus, it shouldn’t be surprising that the internal factor on this theory is a computational one 
that defines representational transformations.  For some, making computational claims about biological systems 
is nonsensical.  But, I don’t hold a typical (at least in philosophical circles) notion of what counts as a 
computation.  As often understood by philosophers, computation is something that must take place over discrete 
symbols (see e.g., Cummins 1989; van Gelder 1995; Fodor 1998).  This ‘definition’ of computation can be traced 
back to the pioneering work of Turing (1950).  However, as many familiar with the field of computational 
neuroscience will tell you, one of the working hypotheses of the field (as may be obvious from practitioners’ self-
designation) is that biological systems are computational even though they don’t (at least don’t obviously) rely 
on discrete symbol manipulation (Eliasmith in press).  The growing field of analog computation would also be 
disappointed to learn that what they are interested in just isn’t computation because it isn’t about discrete 
symbols (Uhr 1994; Hammerstrom 1995).  As Churchland and Sejnowski (1992) put the point: “once we 
understand more about what sort of computers nervous systems are, and how they do whatever it is they do, we 
shall have an enlarged and deeper understanding of what it is to compute and represent” (p. 61).  The kinds of 
computational relations we posit might look quite different if we suppose computations can take place over noisy 
analog values, rather than over discrete symbols.  For one thing, the relations are bound to look much less like 
those common to first-order logic or natural language.  For another, the language of dynamic systems theory and 
probability calculus will play a central role in describing such relations. 

Given these considerations, then, the content of an occurent mental state is determined by the causal 
statistical dependencies it bears to events and objects in the external world and the sorts of transformations it 
licenses under current stimulus conditions.  Which dependencies are the strongest is determined by the internal 
transformations that occur between a vehicle and its referent.  The reason we ascribe these occurent states the 
kinds of content we do is because of their statistical dependencies under all stimulus conditions and the 
transformations licensed.  Transformations and causal relations align reasonably because there is a way of 
describing both in terms of a single computational factor. 

That, then, is a very rough sketch of the theory I wish to defend.  One of the most glaring omissions is 
that I’ve told you what the objects of the theory are, and I’ve said that there are certain relations these objects 
enter into, but I haven’t said much about what those relations are (except the causal one).  Describing the 
computational and vehicular relations is where some neuroscientific details become important.  As I noted 
previously, those details are left for the next chapter. 
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Recall, for a moment, the discussion in chapter 2.  It may have become disconcerting, in light of that 
discussion, how ‘causal’ the theory I am offering is.  In particular, I am claiming to solve the alignment problem 
by using a single computational factor.  That computational factor, I said, can be used to describe causal 
relations.  Furthermore, I said that transformations are causal because they can be described naturalistically as 
well.  Perhaps, this ‘computational’ factor is just a different name for a standard causal factor.  If this is the case, 
I might have a hard time explaining misrepresentation since most causal theories do.  To allay such fears, I would 
like to show, briefly, how misrepresentation can be accounted for on this theory (for further discussion see 
chapter 8). 

Simply put, misrepresentation occurs when the properties of the referent and the properties ascribed to 
the referent by the content do not match (see Cummins 1996).  If the content of my neural state is ‘dog’ and the 
thing that is the referent of that state is a cat, I have misrepresented the cat.  As Dretske (1995, p. 27) notes, there 
is another kind of misrepresentation as well; representation of a non-existent thing.  This, too, can be accounted 
for by a comparison of content and referent.  So, if a neuron fires whose content is ‘4 or so photons in such-and-
such a location’ but there were no photons at all, that neuron has misrepresented the environment.  Notice that the 
first example of misrepresentation is at a high level, while the second is at a low level.  Misrepresentational 
mismatches, then, can happen at any vehicular order. 

More specifically, the theory I have proposed suggests that these mismatches are a result of mismatches 
between the application of statistical dependence hypothesis and the application of its corollary.  If, in other 
words, the highest statistical dependency under these stimulus conditions doesn’t pick out the same thing as the 
highest statistical dependency under all stimulus conditions, we have a case of misrepresentation.  Of course, for 
any given occurent representation there could be misrepresentation concurrent with correct representation.  There 
could be some vehicles that get it right (ascribe the right properties) and others that get it wrong (ascribe the 
wrong properties).  There could also be some orders of vehicles that get it right and others that get it wrong.  Of 
course, misrepresentation in a deep and interesting sense depends on the possibility of representation in a deep 
and interesting sense.  Those kind of (mis)representations are going to depend on complex computational 
relations and the ability to construct interesting higher-order vehicles.   

5 Summary 

I began this chapter by explicitly stating the assumptions I make in articulating my theory of content.  These 
assumptions include materialism, naturalism, and a commitment to the central role of cause in determining 
content.  In order to be precise about the nature of cause, I outlined and defended a physical reductivist theory 
articulated by David Fair.  In the remainder of the chapter, I provided a skeletal theory of content based on these 
assumptions and some considerations from previous chapters. 

It is important to note that I have not presented and defended a full theory of content in this chapter.  
What I have done, rather, is to provide a general outline of how the considerations in preceding chapters and this 
one come together to provide a first guess at how content is determined.  Thus, I don’t think what I have so far 
described is satisfactory as a theory of content.  In particular, I need to provide neuroscientific details that 
underwrite this story.  And, I need to provide a philosophically oriented defense of the theory in light of previous 
theories and standard concerns about content. The most obvious omissions in the theory I have outlined so far 
include specifications of: 1) computational descriptions of causal relations; 2) the nature of the inter-vehicular 
relations; and 3) the relations between high- and low-order vehicles.  In the next chapter, I show how each of 
these relations can be understood using the tools of computational neuroscience. 



 

 

CHAPTER 6 

A Neurocomputational Theory 

[H]ypotheses will be put forward that ‘leave the details to the neuroscientists’…this is 
admittedly armchair science with its attendant risks. – Daniel Dennett (1969, p. 42) 

1 Introduction 

If we take the analysis in the previous chapters seriously, we don’t want to the ‘leave the details’ to anyone.  The 
neuroscientific details are just as important as the philosophical framework for a complete theory of content.  
Ignoring either discipline prevents us from solving the problem of neurosemantics.  We should look to 
neuroscience and related disciplines to help determine the details, we can’t just leave them up for grabs as 
Dennett suggests.  The attendant risks he speaks of are unacceptable ones.  We might, for example, just end up 
redescribing the problem (see chapter 2 section 3), or end up with a theory disconnected from the world (see 
chapter 2 section 5), or not be able to explain how content can be unified (see chapter 2, section 7), or only 
answering some of the important questions (see chapter 3), or vicariously adopting a limited perspective (see 
chapter 4).  The details, then, are very likely to inform nearly all aspects of a theory of content.  If the details are 
significantly flawed, or absent, then theory is likely to be problematic.  What, then, are my details? 

Recall that in chapter 4 I concluded that best way to solve the problem of neurosemantics is by adopting 
the perspective of the animal.  In addition, at the end of the last chapter I issued promissory notes to provide 
details for three relations that are central to the theory of content I outlined: 

1. Vehicle/world relation (i.e., a computational description of a causal relation); 

2. Inter-vehicular relations (at a single level); and 

3. Basic/higher-order vehicular relations (across levels). 

A question that brings the animal’s perspective and these relations together is: How do we characterize 
these relations from the animal’s perspective?  How, that is, do we characterize these relations while taking into 
account the epistemic position of the animal?  That epistemic position is, I have claimed (in chapter 4), one that 
does not have access to the stimuli itself, but only to the neural firings that a stimuli causes.1  Taking this 
perspective will undoubtedly change our characterization of some these relationships, just as it changes the 
characterization of the representational relation in neuroscience (as discussed in chapter 3).   

Before providing the details of these three relations, I introduce the concepts of encoding and decoding, 
which play a central role in the characterization of the relations.  I employ these concepts to describe how we can 
understand the informational properties of neural firings and relate these neural firings to causal descriptions of 
the same process.  As well, I show how encoding and decoding relationships can be used to capture the relation 
between basic and higher-order vehicles and the transformational relations between vehicles at a single level.  In 
recent work, Charles H. Anderson and his colleagues (Anderson 1994; Van Essen and Anderson 1995; Anderson 
1998; Eliasmith and Anderson 1999; Hakimian, Anderson et al. 1999; Eliasmith and Anderson forthcoming; 
Eliasmith and Anderson in press) have combined these two means of characterizing neural information 
processing into a single theory; a theory that provides a unified account of the details needed for a theory of 
content.   

2 Conceptual apparatus 

The terms ‘encoding’ and ‘decoding’ are used to describe mathematical functional mappings.  Adopting these 
two terms implicitly assumes the presence of a code of some sort.  Codes, of course, are used to communicate 
and carry content.  Thinking of representation in neurobiological systems as a kind of code, allows us to 
conveniently adopt theories of communication – at least this far Dretske (1981) was on the right track.  We can, 
of course, justify this convenience if the resulting theory is successful.  For these reasons, I will adopt the 

                                                      
1  Perhaps this can be seen as analogous to Kant’s epistemological point that we can not know things in themselves 

(1787/1965, A299-300, A595-6), but perhaps not. 
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standard communications theory language of ‘encoding’ and ‘decoding’ to talk of functional mappings.  
Adopting these terms is important for another reason: they suggest a focus on the implementation of 
mathematical functions and neurobiological systems are clearly implementations.  In particular, they are 
implementations to which we can ascribe certain contents.  So, for the function f:A→B or f(A)=B where A and B 
are sets of some kind, I will say f encodes A into B or f decodes B from A. 

In an ideal case, the encoding and decoding functions are inverses of one another.  In such a case, if an 
encoding converts a set of numbers (i.e., a signal) A into a set of numbers B, then the decoding will convert B 
back into A for any A and B.  A simple example is depicted in Figure 2. 
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Figure 2: A simple example of an ideal encoding/decoding relation. 

However, like most things ideal, it is safe to say that this kind of situation never occurs to an arbitrary 
degree of precision in real, implemented systems.  The reason is the ubiquity of noise in real systems.  If there 
was enough noise present in the example in Figure 2, the mapping between A and B might not satisfy the 
functional description.  For example, B might have become {01011} if there was enough noise to ‘flip’ the fourth 
digit.  Of course, noise is something that affects physical quantities, not numbers.  Numbers provide a convenient 
and important way of labeling relative amounts of some physical quantity.  The example of the 
encoding/decoding relation shown here is obviously an abstraction of a physical process of some kind.  But, in 
real systems we must work hard to reduce the effects of noise.  In the case of many engineered systems, like 
digital computers, that physical process is controlled in such a way that the numbering of the physical quantity 
(e.g., voltage) is very robust to noise.  In other words, the effects of noise are more or less eliminated by 
establishing large differences between two neighboring values.2  This is why there is a difference of about 5 volts 
between ‘1s’ and ‘0s’ on computer chips.  Having established these relatively large voltage differences, we can 
forget about noise and get on with our programming; although we pay a price in relatively large energy 
consumption. 

When we are faced with a system that we didn’t engineer, or one that is subject to very large noise 
effects, we can’t presume that noise has been nearly eliminated.  For one thing, we may no longer be able to 
presume that the decoder is the inverse of the encoder.  If, for example, we encode a low frequency signal (e.g., a 
voice) that is then transmitted over a channel (e.g., a telephone wire) that introduces lots of high frequency noise 
(e.g., a ‘hiss’), the decoding that will give us the best reconstruction of the original encoded signal will not be the 
inverse of the encoding.  The exact inverse would give us a reconstructed signal with lots of high frequencies 
(e.g., a ‘hissy’ voice) that weren’t in the originally encoded signal.  However, an approximate inverse that 
removed most of the high frequencies would give us a better reconstruction of the original signal.  But, what do 
we mean by better? 

Because we are concerned with implementations of encoding/decoding schemes, there are two important 
measures of ‘goodness’.  One measures how well we can reconstruct the original signal.  The other, equally 
important measure, tells us how well we used the resources we have available.  Let me begin by discussing the 
second measure.  Luckily, we have a precise way of determining how well we are using the resources at our 
disposal; we can apply the tools of information theory (see e.g. Reza 1994).  In particular, information theory will 
let us determine the maximum possible amount of information we can transmit over a given channel (the channel 
capacity).  Information theory will also let us determine the amount of information in any given signal we 
transmit.  So, if the amount of information in a decoded signal is close to the information capacity of the channel, 
                                                      
2  In fact, there is still some probability that a ‘high’ voltage will fluctuate to the extent that it is read as ‘low’ or vice versa – 

this is one, very uncommon, way a computer may crash. 
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we have a good encoding/decoding scheme for that channel; the closer the better.  Because many of the signals 
we are interested in characterizing are continuously transmitted, it’s useful to have a ‘per unit time’ measure of 
this kind.  In these cases, information theorists work with information rates (i.e., bits per second) rather than total 
information transmission.  So a measure of the kind we are after is the ratio of the information transmission rate 
in a given signal over the maximum possible transmission rate.  This is called the efficiency of the 
encoding/decoding scheme.  The higher the efficiency, the better the use of resources by the scheme. 

This measure of efficiency, like most things from information theory, is concerned only with the amount 
of information transmitted, not the content of that information.  In fact, a scheme that inverted all of its input 
signals would have the same efficiency measure as one that didn’t.  So we need some way of determining that the 
content of the original signal is retained.  The way to ensure that content is retained is simply to ensure that the 
original signal is reconstructed by the decoding.  If a given input signal has certain content, then that content will 
be perfectly preserved in the case in which that exact signal is transmitted.  In other words, you can’t change the 
content if you don’t change the signal.3  Determining the discrepancy between two signals means minimizing the 
average difference between the original signal and the reconstructed signal (i.e., the signal estimate).  A standard 
measure of this difference is the root-mean-square (RMS) error.4  If the RMS error is low, then the reconstruction 
is a good one.  In sum, we can know that an encoding scheme is good (i.e., preserves the amount and content of 
the information given the available resources) if it is highly efficient and has low RMS error. 

With these conceptual tools from information theory, we can now look at some attempts to employ these 
tools to understand the characteristics of neurobiological systems.  That is, we can look at the relation between 
the world and the systems we presume can represent it. 

3 Basic level representation 

To begin, I will present a characterization of the relation between the world and neurobiological systems at the 
level of the basic vehicles.  In other words I will ask: how do the spikes at a peripheral neuron relate to the 
physical quantities impinging on it?  Examples of this kind of transduction are retinal cells that detect photons, 
mechanoreceptors that respond to touch, and auditory hair cells that are sensitive to pressure waves.  Much 
theoretical and experimental work has been done by Rieke, Bialek, Miller, and others that addresses just this kind 
of encoding in neurons (Theunissen and Miller 1991; Bialek and Rieke 1992; Rieke, Warland et al. 1997).  These 
researchers have developed methods for decoding the information in neural spike trains using various tools, 
including those described in the previous section. 

One clear example of employing these tools is provided by the work of Warland et al. (1992) on the 
cricket cercal system.  Household crickets have two long thin appendages at the rear of their abdomen called 
cerci.  These cerci have hundreds of tiny hairs, each of which acts to detect wind direction along a single plane.  
The hairs are arranged in various orientations, allowing the cricket to very accurately detect the direction and 
magnitude of small air currents.  Warland et al. (1992) set up a delicate experiment in which he was able to 
manipulate a single hair and record the response of the corresponding sensory neuron.  In this way, he is able to 
probe the relation between a known input signal (i.e., the mechanically controlled hair deflections) and its 
encoding into a neural spike train. 

As discussed in chapter 4, a good way to characterize this relation is to adopt what I have been calling the 
animal’s perspective.  This means that although the researcher determines the precise input signals, the point of 
such experiments is to see how well a given signal can be reconstructed on the basis of just knowing the resulting 
spike train.  Specifically, these experiments have focused on determining the decoding rule that can be used to 
reconstruct the original wind direction and magnitude changes given the spike train generated by the sensory 
neuron attached to the cercus hair.  The experimental setup and results are shown in Figure 4. 

                                                      
3  Presuming, of course, that you don’t change the properties of the receiver.  This is the case because the a priori knowledge 

of an observer helps determine the content of any signal. 
4  RMS error is technically only applicable as a measure of this kind if the noise we are dealing with is Gaussian; I will 

assume that it is.  
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Figure 3: a) Experimental setup for testing the response of a sensory neuron attached to a 
cricket’s cercus hair. b) Sample spike occurrences measured from the intracellular electrode 
inserted into the sensory neuron. c) A sample of the estimate (solid line) of the input signal 
(dotted line) generated from decoding the sensory neuron’s spike train (taken from Rieke, 
Warland et al. 1997). 

In this kind of experiment, the researchers are attempting to determine what information about the 
stimulus is available to a neuron that receives this spike train.  The major achievement of this work is being able 
to decode the information the neuron has encoded through its receptive electrochemical mechanisms.  Notably, 
determining what the right decoding rule is takes a lot of prior examples.  In particular, researchers first must 
record the results of a large random sampling of signals the neuron is responsive to.  This provides an estimate of 
the joint probability between a signal and a set of spikes (just as in chapter 4).  Using this relation, the researchers 
can then make a good guess at what that rule is.  

Surprisingly, the decoding rules tend to be quite simple – meaning that they are well modeled by a linear 
filtering of the spike train (Rieke, Warland et al. 1997, p. 170).  In other words, we can use a linear filter to 
determine what, precisely, a neural spike train could be telling the animal about its input signal.   This 
characterization of the decoding process can be expressed as: 
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To begin to understand this equation, suppose there is a filter, h(t), that looks like that drawn in Figure 4.  
Then, read from left to right, this equation says that the estimate of the input signal is equal to the signal you get 
when you place that filter at each spike time (i.e., δ(t[m])) and then sum the result.  So, as shown in Figure 4, this 
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equation says that to decode the signal encoded in a neural spike train simply replace each spike with the curve 
specified by the filter, and then sum those curves.  The result is an estimate of the original signal.   

Time

Spike Train

Filter Occurences

Decoded Signal -
xest(t)

Filter - h(t)

 

Figure 4: Decoding a temporal signal on a single neuron. 

Another way of understanding this process is to think of the occurrence of a spike as indicating the 
presence of a signal with the form of the filter in the original signal.  In a sense, the way to decode the signal is to 
assume that the signal is encoded by a filter-feature detector; the neuron fires whenever a certain feature (in the 
shape of the filter) occurs in the input signal. 

There has been much work done justifying and closely examining the validity of this kind of decoder for 
spike trains (de Ruyter van Steveninck and Bialek 1988; Bialek, Rieke et al. 1991; Miller, Jacobs et al. 1991; 
Theunissen and Miller 1991; Rieke, Warland et al. 1997).  Using these techniques, these researchers have shown 
that spike trains are within a factor of two of the maximum possible efficiency (Rieke, Warland et al. 1997, p. 
173-4, 185).  This kind of information transmission is impressive, but perhaps not unexpected from biology.  The 
important point here is that these decoding procedures work quite well.  So, assuming that biology actually has 
perfect information transmission, the reason for the factor of two difference would the encoding/decoding 
scheme.  So, at a minimum, this decoding extracts about half of the possible amount of information in the spike 
train.   

Notably, the possible information is information available without any noise.  But there are lots of 
reasons to expect noise in biological systems.  For one, synapses are unreliable in their release of vesicles into the 
synaptic cleft given the presence of an action potential in the presynaptic axon (Stevens and Wang 1994).  
Furthermore, the amount of neurotransmitter in each vesicle varies significantly, as does the ability of the 
presynaptic neuron to release the vesicles (Henneman and Mendell 1981).  Lass and Abeles (1975) found that 
propagation along an axon introduces a few microseconds of jitter over a length of about 10cm of mylenated 
axon.  Noise, then, is part of a neuron’s environment.  What this means for the encoding and decoding of 
information I have been discussing is that it is probably much closer than a factor of two to what biological 
systems actually do.  If neurons operate in a noisy environment, they have no reason to decode information to the 
maximum possible limit – the ‘extra’ information they would be extracting is just noise, and is thus useless for 
the purposes of learning about the external environment. 

But, how do we know that we are extracting the right information?  In the case of the cricket, for 
example, Warland et al. (1992) found that the information rate in this experiment is around 300 bits per second.  
So, as Rieke et al. note (1997, p. 168-9), over a window of one second, the cricket could uniquely identify one 
out of about 1090 possible signals.  Alternately, the cricket could uniquely identify one out of 2 possible signals 
every few milliseconds (positive or negative deflection for example).  The information transmission rate itself is 
silent on the content of the signal but it certainly gives us some bounds.  These bounds help restrict what 
information can possibly be represented by the neuron.  If there are thousands of possible states every few 
milliseconds, the cricket just can’t have access to all that content.  Notice also that we are certain that in these 
experiments the reconstructed signals look like the original signals (i.e., the RMS error is small).  Thus, even 
without knowing the details of how content is determined, we can preserve it.  It is clear that a neuron can pass 
the signal itself, and hence (at least something of) the signal’s content, reasonably completely.  Of course, it 
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would be odd if neurons only transmitted information (so much for the transformations), but the point is that we 
have a means of reconstructing an aspect of the content (whatever it may be) when it’s passed by a neuron. 

What these results mean for the theory of content is that we can precisely understand the first relation in 
the trio identified above; the vehicle/world relation.  In particular, we have a computational description of the 
causal process of neural firing.  This, then, provides an explanation of the first factor for the theory of content I 
have been building.  The reason we accept the computational description is because it is isomorphic to the causal 
process it is describing.  There is, in other words, a one-to-one correspondence between, for example, mechanical 
input, neural transduction, and neural firings and the input signal, the encoding, and the output signal.  We know 
the correspondence is isomorphic because we have a systematic mapping that is preserved in the face of 
transformations (i.e., relations in the causal description are captured by the computational description).  In fact, 
the filters that are found are designed to do just that.  They are chosen so that input signals can be recovered from 
output signals and, because this is successful, we know that the isomorphism is supported (see chapter 7 for 
further discussion). 

Notice also that I have used a sensory neuron as my example, so the encoded signal is external (in this 
case, the wind direction).  However, it could have been the case that the signal that the spikes were encoding was 
a signal from another neuron.  From the perspective of the animal, there’s no difference between the deflections 
of a hair causing a neuron to fire, and another neuron causing a neuron to fire.  So, the second relation in the trio 
is also partly addressed; i.e., the inter-vehicular relations. 

In fact both of these relations are only partly addressed, because this entire discussion has focused at the 
level of what I have been calling basic vehicles.  As philosophers and scientists have realized for years, 
descriptions of phenomena at a low level may not be very practical or desirable at a higher level (e.g., quantum 
physics just won’t do when it comes to understanding aerodynamics).5  More complete characterizations of both 
of the relations addressed so far will only come with an understanding of how we can ‘move up’ from the world 
of neural firings in single neurons. 

4 Higher-order representation 

An important next step is to consider ways of modeling interacting populations of neurons.  Laying aside, for the 
moment, the discussion in the previous section, I will consider a superficially contradictory means of 
understanding the behavior of neurons.  Most current models of neural population behavior depend on average 
neural firing rates, rather than the precise timing of single spike transmission.  Although the discussion in this 
section relies heavily on neural firing rates, I will return to the question of how average firing rates relate to 
encodings of precise spike timings in the next section.  

Perhaps the simplest population level representation evident in the nervous system is that of an analog 
variable.  The value of this kind of variable can be either transduced from the environment, as in the case of wind 
direction, or given by a previous ensemble of neurons as in the case of desired horizontal eye position (Eliasmith 
and Anderson 1999).6  In the latter case, the desired horizontal eye position can be captured in a single analog 
variable (e.g., degrees from center) even though a large population of motor neurons is being used to determine 
the precise position (Seung 1996).  We can thus consider this population to be encoding the eye position, which 
is then decoded by the interactions of the ocular musculature and the eye, and results in an actual eye position. 

I will refer to the value of the analog variable, x, as the higher-order value (i.e., the value of the higher-
order vehicle, x).  This value is encoded by the basic level spike trains.  Notably, the encoding and decoding 
relation between these levels is clearly virtual.  In other words, the higher-order value isn’t actually represented 
by the system separately from the basic values.  It is more a matter of our description of the system that makes 
this encoding/decoding relation hold.  Nevertheless, it is the same kind of relation, as I show.  As well, this kind 
of encoding/decoding relation is not temporal, as in the example in the previous section, but population based.  In 
fact, the temporal decoding of spike trains I discussed is relatively new.  Because of this, it is a technique seldom 
employed by neuroscientists.  They have relied instead on neural firing rates.  Firing rates are generally 

                                                      
5  I think this may be a reason why the adaptation of results from artificial neural networks to solving philosophical problems 

has been criticized.  It just isn’t made clear how high-dimensional vectors relate to language-like representations. 
6  Notably, questions of what crickets represent are independent of questions of how they represent.  Whether crickets are 

said to represent ‘wind direction’, or something else, will depend on what is the best theory of cricket behavior but a 
general characterization of the representation relation can remain the same. 
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determined by counting the number of spikes in a relatively large window (e.g., 100ms) and dividing by the 
widow size (e.g., 10 spikes/ 100ms = 100 spikes/s = 100 Hertz).   

Despite discarding information about the precise timing of individual spikes, much successful modeling 
has been done using spike rates instead of spike trains.  So, rather than thinking of higher-order values as being 
encoded by spike trains, these researchers have considered spike rates to be encoding analog quantities.  There 
are a number of neural systems that are very well modeled under this assumption (e.g., the nucleus prepositus 
hypoglossi used for controlling eye position (Seung 1996), macaque motor cortex used for controlling arm 
movements (Georgopoulos, Schwartz et al. 1986), and ‘place cells’ in the rat hippocampus (Wilson and 
McNaughton 1993)).  For the time being, I will adopt this same assumption, with the understanding that 
discarding temporal information must be either justified or retracted. 

More precisely, we can write the relation between the analog variable, its estimate, and the neuron 
properties as follows: 

i
i

i
est kxax ∑= )(  (5) 

This equation states that the estimate of the encoded variable, xest, is the sum over the neuron ensemble, i, of their 
weighted, ki, firing rates, ai(x).  The firing rate, ai(x), of any neuron, i, in the population is a function of the 
encoded variable, x.  The function, ai(x), is called the neuron response function.  The functions in Figure 5 are 
idealized versions of typical motor output response functions being used to encode an analog value, x, such as 
horizontal eye position. 

1
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response
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x=0.1
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Figure 5: A population of two idealized neuron response functions where x is the analog variable 
to be encoded through neural firing rates, ai(x), as shown for a value of x=0.1. 

Equation (5) is in a standard form for expressing a given variable or function in terms of other functions.  
Application of these equations to modeling neural systems has been well characterized and quite thoroughly 
explored (see e.g. Abbott 1994; Salinas and Abbott 1994).  There are a number of properties of this kind of 
characterization that are particularly worthy of note. 

First, in equation (5), there is no assumption about the particular form of the response functions that 
determine the firing rates.  In practice, neuroscientists have found these functions to be generally non-linear.  As 
well, they seem to come in many flavors, ranging from nearly linear to Gaussian (bell-curve shape) to multi-
modal (multiple bell-curve shapes superimposed).  The variety and complexity of the neural response function 
shapes makes it rather remarkable that linear decoding works so well (Rieke, Warland et al. 1997, p. 85-6).  
Nevertheless, if we determine the right set of weights, ki, to use in our decoding, our estimates will be quite good.   

This brings us to a second property of this equation: there are ways to determine good decoding weights.  
In particular, we can determine the weights by minimizing the difference between the estimated value and the 
actual value over all possible values of x.  This will provide us with all the necessary weights for encoding the 
original input signal with little error.  However, we often wish not only to transmit, but to transform the signal.  
In such a case, the weights can be quite different, but systematically so.  They will be different in such a way that 
the estimate will now be a function of the original signal.  Varying the decoding weights will thus change how 
the input signal is decoded.  In other words, we can perform transformations by employing biased decoding (see 
section 5.2 for further discussion).  It is important that these weights are not the same as standard connectionist 
network, or artificial neural network weights.  Connectionists use the term ‘weight’ to refer to weights on 
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connections between neurons.  The weights I am talking about are theoretical, higher-/lower-order decoding 
weights, not necessarily directly observable in networks of neurons (see equations (9) and (10) in section 5.2). 

Third, this characterization generalizes extremely well.  Though I will discuss this in more detail shortly 
(sections 5.2 and 5.3), it is worth pointing out here that just because I have used analog quantities in the above 
examples does not mean this kind of mathematical relation is so limited.  In fact, we can use n-dimensional 
vectors, vector fields, or functions in place of the analog variables.  Despite this generality such a formulation of 
neural function leaves a lot of neurobiology to be done.  This kind of framework can help us understand and 
organize the results of neuroscience, but it won’t determine those results.  The shape of the neural response 
functions, for one example, is in no way dependent on this characterization.  Neuroscientists must work hard to 
determine these response functions, and provide other biological constraints on the models that are proposed 
under such a framework. 

Fourth, and last, one major reason this kind of characterization is so compelling is that it very naturally 
incorporates concerns with the effects noise.  One way of thinking of neuron response functions is that they are a 
means of capturing the encoding process neurons use to convert analog quantities into neural spike rates.  If the 
analog variable has a value of 0.1, for example, each neuron will fire at different rate, as determined by the 
response function.  But why would we need more than one response function?  As shown in Figure 5, each 
response function uniquely determines the value of x.  But, because the brain is a physical system we know that 
the actual response functions won’t, in fact, agree because of the ever-present effects of noise.  Noise, then, is a 
major reason we need population codes at all.  If we need to encode an analog value with greater precision than is 
possible by one neuron alone, we can pool neurons together to get a better estimate of that value.  Since noise, by 
its very nature, is random, we can be sure that the effects of noise will cancel out over larger and larger 
populations.  Biology clearly uses this tactic (Nicholls, Martin et al. 1992), and characterizations like those of 
equation (5) allow us to naturally incorporate the effect of noise on the quality of the encoding.  The way noise 
plays a role in such a characterization is in the determination of the weights, ki.  Earlier, I over-simplified the 
procedure for determining the weights.  These weights must, in fact, be determined by minimizing the 
input/output error given a certain noise profile.  Again, there are well-established procedures for doing this (e.g., 
least squares, singular-value-decomposition).  In other words, we can find those weights that give us the best 
approximation to the original value given our neuron response functions and their noisiness. 

These four properties of the mathematical characterization of the encoding/decoding relation between 
neural firing rates and analog variables are useful ones.  They allow us to begin to understand how higher-order 
vehicles are related to basic ones.  Of course, the examples provided so far demonstrate only a small step in 
getting from neural firings to something ‘more interesting’ like a visual image, but it is often the first step that is 
the hardest. 

To summarize thus far, we have initial characterizations of each of the three relations.  The discussion of 
basic level representation showed how neural firings could be described computationally, essentially capturing 
the vehicle/world relation.  I suggested that this same description could capture the relation between basic 
vehicles.  In this section, I have discussed how we can understand the relation between these basic vehicles and 
higher-order vehicles.  I have also given a beginning sense of how we can capture higher-order transformations 
(i.e., with biased decoding).  In the remainder of this chapter I am concerned with building on these basics to give 
a fuller account of the second two relations. 

5 A general theory 

5.1 Putting time and populations together 

To begin, I will return to the pressing question I posed at the beginning of the previous section: how do we 
amalgamate these two approaches I have discussed?  How do we combine an approach concerned with the 
temporal encoding of individual neurons with an approach concerned with populations and somewhat atemporal 
rate codes, into a single theory? 

As described above, firing rate is determined by counting the number of spikes in a “relatively large” 
window and then dividing by the size of that window.  “Relatively large” here means large with respect to the 
average interspike interval (i.e., the mean time between two neighboring spikes).  Rieke, et al. (1997, p. 31-2, 
118-20) note that something very interesting happens as we change the size of this window.  In particular, as the 
window becomes very small, much smaller than the average interspike interval, we blur the distinction between a 
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firing rate code and a timing code (i.e., a code which depends on the precise timing of individual spikes).  They 
have shown, in other words, that there is a smooth transition between firing rates and timing codes. 

As first recognized by Anderson (1998), the blurring of this distinction is important for combining the 
two encoding/decoding relations discussed in the previous sections.  In particular, he considers the firing rates, 
an(x), of equation (5) to be instantaneous firing rates, encoded by a temporal code like that of equation (4).  Thus 
he derives the unified expression that captures the time-dependent and population characteristics of neural 
representation resulting in: 

∑∑ −=
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This equation, then, expresses the population level representation of an instantaneously time varying signal.  It 
combines the important advances in reading neural codes of individual neurons with those of reading the codes of 
populations of neurons.  The hn(t) in (6) is not the same as the h(t) in (4).  Rather, it is a combination of the 
weights, ki, from (5), and the filters, h(t), from (4).  Notice that in (5) and (4), the weights and filters respectively 
are used to decode the signal encoded by the neurons.  So, the weighted filters of (6) play exactly the same role; 
they are the decoders of the (population-temporal) neural code.  The subscript, n, on the weighted filter means 
that each neuron in the population may have a different weighted filter.  Together, these weighted filters (just 
‘filters’ from now on) provide a means of reconstructing the time varying signal encoded by a neural population 
in a noisy environment.  This equation, then, is the first step in precisely capturing and unifying all three of the 
relations identified in the introduction as being important to representational content: vehicle/world (temporal 
encoding); inter-vehicular (temporal encoding); and basic/higher-order vehicles (population encoding).  I will say 
more on this in the next chapter. 

5.2 Transformations 

It may seem that all this talk of ‘decoding’ the signal from a neuron is rather strange.  Am I really suggesting that 
a receiving neuron must decode a spike train to gain access to the signal at the other end of a transmitting neuron?  
Is there any neurobiological proof for this?  Furthermore, does anyone really think that neurons simply pass the 
same signal that is their input?  The answer to each of these questions is, as we would hope, a resounding ‘No!’.  
The question, then, is what does this mathematical apparatus really provide?  Essentially, I think it provides a 
powerful way to understand the transformations that signals in nervous systems can undergo. 

Just as it was easiest to begin by introducing a simple higher-order vehicle (i.e., an analog variable), so it 
is easiest to begin with a simple transformation.  The simplest of transformations is the one-to-one mapping of 
some value back onto itself.  As mundane as this transformation may seem, it lays a foundation for understanding 
a huge variety of transformations in neurobiological systems. 

What this simple transformation amounts to is the passing of a value from one neural population to the 
next.  Taken together, these populations form a communication channel as depicted in Figure 6a.  In this case, the 
transformation of a value onto itself could be expressed as: 

)()( txty estest =  (7) 

For simplicity’s sake, we can assume that the neuron transfer functions are like those in Figure 5.  The 
mathematical expression for such lines is shown in Figure 6b.  What we need now is a means of determining the 
connection weights, ωij, between the two neural populations that will perform the desired transformation.   

a) b)

xest(t) yest(t)

ai(x) bj(x)

ωij
0

1

x

ai(x)=F[αix+βi]

 
Figure 6: a) Communication channel in a neural ensemble where xest(t) and yest(t) are the 
population estimates for an analog quantity, ai(x) and bj(x) are the neural firing rates, and ωij are 
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the weights connecting the two populations; b) sample neuron response function ai(x) – a straight 
rectified line. 

Though simple, this problem includes all the important ingredients of a more realistic model: 1) a 
nonlinear neuron transfer function (i.e., rectification, which is written in Figure 6 as F[…]); 2) time dependent 
communication between two populations of neurons; and 3) a transformation between input and output.7 

Working with firing rates, we can write the following expression for the firing rate of each neuron, j, in 
the receiving population: 

[ ]jjj txFtxb βα += )())((  (8) 

We can now substitute our expression for the decoding of x(t) from equation (5), obtaining: 
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(9) 

The final expression here looks much like that for a standard connectionist network.  As noted in the last section, 
however, we can further decode spike trains into neural firing rates by using equation (4), giving: 
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(10) 

This gives us analytic means of calculating the weights, ωij, to perform the desired transformation.  
Notice that in this expression, we need make no reference to the higher-order vehicles.  That is, the 
transformations between higher-order vehicles are expressed solely in terms of basic, measurable quantities of 
our system.  In other words, we have provided a reduction of a transformation expressed at the level of higher-
order vehicles to one expressed at the level of basic vehicles.  This is the real fruit of the previous work that relies 
on decoding neural encodings.  Only if we can understand how to decode a signal can we precisely capture the 
transformations that a signal can undergo.  Ultimately, it is these transformations that are important for 
understanding neurobiological systems.  So, even though neurons themselves may not decode signals,8 we must 
understand the decoding process in order to understand what the neurons are doing to the signals.  Equation (10) 
doesn’t express a means of decoding a neural signal; it only expresses a means of changing one set of spikes into 
another.  This approach, then, is explicitly taking the perspective of the animal.  This doesn’t mean that the 
animal must extract the value, but rather that in order to characterize the kinds of processing (transformations) 
possible by a system using this encoding we must understand how to do so. 

Of course, determining which transformations take place in a given neurobiological system is obviously 
an important task, but one for experimental neuroscience.  What we need in order to understand transformations 
of representations in general is a means describing any given transformations in a neurobiologically reasonable 
fashion.  Work from Anderson (1994; 1998), Hakimian and Anderson (1999) and Eliasmith and Anderson 
(Eliasmith and Anderson 1999; Eliasmith and Anderson forthcoming; Eliasmith and Anderson in press) details a 
means of doing just that.  The general procedure is to take a neurobiological description of a system (e.g., 
cerebellum, eye position control circuit, lamprey locomotion system), mathematically describe its function, and 
determine the weights needed to reproduce that function.  It is then possible to compare the properties of the 

                                                      
7  As uninteresting as this transformation may seem, if, rather than connecting the first population to the second, we 

recurrently connect it to itself, we have constructed a form of memory – an extremely important function to realize 
(Eliasmith and Anderson 1999). 

8  However, it may also be the case that neurons, or more precisely dendritic trees, do decode spike trains in order to perform 
analog computations on them (Warland, Landolfa et al. 1992, p. 330).   
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model (e.g., connectivity and spiking patterns) to those found in the original neural system.  If they match, the 
model is successful.  If many models are successful, the framework seems to be a good one for understanding 
neurobiological systems.  So far, the framework has been quite successful. 

5.3 Extensions of the theory 

As I have frequently noted, the examples I am presenting are limited in scope.  I have only really addressed ‘first 
steps’ in getting from neural firings to interesting higher-order vehicles.  However, there is reason to think that 
the methods I’ve introduced generalize quite well.  The reason is that the process of expressing higher-order 
vehicles in terms of lower-order vehicles can be an iterative one.   

Consider the following four equations by means of example: 
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The first equation should look familiar; it is just like equation (5) in section 4.  This then, is an 
expression for a higher-order vehicle, x(t), in terms of neural firing rates (which can be expressed in terms of 
basic vehicles as discussed in section 5.1).  The second equation in this list is a simple transformation between 
higher-order vehicles, which can be implemented as described in section 5.2.  The third equation is an iterative 
application of the relation in the first equation to a higher-order vehicle.  Thus, S(t) is ‘made up of’ higher-order 
vehicles, x(t).  So, it is an even higher order, say third-order.  In fact, it happens to be a lot like a Fourier series, 
which can be used to express any time-dependent signal.  The process doesn’t have to stop there.  The fourth 
equation applies the same linear operation to the third-order vehicle, S(t), to give Z(t), a fourth-order vehicle.  We 
can think of Z(t) as a vector in an n-dimensional space that is a combination of time-dependant signals each 
describing different attributes of the input.  This process can continue, but hopefully my point is made. 

Using the encoding/decoding ideas, we can build up vehicles of any complexity we like.  However, it is 
more likely that we will wish to go the other way around.  Say, for example, we want to understand the neural 
representation of images.  If we can express an image (or series of images) as a time-dependent signal of high-
dimensionality (as we can, see e.g. (Rao and Ballard 1995)), we can then reduce this complex description to 
lower and lower order vehicles until we have expressions in terms of neural firings.  Of course, it won’t be an 
easy task to determine what high-dimensional expression best captures the kinds of representations used by 
neurobiological systems, but some progress is being made on the problem (Olshausen and Field 1996; Lewicki 
and Sejnowski 1998). 

What is important for developing a theory of representation is that we can describe the kinds of 
representations used by neurobiological systems, no matter their complexity.  This framework is flexible enough 
to do just that.  We can accommodate vectors (e.g., a set of analog variables which represent horizontal and 
vertical eye position concurrently) and vector fields (e.g., sets of vectors which might specify color, intensity, etc. 
at some points in space).  More importantly, we can generalize this formulation to represent functions over any of 
these kinds of representations (i.e., analog quantities, vectors, and vector fields).  In place of the ki weights, we 
can introduce weighting functions.  These functions can be determined the same way we determined the ki, that 
is, by forming and minimizing the analogous error function, or they can be learned from natural inputs (Lewicki 
and Olshausen in press).  Being able to represent functions over variables introduces the ability to encode not just 
a value, but additional information such as the variance and uncertainty of our estimate. 

Not only do we have to be able to describe the representations that are used by neurobiological systems, 
but also their transformations.  Transformations between high-order representations will undoubtedly work 
together to give us the rich representations we, and other animals, use.  In other words, it is equally important to 
be able to transform one space (e.g., that of light intensities and colors) into another (e.g., that of objects) as it is 
to be able to represent elements in those spaces.  Transforming representations between spaces is important for at 
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least two reasons.  First, it can make further transformations quicker or easier given available computational 
resources.  Second, representation in a given space will support the extraction of certain kinds of information 
better than others.  For example, representing an image verbally may help for the classification of objects, while 
representing an image pictorially may help for the extraction of relations between objects.   

Again, work in Anderson’s lab has shown that many different kinds of transformations can be supported, 
including: simultaneous top-down and bottom-up inference (Eliasmith and Anderson forthcoming); general 
Bayesian inference (Barber 1999); recurrent transformations (Eliasmith and Anderson 1999); and transformations 
describable by differential and difference equations (Eliasmith and Anderson in press).  Given these successes, it 
seems that this framework is a good one for using to tackle the problem of neurosemantics.  In addition, it 
provides powerful tools for ‘filling in the details’ for a theory of representation.  Now that we have those tools, it 
is time to see what a representational theory of content that employs them looks like. 

6 Summary 

I have provided the details necessary for understanding the three relations presented at the beginning of the 
chapter: the vehicle/world relation, the inter-vehicular relation, and the higher-/lower-order vehicle relation.  
Specifically, I have presented selective results from recent work in computational neuroscience to characterize 
these relations.  I have shown how the vehicle/world relation can be characterized as an isomorphism between a 
computational description in terms of basic vehicles and a causal description of underlying neural processes.  The 
inter-vehicular relation is captured by the computational formalism because it provides a way of understanding 
transformations at any level of description.  The relation between higher- and lower-order vehicles can similarly 
be understood as a virtual encoding relation.  That is, an encoding dependent on populations of lower-order 
vehicles that are taken to encode a higher-order vehicle.  These characterizations provide all the ingredients 
needed for a theory of content.  In the next chapter I show, more precisely, that this is the case. 



 

 

CHAPTER 7 

A Neurocomputational Theory of Content 

Let no one mistake it for comedy, farcical though it may be in all its details. – H. L. Mencken, 
about the Scopes Monkey Trial 

1 Introduction 

In section 4 of chapter 5 I outlined a skeletal theory of content that I claimed needed details.  I have just finished 
presenting the details that I think, excuse the gory turn of phrase, can flesh out this skeleton.  As you will recall, 
the skeletal theory identified four theoretical objects: vehicles, referents, contents and systems.  Vehicles are the 
internal physical things (or combinations of them) that we can poke, prod, and measure.  Referents are the 
external physical things (or combinations of them) that we can also poke, prod, and measure.  Contents, I 
claimed, are determined by causal relations and transformations.  The system is the least problematic because it is 
determined by the problem we are trying to solve; the system is the neurobiological system. 

As noted, my characterization of the theory in chapter 5 was an attempt to give just a flavor of the theory 
to come.  As a result, a number of these claims are, strictly speaking, wrong.  However, now that we have seen 
the details that are needed to precisely characterize the relations between these entities, it is also possible to 
better characterize the entities themselves.  My strategy here is to first explain in detail what the relations 
between the objects are, taking into account both the theory of cause presented in section 3 of chapter 5, and the 
theory of neurobiological computation presented in the last chapter.  I will then revisit vehicles, referents, and 
contents, and give them a more precise treatment.  Finally, in section 4, I will concern myself with how this 
theory answers the representational questions proposed in chapter 2. 

2 Relational details 

At the beginning of the last chapter, I identified three relations that need to be explained by any theory of content: 
the vehicle/world relation; the inter-vehicular relations (at a single level); and the basic/higher-order vehicular 
relations (across levels). 

At the basic level, i.e., the level of neural firings of individual neurons, the first two relations 
(vehicle/world and inter-vehicle) are closely linked.  I assume that neuroscience has clearly demonstrated that 
neurons encode their input, be it from the world, or from other neurons, into voltage changes.  In the case of 
periphery neurons, the encoding process generally begins with a non-electrical signal (e.g., photons, pressure), 
which is transduced and converted into a spike train.  The encoding process is a causal one.  A photon striking a 
retinal rod, for example, causes rhodopsin to partially separate into opsin and retinene, which causes cyclic GMP 
to be activated, which then causes sodium ion channels to close, which causes a depolarization in the cell.  All of 
these causal relations can be identified by statistical dependencies and the relevant energy transfer.  The relation 
between the world and the vehicles at this level of description, then, is a causal encoding one: fluctuations in 
light levels are encoded by neurons into voltage changes (and eventually spike trains).  Given the discussion in 
chapter 5, the term ‘causal encoding’ makes sense because the causal and computational descriptions are 
isomorphic (also see below).  Recall that the details of this relation depend directly on the statistical dependence 
hypothesis.  That is, the decoders are determined by constructing the joint probability distribution between neural 
events and certain external causes (those that have the highest statistical dependency). 

Staying at this level, there is no strict distinction to be made between this kind of transduction and the 
passing of neurotransmitters between cells.  The way neurons generally influence one another is to send chemical 
signals, in the form of neurotransmitters, to each other.  Just as photons induce a chemical reaction resulting in 
modulations of voltage levels, so neurotransmitters induce chemical reactions that generally modulate spike 
trains.  It is the correlations between the presence of neurotransmitters, and their transfer of energy through 
dendritic trees to the neuron soma that help determine when a spike is fired and when it is not.  So, we can give a 
similar causal encoding description inside the nervous system as well: fluctuations in neurotransmitter levels are 
encoded by neurons into neural spike trains.  The relation between neurons or between neurons and the external 
environment can be characterized in exactly the same way.  It doesn’t matter if we are talking about ‘external’ 
causes or ‘internal’ ones: causes are causes, and causes are all there are at the basic level.  However (and this is a 
big however), this description doesn’t have a direct relation to the content of these internal neurons.  Describing 
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the relations between neurons in this way just shows that computational/causal isomorphism holds everywhere 
(as we would hope).  In order to understand content we need to characterize these relations as transformations; it 
is, after all, these transformations that set up the statistical dependencies relevant to content determination. 

How, then, do we characterize transformations (i.e., inter-vehicular relations) between basic vehicles?  
Recall that characterizing a neuron as encoding its input signal is dependent on the possibility of decoding the 
output to regain that input signal.  Suppose, now that we have a peripheral retinal ganglion neuron that encodes 
photon impact rates in an area of the visual field.  Suppose that a connected neuron is ‘interested in’ occasions 
when the impact rate goes above some threshold.  The output of this second neuron would transform the output 
of the first into ‘above’ or ‘below’ the threshold.  There is a rule (i.e., a transformation) that relates the photon 
impact rate with this categorization.  How are we to understand this kind of relation between basic vehicles?  We 
can characterize the transformation as a kind of biased decoding.  That is, the second neuron decodes the photon 
impact rates as a signal of ‘1’ when the rate is above the threshold and ‘0’ otherwise.  It is a bias because it isn’t 
decoding the input signal, but rather a function of the input signal.  This sort of bias is implemented in 
neurobiology by the connection strengths between neighboring neurons.  Given the computational 
characterization presented in the last chapter, we can determine what these connection strengths must be to 
implement a given transformation (see section 5.2).  These transformations help determine how the behavior of 
neurons relates to the external world. 

The vehicle/world and inter-vehicular relations can be similarly characterized for higher-order vehicles.  
In particular, the vehicle/world relation is a causal encoding dependent on the highest statistical dependency and 
the inter-vehicular relations are transformations described at the level of the higher-order vehicles.  But, there is 
an important difference as we move to higher-order vehicle.  Higher-order vehicles are, in some sense, up to us.  
We posit variables like ‘horizontal eye position’ and try to provide good explanations of the behavior we see 
using these kinds of vehicles in our explanations.  We will have to justify choosing a certain set of neurons that 
make up this vehicle.  We might have physiological reasons, functional reasons, and pragmatic explanatory 
reasons.  The more these reasons converge, the more likely our theoretical posits are real.   

A consequence of the comparatively theoretical nature of higher-order vehicles is a seemingly more 
complex theory of content.  In discussing content ascriptions for basic vehicles, I concentrated on their relation to 
the external environment.  This clearly leaves out one of the two factors I suggested would be important in 
chapter 2; something like conceptual role.  However, when we consider the content of higher-order vehicles, it 
becomes clear that our intuitive ascriptions of content depend on the transformations such vehicles enter into.  
For example, we presume that the vehicle ‘horizontal eye position’ has the content it does because it is the result 
of transforming (in this case integrating) the vehicle ‘horizontal eye velocity’ and/or because it is decoded by the 
muscles into an actual horizontal eye position.  The positing of vehicles depends on their relations with other 
vehicles.   

If there were no other high-order vehicles, it would make little sense to identify ‘horizontal eye position’ 
(or ‘edge at location (x,y)’), because such an identification would need to be justified.  Any such justification 
would identify computational relations because it would be necessary to answer relevant why-question: e.g., why 
does that vehicle carry horizontal eye position contents?  In answering such questions, we have two choices: 1) 
we can say ‘because it’s decoded into horizontal eye position’ i.e., identify the computational relation to states of 
the world; or 2) we can say ‘because it integrates horizontal velocity’ i.e., identify a computational relation to 
another higher-order vehicle.  The most complete answer would be one that provides both characterizations.  But, 
in any case, the question can’t be answered without specifying how the vehicle is used.  This means that these 
theoretical posits are (at least partially) identifiable by their computational/transformational relations.  Having 
relations determine object identity really shouldn’t be surprising, as it happens all the time in science (e.g., 
centers of mass, electrons, black holes). 

Such considerations don’t mean, of course, that the relation between higher-order vehicles and the 
external world isn’t causal; it is.  As important as the transformational relations are, the precise identity of higher-
order vehicles can’t be pinned down without reference to what they cause, or what causes them.  ‘Edge detectors’ 
are so-called (erroneously, perhaps) because they are thought to be normally causally related to edges.  The 
content ‘horizontal eye position’ is carried by a horizontal eye position vehicle because it is normally causally 
related to horizontal eye positions.  What such considerations do mean is that we should be more careful about 
how we characterize the content of basic vehicles.  In particular, we now have reasons for thinking that 
statistical/causal relations aren’t all there is to content determination.  How the basic vehicles are used, that is, 
the transformations they give rise to, are also relevant.  Edge detectors (or, better yet, orientation filters) are, after 
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all, basic vehicles (Felleman and Van Essen 1991; Kandel, Schwartz et al. 1991; Callaway 1998; see section 3.3 
for further discussion). 

So far, I have shown that the vehicle/world and inter-vehicular relations can be characterized in the same 
way at different levels of organization.  Along the way, I have noted that not only can they be characterized in the 
same way, but that they seem to be similarly relevant to content ascriptions at the different levels.  I will discuss 
the role of these relations in content ascription in more detail in section 3.3.  Recall that the third relation that the 
neuroscientific details can help characterize is that between basic and higher-order vehicles. 

The importance of the basic/higher-order relation shouldn’t be underestimated; if we couldn’t abstract 
over basic vehicles, we would be in the position of having to describe neurobiological systems only in terms of 
the functioning of individual neurons.  However, there are numerous reasons that such descriptions are not likely 
to be adequate.  First, such a description would provide no indication of what relation neuroscientific theories 
have to psychological ones.  Second, such descriptions of interesting cognitive phenomena are likely to be far too 
complex to be satisfactory explanations.  Third, neuron level descriptions are so wedded to implementation as to 
not suggest a means of abstracting the theory to understand non-biological representation.  Fourth, we may be 
able to extract important cognitive laws at higher-levels of description that simply aren’t evident at lower levels.  
In general, any reasons that have been offered for wanting higher-level descriptions of a natural system, be they 
epistemological or metaphysical, are reasons for needing a good description of the basic/higher-order vehicle 
relation in this theory (Fodor 1975; Wimsatt 1980; Bechtel 1986; Bechtel and Richardson 1993).  Thus, just 
because there is currently less agreement on higher-order vehicles than on basic ones, and just because this 
framework provides a means of reducing the former to the terms of the latter, doesn’t mean higher-order vehicles 
are, in any obvious sense, dispensable.  Once we have a good understanding of the relations between higher- and 
lower-order vehicles, we can know precisely in what ways these higher-order activities approximate or mirror 
underlying neural function.  Talking of images and objects may make it easier to explain certain avoidance 
behaviors than talking of millions of neural spike trains would, even though a basic-level description may 
produce better predictions.  Higher-order vehicles are, at the very least, epistemically unavoidable posits.1   

There is an important difference, then, between the two relations I have already discussed, and the 
relation between basic and higher-order vehicles; the latter is a relation between levels of organization.  A precise 
formulation of this relation is given in equation (6) in chapter 6.  This equation says that we can talk about sets of 
neurons as encoding analog quantities with certain levels of precision (due to noise effects).  As I noted in section 
5.3 of the last chapter, this relation is recursive, meaning that it also tells us how to talk about analog quantities as 
signals, vectors, vector fields, images, etc.  Each of these representational levels is related to lower levels by a 
weighted linear combination.  Surprisingly, then, higher-order vehicles really are a sum of their parts.  However, 
depending what parts you sum, you will get very different kinds of transformations that apply.   

Complex behaviors evident at higher levels may not be evident at lower levels because of the particular 
kinds of organization evident at different levels.  Transformations evident at one level likely won’t be evident at 
other levels.  But, more than this, transformations that can be performed at one level might depend for their 
performance on a particular organization of components.  This is reflected in the kinds of descriptions we use.  It 
makes sense to talk of integrating ‘eye velocity’ commands to determine eye positions.  It doesn’t make sense to 
talk of integrating ‘eye muscle rate change’ commands to determine eye positions because the same ‘eye muscle 
rate change’ command can be present at many different eye positions.  If we are interested in explaining eye 
positions only the former description will be adequate, despite the fact that an ‘eye velocity’ command is a sum 
of ‘eye muscle rate change’ commands.  These same kinds of considerations hold at even higher levels of 
abstraction, like those that describe our representing a dog. 

3 Details for objects 

Now that I have given a better sense of the nature of the relations between objects in the theory of content I 
defend (in the next chapter), it is useful to revisit the objects taking part in those relations.  These objects include 
vehicles, referents, contents, and systems.  I take it, as I did in chapter 5, that the last object, ‘systems’, is 
uncontentiously defined by the problem of neurosemantics: the system is the nervous system.  Each of the other 
objects is the subject of one of the following subsections. 

                                                      
1  More likely, higher-order vehicles are real, in the same sense that water is real even though we understand that it is 

composed of parts.  However, metaphysical claims of this sort aren’t particularly important for this theory of content. 
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3.1 Vehicles 

Vehicles are the internal physical objects, or ‘representations’, that carry representational contents.  Basic 
vehicles are neurons, as functional units.  Higher-order vehicles are sets of neurons.  The theory I have presented 
does not place a lot of constraints on the nature of higher-order vehicles.  I think that this is a good thing, since 
we quite clearly have some way to go before we know what the vehicles are in neurobiological systems.  The 
vehicles that give us a good (or the best) explanation of such a system’s behavior will be the right vehicles.  It is 
not my purpose to say what the vehicles are, but rather to provide a framework for ascribing content to the 
vehicles, whatever they may be.  Determining the right vehicles is a matter for psychology and neuroscience, and 
we won’t know all the right vehicles until we can provide all the explanations we want. 

One example of an on-going debate about vehicles is the descriptionist/pictorialist debate in psychology 
(Pylyshyn 1973; Kosslyn 1994).  Descriptionists think the vehicles of mental imagery have the property of being 
discrete.  Pictorialists think the same vehicles are continuous.  If we can specify vehicles that have one of the 
properties and not the other, the debate should be resolved.2  Similarly, in neuroscience there is a debate about 
whether neurons in visual area V1 are ‘edge detectors’ or ‘orientation filters’ (see Van Essen and Gallant 1994).  
A theory of representation should not resolve these debates by fiat, but should be able to accommodate the best 
explanation, whatever it may be. 

This second example raises related concerns about the nature of vehicles.  Notice that the terms ‘edge 
detectors’ and ‘orientation filters’ are 1) descriptions of single neurons and 2) picking out vehicles based on their 
contents.  More subtly, 3) use of such terms also assumes certain background theory.  I will come back to this last 
point shortly.  First, consider 1) and 2).   

The fact that terms like ‘edge detector’ are descriptions of the content of single neurons has been noted 
already.  Since there are debates over such terminology, it’s clear that the identities of basic vehicles really aren’t 
uncontentious after all.  Rather, neurons are uncontentiously basic vehicles only as functional units, not as 
carriers of content.  That is, everyone (more or less) agrees that single neurons act in certain ways and are a basic 
functional unit underlying cognition.  However, everyone doesn’t agree on what the behavior of single neurons 
means.  This leads us to 2). 

The reason that the identity of vehicles isn’t easy to settle is because vehicles are generally named after 
the contents they carry.  Edge detectors are so-called because they are thought to be activated by edges and used 
to detect edges.  Orientation filters are so-called because they are thought to be activated by spatial orientations 
and used to analyze orientation gradients in visual images.  In some ways this seems unnecessarily confusing, but 
it just goes to show how important content determination actually is to theories in neuroscience as well as 
philosophy.  This should also make it clear why drawing a sharp distinction between basic and higher-order 
vehicles is an oversimplification.  Both are individuated in terms of the theory in which they play a part.  So, 
although the physical objects that we call vehicles (both basic and higher-order) can be uncontentiously picked 
out by our physical theories, qua vehicles they can only be picked out by our theories of content.  And, our theory 
of content is still pretty much up for grabs, unlike much of our physical theory.  However, we can use this well-
established physical theory to support and establish a good theory of content.  This is one way of seeing what the 
details in the last chapter are about.  Theories of content shouldn’t be disconnected from our physical theory.  
This leads us to 3). 

In a footnote in chapter 4 I noted that making claims about a system representing ‘velocities’ instead of 
‘nearby flashes’ raises a deep philosophical worry.  The worry is that we are simply mandating what is being 
represented (i.e., velocities) in an unprincipled way, since we can’t really tell the difference between velocities 
and nearby flashes.  Given the considerations in the previous paragraph, it should now be clear why I don’t think 
this is a serious worry.  Following Quine (1960; 1969; 1981), I take it that our theories about the world are not 
disconnected sets of propositions.  Terms in one theory depend for their meaning on terms in others.  In this case, 
‘velocities’ are the best kinds of things to quantify over because so many other of our successful theories do so.  
A theory of content, in other words, has a right, if not an obligation, to connect with our other successful theories.  
This means a theory of content can and should quantify over the kinds of things other theories do.  This will serve 
to minimize our overall ontology and give us a good theory of the world, and thus a good theory of content.  

                                                      
2  Keeping in mind the subtleties of claims concerning continuity and discreteness (see Eliasmith in press).  Note also that 

this presents a way of deciding between the two possibilities despite Anderson’s (1978) having shown that descriptions 
and analog representations are equivalent.  This is because Anderson doesn’t consider implementational issues when 
making his argument. 
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Furthermore, realizing the importance of adopting current terminology and assumptions in constructing new 
theories goes a long way to giving a clearer understanding of the problem of misrepresentation.  I will discuss this 
last point in more detail in the next chapter. 

3.2 Referents 

In chapter 4 I suggested that we individuate referents by using the statistical dependence hypothesis.  However, 
the hypothesis, as it stands, is inadequate.  The purpose of this section is to be more precise as to how the referent 
of a vehicle is determined. 

To begin, recall that the statistical dependency hypothesis is: 
The set of events relevant to determining the content of neural responses is the causally related 
set that has the highest statistical dependence with the neural states  under all stimulus 
conditions. 

This hypothesis makes two important assertions: 1) the highest statistical dependency picks out referents; and 2) 
referents are causally related.  Given the theory of cause I outlined in chapter 5, the second part of the hypothesis 
has a specific interpretation: referents have energy transfer with the relevant vehicles.  This is extremely 
important.  If we solely depended on statistical dependencies for determining referents of a representation, we 
would be forced to make many odd referent ascriptions.  For example, if you and I were both viewing a cat, and 
perhaps representing (or misrepresenting) it in exactly the same way, it could well be the case that the highest 
statistical dependency between our internal states were with each other’s neural states, not the cat.  In this case 
we would have to say that the referent of our representations were each other’s neural states, not the cat.  
However, given that there is no causal relation (i.e., energy transfer) between our neural states, we can safely say 
that the referent of such representations is the cat.  In general, statistical dependencies are too weak to properly 
underwrite a theory of content.  Cause, then, is central to referent determination. 

Despite incorporating causes, the statistical dependence hypothesis is still inadequate.  In particular, the 
hypothesis will result in a kind of solipsism.  This is because the highest dependency of any given vehicle is 
probably with another vehicle that transfers energy to it, not with something in the external world.  How can we 
solve this problem?  Before suggesting a solution, I would like to consider an example that makes the problem 
clearer and motivates the solution.  As well, the example highlights an important strength of the hypothesis. 

Consider, then, the example of neural emulators.  In particular, it has become clear that nervous systems 
use ‘emulation’ strategies to aid precise motor control (Grush 1997).  These strategies result in one part of the 
nervous system emulating the expected response of another part of the nervous system in order to facilitate quick 
changes to a motor plan.  For example, if I reach for a pen sitting in front of me, the motor command sent to my 
arm is also sent to an emulator.  It is the emulator’s job to predict the proprioceptive feedback that will result 
from the motor command.  Because the emulator doesn’t need to wait for the kinematics of my arm to take effect, 
it will generate a result sooner than actual proprioceptive feedback is available.  These results can then be used to 
begin appropriately slowing down my arm before pressure sensitive neurons tell me I have touched the pen.  
Emulation thus allows for quick corrections to the motor program if necessary.  How would we determine the 
referent in the emulator in this case?  Notice that in such a case the highest statistical dependency for the 
emulator will be with the proprioceptive feedback.  But, proprioceptive feedback is an internal state and we are 
trying to figure out how we can avoid having internal states as referents.  Perhaps we can avoid this by noting 
that the proprioceptive feedback comes after the emulation, and thus rule out proprioceptive feedback as the 
referent on this basis. 

However, things aren’t so easy.  Notably, the statistical dependence hypothesis doesn’t mandate that a 
referent precedes the representation.  In fact, this is an important strength of the hypothesis.  Mandik (1999) 
convincingly argues that a general flaw of teleo-informational accounts of content (like those of Dretske, Fodor, 
and Millikan) is precisely that they can’t account for this kind of representation relation.  However, there is 
nothing in the account presented here that demands either ‘forward’ or ‘backward’ representation; both are 
acceptable.  In fact, the ‘horizontal eye position’ vehicle is precisely of this ‘backward’ nature.  The neural state 
has horizontal eye position as its referent because that is horizontal eye positions to which it is most highly 
statistically correlated and to which it transfers energy.   

So, the emulator still seems to have the proprioceptive state as its referent because of the high 
dependence and the energy flow from the emulator to the proprioceptive state.  Given the considerations in the 
previous paragraph, we can’t rule out the proprioceptive state as a referent merely because it succeeds the 
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emulator.  However, there is something odd about calling the proprioceptive state the referent of the emulator’s 
representation.  Namely, the proprioceptive/emulator relation is a causal relation that falls under our 
computational description.  But, we can’t have our computational relations determining the referents of our 
vehicles; this is precisely why conceptual role theories can’t account for truth conditions.  We need to ensure, 
then, that referents don’t fall under computational descriptions.  Given this additional constraint, the referent of 
the emulator would be the arm position, not the proprioceptive feedback.  Arm position doesn’t fall under our 
computational description and so it is a candidate for referent status. 

Consider another example. How do we know that the referent of the horizontal eye position vehicle is the 
eye position, and not the velocity command that precedes it?  If all we had to go on was energy transfer and 
statistical dependence, we could not distinguish between the velocity command and the actual eye position as 
being the referent of the horizontal eye position vehicle.  In general it seems that whenever we attempted to 
determine referents, we would end up with referents that were always nearby their vehicles.  This kind of referent 
relation would not be able to support misrepresentation as outlined in chapter 5.  In the eye position case, as in 
the case of the emulator, the referent is the eye position and not the velocity command because the vehicle’s 
relation to the velocity command is a computationally specified one.  These kinds of considerations introduce a 
new constraint on referent determination: referents don’t fall under the computational description.  Taking this 
new constraint into account, referents satisfy 3 constraints: 1) they have the highest statistical dependency with 
the vehicle; 2) they either transfer energy to or from vehicles; and 3) they do not fall under computational 
descriptions.   

This additional constraint raises the question: does the third constraint guarantee that the referents of 
vehicles are external?  If candidate referents can’t fall under computational descriptions, and all internal events 
(i.e., events in the nervous system) do fall under computational descriptions don’t all referents have to be 
external?  Surprisingly, perhaps, the answer is ‘no’.  Referents can be internal as long as the computational links 
between the referent and the vehicle are broken.  For example, suppose I am looking at a real-time brain scan of 
my own brain, and then think a thought about one of the neural states I see.  Suppose also that the highest 
statistical dependence is between my thought and the neural state.  Clearly, the neural state is transferring energy 
to this internal vehicle.  In such a case, however, there is no internal computational description that relates the 
neural state to my thought that can account for the statistical dependence, so the internal state is the referent of 
the vehicle.  More accurately, then, the third constraint should read: referents do not fall under computational 
descriptions that account for the statistical dependency. 

3.3 Content 

In chapter 5 I noted that referents and contents may or may not be distinguished on a theory of content (recall that 
Fodor (1998) and Dretske (1995, p. 30) don’t, although Block (1986) and Cummins (1996) do).  I think that 
contents do, in fact, need to be distinguished from referents.  The reasons are essentially those given for 
motivations of a conceptual role theory (see chapter 2): 1) non-referent based meaning is needed to explain 
behavior; 2) non-referent based meaning is needed to satisfactorily handle Frege cases; and 3) transformations 
are relevant to understanding content. 

The first of the reasons was discussed in some detail in chapter 2.  In particular, I noted there that Twin 
Earth cases show exactly how referents can’t serve to explain behavior.  The referents on earth and Twin Earth 
are, ex hypothesi, different yet the twin’s behaviors are the same.  If contents and referents are equated, then we 
have to ask: how can differences in meaning explain the sameness of behavior?  There is no aspect of meaning 
that can be appealed to in a “content=referent” theory (as in any causal theory) that remains the same in Twin 
Earth cases. 

The second reason (i.e., that non-referent based meaning is necessary to explaining Frege cases) has been 
denied by causal theorists like Fodor (1998).  Fodor, in fact, stipulates that all co-referential terms are 
synonymous: “I’m assuming that coreferential representations are ipso facto synonyms” (p. 15).  There is, 
according to Fodor, no difference in meaning for any two co-referential terms.  This is indeed a strange claim.  As 
unsophisticated as dictionaries may be about meaning, if there is any sense in which they elucidate the meanings 
of terms, we can see why this claim is strange just by looking at one.  Pick your favorite dictionary (or 
encyclopedia), look up ‘Hesperus’ and ‘Phosphorus’ (or ‘morning star’ and ‘evening star’) and you will see that 
they mean different things: one is seen at sunset, the other is seen at sunrise.3  In fact, they aren’t synonymous.  
                                                      
3  I’ve checked Webster’s, the Oxford English Dictionary, and Encyclopedia Britannica. 
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Fodor, then, has a unique understanding of meaning if he takes it that coreferential terms are synonymous.  
Worse, it is a deficient understanding of meaning because it clearly can’t account for the pervasive intuition that 
coreferential terms aren’t synonyms.  Although I don’t want to be a meaning rationalist (i.e., hold that we have 
special, introspective access to the nature of meaning; see Millikan 1993), and as slippery as the meaning of 
‘meaning’ may be, a theory that comes closer to explaining the pre-theoretic notion of content is going to be a 
better (more complete) theory than one that doesn’t. 

Lastly, recall that the third reason for thinking that contents are different from referents is that 
transformations have, literally for ages, seemed to be relevant to determining contents.  On the current theory, 
referents are determined by transformations, so perhaps this could be explained by a theory that equated contents 
and referents.  However, there are more transformations than just those that determine the statistical 
dependencies that underwrite referent determination.  Consider, for example, a neural state that is tokened 
whenever there is blue in the visual field.  But suppose that this neural state is never used to pick out blue things.  
Certainly, as external observers, we are in a position to use the state to know when there is something blue in the 
visual field, but it would be odd to say that this neural state means ‘blue in the visual field’ to the system in which 
the state is tokened.  This ‘blue’ state is the kind of state Dretske (1988) calls a natural sign and that Grice (1957) 
says has a natural sense.  Dretske, following Grice, claims that such states don’t “mean” in the same sense that 
languages and thoughts “mean”.4  Natural signs, for example, can’t mean something other that what is actually 
the case; they can’t be wrong (p. 55).  This is because such states aren’t necessarily taken to be about anything.  
We can see, then, that the problem of neurosemantics is really a problem of what neural states mean to nervous 
systems.  In order to solve this problem, we have to take meaning to be (at least partially) determined by how 
neural states are used.  Such considerations are reminiscent of 1) above.  If a neural state can’t possibly affect the 
behavior of the system it is in, how can it be said to mean anything?  Meanings, after all, help to explain 
behaviors. 

These, then, are reasons for thinking that contents aren’t the same as referents.  So, what is content?  Or, 
more specifically, what is the part of content not captured by the referent of a representation?  In order to answer 
this question, I have to say what those transformations are that are left out of referent determination.  My 
suggestion is this: 

The set of relevant transformations is the ordered set of all those causally related 
transformations that succeed (or precede) the vehicle. 

In other words, the transformations that can be caused by the vehicle capture how it is used and thus what 
it means.  The ordering of the set is determined by the likelihood that the transformation is effected over all 
stimulus conditions.  The reason the set is ordered is that the more common the transformation, the more relevant 
it is likely to be to what we intuitively call meaning.  The most common transformations thus help determine 
something like the “core” meaning of the vehicle (Smith 1989). 

The picture of content determination that I have provided can be summarized as follows: For any vehicle, 
both the transformations that precede it and succeed it are relevant to content determination.  One of the 
antecedent or consequent set will determine the highest statistical dependency that the vehicle holds with a non-
computationally described, causally related event or object in the environment (i.e., the referent).  The other set 
determines the relation the vehicle has with other vehicles.  The entire set of transformations can be described in 
terms of a computational factor.  The computational factor can be identified with a causal description because an 
isomorphism holds between the computational description and neurons as functional units. 

A number of comments are in order.  First, transformations can be identified at the various levels of 
description.  Only some of these may capture what we intuitively take to be the transformations relevant to 
meaning (e.g., inferences).  Perhaps at the level of ‘dog’ vehicles we can find one or a few transformations that 
results in the ascription of the property ‘has four legs’.  But quite likely at lower levels no reasonably small set of 
transformations could account for this inference.   

Second, the story of content determination I have provided here is applicable to both conceptual and 
occurent content.  I have concentrated on the former, but the latter can be determined in the same manner, 
substituting ‘current stimulus conditions’ for ‘all stimulus conditions’ (see chapter 8 for further discussion). 

                                                      
4  In fact, Dretske is careful to use a term other than ‘meaning’ or ‘sense’.  He prefers to say that such states ‘indicate’ (p. 

55). 
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Third, the whole set of transformations relevant to content determination is likely to be very large for any 
given vehicle, no matter the level of description.  This inherent complexity of content determination may explain 
some of the conflicting intuitions about the meaning of terms.  For instance, looking at only half of the 
transformations as relevant, as both causal theorists and conceptual role theorists do, greatly simplifies the 
problem.  The examples each tend to chose further simplifies the set of transformations.  Causal theorists look to 
perceptual representations, where there are fewer transformations underlying the nomic relations, making 
external causes seem rather immediate.  Conceptual role theorists look to abstract representations, decidedly 
removed from causes and intuitively definable in terms of only the most common inferences drawn on the basis 
of those representations.  Both stories are accused of not accounting for the insights of the other.  My story, 
though perhaps more complex, can satisfactorily account for both sets of insights, in a unified way.   

3.4 A detailed example 

In this section I present a sample of the kind of account of content ascription this theory provides.  I would like to 
present an account that can equally address abstract and sensory representations.  Unfortunately, the 
neuroscientific details that are available are most complete near the sensory periphery.  So, the story I tell focuses 
on an instance of sensory representation.  Hopefully, I tell enough of a story to convince you that there is a 
similar story to tell for higher cognitive areas as well. 

In fact, things are worse, we don’t really know much about how brains work in general.  However, we do 
know a fair amount (relatively) about the visual system.  Even so, I will be leaving out more details than I put in.  
I won’t explicitly use the equations I have outlined (see Eliasmith and Anderson (forthcoming) for that degree of 
detail), and I won’t be too concerned about missing some relevant neurophysiological facts in the story I’ll tell.  
I’m most interested in giving a sense of the sorts of content ascriptions that come out of this theory and what 
justifies those ascriptions. 

That being said, consider someone watching a dog run through a field.  Light reflected from various 
physical objects in this scene over a period of time enters the eye and stimulates the retinal cones.  The cones 
systematically encode the occurrence of photons into voltage changes.  The content encoded by these voltage 
changes is something like ‘photon impact rate’.  The number of photons striking a cone cell determines how it 
will respond, just as for the cricket mechano receptor.  Both statistical dependences and energy transfer are 
straightforward in this, basic level, case.  Even here we could call these neurons ‘photon detectors,’ bringing in 
background assumptions and clarifying how this information is used by the nervous system. 

Equally important, are the kinds of claims we would not make at this stage.  For example, we wouldn’t 
call any set of cone cells a ‘dog detector’.  In some sense, they do detect the presence of the dog; without cones 
the dog would not be visually detected.  However, positing such a higher-order vehicle would fail under this 
theory for at least two reasons.  First, the referent of such a vehicle would not be dogs, so the content won’t be 
dogs, so we can’t call the vehicle a ‘dog’ vehicle.  The referent wouldn’t be dogs because, although dogs don’t 
fall under a computational description, and dogs do transfer energy to the cones, this vehicle would not be most 
highly correlated with dogs.  In fact, it isn’t particularly correlated with anything, just with photons hitting the 
retina.5   

Second, there are no other theories that could support the identification of the cones with ‘dog detectors’.  
Calling the cones ‘dog detectors’ would be fine if it cohered with a whole story of neural function, but it doesn’t.  
Cones aren’t used by the nervous system (just) to detect dogs.  And, insofar as they are used to detect dogs, it’s 
not because they have a special relation to dogs, i.e., they don’t have dogs as referents.  For these reasons, this 
vehicle would not prove explanatorily satisfactory, and is a bad candidate for a higher-order vehicle. 

Back to our dog in the field.  Once the photon rates have been encoded into spike trains by the retinal 
ganglion cells, the information is transmitted in two main streams to the lateral geniculate nucleus (LGN) in the 
thalamus.  These two streams of information are called the magno (M) and parvo (P) streams.  The M stream 
carries high frequency information at low spatial resolutions and the P stream carries lower frequency 
information at higher spatial resolutions, although there is some overlap (Van Essen and Gallant 1994).  From the 
thalamus, both streams are projected to visual cortex area V1. 

                                                      
5  The notion of correlations and probability I’m using is a realist one.  So, showing a retina only dogs, still won’t make the 

correlations between such a vehicles and dogs the highest one. 
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Before I discuss the major connections to V1, there is a secondary pathway of interest.  From the retina, a 
subset of the retinal ganglion cells also projects to the superior colliculus, a small area of the midbrain.  This area 
is known to be important for visual orienting behavior.  Furthermore, it projects directly to preoculomotor 
neurons in the brain stem (Everling, Dorris et al. 1999).  These neurons are just those kinds that encode things 
like horizontal eye position (Moschovakis, Scudder et al. 1996).  This secondary pathway provides a reasonably 
short route from input to output and helps show the kinds of content ascriptions this theory would make along the 
way. 

In the superior colliculus (SC), the retinal ganglion cells provide a low spatial resolution map of the 
visual field that is updated very frequently.  The referent of this high-order vehicle (i.e., the map) is average 
photon impact rates over large areas of the visual field.  We can’t say that the map picks out objects, because 
objects or anything else that causes the photon impact rates to vary (e.g., lights shone on the retina) will be 
picked out by the SC representation.  The SC isn’t particularly sensitive to objects.  In any case, this kind of 
representation is the right kind for making fast decisions about where to look given gross properties of the visual 
field.  If something reasonably large is looming in one part of the field, or quickly traversing a part of the field, it 
will be salient in such a representation.  Notably, this representation is in retinal coordinates, meaning that the 
map is centered on the center of the retina.  So, if a particular area of the representation ‘lights up’, to indicate a 
rapid change in some part of the map, the direction of eye movement can be determined by taking the difference 
(a simple transformation) between this position and the center of the map.  Wherever the map lights up is where 
the eyes should move next to get a sharper, foveal picture of what’s happening there.  The superior colliculus 
thus generates a desired eye position command as a displacement from the current retinal position.  That, then, is 
the central way in which the map is used.  So, the content of the map is something like ‘photon densities 
indicating the next eye position’. 

Like most retinotopic maps, this one can be defined as a scalar or vector field.  Thus, neurons represent 
the value of some set of variables (just contrast in this case) at a particular location.  This, then, is a description 
of a lower level of organization of the same set of neurons.  Qua map, a set of neurons have the whole retina as a 
referent, but qua set of vector representations, various subsets have limited parts of the visual field as a referent.  
Notice also that a particular set of neurons represents contrast at a given retinal location even though the location 
itself isn’t represented explicitly.  Rather, location plays a role in referent identification because of the 
organization of the system.  Without taking this organization into account, the referent couldn’t be correctly 
identified.  In fact, there are computational advantages to retaining the nearness of representations of near retinal 
neighbors.  In particular, it saves having to encode and decode a representation of the position of a variable 
whose retinal location is relevant to its representational content.  Likewise, it simplifies wiring circuits to 
implement certain kinds of transformations; again, those for which retinal location is relevant.  The kinds of 
transformations that are supported, for example, are those that help support contiguity of spatial representations.  
These considerations highlight two important points.  First, at this level of organization the higher-level 
transformations (e.g., the ‘difference’ transformation) aren’t always obvious, although other kinds of 
transformations are.  Second, referent determination doesn’t necessarily depend on what is encoded by a given 
representation. 

To continue, commands from the SC eventually reach the neural integrator as a velocity command (e.g., 
move the eye in such and such a direction at 500 degrees per second) that lasts for a certain length of time (e.g., 
20ms).  This is an eye velocity command because it has highest statistical dependence with eye velocities.  The 
neural integrator integrates this command, resulting in a particular eye position that it stores and sends on to the 
ocular motor neurons that connect directly to the ocular muscles.  The combination of these muscles and the 
kinematics of eye itself acts to decode the represented eye position into an actual eye position.6  The cells in the 
neural integrator can thus be taken as a higher-order vehicle that carries content about eye positions.  In fact, this 
vehicle has a fairly high statistical dependency with some set of moving objects, but it has a higher one with eye 
positions because there are fewer confounds with eye positions than with moving objects (given that ‘objects’ 
and ‘eye positions’ are the kinds of theoretical entities our theories talk about).  Given the simplified story I’ve 
told so far, that is, assuming that the SC pathway was the only one to eye positions, the content of the neural 
integrator would be something like ‘eye position to salient stimulus’.  However, eye positions can be determined 
in lots of ways (not just by salient stimuli) and, since we have no way of picking out those different ways 

                                                      
6  As I warned, this description does not even begin to do justice to the complex circuits involved in the saccade system.  For 

an in-depth treatment see Moschovakis et al. (1996). 
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uniquely (i.e., with one theoretical term) we say the integrator just carries the content ‘eye position’, leaving such 
complexities out of the picture. 

The transformation from this kind of map to a desired eye position is relatively simple, but still 
instructive.  It shows just how invisible the dividing line between ‘forward’ and ‘backward’ representation really 
is.  Even though the details of these transformations may be buried deep in the brain in many cases, there is no 
need for a special kind of intervention for turning input into output.  And, there is no drastic difference between 
one and the other.  Indeed, we could have described the entire process as causal or as a result of certain 
transformations.  However, choosing one or the other soon conflicts with background considerations and 
principles of good theory building (e.g., simplicity, coherence, etc.).  Rather, the best explanations rely on both 
cause and transformation, and both causes and transformations can be understood in terms of the theory of 
representational content I have been developing. 

Returning to the primary projections to V1 from the LGN in the thalamus, it quickly becomes clear that 
much less is certain about the nature of the representations and transformations these representations undergo.  
However, there is much that is known (see e.g. Felleman and Van Essen 1991; Kandel, Schwartz et al. 1991; 
Callaway 1998).  The M stream synapses in the upper half of layer 4 of V1 while the P stream projects to the 
lower half.  These layers both project to more superficial layers of V1 cortex that are sensitive to such things as 
color, edge orientation, motion, and microfeatures such as ‘T’ junctions (Das and Gilbert 1999).  The motion 
sensitive parts of these layers project to a number of areas including V2, V3, V3A and V5.  Area V2 is divided 
into thin, thick, and inter- stripes.  These regions are most sensitive to color, binocular disparity, and form 
respectively, and project to areas V4, V3 and V5, and V4 respectively (DeYoe and Van Essen 1988; Nicholls, 
Martin et al. 1992).  Areas V3, V3A, and V5 are part of what has been dubbed the ‘where’ pathway that 
processes spatial information.  Whereas area V4 is the beginning of the ‘what’ pathway that processes 
information about form (Ungerleider and Mishkin 1982).7  V4 projects to area PIT (posterior inferotemporal 
cortex) which projects to CIT and AIT (central and anterior inferotemporal cortex) (Van Essen and Gallant 
1994).  These two areas project to area TE that then projects to the hippocampus, amygdala, and areas 28 and 36 
of temporal cortex (Saleem and Tanaka 1996).  In almost every case, these projections are reciprocal. 

Much of the work on cortical projections has been done in monkeys, and raises some worries as to their 
relevance to humans (DeYoe, Carman et al. 1996).  However, functional magnetic resonance imaging (fMRI) and 
single cell studies in humans support these general projections, and also provide further insight into how 
language areas may be connected to areas of IT.  Ojemann and Schoenfield-McNeill (1999) have shown that 
middle areas of temporal cortex on both sides of the brain are active in object naming tasks and not in similar 
non-naming tasks.  These same areas are just before lateralized areas that have been implicated heavily in 
language processing (Binder, Frost et al. 1997).    These areas lie near the homologous areas 28 and 36 in 
monkeys, which has been implicated in recognition memory of objects (Saleem and Tanaka 1996).  In addition, 
areas of AIT just preceding TE, which projects to 28 and 36, have been shown to have view independent neurons 
(Booth and Rolls 1998). 

These cortical connections and their functional properties help give a sense of the kinds of 
transformations and the kinds of representations that seem to be present in processing a visual scene, such as the 
dog in the field.  The theory I have outlined provides a method for determining contents, referents, and vehicles 
that provide good explanations of behaviors and mental meaning.  Even though some of the transformations, 
referents, and vehicles may be empirically disproven, how we can use the theory I have been presenting should 
be coming clearer.  In particular, I have been showing how we can relate a theory of mental representation to 
neurobiological details to generate constrained explanations of behavior and meaning.  In other words, by 
considering these sorts of details, we can posit likely high-order vehicles that can be used to explain both cortical 
processing and neural meaning.  Let me continue with this example. 

Consider area V1 at the beginning of the cortical visual processing stream.  There are a number of 
guesses we can make about possible higher-order vehicles.  One guess is that V1 consists of many vehicles that 
are have graded sensitivity to stimuli features in that they are single neurons and have statistical dependencies 
with various external features (e.g., orientation filters, color filters, motion filters).  A second guess is that 
multiple neurons form higher-order vehicles that encode a more accurate estimate of some feature (e.g., edge 
orientation, color value, motion direction, etc.), just as multiple neurons encode horizontal eye position.  There is 
evidence that near neighbor neurons tend to have similar response properties, which would support this kind of 
                                                      
7  The division into these two pathways is clearly an over-simplification (Felleman and Van Essen 1991; Goodale and Milner 

1992; Van Essen and Gallant 1994), but one that I adopt to simplify my discussion. 
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vehicle.  Such guesses can be easily generalized to neurons that are tuned along multiple dimensions (e.g., motion 
and orientation).  In these cases, single neurons and populations of neurons would encode vectors along both 
dimensions.  A third guess is that even higher-order vehicles (i.e., larger areas of V1 cortex) encode all of the 
dimensions simultaneously.  In fact, it seems that every square millimeter or so of V1 might be a complete 
representation of a small area of the visual field, i.e., a representation that describes the visual information along 
all relevant dimensions.  A fourth guess would be that an even higher-order vehicle encodes a vector field.  That 
is, for every point in the retinal image, there is a set of cells that describe each visual dimension.  Together, these 
points form a map (a more detailed version of the superior colliculus map) of the retinal image incorporating all 
information that can be used in further processing.  

Notice that despite the fact that each guess is at an increasingly higher-order of representation, they are 
not mutually exclusive.  Undoubtedly, there are other guesses that do conflict with these.  Nevertheless, this 
example demonstrates how different levels of description that can be applied to a single cortical area.  Notice also 
that these different orders of vehicle have different contents.  At the lowest order, neurons such as orientation 
filters have contents such as ‘degree of similarity to 45 degrees off vertical at such and such a retinal location’.  
They have these kinds of contents because they are statistically correlated most strongly with this kind of feature 
at a specific location in retinal coordinates and are used to make decisions about the features at that retinal 
location.  Unlike the SC map, this kind of content does reach into the world because photon densities can’t 
describe the feature to which this kind of neuron is sensitive.  Illumination doesn’t particularly matter to these 
cells, there being the right orientation gradients is what matters (Callaway 1998).  Orientation gradients are found 
on things in the environment, and are not directly reflected in photon emissions.  The relevant photon impact 
rates depend on those gradients and the particular lighting conditions.  Moving to higher-order vehicles, we find 
different dependencies.  For instance, once we have the complete multi-dimensional representations, the strongest 
dependencies will be between sets of features that include things like color, depth, orientation, and contrast at any 
part of the visual scene that lies at certain retinal coordinates. 

Let me now consider downstream cortical areas.  Determining the kinds of vehicles these areas support 
helps us identify the kinds of transformations that the vehicles in V1 must undergo.  In particular, this helps 
identify the transformations that map V1 vehicles onto V2 vehicles.  Knowing the precise nature of neighboring 
vehicles can help us determine the transformations.  However, a complimentary way to figure out what the 
vehicles are is to guess at the kinds of transformations that are present and make predictions about the vehicles 
you would expect to find.  Like most things in science, the process is one of mutual refinement.  For now, I will 
make some very unrefined guesses about the kinds of transformations and vehicles in higher cortical areas. 

In general, the cortical areas in the ‘what’ pathway, including V1, V2, V4, PIT, and AIT, have 
projections to the next higher area, which tend to converge.  Back projections, in contrast, tend to diverge (Van 
Essen and Anderson 1995; Felleman, Xiao et al. 1997).8  This supports a kind of ‘information pooling followed 
by top-down feedback’ processing strategy.  For example, it seems quite likely that orientation filters may have 
subtle responses that are sensitive elements of the visual field outside of what is called its ‘classical’ receptive 
field.  These responses are probably in part due to feedback from higher areas (Knierim and Van Essen 1992).  At 
this early stage in cortical processing, receptive fields tend to be quite small.  They get larger as we move higher 
in the cortical hierarchy.  By the time we are near the end, in IT, single neurons respond to features anywhere in 
the retinal image.  And, some neurons in AIT respond to objects regardless of their orientation in three 
dimensions (Booth and Rolls 1998).   

This general pattern supports a shift in the kinds of content we would ascribe at higher levels of cortical 
processing.  In particular, there is a general trend of transformations from retinotopic representations to position 
independent representations along the ventral processing stream.  So the content we ascribe shifts from ‘such and 
such features at such and such retinal location’ to ‘such and such features in the visual field’.  Given the presence 
of view independent neurons that seem to be part of distributed representations of individual objects, by AIT we 
may be able to ascribe contents like ‘a dog with such and such features’ or perhaps even ‘such and such dog with 
such and such features’.  This dog (anywhere in the visual field) will be the thing that has the highest statistical 
dependence with this higher-order vehicle.  As well, there is an energy transfer to the vehicle from the dog, and 
the dog does not fall under our computational description.  Thus, the dog is the referent of the vehicle.  The 
transformations from V1 to IT have abstracted the features that support the identification of the dog.  
Furthermore, the vehicle is used by the system to identify this dog, perhaps classify and name it, perhaps orient 
towards it, etc.; these are just some of the many transformations that are licensed by this vehicle.  This vehicle, 

                                                      
8  In this context, ‘convergence’ means many neurons project to few neurons.  ‘Divergence’ means the opposite. 
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then, is a vehicle that specifies an individual point in the huge space of objects.  Given the nearness of areas 
involved in naming and language to the areas that support this kind of vehicle, subsequent transformations might 
map that kind of complex object representation onto a lexical one.  A similar kind of story can be told about the 
lexical representations being mapped to motor commands that result in verbal behavior: ‘there’s a dog’. 

Though this specific example has been a visual one in humans, there is evidence that many of the 
organizational properties I have identified are quite consistent across modalities and animals (Parker and 
Newsome 1998).  Many of the features of content ascription evident in this example are thus general ones as 
well.  We can expect many levels of higher-order vehicles, with the same neurons participating in different 
vehicles.  We can expect the transformations to abstract more complex features independent of certain less 
biologically relevant variances (e.g., the form of objects).  We can expect the kinds of content we ascribe to 
vehicles to pick out more complex statistical properties eventually picking out ‘common-sense’ objects in the 
world.  We can expect the dependencies of vehicles to be with more complex features the farther in the vehicle is 
(i.e., the more transformations that precede it).  We can expect to be able to ascribe different contents to different 
orders of vehicles, so a single neuron may participate in multiple content ascriptions.  

4 Answers to the representational questions 

That, then, is the theory of content I wish to defend.  As I argued in chapter 3, a theory of representational content 
must answer the 13 representational questions, in order to properly address the problem of neurosemantics I 
identified in chapter 1.  The purpose of this section is to answer those questions succinctly, based on 
considerations I have provided above. 

4.1 What are the basic vehicles? 

Basic vehicles are neurons as functional units.  They are uncontentiously basic vehicles under the computational 
isomorphism description.  As carriers of content proper, their description depends on their role in a whole theory 
of neural function. 

4.2 What are the higher-order vehicles? 

Higher-order vehicles are the theoretical objects we posit to provide good explanations of the operations of a 
neurobiological system.  The right ones will be posited by the best theory. 

4.3 What is the relation between basic and higher-order vehicles? 

In regards to content, this relation is the encoding/decoding relation specified in chapter 6.  As physical objects, 
the relation is mereological (i.e., higher-order vehicles are groups of basic vehicles). 

4.4 What is the system? 

Given the problem of neurosemantics, the system is the nervous system. 

4.5 What is the relation between the basic vehicles and the system they are in? 

Basic vehicles are parts of the nervous system (i.e., they are in a mereological relation).    

4.6 What is the relation between the higher-order vehicles and the system they are in? 

Higher-order vehicles are also parts of the nervous system.  Higher-order vehicles provide various levels of 
description of the system to aid our understanding of its operation. 
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4.7 What gives a basic vehicle its content? 

The content of a basic vehicle is determined by its causal (referent) and transformational (use) relations, both of 
which can be described computationally.  Taking the perspective of the animal is important for generating this 
description. 

4.8 What gives a higher-order vehicle its content? 

The content of a higher-order vehicle is determined by its causal (referent) and transformational (use) relations, 
both of which can be described computationally. 

4.9 What is the relation between a basic vehicle’s content and the system it is in?  

Although a basic vehicle will fall under the same computational isomorphism regardless of where it is in the 
system, the individuation of basic vehicles as carriers of content depends on transformation relations to other 
elements of the system. 

4.10 What is the relation between a higher-order vehicle’s content and the system it is in?  

The individuation of higher-order vehicles as carriers of content depends on transformation relations to other 
elements of the system. 

4.11 What is the relation between the basic vehicle and the external environment? 

Basic vehicles are in a referent relation with items in the external environment.  The external relata of the referent 
relation is determined by energy transfer (i.e., cause) and the highest statistical dependency with basic vehicle 
responses. 

4.12 What is the relation between the higher-order vehicle and the external environment? 

Higher-order vehicles are in a referent relation with items in the external environment. 

4.13 What is the relation between the system and the external environment? 

Under a strictly causal description, there is no special relation to speak of.  Energy flows between environments 
and nervous systems as it flows anywhere else.  However, as regards content, the external environment doesn’t 
fall under computational descriptions.  This helps determine what the referents of representational states are, as 
well as what counts as a representational state and what doesn’t. 

5 Summary 

I argued in section 5 of the first chapter that theories of content might fair better by actually attempting a neuron-
by-neuron characterization and building up from there.  The details in the last chapter in conjunction with 
considerations I have presented in this chapter show precisely how such a theory can be constructed.  By finding 
a computational/causal isomorphism at the level of single neurons, and knowing how to relate sets of neurons to 
construct more complex vehicles we can unify causal and conceptual role factors in a general theory of content.  
This theory is applicable at any level of description of the behavior of neurobiological systems.   

The theory of content I have offered combines a causal factor, which determines a representation’s 
referent, with a transformational factor, which determines how a representation is used.  However, unlike 
standard two-factor theories, on this theory the factors are aligned in virtue of being descriptions of the same 
underlying process.  I have shown how such processes can be described as purely causal or as purely 
transformational.  In all likelihood, the most satisfactory explanations (i.e., those that fit well with our current 
theories and background assumptions), will be those that combine causal and transformational descriptions.  This 
combination is justified by the fact that these descriptions are unified by the underlying computational theory.   



68 

 

That, then, is the neuron-by-neuron characterization that Lycan (1984) suggested we shouldn’t bother 
with.  Whether or not such a theory can fair better than other theories is the focus the next chapter. 



 

 

CHAPTER 8 

Concerns with Content 

I think we ought always to entertain our opinions with some measure of doubt. I shouldn't wish 
people dogmatically to believe any philosophy, not even mine. – Bertrand Russell (1872-1970) 

1 Introduction 

For many philosophers, the holy grail of philosophy of mind is to “somehow [get] from motion and matter to 
content and purpose – and back” (Dennett 1969, p. 40).  Answering the ‘thirteen representational questions,’ as I 
have called them, is far from likely to convince anyone that the theory presented here can do this.  Scores of 
questions remain that I have not yet explicitly addressed in presenting the theory.  The purpose of this chapter is 
to try and anticipate some of the more pressing questions that may be raised, and to provide answers to those 
questions that are consistent with the theory I have described. 

I begin by addressing the concern that statistical dependence is unable to support an interesting and 
complete theory of content.  This discussion supports the extension (in the subsequent section) of the account of 
occurent content that I have so far concentrated on, to an account of conceptual content.  As I noted in chapter 5, 
a satisfactory account of content must support a robust notion of misrepresentation.  In section 3 of this chapter I 
show the novel way in which the theory accounts for misrepresentation. 

2 Statistical dependence and representational content 

2.1 Statistical dependence and causes 

A statistical dependence between two events means that the occurrence of one event changes (either increasing or 
decreasing) the probability of the occurrence of the other event.  As I noted earlier (chapter 4, ff. 5), one natural 
measure of the strength of the statistical dependency between two events is mutual information (Hyvarinen 
1999).  When events are not so related, they are called independent, and the probability of their both occurring is 
the product of the probability of each occurring individually. 

Statistical dependence in general, I take it, is a good reason to think events are causally related (see 
chapter 5).  If the probability of a book falling to the floor depends on whether or not I loosen my grasp, then we 
would conclude that these two events are causally related.  Of course, statistical dependence is not enough 
because two events may be statistically dependent if they are the result of the same cause (in which case neither 
is the cause of the other).  This is where the addition of energy transfer to the theory of cause (and content 
determination) becomes important.  Without energy transfer between two statistically dependent events, we 
wouldn’t claim that one is the cause of the other.   

Statistical dependence can also help us know when events aren’t causally related.  In particular, statistical 
independence means there is no causal relation between two events.  If, for example, striking a match is 
independent of whether or not that match lights then we would have no basis for thinking that striking the match 
and its lighting are connected.  This, of course, is something like Hume’s point.  On the theory I have presented, 
it is such causal relations that help fix content. 

An apparent concern for any causally based theory of content is: What if the underlying theory of cause 
is wrong?  In this case, the question would be: What if statistical dependence and energy transfer are not 
necessary or sufficient for actually being (metaphysically) a cause?  There are, after all, many philosophers who 
think that even the basic assumptions of this kind of Humean analysis are wrong (see Sosa and Tooley 1993, pp. 
1-33 for a review).  If these philosophers are right, is this theory of content doomed to failure?  The answer is no.   

While I have defended this causal theory (chapter 5, section 3) from the kinds of concerns Sosa and 
Tooley (1993) discuss, the success of the theory of content does not rest on the success of this theory of cause.  
The reason is quite simple: this theory of content doesn’t depend on there being a causal relation between the 
referent and the vehicle, it depends on there being a statistical/energy transfer one.  We can use the dependencies 
and energy transfers to identify the presence of a cause whether or not cause is identical to such energy transfers 
and dependencies.  For this theory of content, identification is the key.  In other words, we have to know when the 



70 

 

vehicle and referent are causally related.  This, then, is a weaker form of a causal theory of content.  It is weaker 
because it only depends on knowing when there is a cause, it does not specify the metaphysical nature of cause. 

Even if this weaker form is found to be unsatisfactory (i.e., if these relations don’t help identify causes), 
the theory of content is still not in jeopardy.  If it is discovered that, metaphysically and epistemologically 
speaking, cause is not related to statistical dependence and energy transfer this doesn’t mean the right theory of 
content doesn’t depend on exactly that relation; maybe that aspect of the theory just shouldn’t be called causal.  
Therefore, as far as getting content determination right, getting the right theory of cause isn’t too important.  Of 
course, it would make for a more convincing theory of content if the causal theory were right.  And, there are 
good reasons to think that this causal theory is likely right, but this isn’t a necessary condition on understanding 
representational content. 

2.2 Getting the right statistical dependence 

None of these considerations speak to determining which dependencies are the right ones for referent 
determination.  A vehicle will have many things on which it is statistically dependent.  Statistical dependence is 
cheap: of course, this is where the statistical dependence hypothesis comes in.  On this theory, the dependence 
that counts for content determination is the one that is the highest i.e., the referent of a vehicle is that set of 
causes on which the vehicle is most statistically dependent.  That, as I explained in the last chapter, is how we 
determine the referent of the vehicle. 

But counter-examples come racing to mind.  Consider again looking at a dog in a field: Why is my 
higher-order vehicle, whatever set of neurons it may be, about the dog itself and not, for instance, the set of 
photons that intervenes between me and the dog?  On first glance it seems that these (non-computationally 
described) photons will covary just as well, or perhaps better, than the dog with my internal vehicle.  The photons 
are, after all, the things that directly affect my neural firings; so we might expect them to be less susceptible to 
intervening distortions and therefore have a higher statistical dependence with the content of my ‘dog’ vehicle. 

But we have to be careful about what is being dependent on what.  It clearly isn’t the case that my ‘dog’ 
vehicle is statistically dependent on any particular photon, or even a bunch of photons that recently bounced off 
the dog.  In fact, any given photon bouncing off the dog will be nearly independent of the neural firings that 
occur when the dog is in front of me.  After the photon bounces off the dog it is absorbed by retinal cells and 
converted to chemical energy.  Life as a photon is over, but the neural firings certainly don’t stop.  Notably, then, 
my ‘dog’ vehicle doesn’t particularly depend on the physical properties of one photon, or even a bunch that 
recently left the dog.  Rather, the higher-order ‘dog’ vehicle particularly depends on the physical properties of the 
dog and that is why it represents that dog. 

We can make the counter-example more sophisticated by allowing that it is not particular photons (or a 
recent bunch) on which the vehicle statistically depends, but a more appropriately delineated set of photons.  
Such a set has to be something like the photons in the set of time-slices just before hitting the retina that have 
ever bounced off the dog.  Assuming the ‘dog’ vehicle is as dependent on this set as on the dog, there are at least 
three good reasons that this set is a bad candidate for the referent of the vehicle.  First, it is far simpler to use the 
dog as the referent.  Ockham’s razor should convince us to choose the dog as referent over this complex, 
difficult-to-specify set.  After all, one thing that the set of photons has in common is their having bounced off of 
the dog.   

Second, the dog vehicle is dependent on far more than just photons.  Dogs are, after all, multi-modal 
stimuli.  They are furry, noisy, and smelly.  All of these modalities help determine how much the vehicle depends 
on something in the world.  A set of photons, no matter how well delineated, will only explain the dependence of 
part of the total dog vehicle.  Even if we only see the dog, and we don’t touch, hear, or smell it, the vehicle on 
which that seeing depends will have these other modes inferred (through appropriate transformations).  Since 
these inferred values for non-visual parts of the vehicle statistically depend on the dog, and not the set of photons, 
it is the dog that is the referent.  The obvious rebuttal to this response is to insist that it’s not just the appropriate 
set of photons, then, it’s the set of photons, plus the set of electrons between skin and fur, plus the set of sound 
waves, plus the set of molecules that adhere to olfactory receptors, etc. on which the vehicle is most statistically 
dependent.  To answer this, I can again appeal to the fact that it is the dog that is the source of all of these sets, so 
we should choose the dog as the referent. 

Third, we must recall that the content of vehicles depends not only on causes, but also on uses.  That is, 
the kinds of transformations that result from tokening the ‘dog’ vehicle support ascriptions of properties that only 
make sense for dogs, such as ‘is vicious’.  Sets of photons, electrons, molecules, etc. just aren’t the kinds of 
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things that can be vicious.  Notably, this point reduces to the previous one.  That is, if we did describe the 
referents as photons, electrons, molecules, etc. then the properties we took the system to be ascribing probably 
wouldn’t be things like ‘is vicious’.  Of course, as I mentioned last chapter, we want a theory of content that is 
consistent with other theories.  In many of these theories (e.g., biology, macro-physics, astronomy, etc.) what are 
quantified over are objects with properties; objects like dogs, tables, airfoils, stars, and so on.  The best theory of 
content, then, is one that quantifies over the same sorts of things.  This is especially true when quantifying over 
such things helps make the theory simpler, to the extent of being actually manageable. 

2.3 Some consequences of using statistical dependence 

Adopting statistical dependence as a means of referent determination has a number of beneficial consequences.  
First, statistical dependence comes in degrees.  The highest dependence of some vehicle with its referent can be 
higher than the highest dependence of another vehicle with its referent.  The strength of the dependence maps 
nicely on to the precision of the representation in question.  If, for example, the occurent dependence of my 
representation of the dog’s position with the dog’s position is nearly perfect (which means any changes in my 
relation to the dog are reflected in changes in the contents of my vehicle) we know that my representation is 
precise (in a technical sense, see section 4). 

A second benefit of this approach is that we don’t have to rely on intuitions about what is represented by 
cognitive systems.  Rather, we have to systematically examine the features of the environment on which the 
vehicle is statistically dependent; we will discover not stipulate what the referent of the vehicle is.  Of course we 
can still use our intuitions to generate hypotheses about vehicles and referents.  If we have a set of neurons we 
believe to be a vehicle, we can construct the joint probability histogram between those neurons and features of 
the environment (by taking the animal’s perspective), and thus discover the referent of that vehicle.  In other 
words, we can test our hypotheses about possible vehicles.  If we suppose that a certain set of neurons acts as a 
‘dog’ vehicle, we can test that hypothesis by seeing how statistically dependent the vehicle and referent are.  If 
they have no dependencies, or have better dependencies with other vehicles or referents, our hypothesis about the 
nature of the vehicle will change.  The converse may occur as well; i.e., what we take to be good referents will 
help us determine vehicles.  As I discussed in chapter 4, both methodologies serve to give us a good idea of what 
vehicles and referents there are.  What is most important, is that this theory allows for these to be discoveries 
(unlike the traditional neuroscientific approach; see chapter 4) – no doubt we will be surprised by some of the 
things biological systems depend on for representing the environment. 

The last consequence of adopting statistical dependence I will discuss is a subtler one.  Because referents 
and vehicles are picked out by statistical dependences, they are obviously mutually dependent.  Furthermore, 
referents help determine contents, as I discussed in the last chapter, so contents depend on referents as well.  
Therefore, content depends on vehicles.  This shouldn’t be too surprising.  If you know all there is to know about 
a vehicle you will know its possible content.  However, the vehicles we discover won’t determine content, but 
rather constrain possible content.  Psychophysics, for example, tells us that there are certain dynamic ranges over 
which our retinal cells can encode brightness.  Outside of those ranges, differences in intensity are 
indistinguishable; that’s a fact about physiology.  If the vehicles can’t carry such differences in intensity, then 
those differences can’t be used by the system to react to the environment, so those vehicles can’t carry content 
about those differences. 

What this means, then, is that vehicles and contents aren’t independent.  In a more traditional turn of 
phrase: syntax and semantics aren’t independent.1  The stuff that carries meaning (syntax/vehicles) also helps to 
determine meaning (semantics/content).  As powerful as natural languages are, they are stuck with certain 
vehicles.   There are contents that these vehicles carry well and there are contents these vehicles don’t carry well.  
Imagine that I’m looking at a flashing red light.  I now write down: “There is a flashing red light”.  I can also take 
a video of the flashing red light.  I can show both of these representations to you.  The video is a better 
representation than the sentence because it has the higher of the dependencies with the referent of the two 
representations (i.e., the flashing red light).  The syntactic properties (i.e., physical structure) of each of these 
vehicles helps determine, very differently in this case, the precise meaning (i.e., the exact properties assigned to 
the referent) of the representations. 

                                                      
1  For arguments as to the benefit of blurring the distinctions between vehicles and contents, see e.g. Langacker (1987) and 

Mohana and Wee (1999).  See Eliasmith and Thagard (in press) for an example of how blurring the distinction may help 
explain the nature of high-level cognitive processes. 
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I take it that each of these consequences goes towards showing that relying on statistical dependence and 
energy transfer is a good idea.  In the next section I show how adopting this method changes our understanding of 
the nature of concepts.  Subsequently, I will defend this method against concerns that it cannot convincingly 
explain misrepresentation. 

3 Occurent and conceptual content 

3.1 Introduction 

I introduced the distinction between occurent and conceptual intentionality (or content) in chapter 5.  The term 
‘occurent content’ denotes the content of currently active vehicles.  It can be thought of as the encoded value of 
the variables (or more complex structures) of the neurobiological system at any one point in time.  This, then, is 
the kind of content I have been mostly concerned with up until now: it is the kind of content I discussed in the 
visual system example of the dog in the field in the last chapter; it is the kind of content had by the ‘horizontal 
eye position’ vehicle; and it is the kind of content determined by the causal encoding processes I detailed in 
chapter 6. 

However, this is not the kind of content that philosophers have traditionally focused their attention on.  
Rather, philosophers have been interested in the content of our concepts; content that has a kind of stability.  
Those who hold teleological accounts of content, including Dretske (1988) and Millikan (1984), hold that our 
‘dog’ concept is about dogs because the part of our brain that represents dogs has the evolutionarily determined 
function to represent dogs.  Others, like Fodor (1998), believe that our ‘dog’ concept represents dogs because 
there is a unique law-like relation between our ‘dog’ concept and dogs.  These theorists are centrally concerned 
with what is called the reference relation (not to be confused with the referent relation I have been discussing).  I 
briefly discussed this relation in chapters 1 and 4, but I did not show how it is accounted for by this theory; I do 
that in section 3.4.  First, however, I extend the theory I have presented so far to account for the conceptual 
content, and present some examples of how it applies to some challenging examples of content determination in 
section 3.3. 

3.2 Conceptual content 

The account of conceptual content that follows from what I have so far presented is not so much an extension of 
the current theory as a reconsideration of relations already introduced; in other words, nothing new is added.  
Before providing this account, it is important to get a sense of what a theory of conceptual content must be able 
to explain. 

Fodor (1998, chp. 2) argues for five criteria that must met by a theory of concepts.  Four of these are 
relevant to this discussion:2 1) concepts are mental particulars and function as mental causes and effects; 2) 
concepts are categories; 3) many concepts must be learned; and 4) concepts are public and people share them.  In 
this section I show how the theory I have proposed can meet each of these criteria.   

                                                      
2  The criterion I do not discuss is that concepts must be compositional.  That is, “mental representations inherit their 

contents from the contents of their constituents” (Fodor 1998, p. 25).  I don’t discuss compositionality for two reasons.  
First, it is a prime example of misplaced intuitions about language.  If we think animals have concepts, as Fodor (1987) 
does, and we have no evidence that these concepts are compositional, why make compositionality a necessary condition on 
theories of concepts.  Furthermore, basic compositionality seems to fail even in language: consider ‘couch potato’, ‘raining 
cats and dogs’, and ‘unravel’ (which is synonymous with ‘ravel’).  Second, a suitably careful consideration of 
compositionality (which would have to include a consideration of systematicity and productivity as well) and its relation to 
the theory of content presented here would be too lengthy. 
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Figure 7: A simple three layer network that acts as a categorizer. 

In order to explain how the theory meets these criteria, consider the simple three layer network depicted 
in Figure 7.  The first layer encodes an analog value, x,  between 1 and 10 to two decimal places, and the second 
layer encodes, y, the nearness of that value to 2.  We could write this transformation as y = |2-x|.  The vehicle in 
both layers is an analog variable.  The nature of each of these vehicles is determined by the properties of the 
neurons over which the vehicle is defined (the individual layers in this contrived case).  The weights that perform 
this transformation between the two layers can be determined as explained in chapter 6.  These weights are 
determined by a combination of the properties of neurons in both layers (and they can be changed by appropriate 
learning rules).  The weights are thus relations between neural properties that determine how input is 
transformed.  Suppose also that there is a third layer, z, that ‘thresholds’ the output of the second layer.  So, any 
value greater than 1.80, say, would count as 2 and cause this layer to encode a 1, anything less and the layer 
encodes a -1. 

This network instantiates a simple categorizer.  In this example, we can think of the transformations as 
categorizing all values in the first layer between 1.80 and 2.20 as the value 2.  The transformation, then, picks out 
the property of ‘twoness’, in the sense that neurons in the third layer output a 1 when something sufficiently 2-
like appears on the input.  A large number of stimuli on the first layer are mapped to the same output on the third 
layer; this is the essence of categorization.  And, categorization is the thread that unites conceptual behaviors. 

I think this admittedly simple case can help show how the theory I have been discussing accounts for the 
criteria that Fodor (1998) claims must be met.  1) Clearly, this account shows how we can explain mental causes 
and effects.  After all, x causes y to have the value it has.  The value of x determines the value of y via the 
transformations relating x and y.  Of course, 1) is a conjunctive claim.  The first part says that concepts are 
mental particulars.  The mental particulars at work in this theory are vehicles.  If vehicles are to be concepts, I 
must explain how they can meet the remaining criteria.  2) As the example of the three-layer network 
demonstrates, these vehicles are quite naturally understood as categorizers.  The vehicle y categorizes values 
according to their distance from 2 (so both 3 and 1 will be in the same category).  And, even more obviously, z 
categorizes all values of x as either 2-like or not.  3) The categories can be adjusted just by changing the relations 
between the neurons.  This, then, is the sense in which the vehicles are learnable (see Bishop 1995 for an 
overview of some learning procedures for such networks).   

The last criterion is, prima facie, the most difficult for this theory to satisfy.  How can vehicles be shared 
if they are individuated based on (unique, individual) transformations?  Recall that a similar question arose 
concerning the relativism objection to two-factor theories in chapter 2 (How can meanings ever be the same if 
conceptual role helps determine meaning?).  There, as here, we simply needed to realize that ‘exact sameness’ is 
simply too strong a criterion.  Fodor’s (1998) own example gives this away: he claims that he and Aristotle share 
the concept ‘food’ (p. 29).  If this is true, sharing a concept must be a rather easy criterion to satisfy.  If both he 
and someone from a very different culture are said to share the concept ‘food’ (as Fodor demands), yet he and 
that other person differ on what counts as food (he may count fish eggs, the other may count ants), then they only 
have to partly agree on the application of the concept to be said to share it.  So, the three-layer network could 
have counted values between 1.81 and 2.20 as 2-like and it should still be said have the ‘same’ categorization.  In 
almost all cases, after all, that network will categorize like the original.  So, criteria 4) can be satisfied as long as 
vehicles in two different people have similar categorization results.  In all likelihood, sharing concepts will be a 
matter of degree; and degrees of sharing are captured by this theory. 
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So, vehicles can satisfy each of the criteria Fodor proposes for concepts.  However, this may seem an odd 
state of affairs.  Vehicles, after all, can carry content about edges at some location in the visual field.  Is this what 
we mean by the term ‘concept’?  Probably not, but it is likely just that Fodor’s criteria are not sufficient 
conditions on something’s being a concept.  However, this might be a result of the vagueness of the term, rather 
than any failing of Fodor’s.  The wise tactic, it seems to me, for a theory like the one I have proposed is simply to 
explain whatever people use the term ‘concept’ for in terms that are well defined in this theory.  To this end, in 
each of the next sections, I address some of the more difficult questions about content ascription that are 
explained in terms of concepts. 

3.3 Conceptual content in action 

The question I would like to answer in this section is: How can I think about a dog without there being a dog in 
front of me on this theory?  Answering this question shows how my theory of content addresses aspects of 
concept employment not captured by meeting Fodor’s (1998) criteria.  In the next section I tackle related issues 
by using this theory to analyze the reference relation.  Together, these two sections provide a picture of how to 
explain conceptual content is on this theory. 

The above question addresses the heart of what many take to be a central benefit of having concepts; 
namely, ‘offline’ mental manipulation.  Let me limit the discussion to visual properties of objects for the 
moment.  I described the visual system in chapter 7 as being essentially feed-forward.  This assumption was 
carried over to the simple example of categorization in the previous section.  However, I was careful to note the 
ubiquity of back projections among visual areas.  Let me suggest at least a partial reason why these are so 
important.   

Suppose that someone says, “Picture a dog,” when there are no dogs present in my immediate 
environment.  What happens in the visual system?  Kosslyn (1994; Kosslyn, Thompson et al. 1995; Kosslyn and 
Thompson 1999) provides evidence that visual areas used to process visual input are also active during such 
imaginings.  Presumably, they are activated by back projections from higher visual (or even non-visual) areas.  
This suggests that the same vehicles that are statistically dependent on certain environmental properties during 
visual perception are activated by other higher brain areas (e.g., language areas).  This activation can then spread 
(through various transformations) to visual areas, giving dog-related vehicles occurent content.  It is this occurent 
content that can be used for offline reasoning. 

But what is the referent in such a case?  An application of the constraints on referent determination 
provides the answer.  That which correlates best with the ‘dog’ vehicle and transferred energy to it is presumably 
the dog that caused me to activate the vehicle.  And, this dog is external to me and thus does not fall under a 
computational description.  Notably, at least some of the properties that I ascribe to this dog depend on the 
properties of dogs I have already been in causal contact with.  Properties that aren’t determined directly by the 
causal interaction with this particular dog are inferred as needed through various transformations.  If most of the 
properties assigned to the referent have to be generated by ‘default’ transformations we will get insight into what 
is normally called the ‘dog’ concept.  This content, then, is generally (i.e., in the cases of learned concepts) 
determined by those things we have previously been in causal contact with.  I won’t call something a dog if 
doesn’t have any properties that dogs I’ve been in causal contact with have had.   

It may seem odd that an agent has to come in causal contact with a dog in order to represent (or 
conceptualize) one, but recall that causal contact simply means ‘having energy transferred to’.  Thus, even in the 
case when you utter the words ‘the dog’ to me, or provide a description of some dog, I come in causal contact 
with that dog.  And, if your description is a good one, I may have a vehicle that is highly statistically dependent 
on that dog.  This is how we can learn about things (such as moon rocks) that most of us have never been in 
‘direct’ causal contact with.  Energy transfer is ubiquitous.  When I touch moon rocks, and then describe the 
sensation to you, there is a determinate amount of energy transferred from the moon rock to you.  The causal 
chain from moon rocks to you just happens to have me in the middle (rather than air, or photons, or what have 
you).  Similarly, we can learn about dogs by seeing them (as described in chapter 7), but we can also learn about 
dogs by having someone tell us about them.   This may seem like a difficult story to tell, but it would be more 
surprising if the story we need to tell of offline reasoning was any simpler.  And, there is nothing in this story that 
can’t be captured by the details given in chapters 6 and 7. 
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3.4 Traditional reference 

The previous example has shown how this theory handles some of the more difficult cases of conceptual content 
ascription.  However, some of the most difficult cases of all to explain convincingly are those that arise from a 
consideration of the conventional notion of reference.  As I noted in chapter 1, reference is traditionally 
distinguished from sense.  Simply put, the sense of a representation is the set of properties ascribed by that 
representation (see chapter 1).  The reference of a representation is the relation3 between the representation and 
the object those properties are ascribed to.  On the face of it, reference seems much like the referent relation I 
have been discussing so far.  However, as I showed in chapter 5, it is not. 

It is important to note here that I have purposely not adopted the reference/sense distinction because 
reference, as I will show, is poorly defined.  Nevertheless, I have to be able to explain the phenomena this 
distinction is used to explain.  In particular, I have to explain our ability to ascribe properties to all kinds of 
objects.  I have discussed how we ascribe properties to objects in our immediate environment and to objects not 
in our immediate environment that we are in causal contact with.  However, there is another kind of object to 
which we ascribe properties: those we have never been, or can never be, in causal contact with.   

There are two kinds of property ascription that meet this criterion: 1) property ascriptions to objects that 
do not exist; and 2) property ascriptions to objects that we have never been in causal contact with.  An example 
of the first is our ascription of various properties to unicorns (e.g., horned, horse-like, etc.).  An example of the 
second is our ascription of various properties to a dog outside of our light cone (e.g., small, brown, fuzzy, wet 
nose, etc.).  In other words, I must explain how we can ‘refer to’ unicorns and also how we can ‘refer to’ a dog 
outside our light cone.  Under the traditional understanding of the reference relation, this means I must explain 
what the relationship is between: 1) our ‘unicorn’ representation and unicorns; and 2) our ‘dogs outside our light 
cone’ representation and dogs outside our light cone.  The traditional answer would be, of course, that our 
representation bears the reference relation to these things.  However, we clearly do not bear the referent relation 
to them – since we are not in causal contact with them. 

Let me begin by examining the case of our ‘unicorn’ representation.  It is immediately apparent that there 
is a difficulty with the claim that our representation of unicorns bears the reference relation to unicorns; unicorns 
simply don’t exist.  It is not possible to define a relation when one of the relata does not exist.  Relations are, 
after all, mappings from one thing (our representations) to another (what those representations are about).  If 
there is no element in the range for the element in the domain to be mapped to, the mapping is undefined.  
Therefore, the reference relation is undefined in this case. 

How, then, does the referent relation handle such cases?  We can begin by asking: What is the content of 
our ‘unicorn’ representation?  On the theory presented here, the content of our ‘unicorn’ representation is 
determined by some referent signal and its licensed transformations.  It is the ‘signal’ that is the problem when 
the ‘right’ causes aren’t obviously available.  But, we do have related referents in our environment; we have seen 
horns and horses, and we have even seen them combined in pictures, paintings, and in movies.  The referent of 
the ‘unicorn’ vehicle itself will be those depictions – they are, after all, the things on which our vehicle is most 
statistically dependent.  They would, of course, be more statistically dependent on real unicorns, but they are not 
causally connected to such beasts, because such beasts don’t exist.  The relation our representations bear to 
unicorns is thus undefined, but the relation our representations bear to depictions of unicorns is the referent 
relation.  Such depictions are all we can appeal to when explaining inferences and behavior.  Furthermore, such 
depictions are all we can appeal to when evaluating the truth or falsity of unicorn claims. 

Things are more complicated in the second example; dogs really exist.  It is quite possible that there are 
dogs beyond our light cone (or, if not dogs, stars, or hydrogen atoms, or the like).  What, then, is the relation 
between these dogs and our representations of them?  Notice, first, that we can never know if there are dogs 
beyond our light cone or not.  There is absolutely no way we can be in causal contact with such dogs (not even 
with quantum ‘action at a distance’ (Zeilinger 2000)).  Nevertheless, if we want to be realists, we must presume 
that such dogs may exist.  If we are realists, and we can’t be in causal contact with something we are making 
claims about, all such claims must be hypothetical; i.e., they are about unconfirmed states of the world.   

Notice that a problem with the reference relation again becomes evident.  Since the reference relation, 
like all relations, depends on the existence of the relata for its definition, it runs into problems when the existence 

                                                      
3  Some, like Brentano (1874) didn’t think that reference was a relation, but rather relation-like (as in Chisholm 1957, p. 

146).  For those who agree with Brentano, this section can be considered a description of precisely how reference is like 
and unlike a relation. 
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of the relata are indeterminate; even though only epistemically indeterminate.  The reason is that misapplications 
of the relation are indistinguishable from proper applications.  Thus, the relation will never be properly definable.  
The best that can be said is that if dogs beyond our light cone exist, then they bear the reference relation to our 
representations of dogs beyond our light cone.  If such dogs don’t exist, the relation is undefined; but there’s no 
way to tell the difference.  This, it seems to me, is a highly undesirable state of affairs, especially if the relation is 
supposed to explain something (like content).  So, again the reference relation seems to not be a proper relation 
after all.  Rather, we have a set of conditional statements that may or may not help determine a relation.   

However, these conditional statements themselves are important.  They are the truth conditions of the 
representation; i.e., they determine if the statement is true or false.  The statement ‘there’s a dog beyond my light 
cone’ is true if and only if there really is a dog, out there, beyond my light cone.  This truth conditional relation is 
a logical relation and that is why it is not fettered by causal boundaries.  What really needs to be explained by a 
theory of content, then, is not the reference relation, but the derivation of such truth conditions. 

The problem we are left with bears some striking similarities to the problem of explaining the 
projectibility of predicates (Goodman 1955).  The problem with projectibility is to figure out how to distinguish 
projectible predicates (e.g., ‘all emeralds are green’) from unprojectible predicates (e.g., ‘all emeralds are grue’, 
where ‘grue’ means ‘green before some future time and blue afterwards’).  The problem for content ascription in 
non-causal cases is to explain how truth conditions are determined for such projections.  A quick and easy answer 
to this latter problem is simply to say that my ‘dog beyond my light cone’ representation is about the dog beyond 
my light cone because I am disposed towards that dog in various ways (i.e., I would assent and dissent to claims 
about its brownness, location in space, etc.).  The relevant truth conditions, in other words, are determined by my 
dispositions.  The problem with this answer is that all the work is being done by my mysterious dispositions.  
What are dispositions? 

I think the solution to the predicate problem suggests a solution to the content problem by explaining 
dispositions.  In the case of projectible predicates, discerning projectibility comes down to determining the 
current status of the predicate.  In particular, a hypothesis containing a non-grue-like predicate is projectible if it 
is currently supported and unviolated.  And, a hypothesis containing a grue-like predicate is projectible if it is 
unviolated and each of the conjuncts of its equivalent expression in non-grue-like predicates is supported 
(Johnson 1995).  Dispositions can be understood in the same way.  In particular, wherever we would say ‘I am 
disposed to assent to ‘X’’ we can say, instead, ‘I think that the predicates Y, Z, … in comprising ‘X’ are 
projectible’.  For example, we could translate ‘I am disposed to assent to ‘The dog beyond my light cone is 
brown’’ to ‘I think that the predicate ‘brown’ in comprising ‘The dog beyond my light cone is brown’ is 
projectible (in particular, projectible beyond my light cone)’. 

The important point is that projectibility depends on the current status of the predicate.  So, similarly, the 
projected predicates and their objects have contents that depend on their current features.  Those features include 
the referent of the relevant representations.  Thus, the representations retain their referents even under 
projections.  Truth conditions, in contrast, can vary between projections and non-projections.  Thus, ‘this emerald 
is green at time t’ (non-projection) and ‘this emerald will be green at (future) time t+1’ (projection) have very 
different truth conditions; one set of conditions could be met while the other fails.  But, in both cases, the referent 
of the terms stays the same. 

Clearly, satisfaction of truth conditions is not limited by causal relations.  The statement ‘there are dogs 
beyond my light cone’ is true or false regardless of my causal connection to those dogs.  What the truth 
conditions are, however, is causally determined.  Furthermore, the determination of these conditions can be 
explained by this theory of content.  We can understand projections as hypothetical assignments of properties by 
a vehicle to a referent.  These properties can be unattained, or unconfirmable, there are no restrictions (save those 
imposed by the nature of the vehicle).  The transformations that license these assignments can be the same ones 
that usually perform this task (e.g., if the value was 1.9 then it would be a 2).  The subjunctive nature of the 
transformation is irrelevant to the transformation itself.  The content of the representation and its referent, just 
like in cases of misrepresentation, determines the conditions under which the representation is true.  So, 
representations of hypothetical (or non-comfirmable) situations have contents that depend entirely on causes, 
despite the fact that truth conditions so determined (and their satisfaction) don’t. 

I think this discussion shows three important things.  First, reference is not a well-defined relation.  This, 
of course, means that reference is a poor candidate for providing good explanations of content.  Second, the 
referent relation is a well-defined relation.  Thus, the referent relation is a good candidate for providing a strong 
basis for a theory of content, including conceptual content.  Finally, the referent relation can explain how truth 
conditions are determined.  And, truth conditions seem to be all that is really left of reference once it is divested 
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of its status as a viable relation.  So, the referent relation as employed in this theory of content can more 
effectively account for the conceptual phenomena that ‘reference’ has traditionally been used to explain. 

4 Misrepresentation revisited 

In chapter 5, I briefly commented on the ability of this theory to handle the problem of misrepresentation.  The 
time has come to see, in more detail, how this theory deals with the various kinds of misrepresentation.  Recall 
that Dretske (1995) claims that the problem of misrepresentation has at least two sub-problems.  The first is 
related to the kind of misrepresentation I discussed in chapter 2.  Dretske (Dretske 1994, p. 472; Dretske 1995) 
considers this the problem of explaining how we assign the wrong properties to an object.  This is the same as the 
problem Fodor (1987) calls the ‘disjunction problem’.  It is the problem of explaining how a representation can 
assign a specific set of properties to a referent even though the representation can be caused by a disjunction of 
referents that don’t all have those properties.  The example from chapter 2 is that of my ‘dog’ vehicle being 
caused by a cat under some circumstances that, according to a naïve causal theory, should mean the vehicle is 
actually a ‘dog or cat’ vehicle.  So, the problem is how do I explain ascribing the property ‘dog’ to a cat in certain 
cases (rather than just tokening a disjunctive vehicle)? 

The second problem of misrepresentation that Dretske (1995) identifies is that of ascribing properties to 
an object when there is no object at all; e.g., representing that dog to be fuzzy even though there is no dog to 
represent as such.  These kinds of misrepresentations occur in cases of hallucination, imagining, and dreaming. 

A third problem of misrepresentation that Dretske doesn’t address, but is important, is that 
misrepresentations can be more common than a correct representation but we still want to classify them as 
misrepresentations.  Ruth Millikan (1993, p. 62-3) points out that it is quite possible that a correct representation 
is the exception rather than the rule; i.e., that, statistically speaking, correct representation is less likely than 
misrepresentation.  This kind of concern is particularly important to a theory, like the one I have presented, that 
relies heavily on statistical relations. 

In this section, I address each of these problems and show how the theory I have presented can solve or 
avoid them.  After considerable background discussion, I show that the important kinds of disjunctions can be 
handled properly by this theory.  I also argue that Dretske’s distinction between these two different kinds of 
misrepresentation does not stand up to scrutiny.  Finally, I show how Millikanian concerns about common causes 
versus correct causes can be handled. 

To begin, it is important to distinguish three kinds of misrepresentation; ‘personal’, ‘social’, and 
‘absolute’ misrepresentation.  Personal misrepresentation occurs in cases of poor performance.  That is, in cases 
when I could have (with the same skills, experience, etc.) represented better than I did.  If I call a dog ‘brown’ 
that, under other circumstances I would say is ‘black’, I have personally misrepresented the dog.  Social 
misrepresentation occurs in cases when my property ascriptions don’t agree with social norms.  If I call a dog 
‘brown’ that everyone else calls ‘black’, then I have socially misrepresented the dog.  Subtleties of what counts as 
a social norm is clearly beyond the scope of this project, but I am happy to say that, whatever they are if my 
representations don’t agree with them, it is a case of social misrepresentation.  Absolute misrepresentation occurs 
in cases when my representation doesn’t agree with the metaphysical fact of the matter.  So, if I call a dog 
‘brown’ and everyone else calls it ‘brown’ but it’s really black, then I have absolutely misrepresented the dog.  
Of course, to think that this kind of misrepresentation occurs is to be a realist, and perhaps committed to the 
existence of natural kinds.  Notably, I don’t need to espouse such a position in order to explain how the 
consequences of such a position can be explained by a theory of misrepresentation.  As regards the relations 
between these three kinds of misrepresentation, it is important that any instance of representing can fall under 
any of the categories or not independently of which other categories that instance falls under.  So, I can 
personally represent while socially misrepresenting and absolutely representing, or I can personally misrepresent 
while socially representing and absolutely representing, etc.  I think that neglecting this distinction has lead to 
much of the seeming difficulty with misrepresentation.  Nevertheless, all three kinds of misrepresentation need to 
be accounted for.  I will focus on personal misrepresentation, but will also show how the explanation of personal 
misrepresentation generalizes to account for the other two kinds of misrepresentation. 

First, however, I think it is important to critically examine how cases of (mis)representing are understood 
by philosophers.  In particular, philosophers tend to presume that cases of representing fall into one of two 
categories: right or wrong.  This, it seems to me, is a mistake.  Dretske (1994, p. 472), for example, defines 
misrepresentation as the saying of something that does not have a property, that it has the property.  For example, 
saying that a black dog is brown.  In other words, misrepresentation is representing one thing (a black dog) as 
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another (a brown dog).  Unfortunately, under a strict application of this definition, it is not clear that we ever get 
anything right – that we ever represent.   

Consider my representing a black dog standing in front of me.  Suppose that after 3 minutes the dog is 
removed from my sight.  I would then be able to answer all sorts of questions about its shape, size, length, etc. 
based solely on my representation of the dog.  However, each of my answers would be inaccurate in some way.  
Consider the line of questioning: What color was the dog? Answer: Black. Dark or light black? Answer: Dark 
black.  This color (showing a color patch)? Or this color (another patch)? etc. There is little doubt that I would 
eventually answer incorrectly.  Does that mean I am attributing to this dog a property it doesn’t have (i.e., a 
certain shade of black)?  Yes, it does.  Does it mean we should say I am misrepresenting the dog?  According to 
Dretske’s definition it does, but I think that such an answer is hasty.  In order to say why, consider some 
elementary distinctions in measurement theory. 

Measurements are said to be accurate if they are near the right value.  If I measure darkness and get the 
right answer, I have made an accurate measurement.  Measurements are said to be precise if they are 
reproducible.  If I measure the darkness of a color patch over and over again, and get the same answer every time, 
I am making precise measurements of darkness.  If my measurements are precise and accurate, they are said to be 
exact.  Notably, precision is a property of a set of measurements, while accuracy is a property of a single 
measurement.  But, we can define the accuracy of a set of measurements to be the average nearness to the right 
value.  In statistical terms, precision is measured by the variance of a set of measurements, while accuracy is the 
difference between the average measurement and the correct answer. 

What the line of questioning above is doing, is probing the representer with increasing degrees of 
precision.  Although the representer may be perfectly accurate at one degree of precision (black versus white) the 
representer may be inaccurate at another (one color patch versus another).  We know already that neural 
representations have a limited degree of precision; only about three bits of information are transmitted per spike 
(see chapter 4).  So we shouldn’t be surprised that we will eventually misascribe properties; it isn’t possible to be 
consistently accurate to a degree of precision greater than our ‘measuring device’ can provide.   

What is important here is that representations are best characterized as ‘better’ or ‘worse’, not ‘right’ or 
‘wrong’.  ‘Better’ means high accuracy with high degrees of precision.  ‘Worse’ means low accuracy with low 
degrees of precision.  We may want to make ‘right’ and ‘wrong’ claims at a given level of precision, but in doing 
so we’d have to make an argument why being below some standard of accuracy at a given precision is a good 
criteria for making this distinction.  Dretske’s definition clearly does nothing of the sort.  But, perhaps arguments 
that look to pragmatics (i.e., ‘good enough to help the animal survive’) would be convincing.  Even so, there are 
going to be representations that come closer to that standard and some that are farther away.  Using the term 
‘misrepresentation’ to divide representations into two groups obscures important subtleties of representation.  We 
will have a more general understanding of misrepresentation (i.e., one that doesn’t depend on choosing particular 
standards and can account for degrees of deviation from any given standard), if we accept that representations 
come in degrees; i.e., that they lie on a continuum from good to bad. 

The preceding discussions have laid the groundwork for addressing the disjunction problem head on.  
Recall that I am primarily interested in personal misrepresentation.  The challenge of the disjunction problem, 
then, is to explain how my representation of something (a cat) could mean to me that it had some property (the 
property of being a dog) even though it was caused by something that I would say didn’t have that property (a 
cat).  The solution I offered in chapter 5 was that we can explain this case of misrepresentation by noting that the 
statistical dependence hypothesis and its corollary give different answers.  In particular, under all stimulus 
conditions, this vehicle has the highest statistical dependency with dogs even though, under this condition, this 
vehicle has the highest dependency with a cat. 

But, does this really solve the disjunction problem?  Won’t it be the case that the highest statistical 
dependency holds between dogs-or-this-cat under all stimulus conditions?  In fact, no.  This cat under all 
stimulus conditions will not have a high statistical dependency with my ‘dog’ vehicle, it will have a highest 
dependency with my ‘cat’ vehicle.  It is only under this stimulus condition that it has a high statistical 
dependency with my ‘dog’ vehicle.  So, perhaps the problem is that my vehicle has the highest statistical 
dependency with dogs-or-this-cat-under-these-conditions.  Luckily, this disjunction can be ruled out because it 
includes a specification of stimulus conditions.  We can’t find a dependency between a vehicle and something-
under-a-stimulus-condition under all stimulus conditions since most of the stimulus conditions are ruled out by 
such a characterization.  It would be self-contradictory to try and determine such a dependency. 
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Clearly, the concept of ‘stimulus conditions’ is doing a lot of work in this explanation.  I need, then, to 
provide a means of distinguishing stimulus conditions.  I have at least two options here.  First, I can appeal to 
other scientific theories to help me individuate stimulus conditions.  I can say that a difference in stimulus 
conditions is a difference in any physical variable relating the referent and my representation.  Such variables 
include things like distance, illumination, relative velocity, etc.  However, this definition makes it difficult to 
distinguish incremental changes in these more intuitive stimulus condition variables, from incremental changes in 
variables that specify the physical properties of the referent itself.  This doesn’t seem to be a problem for the 
theory I have presented, although it may be a problem for determining what the referent is (i.e., in answering the 
question “is it a dog or a cat?”).  Some ‘stimulus conditions’ so defined would be difficult to realize because we 
can’t construct ‘dogcats’.  That is, we can’t “morph” dogs into cats in the real world.  This may limit our ability 
to systematically examine ‘all possible’ stimulus conditions.  Although this may seem problematic, development 
of our concepts would also be so limited so it may not be a hindrance after all.  Furthermore, representation on 
this theory is still perfectly well defined for such ‘non-actualizable’ situations. 

Rather than accepting this as a difficulty for the definition of stimulus condition, I could make a more 
direct appeal to other scientific theories that quantify over certain kinds of objects (e.g., biology and biological 
kinds) to rule out the problem.  The properties of such objects, then, would be ones that should not be changed 
when changing stimulus conditions.  In this case, individuation of stimulus conditions would be determined by 
changes in physical variables relating referent and vehicle such that the physical properties of (say) biological 
objects (e.g., an individual dog) are not affected. 

Second, I can take a weaker position and note that ‘stimulus condition’ is a technical term in a number of 
scientific enterprises (e.g., psychophysics, neuroscience, psychology, etc.) that I can leave up to them to define.  
In other words, I can claim it is a practical problem beyond the theoretical considerations I am concerned with 
here.  In some ways, this is a weak response – it seems that I’m simply passing the buck.  However, I can point to 
the successes of such sciences in providing results and explanations that depend on individuating stimulus 
conditions.  In this way there is clearly reason to think that ‘stimulus condition’ is a scientific term whose 
definition may be forthcoming.  Better yet, I can point to the specific results of the blowfly and cricket 
experiments I have already discussed (see chapters 4 and 6).  Such experiments have methods for determining 
exactly the kinds of statistical dependencies I am talking about.  So, a notion of stimulus conditions that is 
consistent with these procedures and results will probably do, however vague it may be.  In all likelihood, a more 
precise understanding of how we should individuate stimulus conditions will evolve with more experiments of 
this kind (in neuroscience, psychology, psychophysics, or wherever).  For present purposes, either of these two 
understandings of ‘stimulus conditions’ will suffice. 

Given a satisfactory understanding of stimulus conditions, a generalization of my characterization of 
personal misrepresentation to include social and absolute misrepresentation is straightforward.  Cases of social 
misrepresentation can be picked out by noticing when my referent of doesn’t match a socially defined one.  In 
other words, we can define a ‘social’ statistical dependence hypothesis analogously.  It will be: 

The set of events relevant to determining social content is that causally related set that has the 
highest statistical dependence with the representations of socially relevant observers under all 
stimulus conditions. 

Of course, determining who are the socially relevant observers will not be easy, but this is just the 
problem of determining social norms.  And that, of course, is a problem that I can ignore (since whatever the 
definition, this theory applies), as I noted earlier. 

Consider the case in which I can’t tell the difference between dogs and cats (say I call them all dogs).  
Then, I don’t personally misrepresent when I call cats dogs, since my statistical dependence under all conditions 
matches that under these conditions.  However, I do socially misrepresent when I call cats dogs because socially 
relevant observers (namely everyone else) have a different statistical dependency under all stimulus conditions 
than I do.4 

The generalization to absolute misrepresentation will be similar: 

                                                      
4  To be even more precise, we should distinguish conceptual social misrepresentation from occurent social 

misrepresentation (personal misrepresentation obviously doesn’t need this distinction).  I take it, however, that conceptual 
social misrepresentation is what is of the most interest. 
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The set of events relevant to determining absolute content is that causally related set that has the 
highest statistical dependence with the representations of relevant possible observers under all 
stimulus conditions. 

The addition here of ‘relevant possible observers’ moves this kind of misrepresentation to the realm of the 
metaphysical.  To understand this case, consider Twin Earth cases once again (see chapter 2).  Suppose no one 
knows the microstructure of water (H2O), or of twin water (XYZ).  In this case, if a sample of XYZ made it to 
earth, and I represent it as water, then the only sense in which I am misrepresenting twin water is absolutely.  
That is, sometime in the future when chemistry is invented and we can look at molecular microstructure (i.e., for 
these possible observers), there will be observers that have statistical dependencies that contradict mine.  The 
reason we accept these as being relevant in advance of their being realized is because these dependencies result 
in more precise and presumably more accurate categorizations than ours.  This kind of dependency will only be 
‘absolute’ in the metaphysical sense if we think that metaphysics can’t go beyond empirical data (see e.g. Quine 
1960). 

In any case, notice that what each of these different versions of the statistical dependence hypothesis is 
doing is changing the standard for accuracy.  Recall that accuracy is deviation from some ‘correct’ answer.  The 
correct answer in each of these cases is different.  For personal content, correctness depends on how well the 
individual could do with their current resources.  For social content, correctness depends on what the socially 
relevant observers (experts, perhaps) determine is correct.  And, for absolute content, correctness depends on 
what really is the case (or perhaps what the case is that we would ever determine given any resources). 

These differences in standards mean that we should allow some kinds of disjunctions.  I have already 
explained how disjunctive representation can be avoided at the personal level on this theory.  However, I then 
provided an example in which I couldn’t tell the difference between dogs and cats.  That is, I provided an 
example in which my representation was of the disjunction dog-or-cat.  So, are disjunctions permitted as referents 
on this account or not?  Well, some are and some aren’t.   

It is important to realize that ‘disjunction’ is a formal notion.  That is, the notion doesn’t apply to 
physical objects, it applies to linguistic expressions.  So to say that my representation is of dogs-or-cats is really 
just to say that that set of objects is picked out by some language using the disjunction of the terms ‘dog’ and 
‘cat’.  But, in my representational scheme, that same set of objects is picked out by the term ‘dog’ alone, so it 
isn’t a disjunctive concept in that representational scheme.  So, if one language (say personal or social) can only 
make co-extensive representations with another (say social or absolute) if the second language uses disjunctions 
to describe referents of the first, we shouldn’t worry.  We shouldn’t worry because we need other reasons to say 
that one of these languages has precedence to carving up the world over the other.  These other reasons don’t 
matter for what representation relations hold within one particular representational scheme. 

Disjunctions of these kinds are perfectly fine for two reasons.  First, these disjunctions are innocent from 
an ‘epistemic responsibility’ point of view.  The subject (or group) couldn’t do better at representing the world 
given current resources.  We wouldn’t hold someone responsible for a misrepresentation if they couldn’t help but 
misrepresent (relative to some other language).5  Second, these kinds of disjunctions are innocuous because they 
aren’t really the kind that caused the problem in the first place.  The disjunctions that were problematic were 
those that challenged a causal theory of content.  These disjunctions were within the same representational 
scheme that could make the relevant distinctions.  In particular, I needed some way to show why the vehicle 
‘dog’ could have a referent of a cat and still be about dogs (when I can, presumably, distinguish dogs and cats).  
Well, I have already provided the explanation we need in terms of statistical dependencies.  In fact, I provided an 
explanation for this situation no matter how it is interpreted (i.e., whether we are talking personally, socially, or 
absolutely).  I take it that I have thus solved the disjunction problem with this theory of content. 

The second kind of misrepresentation that Dretske (1995) identifies is the representation of some object 
as having a property (say blackness) even though there is no object that has the property.  The typical example of 
this kind of misrepresentation is a hallucination.  If I ‘see’ a dog where there is none, I am hallucinating that dog, 
and assigning properties to something non-existent.  The natural way of phrasing this problem in the context of 
the theory presented here is to say that I am representing something that has no referent.  But, this formulation 

                                                      
5  Generally an agent isn’t considered responsible for something they can’t help.  In fact, there are laws to this effect in many 

countries.  Of course, if we think the agent is in this ‘helpless’ state due to negligence, responsibility ascriptions may once 
again be made. 
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makes clear the strangeness of positing this kind of misrepresentation for a causal theory.  If representations are 
supposed to be caused, how can there be no cause of a representation as supposed in the hallucination example?  
Well, of course there is some cause.  We couldn’t be naturalists and think otherwise.   

In fact, exactly the same kind of story can be told for hallucinations as for misrepresentations generally.   
The difference is simply that, in the case of hallucinations, one of the (many) properties that are wrong about the 
referent is its location at a particular point in visual space.  The referent will still be the thing in the world that 
caused the hallucination; it will just be that the properties ascribed are very wrong.  The representation, then, is a 
highly imprecise and non-accurate one, but it’s not one that is not caused or otherwise needs some special 
explanation. 

Lastly, consider the Millikanian problem of correct representations being rare.  This is an important 
problem because it clearly might be adaptively advantageous to adopt such a representational strategy.  If 
predators were really important to avoid, then lots of false positives (i.e., representings of predators when there 
are none) would be advantageous.  How can a theory that relies on highest statistical dependencies account for 
such situations?  This is where it is important that what is highest are statistical dependencies.  Consider a case in 
which a bird represents a cat (its predator) (see also Usher unpublished).  Let us presume that the bird classifies 
its world into cats and non-cats.  In this case, if the probability that ‘cat’ is tokened given a cat in the environment 
is greater than the probability that ‘cat’ is tokened given a non-cat in the environment, then the statistical 
dependency between ‘cat’ and a cat in the environment is greater than that between ‘cat’ and a non-cat in the 
environment (see appendix A).  This is true even if cats are very uncommon and non-cats are very common.  This 
is also true even if the probability of calling a non-cat a cat is greater than the probability of calling a non-cat a 
non-cat.  In other words, statistical dependencies hold, as we would expect, even in the face of many false 
positives. 

So, the theory of content I have presented can solve each of these problems of misrepresentation.  The 
disjunction problem is accounted for by both a careful analysis of kinds of misrepresentation, and the ability of 
the theory to avoid ‘within language’ disjunctions.  The problem of absent referents is explained away by 
appealing to degrees of misrepresentation.  Lastly, the problem of accounting for many false positives is taken 
care of directly by the theory’s reliance on statistical dependencies. 

5 Conclusion 

That concludes my defense of this theory and, along with it, my project in general.  I take it that I have shown 
how to avoid the problems of current contemporary theories of content that I discussed in chapter 2.  As well, I 
have answered the thirteen questions about content that I argued must be answered by a satisfactory theory of 
content (chapter 3).  Presumably, answering these questions, and showing why the answers should be convincing, 
provides a good solution to the problem of neurosemantics I set out in chapter 1.  Nevertheless, the theory of 
content I have spent the last four chapters describing is woefully incomplete.  While I have insisted on providing 
some detail, there is still much that needs to be explored further.  In particular, neuroscientists and psychologists 
have the momentous task of deciding which are the right vehicles to ascribe to a given neurobiological system.  
Philosophers must decide if the theoretical consequences of such a theory are viable ones; the implications of this 
theory for folk psychology, theories of concepts, and, of course, consciousness are entirely unclear given my 
discussion.  I’m not sure which job is the greater. 



 

 

APPENDIX A 

Statistical Dependence and False Positives 
The following shows that the statistical dependency of tokenings of ‘cat’ with cats is always greater than 
tokenings of ‘cat’ with non-cats if and only if the probability of ‘cat’ given a cat is greater than ‘cat’ given a non-
cat. 

Let 
x = P(cattoken|cat), 

y = P(cattoken|non-cat), and  

a = P(cat). 

Then,  
P(cattoken) = (x-y)a+y and 

P(non-cattoken) = 1-(x-y)a-y. 

This results in the following four statistical dependencies as defined by mutual information (M(A,B) = 
P(A|B)/P(A)): 

M(cat, cattoken) = x/((x-y)a+y); 

M(cat, non-cattoken) = (1-x)/(1-(x-y)a-y); 

M(non-cat, cattoken) = y/((x-y)a+y); and 

M(non-cat, non-cattoken) = (1-y)/(1-(x-y)a-y). 

In order to satisfy the statistical dependency hypothesis for the ‘cat’ representation, we want:  
M(cat, cattoken) - M(cat, non-cattoken) > 0; 

i.e., x/((x-y)a+y) - y/((x-y)a+y)  > 0. 

This is satisfied iff x > y.  Notice also that: 
M(non-cat, non-cattoken) - M(cat, non-cattoken) > 0 iff x > y. 

 



 

 

References 
Abbott, L. F. (1994). “Decoding neuronal firing and modelling neural networks.” Quarterly Review of Biophysics 

27(3): 291-331. 

Abbott, L. F., E. T. Rolls, et al. (1996). “Representational capacity of face coding in monkeys.” Cerebral Cortex 
6(3): 498-505. 

Akins, K. (1996). “Of sensory systems and the "aboutness" of mental states.” Journal of Philosophy: 337-72. 

Andersen, R. A. and D. Zipser (1988). “The role of the posterior parietal cortex in coordinate transformations for 
visual-motor integration.” Can J Physiol Pharmacol 66(4): 488-501. 

Anderson, C. H. (1994). “Basic elements of biological computational systems.” International Journal of Modern 
Physics 5(2): 135-7. 

Anderson, C. H. (1998). "Modeling population codes". Computational Neuroscience 98 (CNS *98), Santa 
Barbara, CA, Elsevier. 

Anderson, J. R. (1978). “Arguments concerning representations for mental imagery.” Psychological Review 85: 
249-277. 

Anscombe, G. E. M. (1993). Causality and determinism. Causation. E. Sosa and M. Tooley. Oxford, UK, Oxford 
University Press. 

Aronson, J. (1971). “The legacy of Hume's analysis of causation.” Studies in the History and Philosophy of 
Science 7: 135-6. 

Atherton, M. (in press). Instigators of the sensation/perception distinction. Perception theory: conceptual issues. 
R. Mausfeld and D. Heyer, John Wiley and Sons. 

Barber, M. (1999). Studies in neural networks: Neural belief networks and synapse elimination. Physics. St. 
Louis, Washington University. 

Bechtel, W. (1986). Teleological functional analyses: Hierarchical organization of nature. Current issues in 
teleology. W. Rescher. Lanham, University Press of America. 

Bechtel, W. and R. C. Richardson (1993). Discovering complexity: decomposition and localization as strategies 
in scientific research. Princeton, NJ, Princeton University Press. 

Bialek, W. and F. Rieke (1992). “Reliability and information transmission in spiking neurons.” Trends in 
Neurosciences 15(11): 428-434. 

Bialek, W., F. Rieke, et al. (1991). “Reading a neural code.” Science 252: 1854-57. 

Binder, J. R., J. A. Frost, et al. (1997). “Human brain language areas identified by functional magnetic resonance 
imaging.” The Journal of Neuroscience 17(1): 353-362. 

Bishop, C. (1995). Neural networks for pattern recognition. Oxford, UK, Oxford University Press. 

Block, N. (1986). Advertisement for a semantics for psychology. Midwest Studies in Philosophy. P. French, T. 
Uehling and H. Wettstein. Minneapolis, University of Minnesota Press. X: 615-678. 

BonJour, L. (1985). The structure of empirical knowledge. Cambridge, MA, Harvard University Press. 

Booth, M. C. A. and E. T. Rolls (1998). “View-invariant representations of familiar objects by neurons in the 
inferior temporal visual cortex.” Cerebral Cortex 8: 510-523. 

Bower, J. M., Ed. (1998). Computational neuroscience: Trends in research 1998, Elsevier. 

Brentano, F. (1874). Psychology from an empirical standpoint, Routledge & Kegan Paul. 

Burge, T. (1979). Individualism and the mental. Midwest Studies in Philosophy IV: Studies in Metaphysics. P. e. 
a. French. Minneapolis, University of Minnesota Press. 

Callaway, E. M. (1998). “Local circuits in primary visual cortex of the macaque monkey.” Annual Review of 
Neuroscience 21: 47-74. 

Castaneda, H. (1984). Causes, causity, and energy. Midwest studies in philosophy. P. French, T. Uehling Jr. and 
H. Wettstein. Notre Dame, IN, University of Notre Dame Press. 9. 



84 

 

Chisholm, R. (1955). “Sentences about believing.” Proceedings of the Aristotelian Society 56. 

Chisholm, R. (1957). Perceiving: A philosophical study. Ithaca, NY, Cornell University Press. 

Chomsky, N. (1986). Knowledge of language. New York, NY, Praeger. 

Chomsky, N. and J. Katz (1975). “On innateness: A reply to Cooper.” The Philosophical Review 84(1): 70-87. 

Churchland, P. (1981). “Eliminative materialism and the propositional attitudes.” Journal of Philosophy 78: 67- 
90. 

Churchland, P. (1989). A neurocomputational perspective. Cambridge, MA, MIT Press. 

Churchland, P. M. and P. S. Churchland (1990). “Could a machine think?” Scientific American 262(1): 3207. 

Churchland, P. S. (1993). "Presidential address: Can neurobiology teach us anything about consciousness?". 
American Psychological Association. 

Churchland, P. S. and T. Sejnowski (1992). The computational brain. Cambridge, MA, MIT Press. 

Crick, F. and C. Koch (1998). “Consciousness and neuroscience.” Cerebral Cortex 8: 97-107. 

Cummins, R. (1989). Meaning and mental representation. Cambridge, MA, MIT Press. 

Cummins, R. (1996). Representations, targets, and attitudes. Cambridge, MA, MIT Press. 

Das, A. and C. D. Gilbert (1999). “Topography of contextual modulation mediated by short-range interactions in 
primary visual cortex.” Nature 399: 655-661. 

Davidson, D. (1987). “Knowing one's own mind.” Proceedings and Addresses of the American Philosophical 
Association 60(441-458). 

de Ruyter van Steveninck, R. and W. Bialek (1988). “Real-time performance of a movement sensitive neuron in 
the blowfly visual system: Coding and information transfer in short spike sequences.” Proceedings of the 
Royal Society of London Ser. B 234: 379-414. 

Dennett, D. (1987). The intentional stance. Cambridge, MA, MIT Press. 

Dennett, D. (1995). “The unimagined preposterousness of zombies: Commentary on T. Moody, O. Flanagan and 
T. Polger.” Journal of Consciousness Studies 2(4): 322-326. 

Dennett, D. C. (1969). Content and consciousness. Cambridge, MA, MIT Press. 

Dennett, D. C. (1991). Consciousness explained. New York, Little, Brown and Company. 

Descartes, R. (1641/1955). The philosophical works of Descartes, Dover Publications. 

Descartes, R. (1641/1955). The philosophical works of Descartes, Dover Publications. 

Descartes, R. (1641/1990). Meditations on first philosophy. Notre Dame, IN, University of Notre Dame Press. 

Desimone, R. (1991). “Face-selective cells in the temporal cortex of monkeys.” Journal of Cognitive 
Neuroscience 3: 1-8. 

DeYoe, E. A., G. J. Carman, et al. (1996). “Mapping striate and extrastriate visual areas in human cerebral 
cortex.” Neurobiology 93: 2382-2386. 

DeYoe, E. A. and D. C. Van Essen (1988). “Concurrent processing streams in monkey visual cortex.” Trends in 
Neuroscience 11: 219-226. 

Dretske, F. (1981). Knowledge and the flow of information. Cambridge, MA,   MIT Press. 

Dretske, F. (1988). Explaining behavior. Cambridge, MA, MIT Press. 

Dretske, F. (1994). If you can't make one, you don't know how it works. Midwest Studies in Philosophy. P. 
French, T. Uehling and H. Wettstein. Minneapolis, University of Minnesota Press. XIX: 615-678. 

Dretske, F. (1995). Naturalizing the Mind. Cambridge, MA, MIT Press. 

Dretske, F. and A. Snyder (1972). “Causal irregularity.” Philosophy of Science 39: 69-71. 

Dummett, M. (1978). Truth and other enigmas. Cambridge, Harvard University Press. 

Eccles, J. C. (1974). Cerebral activity and consciousness. Studies in the Philosophy of 



85 

 

Biology. F. Ayala and T. Dobzhansky, University of California Press. 

Einstein, A. (1961). Relativity:  The special and the general theory. New York, Crown. 

Eliasmith, C. (1996). “The third contender: a critical examination of the dynamicist theory of cognition.” 
Philosophical Psychology 9(4): 441-463. 

Eliasmith, C. (1997). “Computation and dynamical models of mind.” Minds and Machines 7: 531-541. 

Eliasmith, C. (in press). “Is the brain analog or digital?: The solution and its consequences for cognitive science.” 
Cognitive Science Quarterly. 

Eliasmith, C. and C. H. Anderson (1999). “Developing and applying a toolkit from a general neurocomputational 
framework.” Neurocomputing 26: 1013-1018. 

Eliasmith, C. and C. H. Anderson (forthcoming). Neural engineering: The principles of neurobiological 
simulation. Cambridge, MA, MIT Press. 

Eliasmith, C. and C. H. Anderson (in press). "Rethinking Central Pattern Generators: A General Framework". 
Computational Neuroscience 99 (CNS *99), Pittsburgh, PA, Elsevier. 

Eliasmith, C. and P. Thagard (in press). “Integrating structure and meaning: A distributed model of analogical 
mapping.” Cognitive Science. 

Evans, G. (1982). Varieties of reference. New York, Oxford University Press. 

Everling, S., M. C. Dorris, et al. (1999). “Role of primate superior colliculus in preparation and execution of anti-
saccades and pro-saccades.” The Journal of Neuroscience 19(7): 2740-2754. 

Fair, D. (1979). “Causation and the flow of energy.” Erkenntnis 14: 219-50. 

Felleman, D. J. and D. C. Van Essen (1991). “Distributed hierarchical processing in primate visual cortex.” 
Cerebral Cortex 1: 1-47. 

Felleman, D. J., Y. Xiao, et al. (1997). “Modular organization of occipito-temporal pathways: Cortical 
connections between visual area 4 and visual area 2 and posterior inferotemporal ventral area in macaque 
monkeys.” The Journal of Neuroscience 17(9): 3185-3200. 

Field, H. (1977). “Logic, meaning, and conceptual role.” Journal of Philosophy 74: 379-409. 

Fine, K. (1975). “Vagueness, truth and logic.” Synthese 30: 265-300. 

Fodor, J. (1975). The language of thought. New York, Crowell. 

Fodor, J. (1981). Representations. Cambridge, MA, MIT Press. 

Fodor, J. (1987). Psychosemantics. Cambridge, MA, MIT Press. 

Fodor, J. (1990). A theory of content and other essays. Cambridge, MA, MIT Press. 

Fodor, J. (1995). “West coast fuzzy: Why we don't know how brains work (review of Paul Churchland's The 
engine of reason, the seat of the soul).” The Times Literary Supplement(August). 

Fodor, J. (1998). Concepts: Where cognitive science went wrong. New York, Oxford University Press. 

Fodor, J. (1998). Review of Paul Churchland's The engine of reason, the seat of the soul. In critical condition: 
Polemical essays on cognitive science and the philosophy of mind. J. Fodor. Cambridge, MA, MIT Press. 

Fodor, J. (1999). “Diary.” London Review of Books 21(19). 

Fodor, J. and E. Lepore (1992). Holism: A shopper's guide. Oxford, UK, Basil Blackwell. 

Fodor, J. A. (1994). The elm and the expert. Cambridge, MA, MIT Press. 

Frege, G. (1892/1980). On sense and meaning. Translations from the philosophical writings of Gottlob Frege. P. 
Geach and M. Black. Oxford, UK, Basil Blackwell. 

Fuhrmann, G. (1988). “Fuzziness of concepts and concepts of fuzziness.” Synthese 75: 349-72. 

Georgopoulos, A. P., A. B. Schwartz, et al. (1986). “Neuronal population coding of movement direction.” 
Science 243(1416-19). 



86 

 

Goodale, M. A. and A. D. Milner (1992). “Separate pathways for perception and action.” Trends in Neuroscience 
15: 20-25. 

Goodman, N. (1955). Fact, fiction and forecast. Indianapolis, Bobbs-Merrill. 

Goodman, N. (1968). Languages of art. Indianapolis, IN, Hackett Publishing Company. 

Grice, P. (1957). “Meaning.” Philosophical Review 66: 377-388. 

Gross, C. G., C. E. Rocha-Miranada, et al. (1972). “Visual properties of neurons in inferotemporal cortex of the 
macaque.” Journal of Neurophysiology 35: 96-111. 

Grush, R. (1997). “The architecture of representation.” Philosophical Psychology 10(1): 5-23. 

Haack, S. (1993). Evidence and inquiry: Toward reconstruction in epistemology. Cambridge, MA, Blackwell 
Publishers. 

Hakimian, S., C. H. Anderson, et al. (1999). “A PDF model of populations of purkinje cells.” Neurocomputing 
26. 

Hammerstrom, D. (1995). Digital VLSI for neural networks. The handbook of brain theory and neural networks. 
M. Arbib. Cambridge, MA, MIT Press. 

Harman, G. (1982). “Conceptual role semantics.” Notre Dame Journal of Formal Logic 23: 242-56. 

Harman, G. (1987). (Nonsolopsistic) conceptual role semantics. Semantics of natural language. E. LePore. New 
York, Academic Press: 55-81. 

Haugeland, J. (1991). Representational genera.  Philosophy and Connectionist Theory. W. Ramsey, S. Stich and 
D. Rumelhart. Hillsdale, NJ, Lawrence Erlbaum. 

Henneman, E. and L. Mendell (1981). Functional organization of motoneuron pool and its inputs. Handbook of 
physiology :The nervous system. V. B. Brooks. Bethesda, MD, American Physiological Society. 2. 

Hofstadter, D. and D. Dennett, Eds. (1981). The mind's I. New York, Basic Books. 

Hume, D., Ed. (1739/1886). A treatise of human nature. Darmstadt, Scientia Verlag Aalen. 

Hutto, D. D. (1999). The presence of mind. Philadelphia, J. Benjamins Publishers. 

Hyvarinen, A. (1999). “Survey on independent component analysis.” Neural Computing Surveys 2: 94-128. 

Jackson, F. (1986). “What Mary didn't know.” Journal of Philosophy 83: 291-5. 

Johnson, D. A. (1995). Grue paradox. The Cambridge dictionary of philosophy. R. Audi, Cambridge University 
Press. 

Kandel, E., J. H. Schwartz, et al., Eds. (1991). Principles of neural science. New York, NY, Elsevier Science 
Publishing. 

Kant, I. (1787/1965). Critique of pure reason. London, MacMillan. 

Karni, A., G. Meyer, et al. (1995). “Functional MRI evidence for adult motor cortex plasticity during motor skill 
learning.” Nature 377: 155-8. 

Kim, J. (1995). Causation. The Cambridge dictionary of philosophy. R. Audi. New York, NY, Cambridge 
University Press. 

Knierim, J. J. and D. C. Van Essen (1992). “Neuronal responses to static texture patterns in area V1 of the alert 
macaque monkey.” Journal of Neurophysiology 67: 961-980. 

Koch, C. (1998). Biophysics of computation: Information processing in single neurons. Oxford, UK, Oxford 
University Press. 

Kosslyn, S. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA, The MIT Press. 

Kosslyn, S. M. and W. L. Thompson (1999). Shared mechanisms in visual imagery and visual perception: 
Insights from cognitive neuroscience. Handbook of cognitive neuroscience. M. S. Gazzaniga. Cambridge, 
MA, MIT Press. 

Kosslyn, S. M., W. L. Thompson, et al. (1995). “Topographical representations of mental images in primary 
visual cortex.” Nature 378: 496-498. 



87 

 

Kripke, S. (1977). Speaker's reference and semantic reference. Midwest studies in philosophy. P. French, T. 
Uehling Jr. and H. Wettstein. Notre Dame, IN. 2. 

Langacker, R. W. (1987). Foundations of cognitive grammar. Stanford, CA, Stanford University Press. 

Lass, Y. and M. Abeles (1975). “Transmission of information by the axon. I: Noise and memroy in the 
myelinated nerve fiber of the frog.” Biological Cybernetics 19: 61-67. 

Lehrer, K. (1974). Knowledge. Oxford, Clarendon Press. 

Lepore, E. (1994). Conceptual role semantics. A companion to the philosophy of mind. S. Guttenplan. Oxford, 
UK, Basil Blackwell. 

Lewicki, M. and B. Olshausen (in press). “A probabilistic framework for the adaption and comparison of image 
codes.” Journal of the Optical Society of America. 

Lewicki, M. and T. Sejnowski (1998). “Learning overcomplete representations.” Neural Computing. 

Loar, B. (1981). Mind and meaning. London, UK, Cambridge University Press. 

Locke, J. (1700/1975). An essay concerning human understanding. Oxford, UK, Oxford University Press. 

Long, A. A. and D. N. Sedley (1987). The Hellenistic philosophers. Cambridge, Cambridge University Press. 

Lycan, W. (1984). Logical form in natural language. Cambridge, MA, MIT Press. 

Mackie, J. (1974). The cement of the universe. Oxford, Clarendon Press. 

Mandik, P. (1999). “Qualia, space and control.” Philosophical Psychology 12(1): 47-60. 

Miller, J., G. A. Jacobs, et al. (1991). “Representation of sensory information in the cricket cercal sensory 
system. I: Response properties of the primary interneurons.” Journal of Neurophysiology 66: 1680-1703. 

Millikan, R. (1993). White queen psychology and other essays for alice. Cambridge, MA, MIT Press. 

Millikan, R. G. (1984). Language, thought and other biological categories. Cambridge, MA, MIT Press. 

Mohana, T. and L. Wee (1999). Grammatical semantics: Evidence for structure in meaning. Stanford, CA, CSLI 
Publications. 

Moschovakis, A. K., C. A. Scudder, et al. (1996). “The microscopic anatomy and physiology of the mamallian 
saccadic system.” Progress in Neurobiology 50(2): 133-254. 

Nagel, T. (1974). “What is it like to be a bat?” Philosophical Review 83(4): 435-50. 

Newell, A. (1990). Unified theories of cognition. Cambridge, MA, Harvard University Press. 

Nicholls, J. G., A. R. Martin, et al. (1992). From neuron to brain. Sunderland, MA, Sinauer Associates Inc. 

Nova (1997). “Secret of the wild child.” Public Broadcasting Service #2112G(March 4, 1997). 

Ojemann, G. A. and J. Schoenfield-McNeill (1999). “Activity of neurons in human temporal cortex during 
identification and memory for names and words.” The Journal of Neuroscience 19(13): 5674-5682. 

Olshausen, B. and D. Field (1996). “Emergence of simple-cell receptive field properties by learning a sparse code 
for natural images.” Nature 381: 6-7-609. 

Parker, A. J. and W. T. Newsome (1998). “Sense and the single neuron: Probing the physiology of perception.” 
Annual Review of Neuroscience 21: 227-277. 

Peacocke, C. (1986). Thoughts: An essay on content. Oxford, UK, Basil Blackwell. 

Place, U. T. (1959). “Is consciousness a brain process?” British Journal of Psychology 47. 

Prigogine, I. (1996). The end of certainty. New York, NY, The Free Press. 

Putnam, H. (1975). The meaning of 'meaning'. Mind, language, and reality, Cambridge University Press: 215-71. 

Pylyshyn, Z. (1973). “What the mind's eye tells the mind's brain: A critique of mental imagery.” Psychological 
Bulletin 80: 1-24. 

Quine, W. V. (1981). Theories and things. Cambridge, MA, Harvard University Press. 

Quine, W. V. O. (1960). Word and object. Cambridge, MA,  MIT Press. 



88 

 

Quine, W. V. O. (1969). Ontological relativity and other essays. New York, Columbia University Press. 

Quine, W. V. O. and J. Ullian (1970). The web of belief. New York, Random House. 

Rao, R. and D. Ballard (1995). “An active vision architecture based on iconic representations.” Artificial 
Intelligence Journal 78: 461-505. 

Rauschecker, J. P. (1999). “Auditory cortical plasticity: A comparison with other sensory systems.” Trends in 
Neuroscience 22: 74-80. 

Reza, F. M. (1994). An introduction to information theory. New York, Dover. 

Rieke, F., D. Warland, et al. (1997). Spikes: Exploring the neural code. Cambridge, MA, MIT Press. 

Saleem, K. S. and K. Tanaka (1996). “Divergent projections from the anterior inferotemporal area TE to the 
perirhinal and entorhinal cortices in the macaque monkey.” The Journal of Neuroscience 16(15): 4757-
4775. 

Salinas, E. and L. Abbott (1994). “Vector reconstruction from firing rates.” Journal of Computational 
Neuroscience 1: 89-107. 

Sarris, V. (1989). “Max Wertheimer on seen motion: Theory and evidence.” Psychological Research 51: 58-68. 

Searle, J. (1992). The rediscovery of the mind. Cambridge, MA, MIT Press. 

Seung (1996). "How the brain keeps the eyes still". National Academy of Science USA, Neurobiology. 

Shannon, C. (1948/1949). A mathematical theory of communication. The mathematical theory of communication. 
C. Shannon and W. Weaver. Urbana, IL, University of Illinois Press: 623-656. 

Smith, E. (1989). Concepts and induction. Foundations of cognitive science. M. Posner. Cambridge, MA, MIT 
Press: 501-526. 

Sosa, E. and M. Tooley, Eds. (1993). Causation. Oxford, UK, Oxford University Press. 

Stevens, C. F. and Y. Wang (1994). “Changes in reliability of synaptic function as a mechanism for plasticity.” 
Nature 371: 704-707. 

Strawson, G. (1987). “Realism and causation.” Philosophical Quarterly 37: 253-77. 

Thagard, P. (1986). “The emergence of meaning:  how to escape Searle's Chinese room.” Behaviorism 14: 139-
146. 

Thagard, P. (1992). Conceptual revolutions. Princeton, Princeton University Press. 

Theunissen, F. E. and J. P. Miller (1991). “Representation of sensory information in the cricket cercal sensory 
system. II. Information theoretic calculation of system accuracy and optimal tuning-curve widths of four 
primary interneurons.” Journal of Neurophysiology 66(5): 1690-1703. 

Turing, A. M. (1950). “Computing machinery and intelligence.” Mind 59: 433-460. 

Uhr, L. (1994). Digital and analog microcircuit and sub-net structures for connectionist networks. Artificial 
intelligence and neural networks: Steps toward principled integration. V. Honavar and L. Uhr. Boston, 
MA, Academic Press: 341-370. 

Ungerleider, L. G. and M. Mishkin (1982). Two cortical visual systems. Analysis of visual behavior. D. J. Ingle, 
M. A. Goodale and R. J. W. Mansfield. Boston, NY, MIT Press: 549-586. 

Usher, M. (unpublished). “Conceptual representations need probabilistic categorization: an informational-
theoretical approach to representation and misrepresentation.” . 

Van Essen, D. and J. Gallant (1994). “Neural mechanisms of form and motion processing in the primate visual 
system.” Neuron 13: 1-10. 

Van Essen, D. C. and C. H. Anderson (1995). Information processing strategies and pathways in the primate 
visual system. An introduction to neural and electron networks, Academic Press. 

van Gelder, T. (1995). “What might cognition be, if not computation?” The Journal of Philosophy XCI(7): 345-
381. 



89 

 

van Gelder, T. and R. Port (1995). It's about time:  An overview of the dynamical approach to cognition. Mind as 
motion:  Explorations in the dynamics of cognition. R. Port and T. van Gelder. Cambridge, MA, MIT 
Press. 

Wall, J. T., J. H. Kaas, et al. (1986). “Functional reorganization in somatosensory cortical areas 3b and 1 of adult 
monkeys after median nerve repair: possible relationships to sensory recovery in humans.” J Neurosci(1): 
218-33. 

Warland, D., M. Landolfa, et al. (1992). Reading between the spikes in the cercal filiform hair receptors of the 
cricket. Analysis and modeling of neural systems. F. Eeckman. Boston, MA, Kluwer Academic 
Publishers. 

Williamson, T. (1994). Vagueness. London, UK, Routledge. 

Wilson, M. A. and B. McNaughton (1993). “Dynamics of the hippocampal ensemble code for space.” Science 
261: 1055-58. 

Wimsatt, W. C. (1980). Reductionist research strategies and their biases in the units of selection controversy. 
Scientific discovery: Case studies. T. Nickles, D. Reidel Publishing Company: 213-259. 

Yolton, J. W. (1993). A Locke dictionary. Oxford, UK, Blackwell. 

Zeilinger, A. (2000). “Quantum teleportation.” Scientifica American 282(4): 50-59. 

Zipser, D. and R. A. Andersen (1988). “A back-propagation programmed network that simulates response 
properties of a subset of posterior parietal neurons.” Nature 331: 679-84.  


	In the beginning
	A brief history of mind
	The problem of neurosemantics
	Mental content
	Language and meaning
	The plan of attack
	Introduction
	Causal theories
	Problems with causal theories
	Conceptual role theories
	Problems with conceptual role theories
	Two-factor theories
	Problems with two-factor theories
	A strategy for constructing a theory of content
	Summary
	Introduction
	Representational in-laws
	Sharing the problem of neurosemantics
	Basic vehicles, higher-order vehicles and thirteen questions about representation
	Two kinds of vehicles
	Thirteen questions

	Summary
	Introduction
	Two perspectives, one problem
	One way to find some answers
	The strangeness of taking the familiar route
	The other way to find some answers
	The statistical dependence hypothesis
	Summary
	Introduction
	Some assumptions
	Causes and conceptual roles
	A skeletal theory
	Summary
	Introduction
	Conceptual apparatus
	Basic level representation
	Higher-order representation
	A general theory
	Putting time and populations together
	Transformations
	Extensions of the theory

	Summary
	Introduction
	Relational details
	Details for objects
	Vehicles
	Referents
	Content
	A detailed example

	Answers to the representational questions
	What are the basic vehicles?
	What are the higher-order vehicles?
	What is the relation between basic and higher-order vehicles?
	What is the system?
	What is the relation between the basic vehicles and the system they are in?
	What is the relation between the higher-order vehicles and the system they are in?
	What gives a basic vehicle its content?
	What gives a higher-order vehicle its content?
	What is the relation between a basic vehicle’s content and the system it is in?
	What is the relation between a higher-order vehicle’s content and the system it is in?
	What is the relation between the basic vehicle and the external environment?
	What is the relation between the higher-order vehicle and the external environment?
	What is the relation between the system and the external environment?

	Summary
	Introduction
	Statistical dependence and representational content
	Statistical dependence and causes
	Getting the right statistical dependence
	Some consequences of using statistical dependence

	Occurent and conceptual content
	Introduction
	Conceptual content
	Conceptual content in action
	Traditional reference

	Misrepresentation revisited
	Conclusion
	A

