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Abstract

The otolith organs in the vestibular system are excellent detectors of linear accelerations.
However, any measurement of linear acceleration is ambiguous between a tilt in a gravitational
.eld and an inertial acceleration. Angelaki et al. have put forward a general hypothesis about how
inertial accelerations can be computed based on vestibular signals (J. Neurosci. 19 (1999) 316).
We have constructed a realistic, detailed model of the relevant systems to test this hypothesis.
The model produces useful predictions about what kinds of neurons should be found in the
vestibular nucleus if such a computation is actually performed in the vestibular system. The
model is constructed using general principles of neurobiological simulation (J. Neurophys. 84
(2000) 2113). c© 2002 Published by Elsevier Science B.V.
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1. Introduction

Given any accelerometer, it is not possible to distinguish inertial acceleration due to
translation from gravitational acceleration during tilting. In the mammalian vestibular
system, the otoliths serve as an accelerometer. Thus, the otolith signals are ambiguous
between these two kinds of acceleration. However, animals can successfully distinguish
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such motions. Precisely, how this distinction is made is a matter of some debate in
contemporary neuroscience [2,3,6].
In a series of experiments on macaque monkeys, Angelaki et al. show that inactiva-

tion of the semicircular canals results in precisely the kinds of eye movement errors
we would expect if only the otolith were used to distinguish inertial from tilt accel-
erations [2]. Similarly, Merfeld et al. show that reDexive eye movements in humans
are most consistent with a combination of canal and otolith information [6]. This kind
of evidence strongly supports the contention that there is an integration of sensory
signals from both the otolith and semicircular canals used to determine appropriate
motor responses (see also [7,8]). Angelaki et al. have suggested a series of transfor-
mations that could be used to determine an unambiguous inertial acceleration given the
otolith and semicircular canal signals [2]. In this paper, we present a detailed model
that implements these transformations using our framework for constructing realistic
neurobiological models [5,4,1].

2. A quantitative hypothesis about vestibular function

Angelaki et al. suggest that the following computation is implemented in the brain
to determine inertial acceleration, I(t), provided the otolith signal A(t) and the canal
signal �(t) [2]:

İ(t) =�(t)× I(t) + Ȧ(t)−�(t)× A(t) (1)

= Ȧ(t) +�(t)× [A(t)− I(t)]: (2)

The well-established assumptions underlying this hypothesis are: (1) that the three
semicircular canals generally operate as orthogonal integrating accelerometers which
together provide a good estimate of angular velocity, �(t); and (2) that the two otolith
organs encode accelerations in the horizontal and vertical planes, providing a good
estimate of linear acceleration A(t) [8]. In order to characterize the dynamics for a
neural population that represents this inertial acceleration, we use a .rst-order Taylor
expansion:

I(t + �) ≈ I(t) + �İ(t); (3)

= I(t) + �[Ȧ(t) +�(t)× [A(t)− I(t)]]: (4)

Eqs. (2) and (4), along with neurophysiological considerations suggest a neural circuit
as that shown in Fig. 1. This diagram provides a particular modularization of the
computation needed to determine the true inertial acceleration.
We think that this modularization is a reasonable one given that there are strong

convergent projections of both the otolith and canal systems within the vestibular nu-
cleus [8, p. 166]. In our model, we use leaky integrate-and-.re neurons tuned to mimic
the properties of neurons found in the labyrinth and relevant parts of the vestibular
nucleus [8]. 1

1 We can replace the LIF neurons with more complex single cell models. But, the computational cost for
this increase in detail is unacceptable in this case.



C. Eliasmith et al. / Neurocomputing 44–46 (2002) 1071–1076 1073

I(t)
C=[Ω(t),A(t)-I(t)]

A(t)

bj(t)

Ω(t)

ck(t)

ai(t)

dl(t)

A(t)

++

-
+
+

++

++

++

.AL(t)

AR(t)

ΩL(t)

ΩR(t)

Fig. 1. A high-level modularization of a vestibular circuit that can compute inertial acceleration from the
labyrinth inputs.

3. The model and results

In order to construct a model of this system, we embed each of the higher-level rep-
resentations and transformations identi.ed in Fig. 1 into the relevant neural populations.
The general principles behind this approach are articulated in [1]. The representations
and transformations up to the vestibular nucleus are relatively simple, so we will focus
instead on the representation and transformations of the vestibular neurons that perform
the cross-product, a highly non-linear operation.
We take the .rst population of neurons involved in the cross-product transformation,

ck(t), to construct an integrated representation of the input space, C, by encoding �(t)

and A(t)− I(t) simultaneously using a six-dimensional encoding vector, �̃
C
:

ck(C= [�;A − I]) =Gk [	k〈�̃Ck C〉+ J bk ]

=Gk [	k〈�̃�k �+ �̃
�
k (A − I)〉+ J bk ]

=Gk

[∑
k

!kjbj +
∑
i

!kiai +
∑
l

!kldl + J bk

]
;

where !kj = 	k〈�̃�k ��j 〉, !ki = 	k〈�̃
K
k �

A
i 〉, and !kl =−	k〈�̃K

k �
I
l〉.

In order to use this encoding to compute the cross-product of elements in the C space,
we need to determine a decoding for the function P(C), which .nds the cross-product of
the .rst and last three elements of any vector C. This decoding will be P(C)=

∑
k �

P
k ck .

We .nd the decoding vectors by solving the appropriate least-squares minimization
problem.
This decoding can be used in a description of the dynamics of the subsequent pop-

ulation. Eq. (3) gives an expression for neurons encoding the inertial acceleration:

dl(t + �) = Gl[	l〈�̃Il · I(t + �)〉+ J bl ].
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Substituting from (4):

dl(t + �) =Gl[	l〈�̃Il(I(t) + �[Ȧ(t) +�(t)× (A(t)− I(t))])〉+ J bl ]

=Gl

[∑
l′
!ll′dl′(t) + �

∑
k

!lkck(t) + �
∑
i

!liai(t) + J bl

]
;

where !ll′ = 	l〈�̃Il�Il′〉, and !lk = 	l〈�̃
I
l�
P
k 〉. Ȧ(t) requires separate (though similar)

treatment. However, we do not discuss it here.
In order to model these populations with spiking neurons, we use a linear decoding

.lter on the spike trains to give neuron activity variables, ai(t), bj(t), etc. Thus, for each
population we write an expression of the form: ai(t)=

∑
n hi(t)∗�(t−tn)=

∑
n hi(t−tn),

where the linear .lters, hi(t) are taken to be the postsynaptic currents produced in the
postsynaptic neuron given the incoming spike train, �(t − tn). The hi(t) responses are
appropriately weighted by the relevant weights, !, determined as above.
We can now test our model by comparing it to experimental results from macaques. 2

In order to show that the vestibular system is able to estimate true inertial accelera-
tion, despite the ambiguity in the otolith signal, the following three experiments were
performed. First, the animal was subjected only to translational acceleration. Second,
the animal was subjected to a translational acceleration coupled with an angular rota-
tion chosen to double the otolith signal. Third, the animal was subjected to a transla-
tion acceleration coupled with an angular rotation chosen to cancel the otolith signal.
Any estimate of translational acceleration based solely on otolith information would
be severely adversely aLected in the last two of these cases. Nevertheless, eye posi-
tion changes resulting from the translational vestibular ocular reDex (tVOR) are very
similar. This suggests that the otolith signal is not solely responsible for the tVOR.
Fig. 2 shows the results of the model compared to both a direct solution of

Eq. (2) and the data, for the case when the otolith signal is canceled. Similar agree-
ment between experimental and model results was obtained for the other conditions.
Thus, the model veri.es that the hypothesis is a reasonable one, and that it can be
implemented in a biologically plausible, spiking network.

4. Conclusion

One of the reasons for constructing this model is to determine what the tuning
properties of certain populations in the model are expected to look like. Of particular
interest are those neurons performing the cross product. On the basis of this model,
we expect these neurons to have preferred direction vectors in a six-dimensional space,
which are sensitive to both angular velocity and linear acceleration. However, this
expectation is based mainly on our chosen means of implementing the equation. It
is possible, for instance, to perform the cross product as a series of multiplications

2 Thanks are due to Dora Angelaki for providing the experimental data.
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Fig. 2. Experimental data, equation solution, and model solution. The model consists of a total of 5000 LIF
neurons. Comparisons incorporate a gain reduction which has been experimentally veri.ed for tVOR, and
ranges between about 0:1 and 0:25.

between components of these vectors. In this case, neuron preferred direction vectors
would lie in two-dimensional spaces. Nevertheless, however we choose to implement
the cross-product, there must be neurons whose preferred direction vectors mix the
otolith and vestibular signals. Furthermore, given the fact that there is a non-linear
transformation being performed, we expect neurons in this population to have fairly low
background .ring rates and more often than not require signi.cant input to begin .ring.
This is due to the fact that for non-linear transformations, a greater response range is
required as we move away from the resting state compared to linear transformations.
In addition, the dynamics of the network provide predictions regarding the kinds of

receptors present on neurons in the various populations. Although we have not discussed
the dynamics in detail here, based on this model we expect the neurons participating
in the I population to have recurrent connections to NMDA-type receptors because the
recurrence requires slow synaptic decays to function well. The remaining connections
can be fast, AMPA-type receptors. This suggests that some cells in the I population
will have both kinds of receptors on the same cell. Notably, this is consistent with the
general properties of neurons in the vestibular nucleus [9].
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