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Dynamics, Control, and Cognition
Chris Eliasmith

Once upon real-time

A dynamic object is an object whose properties change over time. A static object is an
object whose properties do not change over.ti@e/en such an idealization, the notion

of ‘static’ lies at an extreme end of theesprum of temporal relations between objects

and properties. Indeed, madeghysics tells us that no objects are truly static.
Nevertheless, many of our physical, comgiatel, and metaphysical theories turn a

blind eye to the role of time, often for praeticeasons. So, perhaps it is not surprising

that in the philosophy of mind — whereysircal, computational, and metaphysical

theories meet — there has been a consistent tendancy to articulate theories that consider
function and time independently. As a result, contemporary theories in cognitive science
consider time unsystematically (see the next section for specific examples). In this
chapter, | suggest that the problem with taghocery’ is that the systems we are trying

to characterize are real-time systems, whose real-time performance demands principled
explanation (a point on which many of thesene contemporary theorists agree). After a
discussion of the importance and roots of dynamics in cognitive theorizing, | describe the
role of time in each of the three main ampgorhes to cognitive science: symbolicism,
connectionism and dynamicisnsubsequently, | outline a recently proposed method, the
Neural Engineering Framework (NEF), that, unlike past approaches, permits a principled
integration of dynamics into biologically destic models of high-level cognition. After
briefly presenting a model, BioSLIE, that demonstrates this integration using the NEF, |
argue that this approach alone is in a posito properly integrate dynamics, biological
realism, and high-level cognition.

Historically, many cognitive theories have not been particularly informed by our
understanding of biological systems. Argualhys is because our understanding of the
mechanisms driving biological systems was in its infancy until very recently. This
suggests that there was little opportunity for theories of mind to gain insight from our
understanding of the kinds of systems \khputatively have minds. So, there was little
inspiration to be drawn from biology regarding mentality. However, recent decades have
seen a radical change in this state of affaMeuroscience, the subdiscipline of biology
which has the most offer theories of mind,yobégan to systematically explore neural
mechanisms quite recently (e.g., after th@npering experiments of Hodgkin and Huxley
(1952) and Hubel and Weisel (HubeMgiesel, 1962; Wiesel & Hubel, 1963)Despite
these relatively recent beginnings, the anwoaference of the Society for Neuroscience

1 Of course, much of the groundwork was laid before this. But even as late as 1906,
there was still public debate (at the Nobel Prize awards ceremony) regarding the
existence of individual nerve cells. As well, intracellular recording techniques were
not developed until the 1940s, and basic single cell ion dynamics were not
characterized until the 1950s. See Finger (2000) for an extended account of the early
history of neurobiology.
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features approximately 30,0@ftendees, most of whom are directly involved in
exploring the mechanisms of the brairsukpect that all of them, almost without
exception, are acutely aware of the dynamics of the mechanisms they are studying.

The importance of the dynamics of neuraamanisms for understanding the brain can be
gleaned from the kinds of vocabulary typlgamployed by neuroscientists. They
inevitably speak of “time constants,” “time courses,” “fluctuations,” “firing rates,” “spike
timing dependent plasticity,” “theta, gamma, delta, etc. oscillations,” “molecular
kinetics,” “membrane dynamics,” “protein dynamics,” “short and long-term plasticity,”
“synchrony and temporal correlations,” andoso In other words, a careful examination
of the mechanisms underlying mental pbeena have demandezmporally laden
descriptions.

Of course, there is no obvious reason why fitdsessary to learn about the brain before
gleaning the importance of dynamics. Rgrhthe traditional division between cognition
and perception/action, reflected neatlyhe notion of man as a ‘rational animal,’
suggested to many early cognitive scientists that rationality, a reasonably outside-of-time
kind of behavior, is their target of inquirynfortunately, this viewelegates many of the
dynamical aspects of behavior to the statusn afterthought. No doubt this perspective
was bolstered by the development of the M@mumann architecture for computers, which
neatly distinguishes input/output functidinem central processing, whose temporal
properties are determined by a clock itet be sped up or slowed down with little
functional consequence. And, it was cleaarigone studying computer systems that the
central processor was the most important patie system. This characterization is
efficiently captured in the now famotmind-as-computer’ metaphor that has so
dominated the history of cognitive science.

Perhaps one way to move ptss metaphor for mind is t@arn more about the target of
the metaphor. That is, it may be no coinockethat as our understanding of the brain
has improved, the ‘standard’ conception ofmition has become more dynamical. In
other words, | suspect that the broad ‘dynamical shift’ of cognitive science is widely
inspired by the ‘neuro’-izing of the discipline.

While our improved understamdj of neural mechanisms has likely cemented the
importance of dynamics for understanding datign, another route to this view can be
found in the history of psychology. In particular, the work of psychologist J. J. Gibson
and his colleagues at Colierovides further impetus fdaking dynamics seriously
(Gibson, 1966; Gibson & Gibson, 1955). In fact, the focus of this research was not on
dynamics per se, but on the active role that a perceiver takes in exploiting its own motion
to extract relevant information, or undeit® environmental iteractions. Gibson
described agents as “resonating” with certain information in their environment that is
relevant for their potential actions. Hislaenown notion of an “affordance” captures
this theoretical position. It is affordancedeafall, which agents are specially tuned to
pick up as environmental objects of intetesghem (e.g., a stump affords living quarters
for an insect, but a seat for us).



This emphasis on the environment, and onr¢ihegtion between agents and environments,
has served as a theoretical predecessor to the contemporary concern for the situatedness
and embodiedness of ageht&uch theories, including Gitas's original characterization,
focus attention on movements of an ageithiw an environment. This necessarily
highlights the importance of characterginoth environmental and agent-centered
dynamics. For instance, an approach t@rabterizing visual perception championed by
Dana Ballard, called ‘animatasion’, focuses on determining what information agents
actively extract from a visual scene through rapid eye movements, rather than taking the
traditional Marrian approach of trying to reconstruct the entire visual scene in a 3-D
internal representation (Bard, 1991). It is the dymaics of the agent and the

environment that determines what inf@tion is available to be acted on.

Despite the fact that traditional computational approaches to understanding cognitive
function often labkethemselves “information prossing” approaches, the strongest
arguments for the importance of situatedness come from information theoretic
considerations. Simply put, there is tmoach information in an environment for any
known sensory organ to extract it all. nSery organs clearly have limited bandwidth;
that is, a limited ability to extract the various information available in natural
environments. And while there is evidence that many such systems are near their
theoretical limits for extracting information (Riekeal., 1997), even reaching such

limits will not ameliorate the problem of dealing wah the information in an
environment. Given such ‘hard’ constraintss not surprising that biological systems
have developed various meangdarfyeting evolutionarily rel@ant information sources in
their environment. It is thosources, after all, that determine if they live or die. As a
result of these considerations it becomes cleahthvathese systems target information

is as important alsow they pick up that information once they are oriented towards it.
Furthermore, if those methods of targg are highly sensitive to environmental
dynamics, as they clearly seem to3hiben it is also essentito understand the dynamics
of such an environment. As a resulg thynamics of the agent, the dynamics of the
environment, and equally importantly, theitaraction, are what need to be understood in
order to properly characterize “informati processing” in biological systems.

In short, experimental consideratiasfsneural mechanisms and theoretical

considerations of agent/enviroent interactions conspire snggest that dynamics are an
inescapable feature of cognitive systems. This is in contrast to the traditional view that
‘cognitive systems’ are besharacterized through arfi theoretical grounding in
computational theory. The problem withstiraditional picture is that artificial

intelligence and computer science researchers are not especially interested in dynamical

2 Although it should be noted that some symbolicists also seem to have been sensitive to
the importance of this interaction: “A proper understanding of the intimate
interdependence between an adaptive organism and its environment is essential to a
clear view of what a science of an adaptive species can be like.” (Newell and Simon,
1972, p. 870).

3 This is just the observation theiiange is often an important environmental cue Thus,
visual features such as motion are often used to orient an animal towards potentially
interesting or dangerous aspects of their environment.



systems. That is, while the design of real-time systems is only one small part of
computer science, the only kind of systems ever designed by mother nature are real-time.
At the moment, by far the most impressive cognitive systems are natural ones.

Dynamic duels: Dynamics and cognitive architectures

Having briefly argued for the importanceayfnamics for understanding cognition, | turn

to the issue of how dynamics have beengrated into various theories of cognition.

After a brief historical discussion, | descrithe strengths and weaknesses of the three
main contenders in cognitive science, especially in relation to their incorporation of time
into their methods afodel construction.

Behaving in time

In the early part of the last century, the dominant theory in psychology was behaviorism.
Famously, behaviorism espoused the vieat the only scientifically respectable
‘observables’ that could underwrite a psycholagiibeory were behavioral events. They
argued that only such external events vadmectively observable, and thus that only they
could be the subject of an objective scieatifieory (Watson, 1913). It is somewhat
unclear from their collective writings exactly how important dynamics were, or were not,
for supporting this understanding of psychological ageni¢hatever the case, their
behavioral standpoint was unarguably s€d with dynamics in the hands of the
‘cyberneticists.’

Cybernetics is the study of feedback and cdmtrboth artificial in biological systems. It
grew from a wartime interest in real-wdylgoal directed systems — especially enemy-
directed systems. Norbert Wiener, who coined the term ‘cybernetics,” was a
mathematician with interests in communication theory who worked on gun controllers
(Wiener, 1948). It has been suggested tharnétfi realized that the study of stability and
control of the anti-aircraft systems he wasrking on could be extended to the operator

of the system as well (Freudenthal, 1970-1990)a Aesult, he had the insight that same
mathematical tools for understanding goal-directed artificial systems, could be applied to
goal-directed natural systems.

The mathematical tools th@liener used are typically grouped under the heading of
‘classical control theory.” Very briefly, classical control theory considers the system
under study as implementing a temporal $fanfunction, which describes how inputs

are converted into outputs over time. The point of classical control is to design a control
system which can be used to alter the inplithe system in order to achieve a desired
output. In ‘open-loop control’ the contler simply provides inputs which should, under
normal circumstances, achieve the daboutputs. However, since normal

circumstances are often difficult to define in advance, and the circumstances themselves
are likely to change over time, a more soptéded form of conbl called ‘closed-loop

4 Neither Skinner nor Watson, for instance, make special mention of dynamics.
However, Hull (1935) in his quest to write Newtonian-like laws for behavior, seems
somewhat concerned with the effects of interstimulus delays during learning.
However, none of the equations he explicitly writes have a time parameter.



control,” or ‘feedback control,” is more nononly employed. In closed-loop control, the
inputs provided to the system depend on itsesu outputs, which are often affected by
the current circumstances (e.g., in automobile cruise control, road conditions, hills, etc.
greatly affect the effect of viaus accelerator inputs). @leffectiveness of closed loop
controllers was demonstrated time and again during WWII, by their inclusion in target
trackers, self-guided torpedoes, and masiother servomechanisms (Mindell, 1995).

To this day, classical control methods argta to engineers in order to provide them
with strong intuitions about hogimple control systems can be analyzed and designed.
These methods play this role because theyaagely graphical, are easily applicable to
simple, single input/single output systemsd antroduce a number of useful heuristics for
control design. However, when tryinguaderstand a complex control system like the
brain, many of these pedagogical strengtlt®byee practical weaknesses. For instance,
there is no reason to think that a biologicatsyn is a single input/single output system.
As well, when dealing with complex caaliers, graphical methods soon become limiting
and clumsy because of their restricted disienality. Additionatheoretical limitations

on classical control include an inability to: quantify optimal control; to characterize
adaptive control; and to systematicaltglude considerations of noise.

Despite these limitations, classical control susftély began a practical quantification of
real-time systems. As well, the cybernistidocus on temporal input/output relations
(captured by the transfer functions) integratesdl with the behaviorist psychology of the
day. That s, both classical control theorestsl behaviorists did not need to ‘look inside’
the systems they were interested in undeditey. What the control theorists added, of
course, was an explicitly dynamaicdimension to an othervasstatic characterization of
cognitive systems.

A cognitive resolution

The famous “cognitive revolution” that togkace in the mid-1950s is often hailed as an
essential turning point in the history ofgrotive science, a turning point without which
cognitive science would not have fruitfuteveloped (Bechtel & Graham, 1999;

Thagard, 1996). This may be true in part, thete was also a significant price that was
paid for the sweeping adoption of the cognitivist view. This is because the resolution of
behaviorist difficulties came in two parts. One was a shift in focus from input/output
relations to internal states of cative systems. The second was a shift from
mathematical models of behavito computational ones. With this second shift came a
general acceptance that the relevant formal theory for characterizing cognitive systems
was grounded in abstract entities that haveammection to time: Turing machines. For
instance, Newell and Simon (1972) wrotdheir historical epilogue that “The
formalization of logic showed that symbatan be copied, coraped, rearranged, and
concatenated with just as much definitenef process as boards can be sawed, planed,
measured, and glued...Symbols became, for thetiime, tangible — amngible as wood

or metal. The Turing machine was anmlkpose planar and lathe for symbols” (p. 877-
8). A basic assumption of this kind of compigaal theory is that resources are infinite.
So a computable function is one that can be accomplished regardless of temporal,
memory, or other constraints. Unfortunatelgspite the fact that considering internal



states is independent of therfal theory for considering such states, it so happened that
by adopting computational theory, time was pushed aside by the cognitive sciences. In
other wordsijt just so happened that the formal theory that informed this ‘symbolicist’
characterization of cognition cleaved time freumction. An assumption not reflected in
natural cognitive systems.

As a result, it is not surprising that in their attack on the temporal deficiencies of these
symbolic characterizations of cognitive sysgeriAort and van Gelder (1995) claim that
the symbolicists I'eave time out of the picture”. But, on the face of it, this is untrue.
Consider, for instance, Newell's (1990) mhganatic symbolicist cognitive model SOAR.
In his discussion of this model, andtiteoretical underpinnings, Newell includes
“operate in real time” as the third of thirteen constraints that shapes the mind (Newell,
1990, p. 19). Thus, it is simply not the c#se symbolicists ignore time. However, |
believe it clearly is the case that they have great difficulty meeting this essential
constraint.

Newell appeals to various n@lwgical data to lend support to his assumption that any
particular step (or ‘production’) in a cognitive algorithm operates on the time scale of
approximately 10ms (Newell, 1990, 127). However, his appétion of this constraint
seems rather contrived. For instancegnie application, SOAR employs a single
production to encode whether or not a lighon (Newell, 1990, p. 275). But, in a second
application, SOAR uses a single productioencode: “If the problem space is the base-
level-space, and the state has a box withington top, and the state has input that has
not been examined, then make the comprdloperator acceptable, and note that the
input has been examined” (Newell, 1990, p. 167). It seems highly unlikely that both of
these productions should ‘fire’ within the satimee scale, i.e. approximately 10ms.

Time values, the number ofqatuctions per step, and the cdexity of those productions
have clearly been chosen to allow the total ‘reaction time’ of the models to fall within
human limits found through psychological expeentation. The claim that SOAR has
somehow allowed rough prediatis of human reaction timetisus very unconvincing,
given this ad hoc methodology. It is ratineore likely that the modeller's analysis,
experience with psychological results, and chosen time values allowed such predictions
(Newell, 1990, pp. 274-282). In suthere is no mention of how gystematically relate
productions to neural firings, and werghe few examples provided are highly
unsystematic.

Though it may not be completely futile foretBymbolicist to attempt to incorporate
realistic time constraistinto his or her model, it is undeniably more natural for this
constraint to be satisfied by intrinsically dynamic models — that is, models which, in
virtue of their underlying fomal theory, have time conatnts included. In the end,
symbolicists have not convincingly described how time in their model of cognitive
processes (‘model time’) systematigaklates to time in a maral cognizer (‘real time’).
This is important since, as Newell himsedftes, “minor changes in assumptions move
the total time accounting in substantial wéyat have strong consequences for which
model fits the data” (Newell, 1990, p. 294)his comment reflects two important
conclusions of this discussion. First, timeften included irsymbolicist models —
symbolicists clearly took time very seriously, contrary to some characterizations. And



second, there is a massivepplge between cognitive mo@dad real cognitive system
for symbolicists. This is the high price symbolicists have paid for considering time
independently of cognitive function.

Dynamicism: Mind as motion

In the mid 1990s, a movement in cognitive ace called ‘dynamicismbegan to flourish
by arguing that these kinds of tempdmaditations of symbolicism doomed it to failure
(Abrahamet al., 1994; Busemeyer & Townsend, 1993; Port & van Gelder, 1995;
Robertsoret al., 1993; Thelen & Smith, 1994; Tim van Gelder, 1995; T. van Gelder,
1998). The dynamicists espoused what ttiegracterized asdiametrically opposed
view, which elevated time to be the singtest important constraint on good cognitive
models. In doing so, they embraced a défgrformal theory, ‘dynamic systems theory,’
which is a branch of mathematics that describes time-varying behavior using sets of
differential equations.

Often explicitly, the dynamicist movement was a theoretical transition back to the
methods and commitments of thebeyneticists. Perhaps reditive of the cyberneticist
relation to behaviorism, dynamicists tendeégect both computation and representation
(Port & van Gelder, 1995; Thelen & Smith, 1994)espite the fact that cyberneticists
had remained largely silent on this point. Well, this concern with representation and
computation may have seemed more presasg result of the dynamicist discontent
with the symbolicist paradigm. In any case, it should be clear that the rejection of
computation and representation does not ¥olimm the adoption of dynamic systems
theory as a formal means of describing thedels. So it may not be surprising that the
anti-representationalist stance of dynamicists is generally considered a poorly motivated
aspect of dynamicism (Bechtel, 1998; Eliasmith, 2G03).

There have been a number of other concerpsessed with theynamicist approach,
including (Eliasmith, 1996, 2000, 2001):
1. The ‘lumped’ parameters (i.e. paraters that somehow summarize the
underlying neural complexity) and variablie the differential equations used by
dynamicists are generally not mapped tggptal states of the system (except

5 Van Gelder (1995) is quite explicit in his rejection of representation, noting that “the
notion of representation is just the wrong sort of conceptual tool to apply” (p. 353) in
describing dynamical systems. Similarly, Van Gelder and Port (1995) state that
cognitive systems are not best understood as the result of computing over
representations: “a cognitive system is not a discrete sequential manipulation of static
representational structures” (p. 3).

6 In fact, more recent work by van Geld&899) and others also begins to back-pedal on
the earlier stricture against representation; “Dynamical models usually also incorporate
representations, but reconceive them as dynamical entities (e.g., system states, or
trajectories shaped by attractor landscagRsepresentations tend to be seen as
transient, context dependent stabilities in the midst of change, rather than as static,
context-free, permanent units” (p. 244). Nevertheless, the original nonrepresentational
ideal remains: “Interestingly, some dynamicists claim to have developed wholly
representation free models, and they conjecture that representation will turn out to play
much less of a role in cognition than tieglitionally been supposed” (ibid., p. 244).



inputs and outputs). As a result it iffidult to gain independent empirical
support for the models (e.g., there israle for/relation to neural data).

2. The exemplar dynamical system, the Wadtvernor (Tim van Gelder, 1995), is a
typical classical control system. Thigeans that the espoused methods are
classical input/output analyses, which do not account for considerations of
multiple inputs and outputs, noisaultiple loops, optimality, etc.

3. From 2., the concern arises that dynamicigill have all ofthe same problems
that behaviorism has had (e.g., difficulties explaining cognitive behaviors not
obviously linked to input states; difficultiexplaining recursiv@rocessing, etc.).
This concern is strengthened by the dynamicist rejection of internal
representation.

4. Dynamicists restrict themselves to low-dimensional dynamical systems (in an
attempt to distinguish their models fraonnectionist onegyan Gelder, 1998).
This greatly reduces the flexibility of the system, and opens the possibility that
certain natural behaviors will fall outside of the dynamicist approach.

Perhaps the most important of these limitations for this discussion is expressed by 1.
Ironically, from 1. it follows that there is no explicit link between dynamicist models and
the temporal constraints imposed on reg@rnstive systems. This is because those
temporal constraints are most obvious, and bederstood, at the level of single neurons
and small networks of neams. Since there is no mapping between dynamicist model
parameters and the physical substrate thaethmexlels are trying to explain, it is unclear

to what extent the ‘time’ in the models reflects the ‘time’ in the real system. So, while
dynamicists have inherently included ‘time’ in their models, it is unclear whether it is the
correct, biologically releva, i.e., ‘real’ time. Since there is no commitment to an

explicit mapping between ‘adel time’ and ‘real time,’ its up to each individual

modeler to choose some mapping or otherwhihtesult in the appropriate outputs. This
difficulty, of course, is reminicent of the massive slippage between cognitive model and
cognitive system that plagued the symbolicists. So, similarly, this degree of arbitrariness
is damaging to the dynamicist claim thia¢y are trying to understand “cognitive
phenomena, like so many other kinds of phemoain the natural world” (van Gelder

and Port 1995), given that they have prodide systematic relah between ‘time’ in

their explanations and real, natural, cognitive time.

As a result of the variety of difficultiementioned above, dynamicism, as a cognitive
paradigm, has become somewhat marginalized in cognitive science. Neverthless,
dynamicism has left a valuable legacy cfaarchers no longer being able to simply
ignore temporal constraints, or assume thase constraints will somehow be taken care
of after-the-fact.

7 For instance, van Gelder (1998) states: “Another noteworthy fact about these models is
that the variables they posit are not low-level (e.g., neural firing rates), but rather
macroscopic quantities at roughly the level of the cognitive performance itself” (p.

619). Similarly, van Gelder and Port (1995) note that the purpose of a dynamicist
model is to "provide ow-dimensional model that provides a scientifically tractable
description of the same qualitative dynamics as is exhibited by the high-dimensional
system (the brain)" (p. 28).



Connectionism in time

The place of time in connectionist modelingrisach more complicated than for either
symbolicism or dynamicism. This is largely because the label ‘connectionism’ applies to
a wide variety of modeling assumptions. general, a model is considered to be
connectionist if it consists @gimple computational uniteiddes) connected together in
large, usually parallel, networks. &lnits produce a numerical output based on
weighted numerical input from the othewdes to which they are connected. The
interpretations of such moldehave ranged widely, both in terms of what each unit
represents, and in terms of the kindsefwork topologies that are relevant for
understanding the mind. The models figm atemporal localist models (e.g.,

Thagard, 1992), where each node repregaststrength of a concept or sentence,
through atemporal distributed models (Eim&991), where concepts are represented by
the activity of several nodes combined(usually distributed) models whose dynamics
are of central interest (Lockeeyal., 1990). However, it is fair to say that the core of
connectionism, represented by the Ii@stwn connectionist models, is atemporal
(Gorman & Sejnowski, 198&Rumelhart & McClelland, 198&ejnowski & Rosenberg,
1986). As a result, the case can be madetkte ‘spirit’ of connectionism is not

essentially dynamical. This captures at least one concern of the ‘dynamicists’ regarding
the connectionist approach to understandiggmind (Port & van Gelder, 1995).

Nevertheless, the contrary case be made as well, albeit for a subset of connectionist
models: distributed recurrent networkshe timing of such networks is, like any
dynamical system, integral to the equatidaescribing the system. Connectionists
constructing such models do not need to weato include time in a model of cognition,
as symbolicists do. Rather, such network niedaturally incorporate time constraints.
Hence, Churchland and Sejnowski (1992)rat “A theme that will be sounded and
resounded throughout this book concerns tintetha necessity for network models to
reflect the fundamental andsential temporal nature attual nervous systems”
(Churchland & Sejnowski, 1992, p. 117) — | takes to be a supremely dynamicist
sentiment.

As a result, some connectionist modetsacly have the potential to be inherently

temporal. A connectionist network can béer all, “a dynamical system, meaning its

inputs and internal states are varying with timhé basically engaged in spatiotemporal
vector coding and time-dependent matransformations” (Churchland & Sejnowski,

1992, p. 338). The main difficulty for connemtists is not whether or not they can

include time, but whether they can do so in a way which can be informative of the
systems being studied. Totteg understand this allenge, consider éhvast literature on
attractor networks (e.g. s€aut & McClelland, 1993). Atsctor networks are recurrent
networks that, as the nameggests, evolve over time in orde exploit the existence of

state space attractors (i.e. points or sets of points that are dynamically stable). However,
theparticular length of time it takes a connectionist attractor network to settle is seldom
related to the time constraintaposed on real nervous systenfi&ather, it is determined

by how ‘big’ the time step that is chosen by the modeler happens to be (where a time step
is the length of time it takes to complete one stage in the recurrent processing). As a
result, such networks are essentially tempdmad that temporality is not linked to real



organisms, i.e. it is not liked to real time. This, of course, is the same problem that, |
have already argued, plagugynamicists and symbolitss how should ‘model time’ and
‘real time’ be systematically linked? Nevertheless, attractor networks are a useful
advance over completely atemabconnectionist networks.

It is important to note that there is amet subset of connectionist models thrat

directly constrained by observed tempguadperties of organisms. These are the so-
called ‘low-level’ connectionist modelghere the nodes are mapped one-to-one onto
real neurons. However, these kinds of lewel models are considered distinct enough
from core connectionism, that there arequiei conferences (e.g., CNS, COSYNE, etc.)
and journals (e.qg., thiournal of Computational Neuroscience, Biological Cybernetics,

etc.) that focus on these far more biologically plausible networks. Most researchers in
this domain refer to themselves as ‘congpioinal neuroscientistsor ‘theoretical
neuroscientists,” and consider what tlkeyas quite distinct from artificial neural

networks or connectiosim (although the historical and thetical relations are clear). It

is in these biologicallplausible models where real-world dynamics become an
inescapable feature of the models. It is here that there is a systematic relation between
‘model time’ and ‘real time.’” In particular, the empirically measurable time constants,
voltage and current rate changes, etcteaf neurons are explicitly included in the
models. So, as modelers begin to map coatfutal units in theimodel networks onto
computational units in biological systeifi€., neurons), and as these model units
resemble the biological units more andreyalynamics, especially the particular
dynamics of natural systems, become cruoiakxplaining network behavior. This is
hardly surprising since these modelersraver directly addressing the same phenomena
that gave rise to the dynamics ladecatoulary of neuroscientists. One way of
characterizing this importaaind unique step in understanding cognitive systems is to
realize that temporal assumptions regarding the model parametardepeadently

testable assumptions. That is, neuroscientestsgo to the system being described and
measure those parameters directly. This is not true for firing times of productions, time
courses of lumped parameters, or time steps in recurrent networks.

Unfortunately, a new problem arises for thbasogically plausible networks. If this
biological connectionism, like dynamicism asygmbolicism, is to be a paradigm for
understandingognitive systems, it is essential tosteibe how these ‘low-level

biological models relate thigh-level’ cognition. Simply including the dynamics of

neurons does not explain how or why those dyina give rise to complex, higher-level,
cognitive dynamics. In general, it is fair to say that the extent to which most such models
have included real time isqortional to the extent to which they are noncognitive.

What is missing is a systematic metHod‘growing’ extremely complex dynamical

models from these well-grounded beginnings.

Dynamic difficulties

Given the preceding discussidghseems that the history of cognitive science teaches us
three main lessons about dynamics. The fiisted most effectively by the dynamicists,
is that cognitive systems are organisms embedded in natural environments to which they



are dynamically coupled. As a result, it ighly unlikely that addressing the organism’s
cognitive behaviors independently from @onal constraints on those behaviors will
result in explanatorily fruitful theories.

The second lesson is that ‘model time’ and ‘teaé’ must be systematically related. It

is one thing to write down a diffangal equation over the variablg, ‘but it is another

thing to say how that”relates to the reat,’ observed by experimentalists. Because the
mapping between ‘nodes’ for connectionisis;parameters’ for dynamicsts, and the
underlying neural implementation is not sys&ired by either padigm, it is a mistake

to suppose that time will somehdake care of itself. Dxpite the switch in formal
theories, this problem is closely related to the mistaken assumption of symbolicists that
time is somehow indepéent of function. The differee is that for dynamicists and
connectionists the independence is more subtle. While they include ‘time’ variables in
their models, the lack of an explicit retatibetween model components and the physical
system being modeled means that it may well not be the right ‘time.’

The third and final lesson is that, even oaneexplicit mapping ls|been made between
model time and orgasin time, more work must lwne to understand truly cognitive
dynamics. This is simply a consequence of the fact that typically cognitive phenomena
are the result of complex interactions betwegllions, if not billions, of neurons. While

an explicit, systematic relation between models and physical implementation may exist at
the neuron level, to make such modelgrative requires methods for ‘growing’ this

mapping to an appropriakevel of complexity.

In the remainder of this chapter, | debera framework which shows how to resolve
these remaining difficulties (see also Eliasmith, 2003).

Dynamics and the Neural Engineering Framework (NEF)

The Neural Engineering Framework (NEF) igemeral theory of neurobiological systems
proposed in Eliasmith andnlerson (2003). The theory consists of three quantified
principles that characterizeeural representation, comptiba, and dynamics. In this
discussion, | focus on the third principle.iditstated in Eliasmith and Anderson (2003, p.
15) as:

Neural dynamics are characterized by comsid) neural representations as control
theoretic state variables. Thus, the dynarofaseurobiological systems can be analyzed
using control theory.

Though succinct, this principle makes plamw the difficulties faced by symbolicism,
connectionism, and dynamicisneaaddressed. In short, thgstematic mapping between
‘model time’ and ‘real time’ is accomplished in wviet of the fact that the representations
whose dynamics are expressed by cont@btétic equations are precisely neural
representations. This means that the various time constants of single neurons are mapped
onto appropriate time constants in model neurons. In other words, there is a one-to-one
mapping between model neurarsd modeled neurons, just as for the computational



neuroscientific subset of connectionisiowever, the NEF goes beyond standard
computational neuroscience methods by mioyg an additional suggestion for how to
write modern contraheoretic equationsver these neural representations.

Since control theoretic equations simphg sets of differential equations, as in
dynamicism, the NEF essentially integrates the biological connectionist view with the
dynamicist view of cognitive systems. The benefit is that, unlike dynamicism, the NEF
sets up a systematic mapping between ‘model time’ and ‘organism time,” and unlike
standard computational neuroscience, thé& Eplicitly describes the relation between
neuron activity and ‘higher-level’ variable§the system. So, the NEF simultaneously
suggests a method for building towards dbga dynamics, while neaining responsible

to single cell dynamics.

In addition, the kind of control theory adopted by the NEF, modern control theory,
suffers none of the limitations of the tools used by the cyberneticists. As suggested by
the dynamics principle of the NEF, modern control theory consideratdneal states of

the system (i.e., the state variables) in otdeinderstand the dynamics of the system’s
output given its input. As well, moderordrol theory provides for the analysis of

multiple input/multiple output systems and ltmle-loop systems, as well as incoporating
noise, optimality constraints, and adaptive control. In short, modern control theory is an
excellent formalism for analyzing and slyasizing real-world physical systems —

including the brain.

To better understand how this principle, amoldern control theory, is applied in the

NEF, let us consider a simple example. ©hthe most basic,ral central properties of
recurrent networks is their ability to extend network time constants far beyond the time
constants of the individual cells comprisithg network (time constants, here, measure
how long a signal takes to decay). So, fetance, if we expose a single cell to a brief
pulse (e.g., 1ms) of input cumtg there will be a more slowly decaying current in its cell
body (e.g., that lasts, say, 5ms). While thignsic current will outlast the length of the
actual input, in general it does fast much longer. Howevdf,we take an ensemble of
such cells, and connect them appropriately, we can cause a similar injection of current to
the population of neurons to béectively sustained over amelong period of time (e.qg.,
10s).

This property can be extremely computationally useful. For instance, it can cause a
population of neurons to act like a memoryc@ting information about an event that
occurred in the past. As well, it can be used to accumulate information over time,
tracking long-term changes. More generadlych a network acts as one of the basic
temporal transfer functions, integration telgration is so important for understanding
dynamical systems, that ittise basic transfer function for modern control theory. The
ubiquity of recurrent connections in theain, coupled with the ease of building
integrators with recurrent networks, and itm@ortance of integrators for implementing a
wide variety of dynamicabehaviors suggests thatunal integration may be a
fundamental neural functionndeed, the integrator has been used in models of a wide
variety of neural systems including working memory (Miteal., 2003), head direction



tracking (Zhang, 1996), eye-position contro@8g, 1996), the vestibular-ocular reflex
(Eliasmithet al., 2002), and allocentric position tracgim an environment (Conklin &
Eliasmith, 2005b).

Characterizing the precise relation between integration and any one of these specific
models would take us too farelfl, so let us consider a gee'neural integrator.” That

is, let us assume we wish to build a rewircuit which has th properties described

earlier, i.e., a circuit whose network time constant far exceeds the time constants of any
of the consitutents. Employing the NEF, first take the computational units in our

model to be single neuronshose temporal properties aretoieed to those of the neural
system we are studying. This gives tis@ variety of single cell models whose
distribution of input response functicngflects the experimentglobserved distribution

in the relevant part of the brain. These constitute the computational elements of the
model, and their dynamics are assumed to be carefully matched to the dynamics of the
neural system.

Second, it is generally observed in the bthat many different cells carry information
about a given set of internal or externalesatAs a result, we must determine how the
cells in our circuit relate to the states of drést’ to them. Again, this information can be
gathered experimentally. This is a typistdp in single cell physiology experiments,
when neuroscientists construct what thegmterm ‘tuning curves.” These curves
determine which activity stateg neurons carry information about which states of the
world (e.g., a neuron in the nucleus prepasitypoglossi is said to carry information
about eye position as reflectbd its tuning curve, which is a monotonically increasing
firing rate as a function of eye positich)it is the population-wide neural representation
of those states of the world that are coesd state variables in our control theoretic
description of the behavior of the circuit.

Third, we must express the dynamics of the circuit in control theoretic terms. Simply put,
this means writing a set of differential equations that describe the overall circuit
dynamics in terms of the state variables. dhse of a single variable neural integrator,

we can write the integration agt) = fu(t) dt, wherex is the state variable, ands the
input to the circuit. As a simple caoot structure, this can be written as
x =% = Ax(t) + Bu(t) whereA=0 andB=1. However, because neurons have intrinsic

dynamics dictated by their particular physical characteristics, we must adapt this standard
control structure to a neurally relevant oRertunately, this can b#one in the general
case (Eliasmith & Anderson, 2003).

8 Input response functions are a plot of the input current versus the resultant firing rate.
This is like an input/output response function for a cell. More precisely, these curves
have a temporal dimension as well, given dynamic single cell effects like adaptation.
For simplicity, this will be ignored in the present example.

9 Again, this is a simplification, since many neurons carry information about internal
states, or act largely in a control capacity. This simplification serves a pedagogical
purpose and does not speak to a limitation in the generality of the NEF.



Finally, we must use our characterizatadrsingle cell repremtation and circuit

dynamics to determine the comtien weights between neurons that exploit the single

cell properties to realize thefdeed control structure. The details of the analytical

methods to determine the weiglare found in Eliasmith and Anderson (2003). It is also
demonstrated there that the preceding steps can be carried out in the general case, i.e., for
linear or nonlinear control structures, ddscalars, vectors, functions, or any

combination of these under noise (seedahih (2005b) for examples of each of these

cases). There is no reason to suppose tizatitigree of generality will, in any way, be

limiting to constructing models of cognitive systems.

Even in the simple integrator circuit, we can see how the difficulties faced by past
methods are resolved. First, the dynamicsattiral systems are mapped directly onto
the dynamics of constituents of the circuit. This solves the problem faced by both
dynamicists and connectionisegarding adopting natural, realistic dynamic constraints
in their models. Second, the descriptiomof model necessarily includes time, as it is
written as a set of differential equations. Third, unlike computational neuroscientists, we
have an explicit method forleging the activities of individdaells in the circuit to
higher-level behaviors of the group of cellgy(eintegration in this case). This simple
circuit, of course, does ndemonstrate that the methadl help build traditionally
cognitive models. For this reason, in the neattson | briefly present an application of
the NEF to a more typical cognitive phenomenon.

From neurons to cognition

Fodor and Pylyshyn (1988), and more relyeddickendoff (2002), have suggested that
neurally plausible ahitectures do not naturally suppetructure-sensitive computation,
and that such computation is essentialeigplaining cognition. Notably, Fodor and
Pylyshyn (1988) in particular have furthegaed to the that extent such architectures
could be ‘forced’ into performing this kind cbmputation, they would turn out to be
‘merely’ implementations of symbolicist cognitive systems. For the purposes of this
section, | accept that struce-sensitive processingfisndamental to understanding
cognition, but show how neurally plausible atebtures can support such processing in a
non-symbolicist way. The specific modgiresent captures the context sensitive
linguistic inference exhibited by humanlgects in the Wason card task (Wason, 1966).
To do so, the model employs biologically re@tisieurons to learn the relevant structural
transformations appropriate for a given contexd generalizes such transformations to
novel contents with the sarsgntactict structure. Givendhsalient properties of the
model, | refer to it as BioSLIE (BlOlogically-plausible Structure-sensitive Learning
Inference Engine).

In the Wason task, subjects are given a caodhiti rule of the form “if P, then Q”. They

are then shown four cards. Each card egpes the satisfactiorr (oot) of condition P on

one side and the satisfaction (or not) @fdition Q on the other. The four visible card
faces show representations of "P', "Q', 'not-P’, and "not-Q'. Subjects are instructed to
select all cards which must be turned over in order to determine whether the conditional
rule is true. A vast majoritgf subjects (greater than 90%) do not give the logically



correct response (i.e., P and not-Q). Insteadnthst common answer is to select the P

and Q cards, or just the P card (Oaks#&rGhater, 1994). However, it became apparent
that performance on the task could be greatly facilitated by changing the content of the
task to be more realistic or thematic, oftgnmaking the rule a permissive one (e.qg., “if
someone is drinking alcohol théimat person is over 21”; Sperletial., 1995). To

distinguish these two version of the task, I refer to them as the 'abstract’ and ‘permissive’
versions of the task respectively. Human performance on the Wason task is an ideal
target for providing a neural model ofgrotion because it is considered a phenomena

that can only be explained loyvoking structure-sensitive processing. As a result, the

task allows BioSLIE to demonstrate its ability to generalize across structures, i.e. to be
systematic — an ability that many, including Fodor, Pylyshyn, and Jackendoff, take to be
a hallmark of cognitive systems.

The model takes advantage of the NEF, recent advances in structured vector
representations, and relevant physiological anatomical data from frontal cortices.

Since the early 1990s, there have been a sefr@sgygestions as to how to incorporate
structure-sensitive processing in modelying distributed, vector representations
(including Spatter Codes éferva, 1994); Holographic Reduced Representations (HRRs,
Plate, 1991); and Tensor Prothi(Smolensky, 1990)). Few of these approaches have
been used to build models of cognitive phenomena (although see Eliasmith & Thagard,
2001). However, none of these methods haenkemployed in a dliogically plausible
computational setting. Fortunately, the NEF can be employed to implement the
necessary nonlinear vector computations demanded by these solutions.

In particular, BioSLIE employs 100-dimensial HRR vectors tencode linguistic
structure. The details of implementiH@RRs using the NEF can be found elsewhere
(Eliasmith, 2004). In short, wean construct rules, like those needed to understand the
Wason task, using vector multiplication and addition in a biologically plausible network.
So, for instance, the rule “#@thenb,” or Implies@b), can be encoded into a single
vector:

R =relation [J implies + antecedent [] a + consequent [ b,

where each variable in this equation is a tilfiensional vector, and each such vector is
represented by neural spiking. Itiere, in constructgour repersentatioR in this
manner, that we avoid merely implementing a symbolicist system. This is because this
representational format, being a compresssslor representation, does not explicitly
include the constitutents of the represental®on the representation itself. As a result,
the representation is non-compositional, wiolg a basic constraint Fodor and Pylyshyn
(1988) place on symbolicist cognitive sysis (see Eliasmith (2005a) for further
discussion). Notably, ¢hresulting representatioR, can be transformed in various ways
to provide information about the contentdlwdt vector representation. In particuRar,

can be transformed to report any of gonstituents of the representation, or
transformations of those congtits as demanded by a given task. It is precisely such
transformations that the system must learperforming the Wason task. In short,
BioSLIE must learn how to transforRiin different contextgi.e., the permissive and
abstract contexts) to return the appropriate elements of the structura édnot b in

the permissive case, andndb in the abstract case).



Of course, to use this characterizatadrstructure-sensitive processing in an

explanatorily useful model, it is essential to suggest which anatomical structures may be
performing the relevant functions. Only therntipossible to bring to bear the additional
constraints of (and make pretions relating to) single cell physiology and functional
imaging data. Figure 1 shows how BIidE is mapped to functional anatomy.

Specifically, the network consists of: aput from ventromedial prefrontal cortex

(VMPFC) which provides familiarity, or context, information that is used to select the
appropriate trasformation (Adolph&t al., 1995); b) left languagareas which provide
representations of the rule to be examined (Partaals 1999); and c) anterior cingulate
cortex (ACC) which gives an error signal consisting of either the correct answer, or an
indication that the response was correatatr(Holroyd & Coles, 2002). The neural
populations that make up BioSLIE itself mbdght inferior frontal cortex, where

VMPFC and linguistic information is combined to select and apply the appropriate
transformation to solve the Wason taskr@dns & Osherson, 2001). It is during the
application of the transformation that learning is also presumed to occur in an associative
memory. Given this mapping to anatomy, we appeal to work in frontal cortices that
have characterized the kinds of tuning @srpyramidal cells in these areas display.

Context (x) T A
(VMPFC) : Motor areas
Assoc Determine >
Memory Response
- Correct Answer (A*)

t Response
Rule (R) Goodness
(Wernicke) Valence (V)

Right Inferior Frontal
Figure 1: Functional decomposition and anat@hmapping of the model. The letters in
bold indicate the vector signals in the model associated with the area.

To perform the needed HRR vector openasi, learning, and so on, BioSLIE further
decomposes this high-level functional mappimg neural subsystems responsible for
these tasks. The resulting set of subnetworks is shown in figure 2, which is a model that
consists of ten interconnectadural populations, for a tdtaf approximately seventeen
thousand neurons.

When run, the model is able to reproducetypical results from the Wason task under
both the abstract and permissive contemtd §hown). Simply put, this means that the
model is taught, and successfully meguces the transformation ‘if a ther-b{b, a}’ in
the abstract context, and the transformation ‘if a then{-b, a}’ in the permissive



context. So, when the context sigrsaswitched, the model applies a different
transformation, as expected. The point of namtig these results is simply to emphasize
that this is done using biologically plausbieurons in a complex neural network, not by
having a computer peform these logical transfations directly. And, while simple, this
model does show rudimentary structural $fanmations. This, however, is not enough
to support the claim that the model is struetsensitive. The obvious concern is that the
model is simply ‘memorizing’ a mappinghas seen (i.e. it isonstructing a look-up

table). If this were true, the model wouldt truly be generalizopover the appropriate
syntactic structures, asmanded by systematicity.

Figure 2: The complete network at the pa@piain level. The lower case letters indicate
populations of approximately 2000 neurons e&lgper case letters indicate the signals
being sent along the relevant projectiofse dotted boxes indicate how this diagram
relates to the functional decomposition gjuiie 1, and hence the anatomical mapping
discussed earlier.

To demonstrate that the network is trulgri@ng a language-like transformation in a
context, figure 3 shows that it does in fact generalize learned, structure-sensitive
transformations to unfamiliar contents (i.e., “if someone votes then that person is over
18”) in a familiar context (i.e., the permissive context). This demonstrates that the system
has learned a systematic syntactic regulafibat is, it can transform novel structured
representations based solely on the syntax of the representation.
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Figure 3: Generalization across different rulethm same context. Each line indicates the
value of one dimension oféhl00-dimensional vector encoded in neural spiking it the
population from figure 2. The top three simiaresults of each transformation are
shown, to demonstrate that simple thresholdesylts in the correct answer. See text for
further discussion.

Let us consider this figure in more detail. In the simulation the ‘permissive’ context

signal is kept constant and there are three separate rules that are presented to BioSLIE.
While learning is on, the rules Impliesinking-alcohol, over-21) and Impliesdriving,

over-16) along with their expected answers are presented to the network. The learning is
then turned off, and it is presented with the novel rule Imphé&sg, over-18). Notably,

since the context is the same in the novet @ssfor the previous examples, the same
transformation should be appliethdeed, BioSLIE infers thatting andnot_over-18

are the expected answers (i.e., the cards that need to be checked to ensure the rule is not
violated). In the last quarter of the sintida, no rule is presented and thus no answer is
produced (i.e., all similarity measures are very low).

This graph thus demonstrates that BioSldEystematically processing language-like
structures with biologically realistic cquatational components. As a result, not only
does it provide an explicit counterexampld-twor, Pylyshyn, and Jackendoff’'s claims,

it also demonstrates how the NEF can resatgle neuron dynamsdo the dynamics of
cognitive behavior. Admittedly, BioSLIE most directly addresses the issue of how the
appropriate representationsdatransformations for accomplishing cognitive tasks can be
understood in a neurally plausible way.ddtes not directly map on to the observed



dynamics of human performance on the Wassk (e model is much faster, although

it is appropriately cortgined by single neon dynamics). This, no doubt, is because far
more than the few brain areas modelledBmSLIE are employed by human subjects to
perform the task. Nevertheless, timing constraints on certain aspects of the task can be
inferred from BioSLIE’s performance (e.gjnimum transformadin times). And, more
importantly for this discussion, the methqasvided are generaheugh to address a

wide variety of cognitive tasks in a wayattdirectly incorpoaites underlying neuro-
dynamical constraints.

Embeddedness and the NEF

To this point | have discussed how theMielates low-level neural dynamics, with
higher-level circuit dynamics, and demonsththat it is possible to build rudimentary
cognitive systems using the NEF. Earlier, | briefly touched on the shared inspiration for
taking dynamics seriously and for bgiooncerned with the embeddedness, or
situatedness, of cognitive agents. Here | want to discuss what, if any, consequences the
NEF has for our understanding of cognitive embeddedness.

Note that for some dynamicists, taking dynes seriously means holding a fairly strong
embedded view: “In this vision, the cognitivesm is not just the encapsulated brain;
rather, since the nervous system, body, aswirenment are all constantly changing and
simultaneously influencing each other, the true cognitive system is a single unified
system embracing all three” (Tim van Gelder, 1995, p. 373). For dynamicists, then, a
distinction between the system and theayss environment becomes very difficult —
system boundaries become obscure. Dynamiaf#s claim that this result is a unique
strength of the dynamicispproach, and an accurate eflion of the true state of
cognitive systems (van Gelder and Port 1995). Similarly, those focused on the
situatedness of cognitive systems have ardibatthe traditional boundaries between an
agent and its environment, provided by $k&, are unreasonably hegemonic and that,
instead, “the mind extends into the wir(Clark & Chalmers, 2002, p. 647).

| suspect that such conclusions are misguided, and we can turn to the NEF to see why.
As discussed, the NEF adopts modern contexdmyas a means of specifying dynamics.
Control theory, as opposed to dynamic systems theory, has a number of benefits for
describing cognitive systems. First, aohtheory explicitly acknowledges system
boundaries, in virtue of identifying state vatedwith subsystems of the overall system
of interest. Second, controlebry explicitly introduces the central notion of ‘control’

and related notions such asrdrolability’. These notionkelp underwrite distinctions
between systems whose dynamics are fixeatlogrwise independent of one another.

And finally, control theory has its roots @mgineering, a discipline concerned with
implementational aspects of physical syss, including noise and other component
limitations. These concerns contrast with dynamic systems theory whose roots are in
mathematics. This is not to say that either control theory or dynamic systems theory is
somehow more mathematically powerful, buhea it is to point out that the methods

have different emphases, one of which igerappropriate for understanding physically
realized, natural, cognitive systems.



Let us consider each of the first two bitsan more detail. The importance of
acknowledging system boundaries cannot bestated when pursuing system analysis.
Decomposition of complex systems is esséfiaour understanding of such systems,
whether they be biological, ecological, econgmieteorological, or what have you. As
Bechtel and Richardson (1993) have argaigléngth, “a mechanistic explanation
identifies these [system] parts and thegaoization, showing how the behavior of the
machine is a consequence of the partsagdnization... A major part of developing a
mechanistic explanation is simply to dewéne what the components of a system are and
what they do” (p. 17-18). Blurring, shifting, or removing system boundaries, as
dynamicist and embedded agent theoristsadtivocate, is seriously detrimental to
making progress in our explanations of suchesyst This is especially true if there are
no theoretical principles for determining ieh shifting or removing of boundaries is
justified, and which is not. As a result, considering cognitive systems (constituted by
brains, body, and world) as a “single figdl system,” is both impractical and
uninformative from a scientific point of viewit in no way helps determine what the
components are. Notice that advocatirgittentity of system components does not
imply that such decompositions should het'reassembled’ for explaining certain
properties. Rather, it is the argation that to explain a large, complex system requires
identifying and explaining both its subsysteamsl their interactions. And, to do that,
those subsystems mukemselves be identified and well-understood.

This leads naturally to the second point, thatintroduction of the notion of ‘control’
helps to categorize different kinds of subsyste A typical dynamical system in control
theory consists of a plant and a controll&€he plant is a physical system whose inputs
we would like to change in order to resuliparticular outputs from that system. The
controller plays the role of producing the n&sary inputs to result in those particular
outputs. This basic distinction is one whitelps us understand the different roles brain,
body, and world play in an overall explanatmfra behaving agent in an environment.
With this distinction, we can see what iesg@l about the brain. We have fairly good
physical theories that can be used to axplhe kinetics and dynacs of bodies and of

the world. However, we have little idea how to understand the more complex dynamics
found in the brain. As a result, it is naturattmsider the brain as the controller of the
body as a plant, together acting as controlletife environment as a plant (see figure 4).
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Figure 4: Brain, body and world as codiigos and plants. Drawing such system
boundaries, and making plant/controller didfimas makes clear the differences between
subsystems and their interactions.

Our goal in understanding a cognitive sysisrno elucidate the qualitatively different
dynamics internal to the brain. The shobvious differences are the speed of
information flow (i.e., bandwidth), and tliegree and kind of coupling. Because bodies
have mass, they tend to slow down the transf@nformation to the world from the brain
(i.e., they effectively act as a low-pass filter). However, no such impediment to
information flow exists between brain areddis results in a huge difference between
the kinds of coupling that can be suppotbetiveen brain subsystems and between the
brain and the external environment. In short, interactions with the environment are
slower than intra-brain interactions. | firidather ironic, or perhaps surprising, that
researchers who endwre the importance of dynamitor understanding cognitive
function, and who argue that differenceslymamics are cognitive differences (when
confronting symbolicists; vaBGelder (1998, p. 622)), then suppose that differences in
dynamics between brain-brain and brain-wonteractions can be overlooked when
arguing for embeddedness (Clark & Chals;&002, p. 648; van Gelder, 1995, p. 373). |
think it is much better to consistently claim that differences in dynasft@sresult in
distinct properties and behavs. If we adopt that view, it becomes clear that the
suggestion that “nothing [other than theg®ence of skin] seems different” between brain-
brain and brain-world interactions (ClagkChalmers, 2002, p. 644), is plainly false.

| should note that | do not want to suggdstt determining the appropriate system
boundaries will be an easy task (nor thatapstat the skin). Indeed, it is unclear
whether or not we will be able to identify general, consistent principles for identifying
system boundaries. Nevertheless, it is esddntraalize that this is a task worth
pursuing, and that simply blurring systever boundaries, or suggesting that such
boundaries do not really exist is bad for bptactical (i.e., trying to do science) and
theoretical (i.e., appropriat®cceptual application) reasons.

Dynamics + control = cognition

It is important to take the critical consideratiaighis paper in their appropriate context.
While | have expressed serious comsawith both a dynamicism and embedded
approaches to understanding cognitive systé@msbpuld be clear that the positive view |
have espoused is highly sensitive to the corgaihich gave rise to these positions. The
NEF undeniably draws inspiration from dynigism, as it includes at its core an
acknowledgment of the importee of time for understanding natural cognitive systems.
While the NEF rejects the noncompubaiilism and antirepsentationalism of

dynamicism, it does so in a way that is consistent with dynamicist arguments against the
symbolicist treatment of time.

As well, the fundamental insights of thaaeerested in the embeddedness of cognitive
systems is not lost in the NEF. Characterizing the brain as a control system means
understanding the dynamics of its inputs andatgpling to the environment. However, |
have suggested that this dadone in such a way thaaditional distinctions between



brain, body, and world are preserved. In otherds, consideration of ecological (i.e.
‘real’) operating environments is imperatifge trying to comprehensively understand a
dynamical system interacting with that envire@mwh This is true gardless of how that
system might be broken into subsystemsfatt, there are good reasons, even dynamical
reasons, for performing a decomposition ¢stesit with traditional boundaries. It is
evidently a mistake, then, to rule out depasition merely because dffnamic coupling.
Unfortunately, this seems to have béesm tendency of those espousing the embodied,
embedded, and extended views of cognition.

In sum, the intent of the NEF is to prdeia suggestion as to how we might take
seriously many of the important insightsngeated from cognitive science: insights from
symbolicists, dynamicists, and connectionists. | have argued that it embraces realistic
neural dynamics, can help usderstand high-level cognition, and is consistent with
traditional boundaries between brain, body, anddvol suspect it is far from a complete
theory, but perhaps it is a useful start.
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