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a b s t r a c t

I argue that of the four kinds of quantitative description relevant for understanding brain function, a con-
trol theoretic approach is most appealing. This argument proceeds by comparing computational, dynam-
ical, statistical and control theoretic approaches, and identifying criteria for a good description of brain
function. These criteria include providing useful decompositions, simple state mappings, and the ability
to account for variability. The criteria are justified by their importance in providing unified accounts of
multi-level mechanisms that support intervention. Evaluation of the four kinds of description with
respect to these criteria supports the claim that control theoretic characterizations of brain function
are the kind of quantitative description we ought to provide.
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1. Introduction

This essay is structured such that each heading is a specific
claim related to quantitative descriptions of brain function. Any
subheadings under a given heading are intended to provide addi-
tional considerations or details in support of the heading. While
this does not provide for typical, smooth, reading of the paper, it
serves to make the argument clearer and can shorten reading time,
as the content of any ‘‘obviously true” heading can be skipped.

The word ‘computation’ is used in a liberal and definitional
sense. I am using the liberal sense in the title (the sense typical
of cognitive science usage, which means something like a ‘transfor-
mation of representations’). However, I am using the definitional
sense, from computational theory (i.e. Turing Machine equiva-
lence) in the remainder of the essay. I will generally replace ‘com-
putation in the brain’ in the first sense with ‘a quantitative
description of brain function’ for clarity.

In brief, the argument I present here is:

1. There are four relevant kinds of quantitative description of
brain function: computational, dynamical, statistical, and con-
trol theoretic

2. We ought to provide the best quantitative description of brain
function

3. A good description of brain function provides for simple state
mappings, and useful decompositions that account for
variability

4. A good description in the brain sciences explains by positing
mechanisms that support interventions

5. Computation theoretic descriptions do not meet these criteria
well

6. Conclusion 1: therefore, computation theoretic descriptions are
not good descriptions (from 3–5)

7. Control theoretic descriptions meet these criteria better than
any of the other alternatives

8. Therefore, control theoretic descriptions are the best descrip-
tions (from 1, 7)

9. Conclusion 2: therefore, control theoretic descriptions are the
kind of quantitative description we ought to provide (from 2, 8)

One clarification is important: conclusion 2 does not rule out
the other descriptions as useful. Rather, it suggests that other
descriptions are essentially heuristics for temporarily stating the
description. That is, ultimately, other descriptions should be
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translated into a unifying description of brain function stated with
control theoretic constructs.

2. There are four kinds of quantitative description of brain
function

I begin with some considerations regarding how quantitative
descriptions relate to physical systems in general, and then turn
to which quantitative descriptions are relevant for understanding
brain function.

2.1. Different quantitative descriptions are better for different classes
of phenomena

I do not worry about how quantitative descriptions are individ-
uated (i.e. why statistical descriptions are different from dynamical
descriptions).

2.1.1. Physical systems can have multiple quantitative descriptions
In most cases, what we identify as a physical system (e.g. a gas,

a computer chip) can be described using different quantitative
descriptions (e.g. statistical or Newtonian mechanics, computa-
tional theory or circuit theory). If we are trying to argue for the best
description of some physical system, we must have a means of
picking between these possible descriptions.

2.1.2. Quantitative descriptions have a natural class of physical
phenomena that they describe

Notably, many descriptions are of the same mathematical class
(e.g. both computational and circuit descriptions are algebraic), so
it is not their mathematical properties that distinguish them. In-
stead, it is the mapping between the mathematics and the physical
world that classifies the different kinds of quantitative descrip-
tions. So, in circuit theory, variables are measurable properties like
resistance, current, and voltage, whereas in computational theory
variables are easily distinguished system states, like low/high volt-
age, or open/closed (mechanical) gates.

In essence, this is why such descriptions are quantitative
descriptions of something: there is a defined mapping from the
description to physical states. Mappings are natural (i.e. simple,
straightforward, easy for us to understand) for the class of phenom-
ena that they are explicitly defined over (and to the extent those
definitions are specific). For instance, circuit descriptions are natu-
ral over the class of voltages, currents, and so on—they are neither
overly specific (i.e. picking out material properties) nor overly ab-
stract (i.e. picking out non-electrical properties like fluid flow).

These considerations result in the unsurprising conclusion that
quantitative descriptions are natural for the class of physical sys-
tems that they are explicitly defined to be descriptions of.

2.1.3. Quantitative descriptions are implementation independent, but
to differing degrees

As is again evident from the computation versus circuit descrip-
tions, some quantitative descriptions (e.g. circuit theory) apply
only to a subclass of others (e.g. computational theory). As a result,
computational theory is more implementation independent than
circuit theory. Notice also that circuit theory is independent of
many specific material properties of potential circuit elements,
for which chemical descriptions may be most natural.

2.1.4. The goodness of a description varies depending on the
phenomena of interest

I have more to say on what constitutes a good description in
Section 3. These considerations can be preliminary given an agreed
characterization of goodness.

If the agreed notion of goodness is partly psychological (e.g. re-
lies on simplicity), and the natural class for a description is too (e.g.
also relying on simplicity), then the goodness of a description will
vary depending on the natural class of phenomena in question. A
description will be best for the phenomena which fall most directly
in its natural class.

Just to be clear, this principle does not result in unbridled rela-
tivism: so long as we have a consistent measure of goodness across
all phenomena, there will be one description which is best for a gi-
ven class.

2.2. There are four kinds of quantitative description relevant to brain
function

Here, I briefly describe each approach, indicate the class of sys-
tems it is most natural for, and describe its type of implementation
independence.

2.2.1. Computational
Computational descriptions adopt computational theory, which

characterizes systems using Turing languages. Such languages are
able to describe any Turing Machine (TM) computable function. I
take this to have historically been the dominant approach in cogni-
tive science.

2.2.1.1. The natural physical phenomena for computational descrip-
tions are those that are easily discretizable. What I have called Tur-
ing languages assume a mapping between the description in the
language and distinct physical states. The paradigm case of this
is the high/low voltages of silicon transistors mapped to 1s and
0s in the description. In general, any physical system that has eas-
ily distinguished (i.e. discrete in both space and time) states can be
well-described by such languages. Often such systems are
engineered.

2.2.1.2. Computational descriptions are highly implementation inde-
pendent. Turing Machines are a powerful computational descrip-
tion precisely because they are completely implementation
independent. Much has been made of this by functionalists in cog-
nitive science. Notably, this independence means that certainty of
the state value is generally assumed (i.e. that it is either 1 or 0). In
short, randomness or noise is typically ignored.

2.2.2. Dynamical
Dynamical systems theory, as a mathematical theory, is extre-

mely general (and arguably equivalent to control theory). How-
ever, in the context of cognitive systems, a number of
researchers have championed the ‘dynamical systems theory of
mind’, which I refer to as DST. DST uses the mathematical theory
but adds additional assumptions when applying it to cognitive sys-
tems. Given the equivalence between the mathematical theory of
dynamical systems and control descriptions, I will discuss DST un-
less otherwise noted.

2.2.2.1. The natural physical phenomena for DST dynamical descrip-
tions are simple phenomena governed by physical laws. Simplicity is
a stated assumption of DST theorists in cognitive science: van Gel-
der & Port (1995) argue that DST theorists must ‘provide a low-
dimensional model that provides a scientifically tractable descrip-
tion of the same qualitative dynamics as is exhibited by the
high-dimensional system (the brain)’ (ibid., p. 35). This constraint
of low-dimensionality is a severe one, and limits the complexity
of such descriptions to simple systems. However, such systems,
being continuous, are strictly speaking more computationally pow-
erful than TMs.
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2.2.2.2. DST dynamical descriptions are implementation indepen-
dent. In DST, the low-dimensional descriptions are implementa-
tion independent, because they rely on ‘lumped parameters’.
Such parameters are high-level, non-physical parameters neces-
sary to match dynamics, generally uninformed by implementation-
al constraints.

2.2.3. Statistical
Statistical descriptions describe the probability of various mea-

surable states of the system given other known states of the sys-
tem. Such models usually have as their central goal the
prediction of data.

2.2.3.1. The natural physical phenomena for statistical descriptions are
complex phenomena with unknown mechanisms. Complex systems,
in virtue of their complexity, often have many unknown or unde-
scribed interactions between system components. As a result,
known initial conditions often map to a wide variety of subsequent
states. Statistical models are ideal for describing systems of this
kind when prediction is of the utmost importance (e.g. in data
analysis). Notably, this method, which avoids explicitly positing
mechanisms, typically has the cost of making novel interventions
difficult to predict.

2.2.3.2. Statistical descriptions are highly implementation indepen-
dent. Statistical models focus on describing the regularities in the
data and hence are silent with respect to the particular physical
implementation. In essence, these descriptions would not
change if the implementation changes and statistical properties
do not. Another way of describing this feature of statistical models
is by noting that the model is often highly specific to a given data
set. This is consistent with implementation independence
because although implementation and the values of measured sys-
tem states (data) are usually tightly coupled, they do not have to
be.

2.2.4. Control theoretic
Control theoretic descriptions describe the dynamics of a sys-

tem through its state space. Usually, the notions of ‘controller’
and ‘plant’ are used to describe the system.

2.2.4.1. The natural physical phenomena for control theoretic descrip-
tions are those with directed dynamics. Because of the distinction
between plants and controllers, control theoretic descriptions
typically apply to systems in which one part of the system
directs the dynamics of another part of the system. Control the-
ory uses the general tools of mathematical dynamical systems
theory.

2.2.4.2. Control theoretic descriptions vary between implementation
independent and implementation specific. Standard (i.e. general
mathematical) dynamical analyses are performed in a manner
which tends to remove the physical uniqueness of the problem
(e.g. through non-dimensionalization, and using normal form anal-
ysis). In this respect, many such descriptions are intentionally
implementation independent. Nevertheless, they are so by design,
not by the nature of the description. The original equations, which
are often parametrically tied to specific physical instantiations (e.g.
a mechanical circuit, or a circuit in silicon, etc.), can also be used as
a system description. In such cases, the description is highly imple-
mentation specific.

Thus, control theory can describe implementation independent
controllers, while at the same time being able to describe
particular implementations of those controllers in a given
medium.

2.3. Some of these quantitative descriptions are strictly equivalent

2.3.1. Control theoretic descriptions are equivalent to dynamical and
statistical descriptions

This is no more than the mathematical observation that all of
these approaches employ methods defined over the reals, and have
no evident restrictions on the functions that they can compute in
that domain (the restriction of unity integrals on statistical
descriptions is not serious as it still leaves an uncountable number
of functions). This makes all of these descriptions strictly more
powerful than TMs.

2.3.2. Computational descriptions are strictly weaker than the other
options

TM languages are strictly weaker than those defined over the
continuum (Siegelmann, 1995). Finite state automata (FSAs) are
weaker still.

2.3.3. Brain function can be described by any of these candidates
As I have argued in detail elsewhere (Eliasmith, 2000), given the

ubiquitous presence of noise in the brain, only a finite amount of
information can be passed between the outside world and brain
states, or between brain states. As a result, TMs are sufficient for
describing the information processing properties of the brain. In
fact, FSAs are also sufficient, as the difference between FSAs and
TMs is that TMs have infinite resources (tape and time). Brains
clearly do not share that luxury. So, FSAs can describe all brain-
computable functions.

Since FSAs can describe all brain-computable functions, and
since all of the considered descriptions are strictly more powerful
than FSAs, all of the considered descriptions can describe brain
function. Hence, brain function is the kind of phenomena that
has multiple descriptions (see Sect. 2.1.1), so we must turn to other
criteria to determine which is the best.

2.4. There are no other relevant candidates

There are no other candidates for two reasons: (1) possible can-
didates are equivalent to those that have been discussed; or (2)
possible candidates have not been shown to be generally useful
in the description of cognitive systems. Examples of the first type
are most logics (equivalent to computational descriptions) and
quantum theory (equivalent to continuous descriptions). Examples
of the second type include quantum theory (despite the supposed
theories of consciousness, no quantum explanations of cognitive
system function for even simple tasks have been offered) and hy-
brid descriptions. I am not aware of serious, non-interim, hybrid
descriptions of cognitive systems. In general, hybrid descriptions
are temporary because they violate the assumption that a general
description should be unified. Detailed discussion of the justifica-
tion of placing weight on unification is beyond the scope of this pa-
per. Suffice to note that if this is not assumed, a set of non-arbitrary
rules for determining when to use which (sub)description of the
hybrid must be offered. I assume throughout that unification is a
defining feature of a good description.

A related concern is that perhaps different descriptions are
applicable at different ‘levels’ of explanation. So while no one the-
ory is hybrid, our over-arching theory of cognition will involve very
different kinds of characterization, depending on the explanation of
interest. There are a number of ways to allay this concern. First, any
commitment to a multiple levels view must be clear on what we
mean by ‘levels’, and also systematically determine when one
should switch descriptive levels. My suspicion is that such an ap-
proach is unlikely to meet with success. A more satisfying approach
is to determine how a unified description can relate these intuitive
levels to one another. Second, it is perfectly reasonable to introduce
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simplifying assumptions within a theory if those assumptions are
taken to be appropriate in a particular kind of explanation. This is
what happens, perhaps, when we employ Newtonian mechanics,
with the knowledge that it is not as accurate as Einsteinian mechan-
ics. Nevertheless, such simplification is justified only insofar as we
know how to relate the simplified and the more accurate descrip-
tions. I take it that an analogous constraint should apply to cogni-
tive theories. This is something that I do not consider in detail
here, but I am confident that the cited examples suggest that con-
trol theory is amenable to this kind of incorporation of simplifying
assumptions across a wide variety of ‘levels’.

It is worth repeating that these considerations do not rule out
interesting descriptions that are not control theoretic. Perhaps,
for instance, a computational decomposition at a high-level gets
something essentially right about cognitive systems. The point is
that such isolated successes are not sufficient for adopting that
mode of description in general. Such descriptions should be re-
placed, if possible, by descriptions that do not isolate their suc-
cesses, but apply widely. Much of the argument below suggests
that control theoretic descriptions are in the best position to real-
ize that possibility—and the specific examples suggest such control
theoretic descriptions, to some extent, already have.

3. A good description of brain function provides for simple state
mappings and decompositions, and accounts for variability

Because each of the considered quantitative descriptions is both
general and sufficiently powerful enough to describe brain func-
tion, we must adjudicate their applicability by other criteria. Here
I argue for several criteria that constitute a good description of
brain function. This is not intended to be ‘good in all possible
senses’ (see Sect. 4.3), but rather ‘good for successful cognitive sci-
entific theories’.

3.1. A good description provides a simple mapping from data to
description states

In order for a description to be useful, it must be practical to
map between the empirical data and the states identified by the
description. The simpler such a mapping is, the better (because
more practical) the description becomes. The mapping is more
practical because it is evident how new information can be inte-
grated with, or challenges, the currently accepted description.

If it is difficult, or impossible, to determine how new evidence
bears on a quantitative theoretical description, then that quantita-
tive theoretical description itself is deficient. This property, of
course, is to be evaluated relative to the merits of rival quantitative
theories.

3.2. A good description provides a clear decomposition of the system

Ideally, a quantitative description should act as a guide to
decomposing the system. Because of the complexity of neural sys-
tems, decomposition is an essential explanatory strategy (Bechtel
& Richardson, 1993). The more specific and effective the decompo-
sition for explanatory progress, the better the description.

3.3. A good description accounts for variability

If the type of system to which the description applies is a highly
variable class (as is the case of neural systems), then descriptions
able to explicitly incorporate this variability will be better than
those that do not. Characterizing the precise form and effect of
the variability is crucial in the case of complex systems, which gen-
erally have significant amounts of unexplained (sometimes unex-

plainable) behaviour. In addition, the precise nature of the
variability can be highly sensitive to implementational constraints.
Thus, descriptions sensitive to implementation are often better
able to explain the relevant variability than those that are not.

4. A good description explains by positing mechanisms that
support interventions

A good description is one that satisfies scientific goals. In cogni-
tive and brain science, I take those goals to include explanation,
prediction, and identification of mechanisms in order to reproduce
and intervene in the complex behaviours of neurobiological sys-
tems. A good descriptive strategy will be applicable at many levels
of grain and be able to relate (i.e. unify) the relevant levels.

4.1. Cognitive science aims at explaining and predicting behaviour

Cognitive science has a focus on explaining the underpinnings
of behaviour. While the appropriate level at which such a descrip-
tion needs to be given has been a matter of much debate, the aim
itself has not been. As a result, any good description must be both
explanatory and predictive of behaviour.

4.2. Explanatory means mechanistic

In the case of cognitive and brain sciences, useful explanations
are those that appeal to subpersonal mechanisms. This is because it
is precisely such explanations which provide a basis for both inter-
vention in behaviour and the artificial reproduction of those
behaviours. These mechanisms must be specific enough to allow
for intervention. That is, the mechanisms must be specified in a
way that relates to the measurable and manipulable properties of
the system.

4.3. There are other definitions of ‘good’

Sections 3 and 4 are the antecedent of a conditional. That is, if
we take good descriptions to be of this nature, then we ought to
employ control theoretical descriptions of brain function. As such,
there is no need to defend this as the best or only definition of
‘good’; and I do not intend to. Like any argument, the conclusion
is sound insofar as the antecedent is taken to be true. Hopefully
however, this definition of ‘good’ is plain enough to be generally
acceptable.

5. Computational descriptions do not satisfy these criteria well

Here I evaluate computational descriptions with respect to the
previous criteria for goodness of quantitative description of brain
function. I suggest that computational descriptions are not espe-
cially good. This is only relevant if there is a better description.
In section 6, I argue that control theoretic descriptions are better.

5.1. Mappings from data to computational states is complex

5.1.1. Single cell models are more simply described as dynamical
systems

In short, this is because the brain does not functionally discret-
ize well. The earliest attempts to suggest possible discretizations
include the McCulloch & Pitts (1943) model of the single cell. Their
mapping between logic gates and neurons was not intended to be
physiologically plausible, and it clearly is not. There have not been
other serious attempts to do so.

Perhaps the reason why is that, even if a state table were
available for a neuron, it would not be informative as to the nat-
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ure of the biological mechanisms that underpin that table. While
the information transfer characteristics of neurons suggests that
about 1–3 bits of information are transferred per action potential
(Rieke et al., 1997), the relationship between input and output
bits is not naturally described by a model with discrete states
and logic-like transitions. Instead, the simplest neuron models
take the form of dynamical descriptions (which can be ‘trans-
lated’ into computational ones, but become much more complex
in so doing). These descriptions have variables and parameters
that map directly onto the physical properties of single cells, such
as cell membrane capacitance, membrane resistance, and ion
flux.

5.1.2. Neural methods do not provide easily discretized data sets
When we turn to kinds of experimental data other than single

cell spike trains, be it measured electrical properties of individual
cells, or large portions of cortex (EEG, fMRI, MEG), or observable
motor behaviour, the problem seems worse. All of these types
of data are generally analyzed as continuous signals; discretiza-
tions are simply not apparent. For instance, EEG and similar
methods of measuring brain function are analyzed as continuous
signals using spectral and temporal decompositions of various
kinds.

Another candidate for discretized states is linguistic behaviour.
There are two problems with this candidate: (1) language has
many ‘continuous’ kinds of phenomena in addition to words
(which are finite), captured by prosody, pragmatics, and so on;
(2) descriptions cast at the linguistic level do not provide the kinds
of mechanistic descriptions demanded from useful explanations in
cognitive science. Many such explanations seem to demand refer-
ence to ‘sub-personal’, non-linguistic, states, and this takes us out-
side the domain of linguistic behaviour.

In both cases, lack of apparent natural discretizations makes for
lack of apparently TM-like state transitions. Hence, the underlying
mechanisms are unlikely to be compactly described by TMs.

5.2. Computational decompositions are not applicable to brains

5.2.1. Computational architectures do not provide useful
decompositions

Computational descriptions would be useful if they imply a par-
ticular, good, way to decompose the system. TM theory provides
the distinction between a tape (input/output) and the transition ta-
ble, but this not useful for decomposing brain function. We must
turn to other possible computational architectures for such
suggestions.

The most widespread computational decomposition is the von
Neumann architecture. However, this architecture assumes that
programs, describing the function of the system, are treated iden-
tically to the data on which such programs operate. As a result,
such programs can be moved from memory to the CPU and back
again. Brains do not share this flexibility. Memory and programs/
function are tightly intermixed, as in a typical connectionist net-
work. Despite some early attempts to map a von Neumann-like
architecture to psychological descriptions of cognitive function
(Atkinson & Shiffrin, 1968), the mapping has not proven useful.
The cortex is not divisible into ‘memory’ and ‘processor’ as von
Neumann architectures are.

It has been suggested that brains are parallel computers. How-
ever, parallel architectures exploit the same flexible memory usage,
and so suffer from the same inability to map simply to brains.

5.3. Computational descriptions do not account for variability

Computational theory was developed in the context of ideal,
non-stochastic, state transitions and easily identifiable states. Dig-

ital computers are carefully engineered to respect these assump-
tions, and this makes their behaviour predictable and repeatable.
While there are recent developments that address the effects of
stochasticity on computable functions, and it has been shown that
this does not affect the computational power of the system, such
extensions to TMs have not informed the construction of comput-
ers. As a result, typical computational descriptions do not account
for variability in the systems they describe.

When describing real physical systems, variability—in short,
noise—is inescapable. Brains are no exception to this rule. The
implementation independent nature of computational descriptions
should make it unsurprising that they tend to be insensitive to
implementational issues like noise.

5.4. Computational descriptions do not satisfy the criteria

Given the previous considerations, it should be clear that com-
putational descriptions do not satisfy the criteria for being good
descriptions. Computational descriptions do not provide useful
mechanistic explanations and predictions of neurobiological
behaviour. This is because computational descriptions do not iden-
tify appropriate kinds of mechanisms to support intervention,
which is a consequence of their failure to meet the criteria de-
scribed in Sections 5.1–5.3. That is, if a description fails to (1) help
decompose the system and (2) capture data through simple mech-
anisms (relative to its competitors), then that description cannot
be used for prediction and intervention. Hence, it is not good (or,
more accurately, not as good as its competitors).

I should note that past successes of computational descriptions
(e.g. ACT-R, SOAR, etc.) do not belie this conclusion. The claim at
issue is that models relying on computational descriptions cannot
provide the unity to the descriptions of cognitive phenomena that
are ultimately of interest. Computational descriptions identify
some mechanisms and interventions, but their descriptive assump-
tions do not capture the broad class of mechanisms and interven-
tions of interest to cognitive scientists in general.

5.5. Aside: brains are ‘computers’ in some ways

Notably, it would be misleading to say that computational
descriptions do not apply to brains, full stop—and this is not what
I claim. To clarify this point, in this section I show how brains fall
under computational descriptions without affecting my conclusion
that such descriptions are not the best quantitative models for cog-
nitive science.

5.5.1. Brains have TM descriptions
Given previous considerations regarding noise, it is reasonable

to claim that there is some TM description of brain function. Fur-
thermore, like all finite physical implementations of TMs, brains
will not be universal TMs. They will only be as computationally
powerful as FSAs.

5.5.2. This result is uninteresting both theoretically and practically
5.5.2.1. Theoretically, because of Kolmogorov. Kolmogorov has
shown that two implementations of a given TM cannot be usefully
considered equivalent unless they are almost identical (or unless
one can assume infinite strings). As a result, identifying a TM that
is implemented by the brain does not tell you how to reproduce
the described function in another implementational setting (Le
Cun & Denker, 1992).

5.5.2.2. Practically, because such descriptions are too easy. As Searle
has pointed out at some length (Searle, 1990), TM descriptions of
physical systems are ubiquitous (he suggests Microsoft Word is
implemented by a wall). Searle’s point is a little misleading: it is
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typically very difficult to figure out how to map states from a TM
description of Word to microphysical states of a wall in the appro-
priate way. However, when we do not know which function is
being computed, as in the case of the brain, we do not have any
useful constraints on how to construct the TM description (i.e.
we do not have a TM description ready that we have to map to
the brain). As a result, it becomes extremely easy to come up with
some mapping or other. We have no reason to believe that such
mappings are good, relevant, or in any way interesting.

5.5.3. Continuity is irrelevant to the goodness of quantitative
descriptions

A number of authors have suggested that continuity is feature
of brains that fundamentally distinguishes them from Turing Ma-
chines (see e.g. Churchland, 1995; van Gelder, 1998; Piccinini,
2008). In fact, it has been shown that analog computers are theo-
retically more powerful that TMs (Siegelmann, 1995). However,
this result relies on such a computer having complete access to
the real number line. Real world machines, however, do not have
such access if there is any expectation of computationally irrele-
vant disturbance (i.e. noise, no matter how small).

In summary, there is no use arguing over whether or not there is
some TM description of brain function—there is. However, what we
are really interested in is whether it is a good description.

6. Control theoretic descriptions are good descriptions

Here, I argue that control theoretic descriptions are good
descriptions of brain function at many scales. Specifically, I
consider descriptions of single neurons and networks of single
neurons, up to and including those responsible for linguistic
behaviour.

6.1. Control descriptions provide simple mappings from data to control
theory states

By far the best mechanistic description we currently have of
single neural cells is as non-linear electrical circuits. The circuits
are naturally described by non-linear systems theory, the main
mathematical tool of control theory. As a result, control theoretic
states are widely accepted as the simplest, most powerful, descrip-
tions of single neuron behaviour.

As we compose single cells into larger networks, it is useful to
adopt the language of representation and computation. Eliasmith
& Anderson (2003) propose the Neural Engineering Framework
(NEF), a detailed theory of how neural systems can be under-
stood. I will not review here the three central principles of this
approach, but I will note the following: the third principle pro-
vides a direct mapping from the single cell data collected by neu-
rophysiologists to control theory. This mapping consists of a
nonlinear encoding, determined directly from the data, and linear
decoding that is optimal and mapped directly to the neurophysi-
ology. This low-level neurophysiological mapping allows for pre-
diction of single cell and aggregate data. In short, the mapping is
simple between many kinds of neural data and control theoretic
states.

These methods have been successfully applied in a wide variety
of models, including the barn owl auditory system (Fischer, 2005),
the rodent navigation system (Conklin & Eliasmith, 2005), escape
and swimming control in zebrafish (Kuo & Eliasmith, 2005), work-
ing memory systems (Singh & Eliasmith, 2006), the translational
vestibular ocular reflex in monkeys (Eliasmith et al., 2002), and
context sensitive linguistic inference (Eliasmith, 2005). This variety
suggests the mapping is a useful one for positing and testing gen-
eral neural mechanisms.

6.2. Control descriptions provide a useful decomposition

6.2.1. Control descriptions distinguish plants and controllers
The central decomposition employed by control descriptions is

between a controller and a plant. While both are described by
dynamical systems theory, the controller is taken to be a part of
the system that varies the input to a plant in order to achieve a de-
sired state (provided to the controller).

6.2.2. Motor and perceptual systems decompose well as controllers and
plants

Peripheral neural motor systems act like the controller for the
body as plant. That is, peripheral motor systems determine the de-
tails of muscle contractions given higher level specifications of mo-
tor actions. More precisely, there is evidence for a hierarchy of such
interactions in the motor system (Grafton & Hamilton, 2007). Thus,
this decomposition maps in a straightforward way onto our cur-
rent understanding of motor control. In addition, in closed-loop
control, controllers are assumed to have sensors that feedback
the state of the plant, allowing the controller to be more sophisti-
cated. This fits well with the role of the many perceptual systems
found in the brain. These systems can be naturally thought of as
similarly organized (though dual) to the motor hierarchy (Todorov,
2007).

6.2.3. Neural systems are appropriately described as (hierarchical)
directed dynamical systems

As a result, the control theory method for decomposing systems
is useful for understanding the kinds of hierarchies observed in the
brain. A nested control theoretic description of plant dynamics di-
rected by feedback controllers, at least in broad outline, seems
appropriate to describing neural function. Furthermore, this
decomposition does justice to the massively interconnected nature
of perceptual and motor systems. We cannot yet be certain of the
most appropriate decomposition of neural systems, but prelimin-
ary evidence at least suggests that ideas from control theory may
help provide just such a decomposition.

6.3. Control descriptions incorporate variability

Control theory was developed to describe physical systems. As a
result, it accommodates noise: optimizing controllers in the face of
noise is a long-standing part of control theory. Both the analytic
and synthetic aspects of control theory naturally deal with vari-
ability. This suggests that such descriptions are appropriate for
noisy systems like the brain. Notably, the NEF has noise as a core
concern, and has been used to quantify in detail the relationship
between noise (and other variability) and neural properties (Elia-
smith & Anderson, 2003).

7. Control theoretic descriptions are the best quantitative
descriptions

This section is dedicated to a brief comparison of control theo-
retic descriptions with the rival candidates.

7.1. Comparison to computational descriptions

Compared to computational descriptions, control theoretic
descriptions unify our description of phenomena of interest to cog-
nitive science. For instance, working memory and navigation are
typical ‘cognitive’ phenomena. Locomotion and reflexes are more
typically ‘sensory-motor’ phenomena. Control theory applies to
both. And, to allay concerns that such descriptions do not apply
to ‘higher’ cognitive phenomena, the BioSLIE model presented in
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Eliasmith (2005) proves the utility of control theoretic descriptions
to higher linguistic and inference tasks. The BioSLIE model demon-
strates syntactic generalization, and makes predictions regarding
learning history and response times in a cognitive task (the Wason
card task). The details of this approach are beyond the scope of the
present discussion (see Stewart & Eliasmith, in press, for a
description).

Thus, while computational descriptions perform poorly as neu-
ron level descriptions, control theoretic descriptions do well at
both the neuron level and the cognitive level. It is not simply the
case that control theory as discussed here is more specific than riv-
al computational descriptions. For instance, consider Newell’s
SOAR architecture, which is specific, but clearly suffers from the
same decomposition difficulties. One does not need to go into
the details of SOAR’s computational description to see why the
decomposition is a poor one. The distinction between program
and memory and the lack of a systematic relationship to neural
hardware already suggest (despite the additional specificity) that
SOAR will fail given our stated criteria. This is not to deny the suc-
cesses of SOAR, rather it is to suggest that, in the long run, those
successes will not withstand deeper theoretical failings.

In sum, control theoretic descriptions more effectively meet the
criteria for good quantitative descriptions of neural systems than
computational descriptions.

These differences arise in large part due to the fact that compu-
tational theory is designed to be implementation independent,
whereas control theory is designed to be implementation sensitive.
The physical systems that computational theory best applies to are
carefully engineered. The physical systems analyzed using control
theory need not be. The brain, of course, falls into this latter cate-
gory. Hence, it should not be surprising that control theory is in a
better position to describe neural mechanisms in a manner useful
to cognitive science than the descriptions offered by computational
theory.

7.2. Comparison to dynamical descriptions

7.2.1. DST dynamics are divorced from implementation
A consequence of the DST insistence on the use of lumped

parameters is that such models become extremely difficult to con-
firm or disconfirm in light of the vast majority of neural data. There
is no standard way to map lumped parameters to physically
manipulable parameters of the system (usually only observable
behaviour is mapped to the model). As a result, there are no con-
straints on what might or might not be ‘lumped’ in such models.
Hence no standard decomposition strategy is available.

Moreover, such a mapping is rarely offered for specific DST mod-
els, hence the mechanisms underwriting the observed dynamics in
such models are not only ad hoc, but obscure. Therefore, despite
sharing a mathematical heritage with control theory, DST descrip-
tions are not as appropriate for description of cognitive systems.

7.2.2. Mechanisms are abstract
A related consequence of DST’s treatment of lumped parame-

ters is that the mechanisms described by DST are highly abstract.
That is, to the extent there are mechanisms, there is no mapping
from those mechanisms to the internal physical states of the sys-
tem. Hence, methods of interacting with the system are not evi-
dent from such models. Without being able to predict the effects
of interventions, the models become less useful to the brain
sciences.

7.3. Comparison to statistical descriptions

Statistical descriptions are probably less familiar to philoso-
phers of science and philosophers of mind than the other compet-

itors. For that reason, let us briefly consider an example of a
statistical model for explaining behaviour. Often, the perceived
motion of an object is influenced by surrounding information
(e.g. contrast). This effect, called the ‘Thompson effect’ (which ex-
plains why people tend to drive faster in the fog), was the target of
a modelling effort by Stocker & Simoncelli (2006). In this work,
they developed a method for determining the nature of the bias
that leads people to sometimes make mistaken judgments about
motion. Essentially, they derived a method for determining what
individual’s prior probability was for velocities based on their per-
formance on a behavioural experiment. Stocker and Simoncelli
then demonstrated that this inferred prior did a good job of pre-
dicting the subject’s performance under a wide variety of motion
estimation tasks. Although this model is very good at predicting
the subject’s performance, it has little to say about the mechanism
underlying that performance.

7.3.1. Statistical descriptions do not provide decompositions or
mechanisms

The implementation independence of statistical descriptions
has similar consequences for statistical descriptions as it has for
computational ones, though for slightly different reasons. Statisti-
cal descriptions have a clear mapping to the empirical data, as they
are usually direct descriptions of the properties of the data. How-
ever, such a mapping can vary from experiment to experiment,
making the mappings not systematic, and hence failing to suggest
underlying mechanisms. Indeed, statistical descriptions are often
employed exactly when the operating mechanisms are least clear.

Statistical descriptions do not provide any suggested decompo-
sitions either. Statistical models typically adopt any decomposition
assumptions as part of the methods used to collect the data. They
themselves they do not derive such decompositions, as one might
wish.

7.3.2. Statistical descriptions are predictive but not explanatory
The ‘data-focused’ nature of statistical models is both their

strength and their weakness. Because statistical descriptions are
most concerned with capturing regularities in the data, they are of-
ten very useful for prediction. This is appropriate for some pur-
poses, but it does not suit what I take to be the main goal of
cognitive science: explaining how neural systems work. As dis-
cussed in Section 3.1, without knowledge of mechanisms, descrip-
tions would not be explanatory: they would not support
intervention, and hence not be useful.

8. If we want a good description of brain function, we ought to
adopt a control theoretic approach

How we ought to understand computation in the brain is not as
computational theory would demand. Instead, if we let pragmatic
considerations drive our descriptions (as we ought, otherwise we
cannot choose), control theoretic descriptions are most promising
for advancing our understanding of neural systems.

Recall the clarification above: this conclusion does not rule out
other descriptions of brain function from qualifying as useful.
Rather, it suggests that the other descriptions are ultimately heu-
ristics, stepping stones, along the way to stating the description
in a control theoretic manner. Often there are equivalent formula-
tions of a given model within different approaches. However, con-
trol theory should be primary in this case: it stands the best chance
of providing good, useful, unified descriptions of brain function.
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