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Abstract

There are currently a number of models that use spiking neurons in recurrent net-
works to encode a stable Gaussian ‘bump’ of activation. These models successfully
capture some behaviors of various neural systems (e.g., storing a single spatial location
in parietal cortex). We extend this previous work by showing how to construct and ana-
lyze realistic spiking networks that encode smooth n-dimensional functions drawn from
a finite functional space. These new networks can capture additional experimentally
observed behavior (e.g., storing multiple spatial locations at the same time).

1 Introduction
Stable Gaussian shaped neuronal activities across a population of recurrently connected
neurons without external perturbation, or stable ‘bumps’, have been successfully mod-
eled by a number of researchers [8, 7, 6]. Bumps have been thought to be present in
various neural systems including the head direction system [5], frontal working memory
systems [8], parietal reach memory systems [4], and feature selective visual systems [3].
Many of these systems can store functions more complicated than a simple Gaussian
bump. For example, there is evidence that parietal areas can hold multiple saccade
targets in memory at the same time, suggesting that a multi-modal function is stored
[2].

In this paper, we extend previous work on single bump networks by showing how to
construct and analyze realistic spiking networks that can encode smooth n-dimensional
functions drawn from a finite functional space. We begin our analysis with a one-
dimensional network of simple rate-modeled neurons. We then show how it is possible
to generate useful analytical results about this simple network. We discuss important
extensions to the model, including how to implement the model in a spiking net-
work (e.g., using integrate-and-fire neurons), and how to construct higher dimensional
models. Notably, the approach we employ is a general one which can be applied to
constructing and analyzing many different kinds of neural circuits [9, 10].

2 A simple rate model
We begin by representing the space of functions to be stored, f(x), as a standard basis
expansion:

f(x) =
D

∑

n=1

Anχn(x). (1)

An = 〈χnf〉 , (2)
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where 〈χnf〉 =
∫

χn(x)f(x)dx.
We choose a finite number, D, of orthonormal basis functions, χn(x), to define the

functional space. In our simulations, the functional space is constrained to have low
spatial frequencies, resulting in smooth functions.

Next, we assume that the neurons form a highly overcomplete representation of this
same functional space. The encoding functions for this representation are taken to be
the neuron response functions:

ai(x) = Fi

[〈

φ̂if
〉]

. (3)

f(x) =
N

∑

i

aiφi(x) (4)

Thus, the ai are the neuron firing rates and must be positive. In order enforce this
constraint, the firing rates are determined by passing the encoding process through a
nonlinearity, Fi (e.g., rectification).

We find the decoding functions in the neuron space, φi(x), by minimizing the error
between the two representations (i.e., the neuron space and orthonormal representa-
tions):

E =

〈

∫

[

∑

n
Anχn(x)−

∑

i

aiφi(x)

]2

dx

〉

An

. (5)

We express the neuron decoding functions as a linear sum of orthonormal basis func-
tions, φi(x) =

∑

j kijχj(x), in order to ensure that they encode the same functional
space. Minimizing the error in (5) gives:

φi(x) = Γ−1
in χn(x), (6)

where Γin =
〈

φ̂iχn

〉

.
To store the function f(x), we must ensure that the dynamics are stable. That is,

we want to find weights that force the network to decode the same function it encodes
from time step to time step. To facilitate analysis, we ignore the nonlinearity of the
neuron response function in (3). This is justified because the functional space we are
representing is positive definite. So, the weights needed to give stable dynamics can be
found as follows:

an+1
i =

〈

φ̂ifn
〉

(7)

=
∑

j

an
j

〈

φ̂iφj

〉

=
∑

j

wijan
j . (8)

The weights, in this case, are the projection of the encoding functions onto the decoding
functions.

Notably, we can further analyze the dynamics of this network by finding the deriva-
tives in the orthonormal space:

Ak+1
n =

〈

χnfk
〉

(9)

=
∑

i

γinFi[
∑

m
ΓimAk

m], (10)
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where γin = 〈χnφi〉.

dAk+1
n

dAk
m

=
∑

i

γin
dFi[ξ]

dξ
dξ

dAk
m

=
∑

i

γin
dFi[ξ]

dξ
Γim ≈ δnm. (11)

Our simulations have verified this result, which shows that the amplitudes, An,
are dynamically remapped to themselves in spite of the nonlinear neuronal encoding
procedure. In particular, assuming physiologically reasonable response functions, and
using the weights as calculated in (8), this procedure results in a localized connectivity
matrix that supports stable dynamics for functions of appropriate smoothness.

Notably, we have extended this analysis to account for the effects of noise by in-
cluding a noise term in equation (11). This gives an expression for the diffusion charac-
teristics in the amplitude space. We have shown that diffusion decreases as the square
root of the number of neurons. Furthermore, in the limit of high spiking rates and a
large number of neurons, we can model the dominant effect of the spike fluctuations
using an equivalent noise level [1]. Again, these fluctuations lead to diffusion of the
amplitudes. However, as noted in [8], the behavior is very different if the neurons
become synchronized.

To verify and extend these further analyses we are in the process of simulating
networks of noisy spiking neurons. Notably, the decoding and encoding functions are
the same for the spiking model as those used in the rate model, and so, then, are
the connection weights. The details of our implementation of this model in a spiking
network follow [8].

Lastly, the extension of our analysis to higher dimensions is straight forward. In
particular, equations (1) - (3) can be re-written using vector notation, and the remain-
ing analysis will follow in a similar manner. We intend to verify this through additional
simulations.

3 Conclusion
We have shown how to generate networks of spiking neurons that can store arbitrary
smooth functions as defined by (1). We have given some examples of the kinds of
analysis that can be carried out in the orthonormal space and yet help characterize the
behavior of the high-dimensional neural network model.

Interestingly, these networks have produced an experimental prediction. Currently,
memory experiments only record from neurons with stimuli at the center of their re-
ceptive fields. This results in a decrease in firing rate during the memory delay relative
to the initial encoding of the stimulus. The networks we have generated reproduce this
result, but they also include neurons whose firing rates increase when the stimuli is at
the edge of the receptive field. We suspect, then, that a neuron tested with stimuli
near the edges of its receptive field will also increase its firing rate during the memory
delay period.
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