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Spiking neuron model of M1
Introduction * The model represents three layers of the motor hierarchy Results
* Monkey motor cortex recordings show pre- * High-level control signal based on learned actions, weighted to Experimental data Model data
movement convergence of neural activity, but highly effect movement t() the desired target A
non-linear activity during movement
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Explain neuron responses with a simple mapping \ 4

between control signals and neural activity, and
functionally derived control signals
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Neural Engineering Framework (NEF) — va

Neural Optimal Control Hierarchy (NOCH) signal decoding :

framework Encoding: af( ) = [Q?<e? >+me] MM D
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(1) PMand SMA
Visual Input ) Move what where?
Identify distance, environment,
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\ The Neural Optimal Control Hierarchy (NOCH)
\
Basal Gangli
2) Basal Gangli Cerebellum \ @ Target(s) specified in high-level, low-dimensional space; visual input :
Define control signal Storg and correct passive \ CO“C' USIO“S
using available synergies. dynamics models, and contro iIncorporated, identifying distances and object locations
, \ @ Optimal action is specified as a summation of weighted movement * The complexity of the neural response can be
\ \I components (motor synergies) unc_le_rstood as a simple mapping betwe_en neural
M1 [ \ I @ Task-relevant internal model of system dynamics retrieved, control signal activity and control space, combined with the output
(o low Ievel, obtain control ignal, \ / adapted for current context of an optimal controller.
o e commane o e e \ / @ High-level commands issued to M1; M1 transforms high- to low-level » Distinguishing representations from dynamics can
\ y commands ; BG maps low-level command to synergies help clarify the contributions of each to observed
\ / @ Inertial information and motor plan corrections are added to the motor neural responses.
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o e e ol o o copted + To characerze dynamics  ighovel vew
Amalgamate received Provide relevant low level 1ol J owl gl taedhack P 9 f combines optimal control and biological constraints
control signals and implement; and hi evel feedbac . .
fiter out and relay task information. @Tas relevant low-level feedback sent to M1 and CB from S1; in S2 provides a good foundation (e.g. NOCH).
relevant system feedback. feedback is transformed to a high-level signal and sent to the PM & SMA
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