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Abstract

Vector symbolic architectures (VSAs) have been used to model
the human serial-order memory system for decades. Despite
their success, however, none of these models have yet been
shown to work in a spiking neuron network. In an effort to take
the first step, we present a proof-of-concept VSA-based model
of serial-order memory implemented in a network of spiking
neurons and demonstrate its ability to successfully encode and
decode item sequences. This model also provides some insight
into the differences between the cognitive processes of mem-
ory encoding and subsequent recall, and establish a firm foun-
dation on which more complex VSA-based models of memory
can be developed.
Keywords: Serial-order memory; serial-order recall; vector
symbolic architectures; holographic reduced representation;
population coding; LIF neurons; neural engineering frame-
work

Introduction
The human memory system is able to perform a multitude
of tasks, one of which is the ability to remember and recall
sequences of serially ordered items. In human serial recall
experiments, subjects are presented items at a fixed interval,
typically in the range of two items per second up to one item
every 4 seconds. After the entire sequence has been presented
the subjects are then asked to recall the items presented to
them, either in order (serial recall), or in any order the sub-
ject desires (free recall). Plotting the recall accuracy of the
subjects, experimenters often obtain a graph with a distinc-
tive U-shape. This unique shape arises from what is known
as the primacy and recency effects. The primacy effect refers
to the increase in recall accuracy the closer the item is to the
start of the sequence, and the recency effect refers to the same
increase in recall accuracy as the item gets closer to the end
of the sequence.

Many models have been proposed to explain this peculiar
behaviour in the recall accuracy data. Here we will concen-
trate on one class of models which employ vector symbolic
architectures (VSAs) to perform the serial memory and re-
call. Using VSAs to perform serial memory tasks would be
insufficient however, if the VSA-based model cannot be im-
plemented in spiking neurons, and thus, cannot be used to
explain what the brain is actually doing. In this paper, we
thus present a proof-of-concept VSA-based model of serial
recall implemented using spiking neurons.

Vector Symbolic Architecture
There are four core features of vector symbolic architectures.
First, information is represented by randomly chosen vectors
that are combined in a symbol-like manner. Second, a super-
position operation (here denoted with a +) is used to combine

vectors such that the result is another vector that is similar to
the original input vectors. Third, a binding operation (⊗) is
used to combine vectors such that the result is a vector that
is dissimilar to original vectors. Last, an approximate inverse
operation (denoted with ∗, such that A∗ is the approximate in-
verse of A) is needed so that previously bound vectors can be
unbound.

A⊗B⊗B∗ ≈ A (1)

Just like addition and multiplication, the VSA operations are
associative, commutative, and distributive.

The class of VSA used in this model is the Holographic
Reduced Representation (HRR) (Plate, 2003). In this repre-
sentation, each element of an HRR vector is chosen from a
normal distribution with a mean of 0, and a variance of 1/n
where n is the number of elements there are in the vector. The
standard addition operator is used to perform the superposi-
tion operation, and the circular convolution operation is used
to perform the binding operation. The circular convolution of
two vectors can be efficiently computed by utilizing the Fast
Fourier Transform (FFT) algorithm:

x⊗y = F −1(F (x)�F (y)), (2)

where F and F −1 are the FFT and inverse FFT operations
respectively, and � is the element-wise multiplication of the
two vectors. The circular convolution operation, unlike the
standard convolution operation, does not change the dimen-
sionality of the result vector. This makes the HRR extremely
suitable for a neural implementation because it means that the
dimensionality of the network remains constant regardless of
the number of operations performed.

The VSA-based Approach to Serial Memory
There are multiple ways in which VSAs can be used to
encode serially ordered items into a memory trace. The
CADAM model (Liepa, 1977) provides a simple example of
how a sequence of items can be encoded as a single mem-
ory trace. In the CADAM model, the sequence containing
the items A, B, and C would be encoded as in single memory
trace, MABC as follows:

MA = A
MAB = A+A⊗B

MABC = A+A⊗B+A⊗B⊗C

The model presented in this paper, however, takes inspira-
tion from behavioural data obtained from macaque monkeys.
This data suggests that each sequence item is encoded using



ordinal information (Orlov, Yakovlev, Hochstein, & Zohary,
2000), rather than being “chained” together as in the CADAM
model. To achieve this, additional vectors are used to repre-
sent the ordinal information of each item. In the subsequent
equations, this ordinal vector is represented as Pi, where i
indicates the item’s ordinal number in each sequence. The
memory trace MABC would thus be computed like so:

MA = P1⊗A (3)
MAB = P1⊗A+P2⊗B (4)

MABC = P1⊗A+P2⊗B+P3⊗B (5)

The encoding strategy presented above does not seem to
have any mechanism by which to explain the primacy or re-
cency effects seen in human behavioural data. In order to
achieve these effects, additional components are added to the
model. These components are discussed further below.

Neural Representation
To implement any of these models, we need to determine how
a vector can be represented by a population of spiking neu-
rons. In 1986, Georgopoulos et al. demonstrated that in the
brain, 2D movement directions are encoded by a large pop-
ulation of neurons, with each neuron being most active for
one specific direction – their preferred direction. The activity
of each neuron would then indicate the similarity of the in-
put vector to each neuron’s preferred direction vector. Since
the movement direction is essentially a two-dimensional vec-
tor, this method of vector representation can be extended to
multiple dimensions as well. For a population of neurons, the
current J flowing into neuron i can then be calculated by the
following equation.

Ji(x) = αi(φ̃i ·xi)+ Jbias
i (6)

In the above equation, the dot product computes the similarity
between the input vector x and the neuron’s preferred direc-
tion vector φ̃. The neuron gain is denoted by α, while Jbias

denotes a fixed background input current. The current Ji can
then be used as the input to any neuron model G[·] to ob-
tain the activity for neuron i. In this model, we use the leaky
integrate-and-fire (LIF) neuron model, characterized as such:

ai(x) = Gi[Ji(x)] =
1

τre f − τRC ln
(

1− Jth

Ji(x)

) , (7)

where ai(x) is the average firing rate of the neuron i, τre f

is the neuron refractory time constant, τRC is the neuron RC
time constant, and Jth is the neuron threshold firing current.
For a time-varying input x(t), the equations remain the same,
with the exception that the activity of the neuron is no longer
an average firing rate, but rather a spike train:

a(x(t)) = ∑
n

δ(t− tn) (8)

Since the spike train represents the neuron’s response to the
input vector x, given the spike trains from all the neurons in

the population, it should be possible to derive decoding vec-
tors φ that can be used to estimate the original input. Elia-
smith and Anderson (2003) demonstrate that these decoding
vectors can be found using the following equation.

φ = Γ
−1

ϒ, where

Γi j =
Z

ai(x)a j(x) dx ϒi =
Z

ai(x)x dx
(9)

By weighting the decoding vectors with the post-synaptic cur-
rent h(t) generated by each spike, it is then possible to con-
struct x̂(t), an estimate of the input vector. Equation (10)
demonstrates how this is achieved. The parameters used to
generate the shape of h(t) is determined by the neurophysiol-
ogy of the neuron population.

x̂(t) = ∑
i,n

δ(t− tin)∗h(t)φi

= ∑
i,n

h(t− tin)φi (10)

The encoding and decoding vectors also provides a method
by which the optimal connection weights between two neu-
ral populations can be. If for example, the transformation
between two populations of neurons is a simple scaling oper-
ation, where the output of the second group of neurons should
be Cx, then the connection weights w between the populations
should be

wi j = Cα jφ̃ jφi (11)

Extending Equation (7) for linear operations is also straight-
forward. Consider three neural populations: one to represent
the input x, another to represent the input y, and a third that we
wish to have compute the linear combination Cx + Dy. The
activity of the neurons in final population can be determined
by

ck(Cx+Dy) = Gk

[
∑

i
wkiai(x)+∑

j
wk jb j(y)+ Jbias

k

]
, (12)

where ai, b j, and ck are the activities of the neurons in the
first, second and third neural populations respectively. Em-
ploying Equation (11), the synaptic connection weights can
also be determined. Letting wki be the connection weights
between the first and third population, and wk j be the connec-
tion weights between the second and third population, they
work out to be:

wki = αkφ̃kφ
x
i and wk j = αkφ̃kφ

y
j (13)

Note that in the equation above, the superscripts serves to
disambiguate the decoders, where φx signifies the decoders
that represent x, and likewise for φy. Eliasmith and Anderson
(2003) go into greater detail on how to use this general frame-
work, known as the Neural Engineering Framework, to derive
the appropriate decoders and connection weights to perform
arbitrary non-linear operations as well.



The Neural Model
The neural model implemented in this paper is divided into
two neural processes. One encodes an item sequence into a
single memory trace, and the other decodes an encoded mem-
ory trace to retrieve its constituent items.

Sequence Encoder
Analysis of Equations (3) to (5) show that the memory trace
for an arbitrary sequence of items can be constructed by com-
puting the convolution of the last item vector with its ordinal
vector, and then adding the result of the convolution to the
memory trace of the sequence less the final item. From this,
a generic sequence encoding equation can be derived (from
here on referred to as the basic encoding equation).

Mi = Mi−1 +Pi⊗ Ii (14)

In the equation above, Mi represents the memory trace after
encoding the ith item. Pi and Ii represents the ith item’s ordinal
vector and item vector respectively.

As mentioned previously, the encoding equation in its ba-
sic form does not account for the primacy and recency effects
seen in human behavioural data. To achieve the primacy ef-
fect, rehearsal is simulated by adding an additional weighted
copy of the old memory trace to the memory trace being cal-
culated for the current item. In essence, as each item is re-
hearsed, a weighted copy of the item is added to the memory
trace to “boost” the item’s representation within the mem-
ory trace. In the equation below, the memory trace of the
rehearsal-based encoding is denoted by Ri and the weight ap-
plied to the rehearsed contribution of the old memory trace
is denoted by α. In the model implemented for this paper, α

was set to 0.3.

Ri = Ri−1 +Pi⊗ Ii +αRi−1 (15)
= (1+α)Ri−1 +Pi⊗ Ii (16)

To achieve the recency effect, an separate memory compo-
nent is added to play the role of a sensory input buffer. The
input buffer encodes items in a similar fashion to Equation
(14) with a decay added to the old memory trace. This decay
causes the input buffer to store only the most recently pre-
sented items, thus mimicking the basic recall characteristics
of the human working memory system. In the neural imple-
mentation of this model, the decay is achieved by tuning the
integrators used in the memory modules to slowly drift to zero
if no additional input is applied to them. Equation (17) illus-
trates how this decay can be represented mathematically, with
the memory trace of the input buffer represented by Bi, and
the rate of decay represented by β.

Bi = βBi−1 +Pi⊗ Ii (17)

The final memory trace of the encoded item sequence is
then computed by combining the memory trace from the
rehearsal component and the memory trace from the input
buffer component.

Mi = Ri +Bi (18)

From the above encoding equations, several issues become
evident. First, two operations need to be implemented – a cir-
cular convolution and an addition operation. Second, a mem-
ory module is needed to hold the value of Mi−1 while the new
memory trace Mi is computed. With these components, and
the rehearsal and decay mechanisms described above, a high
level block diagram of the complete encoding network can be
constructed, as shown in Figure 1.
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Figure 1: Encoding network functional block diagram.

Sequence Decoder
The decoding process is much simpler than the encoding pro-
cess. The first step of the decoding process is to convolve
the encoded memory trace with the inverse of the desired or-
dinal vector. For example, if the system is trying to decode
the second item in the sequence, the encoded memory trace
would be convolved with the inverse of P2. Next, the result
of this convolution is fed to a cleanup memory module. The
cleanup memory module contains a copy of all the item vec-
tors in the original sequence, and when given an input, will
determine which of the original item vectors best matches the
input vector. An example of this decoding process follows.
To simplify the example, only the basic encoding equation is
used.

MABC = P1⊗A+P2⊗B+P3⊗B
CB = MABC⊗P∗2

= P1⊗A⊗P∗2 +P2⊗B⊗P∗2 +P3⊗B⊗P∗2
≈ P1⊗A⊗P∗2 +B+P3⊗B⊗P∗2

IB = cleanup(CB)≈ B

From the example above, we see that convolving the mem-
ory trace MABC with the inverse of P2 results in a vector with
the desired item vector B combined with the unwanted vec-
tors (P1 ⊗A⊗ P∗2 ) and (P3 ⊗B⊗ P∗2 ). However, since the
cleanup memory module only contains the item vectors from



the original sequence and not the superfluous vectors, feeding
the result of the convolution through the cleanup memory iso-
lates the item vector B, producing the desired result. Figure 2
illustrates the high level block diagram used to implement the
decoding network.
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Figure 2: Decoding network functional block diagram.

Performing the Binding Operation Referring back to
Equation (2) we see that the binding operation can be cal-
culated using the FFT and IFFT algorithms, so the first step
to implementing the binding operation in neurons is to imple-
ment these two operations. The equations that compute the
FFT and IFFT algorithms are as follows:

FFT : Xk =
N−1

∑
n=0

xne−
2πi
N kn k = 0, ...,N−1

IFFT : xn =
1
N

N−1

∑
k=0

Xke
2πi
N kn n = 0, ...,N−1

(19)

Taking a closer look at the equations above, we see that they
can be implemented efficiently as a multiplication between
the input vector and a matrix containing the FFT (or IFFT)
coefficients. From Equation (11), we can then set the synap-
tic connection weight matrix as the Fourier transform coef-
ficients to calculate the required FFT and IFFT operations.
The one caveat to this approach is that the real and imagi-
nary components of the Fourier transform have to calculated
separately and then recombined (with the appropriate sign
changes) when the final result is calculated.

With the neural implementation of the Fourier transforms
solved, the implementation of the circular convolution bind-
ing operation becomes trivial since the only other opera-
tion needed is an element-wise multiplication. This can be
achieved by utilizing multiple neural populations, each han-
dling one element in the element-wise multiplication.

The Memory Module Since the circular convolution and
addition operations are essentially feed-forward neural net-
works, the memory module in this model needs to be able
to drive the network with a constant value and store the new
value at the same time. This is achieved by the use of gated
integrators. When the integrator is not being gated, it attempts
to match the value of the input signal. When the integrator is
gated, it no longer responds to the input value, and outputs
the previously stored value. By placing two gated integrators
in parallel controlled by complementary gating signals, the
memory module is able to simultaneously store the new input
value while outputting the previously stored value.

Cleanup Memory The cleanup memory network used in
this model is an extension of the cleanup memory presented
in (Stewart, Tang, & Eliasmith, 2009). In essence, the im-
plementation of cleanup memory involves creating multiple
neural populations, each assigned to one item vector from the
original item sequence. The preferred direction vectors φ̃ for
each neuron in one population is predefined to match the item
vector it is meant to clean up. From Equation (6), we see that
the the similarity (dot product) is calculated to determine the
activity of the neuron. By predefining φ̃, we can then deter-
mine the similarity of the decoded item vector to each of the
original item vectors, thus determining which of the original
item vectors best matches the decoded item vector.

Combining the Encoder and Decoder
Getting the spiking neuron model to encode a sequence, and
subsequently decode the memory trace is achieved by chain-
ing the encoder and the decoder together. Control signals are
used to ensure that the decoding network only commences af-
ter the encoder has finished encoding the last item vector. Fig-
ure 3 shows the results of the complete network encoding and
decoding a example twenty-dimensional 4-itemed sequence.

Figure 4: Plot of the recall accuracy data comparing results
from human behavioural studies (from Henson et al. (1996),
Figure 1), an ideal model implemented in Matlab R©, and the
spiking neuron model.

Results
The results of the simulation of the spiking neuron imple-
mentation of the ordinal serial encoding process is displayed
in Figure 4. From the graph it can be seen that both the
ideal Matlab R©-implemented model and the spiking neuron
model are a good match to the human data. The slightly re-
duced primacy in the neuronal implementation suggests that
the simplistic implementation of the rehearsal mechanism can
be improved. Figure 5 compares the transposition gradients –
which is the count of the recall occurrences of each item for



Figure 3: Simulation results from the spiking neuron implementation of the sequence encoder network. A 4-itemed sequence
of 20-dimensional item vectors was presented to the network at a half-second interval (two items per second).
(Left) The output of the encoder, Mi, showing the encoded memory trace for each item vector presented. Referring to Equa-
tion (18) , the graph at t = 0.5 seconds shows M1 = R1 + B1, the graph at t = 1 second shows M2 = R2 + B2, and so forth for.
The final encoded memory trace for the entire sequence is the output of the encoder network at t = 2 seconds.
(Center) The spike raster plot of the neurons in the output neuron population of the encoder network as it is encoding the
sequence in the top figure. The spike raster is displayed for every 20th neuron.
(Right) The similarity plot of each extracted item vector to each one of the four original item vectors. The similarity value
between the vectors is obtained using the dot product operation. The graph shows the network correctly identifying the first,
second, and last item. The third item is incorrectly identified because the similarity measures of the first three items are too
close together for the system to accurately distinguish the correct answer.

Figure 5: Plot of the transposition gradients comparing results from human behavioural studies (from Henson et al. (1996),
Figure 2, for non-confusable items), an ideal model implemented in Matlab R©, and the spiking neuron model. Comparing the
plots, both the ideal model and the spiking neuron model are able to replicate the transposition curves in the human data.



each serial position – also reveals that both the ideal imple-
mentation and the spiking neuron implementation are able to
reproduce the transposition effects seen in humans. Both of
these simulations were run using six-itemed sequences con-
sisting of fifty-dimensional HRR vectors, and were run for an
average of 200 trials each.

Discussion
From the results it can be seen that both the ideal implemen-
tation and the spiking neuron model demonstrate the ability
to reproduce the primacy, recency, and transposition effects
seen in human data. Furthermore, unlike other models which
entail a host of tunable parameters to fit the human data, this
model only utilizes two tunable parameters: the amount of
contribution to the memory trace in the rehearsal component,
and the decay rate of the input buffer component.

The model presented here also provides some insight into
the neurophysiological requirements of serial memory. It
demonstrates the need for a working memory system capa-
ble of simultaneous storage and retrieval. This model also
maps on very well to Baddeley’s model of working mem-
ory (Baddeley, 2007), with the input buffer component acting
as the phonological loop, and the rehearsal component func-
tioning as the episodic buffer.

Despite their complexity, there are advantages of creating a
spiking neuron model in comparison to theoretical models, or
models implemented using rate neurons. It provides the abil-
ity to compare the spike data of the model to data collected
from neural recordings. For example, data collect in Warden
and Miller’s 2007 paper shows that the neurons change their
preferred items as more items are introduced into the system.
Although the analysis has yet to be completed at the time this
paper was written, it can be inferred that because the encoded
sequence vector changes as more items are added, a neuron
that is responsive to one configuration of the sequence vector
would either be less responsive or not responsive at all when
a new item is added – changing the configuration of the en-
coded sequence vector – as it does in this model.

Several studies (e.g. Chein & Fiez, 2001) have also iden-
tified brain areas that are active during serial memory tasks.
Moreover, the studies have demonstrated that there are simi-
larities and more importantly, differences, between the areas
of activity during the encoding phase and recall phase. By as-
signing different components of the model to different brain
areas (for example, the input buffer component to the tempo-
ral lobe, near the auditory cortex, and the rehearsal compo-
nent to the lateral prefrontal cortex), it would be possible to
determine if the pattern of activities recorded in these studies
matches the pattern of activities produced by this model.

Future Work
As mentioned in the results section, the performance of the
rehearsal component needs to be improved slightly. Possible
ways of doing this is by having an active rehearsal mecha-
nism which decodes and then re-encodes the stored memory

trace within the inter-item interval (time between each item
presentation). Such a rehearsal mechanism will also enable
the model to be compared with serial recall studies involving
list sizes that exceed the typical human memory span of 4 to
7 items.

Additionally, the current implementation of cleanup mem-
ory has a fixed vocabulary of item vectors that is predefined
when the network is created. This means that the items in
cleanup memory are static and do not change over time. It
seems inconceivable that this is what occurs in the brain.
Rather, future cleanup memory implementations should be
dynamic, with the ability to “load” and “unload” arbitrary
item vectors into its vocabulary.
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