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Behavioural Economics

● What are these people interested in?
– Decision making, Game theory, etc.

– Prisoner's Dilemma

– Ultimatum Game

– Binary Choice between Gambles

– Auctions, Markets, Common Goods, Trust, etc.

● Common tools?
– Questionnaires, Lab experiments with real money

– Prospect Theory
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Prospect Theory

● Kahneman & Tversky (Nobel Prize in Economics)
– Expected Utility Theory doesn't work

– Need to adjust values and probabilities

– v(x) requires a reference point
and makes losses worth
more than gains (loss aversion)

– w(p) handles overreacting to
small probability events

U=∑ pi x i

U=∑ w  piv x i
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Prospect Theory: Evidence

● Loss Aversion
– Choose A: +200 or B: 67% 0; 33% +600 [A>B]

– Choose A: -400 or B: 67% -600; 33% 0 [A<B]

● Overreact to small probabilities
– Buying lottery tickets

– Buying insurance

– Cumulative Prospect Theory changes w(p) to be w(p,x) 
where it overweights events that are both rare and 
extreme
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Some General Notes

● Emphasis on verbal descriptions of options
● Descriptive models

– Measure behaviour, find curves that fit individuals

– Finding patterns (loss aversion), use for explanation

● But
– No mechanism

– Post-hoc fitting, not prediction in new domains
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Prospects in other domains

● Does this apply to things other than money?
– Yes

– Life expectancy, weight, waiting times, pain

● Does this apply to small versus large values?
– Yes

– Pennies vs thousands of dollars (hypothetically)



7

Relative Thinking
● $125/$25 jacket/calculator question

– Will drive 20min to save $5 on $25, but not $5 on $125

● New domain: boring questions
– Initial $5, then $0.15 per really really boring question

– Compare to initial $15

– Predictions
● Prospect theory: no diff
● Reciprocity: more for $15
● Relative: more for $5

– “found a slight tendency for relative, but not statistically 
significant”

(Note: Gigerenzer, 1998)
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Emotions: Fear vs anger

● How do emotions affect decisions?
– Most work on emotions in this area just looks at +ve 

vs -ve emotions

– Fear vs anger?   (abstract -ve vs concrete -ve)

– Risk aversion: fear>happiness>anger

● Does the type of gamble matter?  Yes
– lotteries give fear>happiness>anger

– Interactions give fear<happiness<anger

– Note that for both cases -ve=+ve
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Reconsidering Loss Aversion

● Ido Erev
– “The assertion that losses loom larger than gains is one 

of the best known implications of prospect theory.”
● I'm not sure it's an implication – feels more like an assumption

– Initial data
● 0 vs 50% -1000; 50% +1000
● +1000 vs 50% 0; 50% +2000:  didn't become more attractive 

either as a hypothetical or as real money

– What's happening?
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Reconsidering Loss Aversion

● Framing effect:
– If describe gamble, ask “would you do it”, makes status 

quo more attractive

– If describe both options, pick one, gamble becomes more 
likely

● Mental exhaustion effect:
– Loss aversion found in long experiments (>50 choices)

– Re-analyzed raw data, found no loss aversion at 
beginning (<10 choices)

– Loss aversion also goes away with feedback
● Comes back with large magnitudes
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Prediction Competition

● Why was I there?
– Ido Erev organized a competition to see whether 

choice models could predict

– 3 Conditions
● Describe the gambles, then pick
● Explore the gambles for a while, then pick
● No description, just keep picking 100 times

– I won the last condition (most predictive model)
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Repeated Binary Choice
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Repeated Binary Choice

8
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Repeated Binary Choice
● Safe vs. Risky Options

– One button always gave a reward M

– Other gave reward H with probability p, otherwise L

● 120 Conditions
– Varying L, M, H, and p

– Values between -30 and +30, rare events (p< .1 or p>.9) 
in about 2/3 of the problems

● Generalization
– Only given data from 60 Conditions (proportion of risky 

choices over 100 trials, 20 subjects)

– Need to predict results from other 60 conditions.
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Competition Results

● Description: won by prospect theory
● Explore, then pick: won by combining models

– If have multiple models and no theoretical reason to 
choose one over the other, then average them all

– No weighting

– But there's no way that's what people are doing
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Cognitive Modelling

● Cognitive Science: 
– How does the brain work?

– Both what it does and how it does it

– Identifying the underlying mental mechanisms

● Why would this be useful?
– If understand components and how they fit together, 

should be able to make new models for new situations

– It should be possible to make a predictive model without 
running any experiments
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Mechanistic Models

● Constraints on cognitive models
– Process models (consistent flow of time)

– Components correspond to brain components

● Benefit of constraints
– Claim: doing this leads to better predictions

– Predictions across many domains (reaction time, fMRI, 
lesions, interventions, learning trajectory, etc.)
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Cognitive Architectures

● Avoiding Reinventing the Wheel
– Cognitive models are highly complex

– A lot of parameters, possibilities

– Solution: use common components, parameter values

● Benefit of constraints
– Acts somewhat like a Bayesian prior in new tasks

– Biases models towards components and algorithms that 
have previously shown to be successful

– Reasonable to believe that they will be useful here too
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ACT-R

● The most widely used cognitive architecture
– 15-30 years old; about 100 active researchers

● Used in many domains
– mathematical reasoning, 

serial recall, human 
computer interaction, 
semantic priming, 
n-back, sleep 
deprivation, driving 
while dialing, etc., 
etc.
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Cognitive Architectures

● Why use ACT-R?
– Usually used in situations with multiple types of data

● Accuracy, reaction time, fMRI, task interference, experience

● Validated Components
– We have reason to believe the brain can use these 

components in other tasks

– Reasonable to believe it could also use them in this task

– Acts somewhat like a Bayesian prior



21

The Model

● Treat repeated choice as a memory task
– Recall what happened after pressing each button

– Pick the biggest

● Constrain recall based on context
– If I just pressed AA, only consider previous experiences 

with AAA and AAB

– History of 2 from rock-paper-scissors, baseball
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The Model

● ACT-R Memory
– Odds of a memory being needed decay as a power law 

over time (Anderson & Schooler, 1991)

– Each memory has activation A

– Let t
i
 be the times since this memory was seen

– Recalls the item with highest A, if above threshold T

– Magnitudes are not well distinguished
● Blend together, linearly weighted by A

– Only one recall at a time: 

A=ln∑ t i
−d
s

time=Fe−A
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Model Parameters

● Decay rate d
– Always 0.5

● Size of context
– 2 is consistently best

● Noise s
– Usually between 0.2 and 0.5

● Threshold T
– Almost always between -3 and 0

● Two parameter model
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Evaluation
● RMSE to human data on 60 conditions
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Evaluation

● Best performance is s=0, T=-1
– This is not a common value for s

– What is happening here?

● Let's look at model and human performance across 
the 60 conditions
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Evaluation

● Some measures consistently don't match
– Can't get them to match while other ones do too

– On the other measures, there is no statistically significant 
difference between model and empirical data

● Conclusion
– The model does not accurately capture a few conditions

– Something else may be happening here

– Should not try to average over those models
● Separate groups of conditions
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Extreme Conditions
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Extreme Conditions

● Conditions
– All of the situations where people exhibited extreme 

behaviour

– Perhaps there is a strategy shift when people notice one 
button is consistently better?

 #    H    p       L      M
13  ­2    0.05  ­10.4   ­9.4
15  ­8.9  0.08  ­26.3  ­25.4
20  ­4.3  0.6   ­16.1   ­4.5     
21   2    0.1    ­5.7   ­4.6
24   9.2  0.05   ­9.5   ­7.5
36   5    0.08   ­9.1   ­7.9      
43  22.9  0.06    9.6    9.2
49  13.4  0.5     3.8    9.9    
53  25.7  0.1     8.1   11.5
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60/40 Error Conditions
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60/40 Error Conditions

● Not sure what is happening here
– Not even sure if it's a real effect

– 95% confidence intervals will be wrong 5% of the time

– Something to do with rare negative outcomes
● Model likes risk in these conditions more than people do

 #    H    p       L      M
35   3    0.93   ­7.2    2.2
 9  ­5.7  0.95  ­16.3   ­6.1
19  ­6.5  0.9   ­17.5   ­8.4  
45   2.8  0.8     1      2.2        
30   3    0.91   ­7.7    1.4      
 7  ­5.6  0.7   ­20.2  ­11.7  



32

Conservative Modelling

● The model is not perfect
– Instead of averaging over all the conditions, identify the 

conditions for which the model is good

● What do we mean by a good match?
– Let's continue looking at confidence intervals

– After removing the consistently bad conditions, what is 
the next worst condition?

– Measure this for each parameter setting
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Scaled Maximum Likely Difference

● Likely Difference
– How bad could the model be, but still be consistent with 

the observed confidence intervals

● Scaled Likely Difference
– Linearly scaled so that <1 means no statistically 

significant difference between model and data

● Scaled Maximum Likely Difference
– Maximum of SLD values across all conditions

– Highly conservative worst-case assessment of model 
quality



34

Scaled Maximum Likely Difference
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RMSE with conditions removed
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Testing Data
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Conclusions

● Useful to base a model on existing cognitive theory
– Constrains model parameters and functions to ones that 

have proven to be good in the past

– Acts as a Bayesian prior to give you more predictive 
accuracy than a small set of task-specific empirical data 

● Useful to identify conditions the model does not 
handle well
– No averaging over good and bad conditions

– Would not have won otherwise

– Helps direct future research
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Heuristics and Metacognition

● Asher Koriat
– William James (1884):

– Why the feeling? To help guide behaviour
● Emotions have a monitoring->control role
● e.g. Koriat & Goldsmith, 1996: confidence predicts likelihood 

of answering a question, even if confidence is uncorrelated to 
accuracy

● Apply to memorizing a list of items
– Will choose to spend more time on the harder ones

● How do you know which ones are harder?
● By the amount of time spent on them
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Heuristics and Metacognition

● Very circular
– So let's play with their time perception

● Very visible clock with slight speed changes
● If clock runs slower, less confident in performance

● Good heuristic
– Effort is data-driven, so time is a good diagnostic

– Metacognitive processes are parasitic on underlying 
cognitive ability

● Kids only start using the cue around grade 3
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Heuristics and Metacognition

● But there's a cycle
– control->monitor->control->monitor->...

– When studying, you can choose to allocate more time to 
some items

– Have some items worth 1pt, others worth 3pts
● Across: +ve correlation (judgment vs accuracy)
● Within: -ve correlation (unless there's lots of time pressure, 

which starts making it goal-driven within the 3pt items)
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Regret: Generating Counterfactuals

● Marcel Zeelenberg
– Given a scenario where something went badly:

● Generate 0/2/8 counterfactuals how it could be better

– Ask how much regret you would feel
● 0=2>8

– If told that 2 is easy and 8 is hard
● 0=2=8

– Experienced ease of generating counterfactuals is 
used to estimate regret

– But it won't be used if told it's not a good indicator
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Regret: Fictive learning

● Giorgio Coricelli
– Orbitofrontal cortex: representation of relative 

reward

– Can adjust by having feedback of what you would 
have gotten with the other choice

– Also look at patients with lesions to this area
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Regret: Fictive learning
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Regret: Fictive Learning

● Orbitofrontal patients can't do the counterfactual
– So the don't feel regret, and so don't use it to adjust 

behaviour

● Two learning mechanisms
– Expected reward-based (prediction error)

● Obtained-expected  (expected=Ap+B(1-p))

– Fictive learning
● Obtained-unchosen  (A-B ignoring probability)

– Regression analysis of decisions
● Normals use expected and regret
● Orbitofrontals just use expected
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