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Abstract

In Marcel Proust’s most famous novel, In Search of Lost Time, a Madeleine cake elicited
in him a nostalgic memory of Combray. Here we present a computational hypothesis of
how such an episodic memory is represented in a brain area called the hippocampus, and
how the dynamics of the hippocampus allow the storage and recall of such past events.
Using the Neural Engineering Framework (NEF), we show how different aspects of an
event, after compression, are represented together by hippocampal neurons as a vector
in a high dimensional memory space. Single neuron simulation results using this repre-
sentation scheme match well with the observation that hippocampal neurons are tuned to
both spatial and non-spatial inputs. We then show that sequences of events represented
by high dimensional vectors can be stored as episodic memories in a recurrent neural
network (RNN) which is structurally similar to the hippocampus. We use a state-of-the-
art Hessian-Free optimization algorithm to efficiently train this RNN. At the behavioural
level we also show that, consistent with T-maze experiments on rodents, the storage and
retrieval of past experiences facilitate subsequent decision-making tasks.
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Chapter 1

Introduction

As one of the most investigated parts of the brain, the hippocampus has been intensely
studied in both animal and human experiments. Notably, two seminal observations led
to two different hypotheses about the hippocampus [70]. In the early 1970s, O’Keefe
and Dostrovsky [62] discovered the famous place cells, neurons in the hippocampus that
fire selectively at specific locations. This discovery later inspired the theory that the
hippocampus plays the role of a cognitive map [64], by which animals maintain maps of
environments. Earlier than that, one of the most famous neurosurgeies, complete removal
of both hippocampi, had been performed on a patient called H.M.1 [78] in order to control
his severe seizures. H.M. immediately lost his ability to recall any event that happened
after the surgery that removed a large part of his hippocampus. H.M.’s misfortune made
important contributions in the development of the theory that the hippocampus supports
episodic memory, through which certain experiences are stored in a declarable state.

The dichotomy between the hippcampus’ role as a cognitive map or a central player
in episodic memory is more likely to be a result of different experiments, rather than
reflective of differences in the hippocampus itself [14, 22]. For example, in a typical
rat experiment, where neural signals are recorded while a rat is running in a maze, loca-
tion is one of the most important and easily observable measurements. For this reason,
the theory of cognitive maps was first developed through rat experiments, based on the
discovery of spatially correlated neural firing patterns [62]. Conversely, restricted by ei-
ther ethical concerns or the subject’s natural behaviours, primate experiments, especially
human experiments, seldom involve controlled location change2. As a result, the study
of spatial behaviors in primate experiments is severely limited. However, higher level
memory tasks such as episodic recall are more often performed [81], resulting in the
development of a theory of episodic memory in the context of primate experiments [84].

With the development of experimental techniques, however, more recent evidence
from rat and primate experiments suggests an intimate relationship between cognitive
maps and episodic memory. For instance, recent data show that rat hippocampal cells
encode both spatial and non-spatial variables [20, 53, 54, 60, 66], in favor of multi-
modal representations in a memory space [22]. Moreover, the reactivation of hippocam-

1His real name is Henry Gustav Molaison.
2However, more recent experiments using virtual reality also found place cells in human

hippocampus[23]
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pal cells’ spatially correlated patterns, or replay, is believed to be the neural correlate
of the retrieval of episodic memory [13, 17, 29, 86, 92]. In addition, neural activities
resembling one of the signature features of cognitive maps, remapping, in which the se-
lective firing patterns of hippocampal cells are re-organized when an animal is exposed
to a different environment, were also observed in the primate hippocampus [43].

Such converging experimental results motivate researchers to combine the two hy-
pothesized roles of the hippocampus. In this thesis, we first introduce how the hip-
pocampus can represent multi-modal information through vectors in a multi-dimensional
memory space. Under this scheme, the cognitive map and episodic memory theory are
unified naturally at the representation level. Further, we demonstrate how sequences
of vectors can be stored and retrieved in recurrent neural networks (RNNs) structurally
similar to the hippocampus, resembling the storage and retrieval of episodic memory.
Combining vector representations and temporal sequence learning, we simulated both
forward [85] and reverse replay [29] observed in rodent experiments. From a computa-
tional perspective, our model supports the previously hypothesized role of awake replay
in reinforcement learning [13, 29, 45]. Based on the simulation results, we propose an ex-
perimentally testable prediction that forward and reverse replay rely on synaptic change
and persistent neural activity respectively.

2



Chapter 2

Background

Supported by a massive amount of experimental data from both humans and animals
(e.g., [3, 6, 9, 12, 14]), the hippocampus is considered the as the place where episodic
memory, the memory of sequential events, is encoded. However, how episodic memory
is stored and retrieved in the hippocampus is still unclear, despite the existence of various
theories (e.g., [9, 12, 14, 37, 84]). In this chapter, we start our investigation of how the
hippocampus supports episodic memory by reviewing essential background materials.

2.1 Anatomy of the hippocampus
The hippocampus is part of the forebrain, sitting beneath the neocortex. Figure 2.1 il-
lustrates the anatomical structure of a rat’s hippocampus. It is characterized by feedback
loops at different levels: the local recurrent connections at the CA31 and the global feed-
back connections passing through all components of the hippocampal formation (EC→
DG→ CA1→ CA3→ Subiculum→ EC) [4].

The hippocampus receives information from different sources mainly through the en-
torhinal cortex (EC), which closely interacts with a diverse range of other cortical areas,
permitting the encoding of multi-modal information in episodic memory. The dentate
gyrus (DG) is one of the only two places in the brain where adult neurogenesis happens
[1] (the other is the olfactory bulb). The EC is connected to DG through the perforant
pathway, and it sends direct projections to the CA3, CA1 and the subiculum. The DG
granule cells send their output to the pyramidal cells in the CA3 through mossy fibers,
whose strong connections enable the CA3 neurons to be activated by very sparse activ-
ities in the DG. Compared with the typical mostly-local connections in the neocortex,
the dense recurrent connections across the whole CA3 region are unique in the brain,
allowing globally synchronized activities of the CA3 pyramidal cells. Pyramidal cells in
the CA1 receive input from the CA3 through Schaffer collaterals. Traditionally, the DG
and the CA are considered to be the central part of the hippocampus, called the “hip-
pocampus proper”; the hippocampus proper and its surrounding area, including the EC,
the subiculum, and the parasubiculum, are together called the hippocampal formation2.

1CA is the acronym for cornu ammonis, or Ammon’s horns. However, this full name is seldom used.
2However, there are other opinions concerning which parts should be considered as the hippocampal
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(a) (b)

Figure 2.1: The anatomical structure of the hippocampus and its cartoon illustration.
Figure (a) is a diagram of a rat’s hippocampus, showing the anatomical structure of the
hippocampal formation (EC: entorhinal cortex, DG: dentate gyrus, Sub: subiculum) [4].
(b) illustrates main parts of the hippocampal formation and connections between them.

2.2 Hippocampal cells
The most famous neurons in the hippocampus are probably the place cells, which are
known for their selective spatial firing patterns. Place cells were first discovered in the
CA1 region in the hippocampus, and later were also found in the CA3, the DG and
the subiculumn [4, 62]. Initially, place cells were only thought to support the neural
representation of the spatial properties of the environment, forming cognitive maps [63]
for spatially related behaviours such as navigation. A place cell fires only when the
rat is close enough to that cell’s place field3. Figure 2.2 illustrates the place fields of
some place cells. The contours of these place fields can be approximated by Gaussian
functions. When the firing of place cells are arranged topographically according to their
place fields (so that place cells representing similar places are together), a population
level Gaussian-shaped pattern, the activity packet, can be observed (figure 2.3). Arising
from the Gaussian tuning curves of individual hippocampal cells, activity packets can be
used to estimate the location of the animal. For example, the activity packet in figure 2.3
indicates that the rat is at the center of an environment.

More recently, temporally selective activities of the hippocampal cells were observed
at different laboratories, from recordings during delay periods of tasks [66, 53]. Specif-
ically, they show that strong temporal modulation in their recoded hippocampal cells
is preserved even after statistically removing the influence of location and behaviour.
For this reason, they call these cells “time cells”4to contrast with the famous place cells

formation [4].
3Exceptions are that place cells also fire in hippocampal replay events, which may happen when the

rat is in REM sleep, slow wave sleep or staying stationary. Besides, a place cell may have multiple place
fields [27].

4Although the concept of “time cells” may be controversial, for simplicity, later we use neurons “rep-
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Figure 2.2: Spatial tuning of single hippocampal cells [91]. The color map, in which
red represents high firing rates and blue represents low firing rates, showing single cell
recording from hippocampal neurons in the CA1 region of the hippocampus when a
rat was freely foraging in an open field. In this specific environment, while some cells
showed clear location selective firing, other cells either fire thoughout the whole envi-
ronment (e.g., upper-right corner) or keep silent all the time (e.g., upper-left corner).

Figure 2.3: Activity packet visualizing the firing rate of a population of place cells [75].
Neurons are arranged according to their place fields, so that their positions on the figure
are roughly the same as their preferred locations in the environment. In this figure,
neurons at the center fire most strongly, implying the rat was near the center of the testing
environment.

5



Figure 2.4: Hippocampal cells are tuned to specific locations in a temporal sequence
[53]. The four panels show the record from four different CA1 cells. After statistically
excluding the influence of spatial location and behavior, these cells still show strong
temporal modulation.

(figure 2.4). Figure 2.5 further shows that during delay, the activities of these cells are
modulated by both spatial and temporal inputs.

With the discovery that hippocampal lesions impair various memory related tasks
[14, 22, 12, 54], researchers started to realize that information represented by these place
cells may be part of episodic memory. This more recent view is consistent with early
human clinical cases indicating that the function of the hippocampus is related to episodic
memory [14].

Later in this thesis, we examine forward and reverse replay as examples of storing and
retrieving episodic memory, as introduced in section 2.4, 2.9, and simulated in section
4.3, 4.4. Restricted by the scope of this thesis, we only note here that hippocampal replay
is not a simple function of experience [33]. Correspondingly, the role of hippocampus
in constructive episodic memory (imagining future experiences, in addition to recalling
past experiences) has been confirmed in human studies [76, 36, 35].

resent temporal signal” and “represent time” interchangeably.
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Figure 2.5: Neural activity during the delay depends on both space and time. In the
experiment in [53], a delay is introduced between two phases. The spatial firing rate
maps for 2 hippocampal cells are shown. For each cell the top map is for the entire delay,
and maps below focus on each individual second of the delay.

2.3 Remapping
In order to support episodic memory, a problem faced by the hippocampus is the pos-
sible ambiguity in representation. An example commonly used by researchers studying
episodic memory is the scenario of parking a car: although both the car and the parking
lot are the same each day, ones needs to remember today’s parking location (or path)
as distinguished from that of yesterday or before. In this example, the time (today or
other days) provides the context based on which different memories of parking can be
retrieved. In rodent maze experiments, this problem is usually presented as requiring a
rat to behavior differently based on different context [15].

Given the presence of ambiguity in various tasks, it is not surprising that the brain, es-
pecially the hippocampus, has different ways to disambiguate inputs at the neural level.
First, the Gaussian tuning curve (figure 2.2) leads to sparse firing patterns (figure 2.3,
where only cells proximal to the center are firing). Sparse firing patterns maintain low
interference because of low overlapping between different patterns. Although the func-
tionality of neurogenesis in the DG is still not entirely clear, it is believed to facilitate the
orthogonalization of input into the hippocampus [1, 7, 83]. Another way to disambiguate
is remapping, as if a animal uses different maps for different contexts.

Two kinds of remapping are observed in rodent experiments5: rate remapping and
global remapping [15]. In rate remapping, a hippocampal neuron fires differentially
in different environments only through its firing rate changing. In global remapping, in
addition to the change of firing rate, a neuron’s place field may either change or disappear
in different environments (figure 2.6). Through these changes of spatial correlated firing,
different “maps” are formed for different environments. For example, the same location
at the center of two different environments will be represented by different neurons.

5Phenomena similar to remapping are also observed in human fMRI studies [9].
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Figure 2.6: Rate remapping (left) and global remapping (right) [15]. The color map is
used to indicate firing rate as with previous figures. On each side, the first column illus-
trates the firing of neurons in one environment, while as the last two columns illustrate
that in the other environment. The mapping from firing rates to colors are the same in the
first two columns, but are rescaled in the third column. For rate remapping, the activity of
neurons looks the same after rescaling, indicating the firing in two different environments
is only distinguished by firing rates. On the contrary, for global remapping, the neural
activity is different even after rescaling the color map, showing the preferred locations of
these cells are also changed.

Similarly, traces sharing similar relative potions in two environments will be represented
by distinct neurons. Thus ambiguity cased by sharing representations (sharing “maps”)
can be largely reduced.

2.4 Forward replay
We mainly consider the forward replay observed in rodent T-maze experiment [46, 86]6.
A T-maze (figure 2.7) has three connected arms (left, central, right), with possible feeders
providing food or drink as reward at the left or right arms. When a rat is at the central arm
of the T-maze, it needs to choose which side to go to, as only one arm of the T-maze gives
the desired reward. The location right before the intersection of the “T” point (indicated
by the white circle in figure 2.8) is called the decision point. At early learning stages of
the T-maze experiments, the rat pauses at the decision point before proceeding, as if it is
pondering which side to go to [85].

6In this thesis, we use the term “forward replay” and “sweep” interchangeably to refer to the reactiva-
tion of hippocampal neural activities at the decision point, although the exact relationship between these
terms are not entirely clear in neuroscience literature.
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Figure 2.7: The T-maze used in [85].

This intuitive hypothesis is supported by multi-cell recordings from the rat hippocam-
pus, which indicates that previously visited routes including both arms are replayed at the
decision point through the reactivation of hippocampal cells (figure 2.8). Interestingly, at
the about same time as the replay (or “sweep”), cells in ventral striatum that are activated
when reward is presented are also firing, implying that forward replay may be linked to
the evaluation of future outcome[86].

2.5 Reverse replay
As suggested by its name, reverse replay also involves the reactivation of past neural
activities representing past experiences, however, in a reversed order. Although the re-
played sequences can be either remote [17, 33] or recent in the past [29], in this thesis
we mainly consider the reverse replay of recent experience7. This kind of replay hap-
pens immediately after a rat reaches a goal or obtains a reward [29]. For reasons we will
discuss in more detail in section 4.4, remote reverse replay may be similar to forward
replay, while as the reverse replay of recent experience is likely to be based on a different
computational mechanism. Figure 2.9 shows the reverse replay recorded during a single
lap on a linear track.

7Therefore, without specification, later in this thesis “reverse replay” means the replay of recent expe-
rience.
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Figure 2.8: Replay at the T-maze decision point [86]. Each sub-plot shows decoded rep-
resentation at different time during the rat’s being at the decision point (white circle); the
color code indicates the probabilities of the represented location, where blue to red means
low to high probabilities. From the decoded spatial representation in these sub-plots, al-
though the rat was keeping still, the locations represented in its hippocampus drifted
towards each possible future direction, indicating the replay of previous experiences at
different arms.
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Figure 2.9: Reverse replay events [29]. The upper panel shows all the spikes recorded
from 19 hippocampal neurons during a single lap on a linear track. The rat was running
during the first 5 seconds (560 - 565, under the gray mark and “RUN” at the top-left
corner). The magnified view in the lower panel shows the reversely reactivated spiking
trains during the rat was resting after reaching the goal. It is also shown from the two
panel that the reverse replay happened at a time scale about 10 times faster than the
original experience.
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Chapter 3

Multi-dimensional neural
representations

We can understand episodic memory as temporal sequences in a high dimensional mem-
ory space, in which different kinds of (multi-modal) information are bound together
through experiences [22]. Mathematically, temporal sequences can be represented as
sequences of vectors in this memory space. In this chapter, we introduce how vectors
can be represented in spiking neurons and how we can use such vectors to represent
variables potentially forming episodic memory. In the next chapter, we describe how
sequences of these vector can be remembered as traces of episodic memory.

While a vector may have multiple elements, or multiple dimensions, we can divide
a vector into subgroups that represent different information from different sources. For
example, a six dimensional vector, t = (1,0,3,7,5,9)>, can devote its first two dimen-
sions to represent hours, the middle two dimensions to represent minutes and the last
two dimensions to represent seconds. Together, t represents a specific time. In a similar
manner, for the vector v used in our hippocampal representation, we can divide it into
dimensions representing space, dimensions representing task, etc.

3.1 How spiking neurons represent vectors
The Neural Engineering Framework (NEF) [25] provides a theoretical framework for
characterizing neural representations, neural transformation and neural dynamics across
different levels of description. This section introduces the first principle in the NEF, neu-
ral representation, by which vectors can be represented in biologically plausible spiking
neurons. Although the NEF supports simulation of neurons with different levels of phys-
iological details, for simplicity, this thesis uses leaky-integrated-and-fire (LIF) neurons
[25].

The sub-threshold dynamics of a LIF neuron is described by the differential equation:

dV
dt

=− 1
τRC (V − J ·R) (3.1)

where both τRC, the membrane time constant, and R, the leak resistance, are parame-
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ters. This equation describes how the membrane potential V of a LIF neuron change
with time t given the input current J when V is below a threshold Vthreshold . Once the
membrane potential reaches a threshold Vthreshold (at which time the current also reaches
its threshold Jthreshold), the LIF neuron generates a spike. A spike, or action potential,
is a transient and dramatic increase of its membrane potential followed by a refractory
period. During the refractory period, the membrane potential keeps at a low level for a
short amount of time specified by the parameter τre f . When the input current is constant,
we can analytically solve for the firing rates of a LIF neuron:

a(J) = G(J) =
1

τre f − τRCln(1− Jthreshold
J )

(3.2)

The NEF suggests that, for a given neuron, its input current is regulated by a vector x in
its input space through

J = γ · (e · x)+b (3.3)

where e is the normalized unit encoder of this neuron, γ is gain factor, and b is the input
bias. The parameters γ , e, b as well as τRC and τre f together specify the tuning curve of
a LIF neuron, as a function of vector x in its input space. The encoder e is also called
the preferred direction of a neuron, because for input vector x with fixed lengths, the dot
product e · x reaches a maximum when x has the same direction as e, which in turn gives
the maximum firing rate (equation 3.3 and 3.2).

The tuning curve of 20 LIF neurons with one dimensional input is shown in figure
3.1, and the tuning curve of a neuron with two dimensional input is shown in figure 3.2.
Given a population of heterogeneous neurons, through activation functions defined by
equation 3.2 and 3.3, a vector x can be encoded into the firing of these neurons. Since
activation functions are non-linear, this is a process of non-linear encoding.

The encoding process need to be paired with a corresponding decoding process that
reads out the encoded vector x. Given the complexity of possible non-linear decoding,
the NEF suggests that linear decoding is a general and more biologically plausible mech-
anism. With a decoder d for each neuron in a population, we can decode the estimation
of x from the activity of this population:

x̂ = ad (3.4)

For a population representing x in an input space S, equation 3.4 should give a good
estimation for all x in S. Therefore, we extend equation 3.4 for a set of representative1

samples in the input space S by substituting each lower case variable with capitalized
letters representing samples in the whole input space, giving a system of linear equations:

X̂ = A>D (3.5)

Now each column represents one dimension of space S, and each row of X represents
a sample in this space. Each column of A represents the firing rate of a neuron in this

1whether a set of sample is representative is determined by the space S. In general, more samples are
needed for higher dimensional spaces with more complex structure.
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Figure 3.1: The tuning curves of 20 LIF neurons. Different neurons are represented by
different colors. These heterogeneous neurons encode a scalar variable from -1 to 1.
Using a set of linear decoders, the scalar can be reconstructed from the activity of this
neuron population. We use the representation of scalars as a base case, which will be
expanded into function representations of the hippocampal cells.

Figure 3.2: The two dimensional tuning curve of a LIF neuron. The firing rate of this
neuron is a function of both input x and input y. A slice of this figure, in which the the
firing rate is subject to only one variable, is similar to curves in figure 3.1
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population, while each row represents the activity of the population given one sample
input. Similarly, each column of D represents the input dimension corresponding to X ,
and each row of D represent the decoder for one neuron.

We can understand equation 3.5 as projecting vectors from the neural space, where
the tuning curves of neurons serves as basis, back to the original Cartesian space. There-
fore, finding the decoders is a regression problem and the decoders D can be solved
analytically using the conventional normal equation:

D = (A> ·A)−1 ·A> ·X (3.6)

As one of the most well studied equations in numerical analysis, equation 3.6 can be
evaluated efficiently through a singular value decomposition (SVD).

Now we turn to the temporal dynamics of LIF neurons by allowing the input current
to change. Although equation 3.2 is no longer true, the effect of spikes can still be
accumulated though the post-synaptic current (PSC):

hpsc(t) = e−
t

τsyn (3.7)

As illustrated in figure 3.3, the PSC smooths the spikes; the smoothness is controlled
by the parameter τsyn, the synaptic time constant. The PSC bridges rate coding and
spike coding by providing a diminishing time window, in which the effect of spikes
is accumulated as the strength of the current. Filtering a spike train by the PSC can
recover the original signal, albeit with additional errors introduced the the fluctuation of
the spikes (figure 3.4). This filtering process can be embedded at the synapse as

dJPSC

dt
=−τPSC

JPSC
(3.8)

Thus, we have now established a representation scheme for spiking neurons. Our
way of deriving the optimal linear decoders supports the smooth transactions between
rate coding and spike coding, two neural coding schemes that may not be fundamentally
different [25]. Nevertheless, supporting spikes makes our model easier to compare with
experimental data. For more detailed description, refer to [25].

In the context of episodic memory, for a population of neurons representing events
in memory as vectors x, the input space S becomes the memory space. In the following
sections, we discuss properties of this memory space, and further characterize vectors in
this memory space.

3.2 Spatial representation
Using the vector representation scheme introduced in the last section, many variables
can be encoded and decoded in spiking neurons. However, more structured variables
are required to represent information essential in episodic memory, such as locations.
This section extends the vector representation scheme by showing how more structured
functions can be represented. The basic idea of function representation in NEF is de-
composition (dimension reduction) of discrete functions.
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Figure 3.3: The PSC in the frequency and temporal domains. As we can see from the
frequency domain illustration, high frequency components are suppressed. Therefore,
the PSC smooths spikes.

Figure 3.4: Estimation of the original signal. The estimation is obtained from filtering
spikes generated by each LIF neuron in a population of 20 LIF neurons, then sum up the
filtered signals weighted by the decoders (equation 3.6). The fluctuation is introduced by
the spikes and the high-frequency components of the PSC.
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(a) (b)

Figure 3.5: Reconstruction of the Gaussian function with different maximum frequency
components. (a) Reconstruction using components with a maximum frequency of 10 Hz.
(b) Reconstruction with components with a maximum frequency of 3 Hz. Although (a) is
closer to the original Gaussian function, (b) also gives a reasonably good approximation
for our qualitative simulations.

Inspired by the Gaussian shaped spatial tuning curves of the hippocampal cells (sec-
tion 2.2), Conklin and Eliasmith [16] simulated Gaussian firing patterns of place cells
from a population of neurons representing two dimensional Gaussian functions.

A Gaussian function (figure 3.5 (a))

f (x,y) = exp(−
(x−µx)

2 +(y−µy)
2

2σ2
) (3.9)

can be discretized into a vector with a finite (large) number of dimensions. In order to
guarantee an acceptable representation precision, the number of neurons in a population
usually increases as the number of dimensions represented increases.2 Therefore, di-
mension reduction is required to represent functions in our vector representation scheme.
For any function, one conventional way of performing dimension reduction is using the
Fourier transformation, decomposing the function into basis and coefficients

Fkl = ∑
m

∑
n

f (xm,yn) · e−2πi( k
M m+ l

N n) (3.10)

where f ’s are values of the function in spatial domain and F’s are coefficients in fre-
quency domain. Preserving a finite number of coefficients results in a reduced approxi-
mation to the full Fourier space. Using the inverse Fourier transformation, we can restore
the spatial domain function from coefficients F’s and the oscillatory basis e2πi( k

M m+ l
N n)

(e.g., figure 3.8)

fmn = ∑
k

∑
l

Fkl · e2πi( k
M m+ l

N n) (3.11)

Recall that the Fourier transformation of a Gaussian function is still a Gaussian func-
tion, so the coefficients of a Gaussian function diminish quickly as the frequency in-

2This statement is not strictly true, since different dimensions may be correlated.
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creases. This property implies that we can discard high frequency components and still
maintain a good representation of the Gaussian function. Figure 3.5 shows the recon-
struction using components with frequencies less than 3Hz, compared with the recon-
structed Gaussian function with more frequency components.

In general, function decomposition (not necessarily Fourier decomposition) provides
a way to simplify the representation of an otherwise continuous space. This also simpli-
fies the calculation of similarity between an input and the preferred direction vector of
a give neuron3. Mathematically, since the firing of a neuron is only affected by the dot
product between its encoder and the input vector obtained from function decomposition,
the basis is not directly involved in neural computation. Providing that the basis is cho-
sen properly (i.e., it is able to give a good reconstruction of the original function) and
the coefficients are represented well, the firing pattern is only affected by the function
being represented. In fact, both a Fourier basis and a basis obtained from principal com-
ponent analysis (PCA) can reproduce the same Gaussian firing pattern reported in [16].
Although in theory PCA does a better job at dimension reduction, a Fourier basis may
be realized in the brain as the observed sub-threshold oscillations at different frequencies
(this issue is further discussed in section 3.2.1).

Using this spatial representation scheme, an activity packet resembling that in figure
2.3 is simulated in a population of 4,900 neurons (figure 3.6), where each neuron rep-
resent a Gaussian function with width (δ in equation 3.9) 0.1, centralized at locations
evenly sampled in a 2D square. In order to illustrate the activity packet, these neurons
are organized topographically. Note neurons in this population are not interconnected, al-
though they can be connected in the same way as in [16], forming an attractor. Although
the activity packet is able to indicate the location of the animal from the distribution of
neural activity (red areas in 3.7 a), using the full NEF neural representation gives a much
better estimations (3.7 b). With the multi-dimensional decoders, instead of estimating
the compound information from the 1D firing rate only, different dimensions of the rep-
resented vectors can be decoded separately. Therefore, the advantage of using neural
coding is even more obvious with the presence of non-spatially encoded information and
noise.

3.2.1 Fourier basis and grid cells
As a digression from the vector representations in episodic memory, here we briefly
give a justification of choosing the Fourier basis for function decomposition. A Fourier
basis function e2πi( k

M m+ l
N n), which is sometimes written as sine and cosine functions, is

illustrated in figure 3.8. The interference of three such waves separated by 60 degrees
produces the hexagonal pattern reminding us the firing patterns of grid cells (figure 3.9).

Such an interference mechanism is used in various models of grid cells [11, 31, 80].
Physiologically, the Fourier basis (waves) may be realized in neural networks as sub-
threshold oscillations which are found in the hippocampal formation. More specifically,
these oscillations may be originated from the intrinsic oscillations in the entorhinal cor-

3Therefore, although only vectors are represented by the neurons, we sometimes call it function repre-
sentation in this situation
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Figure 3.6: Simulation of an activity packet using 4900 LIF neurons arranged according
to their place fields. Each cell represent a Gaussian function through their coefficients
obtained from Fourier decomposition. These Gaussian functions have with fixed width,
sampled evenly from the 2D square. The two horizontal axes index each cell and the
vertical axis is proportional to the firing rates.

(a) (b)

Figure 3.7: The firing rate of a population compared with decoded location from the same
population. Figure (a) is a top view of figure 3.6, indicating the firing rate of neurons in
this population. Figure (b) shows the decoded spatial representation using the optimal
linear decoder. This 2D map is obtained from taking the dimensions representing space
from the decoded vector (equation 3.5) as coefficients and reconstructing the 2D surface
together with the Fourier basis. While it is possible to (roughly) determine the encoded
location from the firing rates only (a), neural decoding give a much better estimation of
the represented location (b).
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Figure 3.8: An example of a Fourier basis function.

tex [31, 38]. The frequencies of these oscillation are proportional to the velocity of the
animal. Specifically, the direction information comes from the head direction cells in
the parahippocampus. These oscillations are summed, forming new sub-threshold os-
cillation patterns like that in figure 3.9 A. When receiving spiking input with certain
frequencies, the grid cells are more likely to reach the threshold and fire when the sub-
threshold oscillation near the peaks (places in figure 3.9 (a) where the color close to
red). Thresholding the pattern in figure 3.9 (a) gives figure 3.9 (b) that is similar to the
experimentally observed grid firing patterns [30, 34].

Since both e−2πi( k
M m+ l

N n) in equation 3.10 and e2πi( k
M m+ l

N n) in equation 3.11 can be
represented as oscillations, the combination of them can form the hexagonal patterns of
the grid cells. Given the fact that the entorhinal cortex, where these grid cells reside,
serves as both input and (indirect) output of the hippocampus proper, our representation
scheme is consistent with the view that the grid cells also support decoding of spatial in-
formation, in addition to supporting encoding as an upstream input to the hippocampus4

[28].

3.3 Temporal representation
In order to form a unified and systematic representation scheme, we specify that hip-
pocampal cells are also tuned to temporal sequences directly. This design choice doesn’t
violate the assumption that the “time cells” are resulted from intrinsic temporal dynamics
[26, 66], since these temporal sequences can be generated internally from an integrator
like structure.

From a modeler’s view, by analogy to how space is represented, temporal signals
can be represented in our model as vectors obtained from decomposing one dimensional

4When grid cells are used as basis directly, the the linear relationship between basis and Gaussian
functions is still held, although the coefficients for these basis are computed in a different way [80].
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(a) (b)

Figure 3.9: The interference pattern obtained from summing 3 sinusoid waves separated
by 60 degrees (a) and the grid pattern obtained after thresholding the interference pattern
(b).

(a) (b)

Figure 3.10: Tuning curves of “time cells” in the simulation. The horizontal axis indi-
cates time steps, while the vertical axis indicates the strength of neural response. These
tuning curves enable hippocampal neurons to fire selectively at locations (time steps) in
a sequences.

Gaussian functions (time is considered one dimensional). In addition, since some neu-
rons fire in multiple time steps, we account for this phenomenon by allowing some neu-
rons to have tuning curves as summations of two or more Gaussian functions (figure
3.10).

As mentioned before, the choice of basis doesn’t affect the firing pattern for given
preferred functions. In this section, for temporal representation, we use PCA basis in-
stead the Fourier basis used before. An example of the basis used in our model is shown
in figure 3.11. Despite being obtained from a different procedure, they are similar to
the Fourier basis. Since the PCA basis can be considered as the optimal orthogonal ba-
sis, this similarity indicates that the biologically more realistic and mathematically more
convenient Fourier basis is close to optimal. Reconstruction using PCA is illustrated in
figure 3.13. The magnitude of these principal components are plotted in figure 3.12.
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(a) (b)

(c) (d)

Figure 3.11: Examples of PCA basis. They may look like Fourier basis, but a closer look
at the horizontal lines (black dash lines) reveals that they are not. Therefore, the fourier
bases are close to optimal.

Figure 3.12: Magnitudes (singular values) of the principal components. The red line
indicates the number of components used in our experiments.
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Figure 3.13: Reconstructed temporal representation (a one dimensional Gaussian func-
tion with mean at 100) from decoded coefficients (as vectors) and PCA basis. Due to
both the limited basis used and the induced noise, the reconstructed temporal represen-
tation is not perfectly smooth. Nevertheless, the time step it represents (near 100), as is
very clear, as the position that gives the highest value.

3.4 Combining multi-modal representations
Combining vectors representing multi-modal information gives the multi-modal repre-
sentations used in our hippocampus model. In addition to spatial and temporal inputs
being represented in the way described in the previous two sections, other variables can
be represented either similarly through decomposition of functions or directly as vectors.

When a neuron is assigned a preferred direction representing a combination of multi-
modal information, this neuron will be activated with its highest firing rate only when
the input match with all dimensions of its preferred direction. However, partial match-
ing, such as when the neuron receives inputs matching only the dimensions representing
spatial information, will still partly activate the neuron as long as the input is enough to
drive the neuron to reach its threshold potential.

Based on this general representation scheme, in addition to spatial and temporal in-
formation, we added a one-dimensional variable representing task and two special di-
mensions representing the context that distinguishes different environments (discussed
in detail in section 3.5). The degree with which a neurons is tuned to specific input vari-
ables can be controlled through the direction of its encoder. For example, if the preferred
direction of a neuron has projections with same length in the subspace representing space
and the subspace representing time, this neuron is tuned equally to space and time. On
the other hand, if the preferred direction is orthogonal to the subspace representing time,
this neurons will not response to temporal input at all. This control of response enables
the simulation of “response gradient” across the dorsal and ventral hippocampus [72].

In a population of 4900 neurons, we simulated how representing multi-modal infor-
mation gives rise to neurons tuned to both spatial and temporal inputs (figure 3.14). In
this experiment, spatial input comes from pre-defined paths in a simulated environment,
and the temporal input comes from a controlled neural integrator [24]. This controlled
integrator consists of a population of 1500 neurons representing temporal information
only. Its dynamics is specified through connection weights using NEF, so that the repre-
sented temporal information will be advanced automatically at each time step.
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(a) (b)

Figure 3.14: Simulated hippocampal neurons firing selectively at a specific place and
a specific time. Figures (a) and (b) illustrate the activity of two neurons with different
preferred location and time through a 5-second period while the simulated rat is running
around a circular track. Neural activity is color coded such that red represents the highest
firing rate and blue represents no firing at all. In each graph, the first row represents the
activity of this neuron across the whole time period. Each following row shows the neural
activity in an individual second, revealing that the neuron is modulated by both space and
time.
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Figure 3.15: Representation error (the mean square error) decreases with the number of
neurons .From this figure, our choice of 4900 neurons gives a balanced trade-off between
the quality of representation and the number of neurons.

As in our previous discussion in section 3.2, the representation accuracy is restricted
by the amount of information (dimensionality of vectors) and the number of neurons in
a population. As in figure 3.15, the representation error measured as mean-square-error
(MSE) decreases as the number of neurons increases. Conversely, given the information
need to be represented and the precision required, we can calculate the number of neurons
needed in a neural population.

3.5 Simulations of Remapping
Based on the vector representation in NEF, we proposed two plausible computational
mechanisms underlying remapping (section 2.3). First, we use specialized dimensions to
provide systematic inhibition on neurons not associated with the current context. Second,
we use a transformation matrix to shift place fields of neurons.

3.5.1 Rate modulation
To illustrate the first mechanism, consider a k dimensional unit vector v=(a1, a2 · · · ak)

>

in the memory space as the preferred direction of a neuron. Now extend v into a k+ p di-
mensional vector ve = (a1, a2 · · · ak, b1, b2, · · ·bp)

>. In a similar way, we can extend a k
dimensional input vector i into a k+ p dimensional vector ie =(c1, c2 · · · ck, d1, d2, · · ·dp)

>.
We call the last p dimensions the environment code. In preferred directions, the envi-
ronment code dictates the preferred environment of each neuron; in input vectors, the
environment code keeps track of the current environment by staying the same in one
environment.
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We can constrain environment codes so that the dot product between the environment
codes in the preferred direction of a neuron and the input vector (the last p dimensions of
ve and ie) is zero when the input indicates the neuron’s preferred environment and neg-
ative when it indicates other environments. Under this constraint, a neuron will fire as
specified in the previous sections, unaffected by the extended dimensions, in its preferred
environment. On the other hand, the neuron will be suppressed when it is in other envi-
ronments, because the dot product between the environment codes are negative, lowering
the firing rate of the neuron and producing rate remapping.

The environment code is different from other dimensions in several important ways.
First, an environment code is only used to modulate neural activity, instead of being de-
coded. Since environment codes do not need to be decoded, they only increase little
computational burden for neurons representing other information. In addition, as spec-
ified by the constraint, the dot product between the preferred environment code and the
input environment code can not be positive (ignoring numerical errors and noises). Actu-
ally, this simple constraint can be satisfied by many different choices of the environment
code.

3.5.2 Place field shifting
The shifting of place fields can be implemented through linear operations at different
levels, which give different biologically plausible implementations (derived from equa-
tion 3.14 or equation 3.15). Here, we consider two implementations. First, assume fM is
the two dimensional function representing the preferred Gaussian function of a neuron.
We directly discretize fM to obtain the high dimensional vector M. From basic linear
algebra, we can easily shift M to M̃ using a permutation matrix P:

PM = M̃ (3.12)

which can be rewritten by decomposing M into basis B and coefficients C and C̃:

PBC = M̃ = BC̃ (3.13)

where Ĉ is the input vector giving the same activation of this neuron after shifting. Due
to the combination rule of matrix products, the same shifted place field of a neuron can
be obtained from either of the following transformations:

(PB)C = BĈ (3.14)

or
P(BC) = BĈ (3.15)

When B contains a Fourier basis, (PB) in equation 3.14 resembles shifting these oscil-
lations, thus shifting the grid cell’s firing patterns (section 3.2.1). On the other hand,
rearranging equation 3.15 gives a transformation matrix T :

Ĉ = (B−1PB)C

T = B−1PB (3.16)
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(a) (b)

(c)

Figure 3.16: Simulation of rate remapping (a) and global remapping (b, c). In each
sub-figure, the two panels show the recordings from one simulated neuron in two differ-
ent environments. The change of environments is controlled through the change of the
environment codes (not plotted) as inputs into this population of cells.

Ĉ = TC (3.17)

From equation 3.17, multiplying input vectors by T , before feeding them to a population
of neurons, gives the same effect as shifting the place fields. From equation 3.16, T has
low dimensionality (the same as the number of basis used for spatial representation), so
it is plausible to both store T and to compute the matrix product using T .

However, a problem in our proposed remapping mechanism is that they only partially
simulate the effect of global remapping, since correlations between place fields of neu-
rons in a population within one context are preserved after applying the transformation
matrix. As a result, the place fields of all neurons are shifted in the same direction. Exper-
imental studies suggest that the dentate gyrus may play an important role in remapping,
especially in dissociating representation through different contexts [83]. Therefore, ad-
ditional non-linear computations from regions such as the dentate gyrus may be essential
for global remapping.

Using this two method, we simulated both rate and global remapping as shown in
figure 3.16. The basic simulation settings are the same as in the experiment in section
3.4, with additional dimensions representing the environment codes. In the simulation of
global remapping, transformation matrices specific to each environments are (equation
3.16) applied on the input vector, depending on the environment codes.
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Chapter 4

Hippocampal replay

In this chapter, we explore the computational potential of the dense recurrent connections
in the CA3 region of the hippocampus. Recurrent Neural Networks (RNN) initialized
with random weights are trained by the state-of-the-art Hessian Free optimization algo-
rithm (HF) to simulate both forward and backward replay. While this chapter focuses on
replay itself, the relationship between replay and reinforcement learning is discussed in
section 5.2.

4.1 The hippocampus as an information processing sys-
tem

If we consider episodic memory as sequences of vectors (as described in the sections
before), the anatomical structure (section 2.1) of the hippocampus gives some hints from
an engineering view. When seen as an information processing system, this structure
provides an ideal setup for time series processing, such as continuously predicting: while
the local recurrent connections at the CA3 provide control for the whole system, the
global feedback loops are able to continually feed the output of the system back as the
input. In fact, researchers studying the hippocampus as a dynamic system have proposed
that the CA3 with recurrent connections implements an attractor [71, 24]. However, these
attractor models more often emphasize on the auto-completion of spatial patterns rather
than temporal associations between patterns through time.

The simplified anatomical structure of the CA3 resembles a recurrent neural network
(RNN, figure 4.1), governed by the following equations:

yt =Whi · xt +Whh ·ht−1 +bh (4.1)

ht = tanh(yt) (4.2)

zt =Woh ·ht +bo (4.3)

where x is the input, Whi is the weight matrix connecting the input to hidden layer, Whh
is the weight matrix for the recurrent connections at the hidden layer, b’s are biases, and
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Figure 4.1: A recurrent neural network. x represent input units, h represents hidden units
and y represents output units. The states of the hidden units depend on both current input
and the last state of the hidden units.

z is the output. In theory, being hidden Markov models [69], RNNs are able to model
complex dynamics of temporal sequences. Elman [26] compares RNNs and other neural
network models that are used to model temporal sequences. He concludes from both the-
oretical reasoning and experimental simulations that RNNs can model complex temporal
dynamics by representing the effect of time in their hidden layers, providing context
information discovered from the structure of temporal sequences. Therefore, given that
episodic memory can be seen as temporal sequences, it is reasonable to explore how such
sequences can be stored and retrieved in RNNs, seeking insight into the computational
potential of the recurrent connections in the hippocampus.

4.2 Training the RNN
Although the potential of RNNs is promising from the above discussion, the training
of RNNs is notoriously difficult. The most basic algorithm is back-propagation though
time (BPTT) [68, 74, 88, 89]. In general, BPTT unrolls a RNN, treating it as a multi-
layer neural network with the same number of layers as the number of time steps in the
training sequences, while keeping weight matrices connecting layers the same. Unfor-
tunately, even worse than the unsatisfactory performance of back-propagation in deep
networks [40] (see also appendix B), training RNNs for temporal sequences with long
temporal dependencies (more than 10 time steps) using BPTT is usually disappointing
[8]. However, long temporal dependance is important given the length of a usual mem-
ory episode. In the analysis by [42], they conclude that the difficulties in training RNNs
using gradient based methods mainly come from the “diminishing gradients” - the gradi-
ents used as a training signal usually either explode or diminish when propagating. Since
step sizes in gradient based (first-order) methods are proportional to the gradients, it is
thus very difficult to choose suitable step sizes (appendix A). Because of this fundamen-
tal problem, many previous algorithms for training RNNs are hardly better than random
guessing [41].

A breakthrough came from a method called long short-term memory (LSTM)[42],
which introduces additional structures to regulate gradients (figure 4.2). Specifically,
local unit recurrent connections are used to ensure that the gradientwill neither explode
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nor diminish. With additional structural complexity, the LSTM is able to learn very long
temporal dependancies, and produces the state-of-the-art result in applications such as
phoneme classification.

Another way to regularize gradients, without introducing any additional structure,
is to use the second-order (curvature) information. The basic idea behind all second-
order algorithms (e.g., Newton’s method, quasi-Newton methods, the conjugate gradient
method [10] and the Hessian free optimization [56] used in this thesis), is to calculate
step sizes based on information from both first-order and second-order information. In
general, when optimizing the parameters of a model in its parameter space, second-order
algorithms take small steps when the curvature is large, where the gradient changes fast,
and take large steps when the curvature is small, where the gradient changes slowly.
Therefore, despite that gradients alone may still explode or diminish, the step sizes mod-
ulated both by gradients and curvatures usually remain stable.

Due to the broad range of techniques used in the Hessian free optimization algorithm
(HF), here we only treat HF as a black box, optimizing the neural network based on
given training inputs and targets. A self-contained introduction of HF covering most
mathematical details is presented in appendix E.

4.3 Simulations of forward replay
Our first goal is to simulate the forward replay (section 2.4). We use the following
physical motion equation to generate random sequences in our experiments:

d2x
dt2 =

FR

m
(4.4)

where vector x is the position of a moving particle in a n dimensional space with mass
m at time t, and FR is a random force driving this particle. The random force FR allows
automatically generating different random sequences, while the inertia from a non-zero
mass m guarantees that some temporal correlation will be preserved. We can therefore
regard traces of these moving particles as memory episodes in a n dimensional memory
space.

Since the global feedback loop (section 4.1) of the hippocampus is continually send-
ing the output of the RNN to its input, we only need to train the RNN to predict one step
ahead. For supervised learning of temporal sequences, this means, in the training set, the
target sequence needs to be one step ahead of the input sequence. In the brain, such a
training set can be realized by introducing a delay at the input end. In addition, if the
input sequence is incomplete, such that it contains only some of the input dimensions,
the learning can still proceed. In this case, the RNN learns to complete the pattern (i.e.
pattern completion) at each time step, in addition to predicting future time steps (figure
4.4).

We train RNNs with 150 hidden units, five input units and five output units with
a batch containing all the sequences to be learned. Each of these sequences has 20
time steps and five independent dimensions generated from equation 4.4. We define the
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(a)

(b)

Figure 4.2: A LSTM model [42] Compared with a standard RNN, a LSTM has more
complicated architecture. The hidden units of the standard RNN are replaced by a com-
bination of blocks of memory cells and input gates (a), and more gating units are con-
tained in each memory cell block (b). The unit recurrent connection at the center of (b)
maintains stable gradients.
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Figure 4.3: Epochs required for for different numbers of sequences with the length of 20
time steps.

training error averaged over all training cases and time steps as

e =
1

NT ∑
n,t
(zn∗

t − zn
t )

2 (4.5)

where zn
t is the model output for training case n at time step t, and N, T are the total

number of cases and time steps. The training is terminated when this error is below a
specified tolerance, which is set to 3×10−4 in our experiments. The RNNs are initialized
with random weights with -0.5 mean (see section 4.5). Since forward replay only requires
the retrieval of trained sequences (i.e., the testing set is the same as the training set), the
retrieval errors are the same as training errors. Therefore, we only summarize the epochs1

required for training different numbers of sequences in figure 4.3. Since the numbers of
epochs in HF are not precisely indicative of the training time (appendix E), we did not
average these numbers over different runs.

The results (e.g., figure 4.5) show that the model can give continuous predictions of
multi-dimensional temporal sequences from dynamic cues that are partial in both space
and time. Hence, we obtain a spatio-temporal associative memory that is capable of both
pattern completion and sequence learning.

In the experiments by Johnson and Redish [46], only the decoded spatial information
from the recorded hippocampal cells is shown, as we noted in chapter 3. However, the
replayed sequence may also contain other information that is helpful for the evaluation

1Depending on the local quadratic approximation, different epochs may take different time (appendix
A, E).
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Figure 4.4: An example sequence for forward replay.Each row represents a dimension,
and each column represents a time step; the time goes from left to right. This is a five
dimensional random sequence generated by equation 4.4 that preserves certain temporal
dependencies. In the most basic case, the training targets are the same as the input
sequences one step advance, so that the RNN will learn to predict one step ahead.

(a)

(b) (c)

Figure 4.5: Input cues and output from the RNN. Figure (b) shows the first two steps of
the sequence in figure 4.4, and (b) has only the first two dimensions (rows) of (a). After
training, the RNN can recall the sequence (c) using either a full cue (a) or a partial cue
(b). The first few time steps in (c) looks different from those in figure 4.4 and are blurred,
since the RNN need to settle down in the cue stage. Subsequent steps match well to the
learned sequence.
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of future reward [86]. We thus assign the third dimension of the replayed temporal se-
quences (the third row in figure 4.6 (a)) a signal directly related to reward, so that the
magnitude of this signal and the expected reward are directly correlated. Note this as-
sumption is only used to illustrate how a rich representation in the memory can facilitate
reward related computation. Figure 4.6 shows the simulation of the T-maze forward re-
play. At the upper-right corner of 4.6 (h), the light red color indicates that the reward
signal is strong enough so that the rat will make the decision to go right.

4.4 Simulations of reverse replay
The RNN can be trained in a similar way for both forward (section 2.4) and reverse
replay2 (section 2.5), but problems arise when considering the functional role of reverse
replay in reinforcement learning as well as experimental data. For example, since reverse
replay was observed immediately after a rat reaches the goal after very limited training
[21, 29], such a short time-scale is demanding for synaptic change-based recording of
experiences. On the other hand, since the reversely replayed experience is usually short
and recent, it may be well stored through persistent neural activity rather than synaptic
weights. Therefore, the RNN for reverse replay is trained (or “pre-wired”, to distinguish
it from the training for forward replay) differently, so that no more training is required in
later reverse replay.

For the reason discussed above, we wish the RNN to be able to replay any sequence
it recently experienced3. Since reverse replay often happens after a goal or a reward is
reached, we assume it is triggered by an additional input signal. An example of an input
training sequence and its target is illustrated in figure 4.7. In order to ensure that the RNN
is general enough to replay any input sequence (within a certain range), a training batch
with a large enough amount of sample sequences is necessary. Accordingly, although the
training for reverse replay takes place only once, it is significantly more difficult than the
training for forward replay.

In our experiments, we train RNNs with 150 hidden units, two input units and one
output units on 300 sequences similar to the one in figure 4.7. With other parameters the
same as in the RNNs for forward replay, we train the RNNs until convergence.

As examples, the two plots in figure 4.8 show reverse replay for two random se-
quences with different length in the same RNN. Recall that this RNN is only trained for
sequences with fewer than six time steps, so, interestingly, when sequences with greater
than six time steps are presented, only the last few steps of the original sequences are
replayed correctly (figure 4.9). Given that only recent experience need to be reversely
replayed, such dynamics are plausible.

In the reverse replay experiments in this thesis, we trained the RNN to replay one
dimensional sequences with fewer than 6 time steps. Furthermore, our experiment illus-
trates the extreme case in which the sequences are entirely random without any tempo-

2Since remote reverse replay (section 2.5) can be implemented in a way similar to the forward replay,
by storing experiences in synapses, it is not discussed in this chapter.

3We trained different RNNs for forward and backward replay. Although they could be combined using
gating mechanisms [10], we leave that to future work as it is not directly related to our current focus.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Simulation of decision-point forward replay. In (a) and (b), the two 4-
dimensional sequences (plotted in the same way as in figure 4.4) represent the replay
along the left and right arm respectively. In these two sequences, the first two dimensions
represent the locations (coordinates) of the rat, the third dimension represents the reward
related signal, where white means high reward. The fourth dimension are randomly gen-
erated (equation 4.4) and used as context cues to recall the whole sequences. Figures (c)
and (d) show the two cues used to recall the two sequences in (a) and (b). They are the
first three steps of the fourth dimension in the input sequences. Figures (e)-(h) plot the
4 time slices in process of replaying the sequences in (a) and (b) consecutively in a 2D
panel. The location of each circle is specified by the first two dimensions, and the color
of these circles indicates the strength of the reward signal in the third dimension (red
means high reward).
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(a)

(b)

Figure 4.7: An example input sequence and its target for reverse replay. Figure (a) shows
the two dimensional input, in which the first dimension represents events to be replayed
and the second dimension controls the commencing of the reverse replay through a mark
(the while square). Figure (b) shows the target (desired output) used in training, speci-
fying the reversed order of the events (compare the two red squares). Errors occurring
in the time steps outside the red square are ignored as irrelevant noise. Note that the se-
quence is completely random, exemplifying the extreme case of no temporal correlation
at all.

ral correlation, although in the real world this is unlikely. In the brain, some synaptic
changes may take place before reverse replay [21, 29], which could tailor the neural net-
works for specific task structures. In summary, the training (or pre-wiring) for reverse
replay in the brain could be significantly easier than in our experiment by taking advan-
tage of more specific temporal structure. Nevertheless, our results show that the RNN is
powerful enough for a fairly general case.

To demonstrate the overall performance of reverse replay, we trained two RNNs with
exactly the same procedures, testing them with random sequences at different lengths,
and calculating the averaged mean square errors over 200 samples for each length. When
calculating the errors we only consider at most the last 6 steps in the original experiences.
Figure 4.10 shows the averaged errors for the 2 RNNs. For both RNNs the replay errors
are bounded around 0.1, which confirms the performance of long sequences shown in
figure 4.9.

The fundamental difference between RNNs for forward and backward replay is that
experiences are stored in synaptic weights for forward replay, but in neural activity alone
for reverse replay. On the one hand, forward replay needs longer time to learn because of
the required synaptic change, but this brings the benefit that once learned, the sequence
can be recalled in a later time as long as the synaptic weights are not altered. On the
other hand, reverse replay without synaptic change is fast, at the cost of being more
vulnerable to interference – any alternation of the neural activity may affect the reverse
replay. This trade-off between time and stability implies their different functional roles,
which is worth further investigation.

Based on our simulation results, we predict that reverse replay does not require synap-
tic change. This prediction is experimentally testable through injection of NMDA block-
ers, which obstruct synaptic change, before testing trials or before training. In our pre-
diction, the injections before testing trials will not affect reverse replay, but the injection
before initial training in a new environment may disrupt it.
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(a) (b)

Figure 4.8: Simulation of reverse replay of 1D sequences, where the vertical axis repre-
sents values at each time step. Figure (a) shows the reverse replay of a 4 step sequence,
and (b) shows the reverse replay of a 6 step sequence from the same RNN. The symmetry
between the blue lines (experience) and red lines (output) shows the replay is successful
even in our extreme examples, although with observable distortions. Black dots outside
of the red line are irrelevant output noise (output before the start of reverse replay).

(a) (b)

Figure 4.9: Simulation of reverse replay for long sequences. Since the RNN is trained for
sequences with length up to 6 time steps, only the last few steps of the original sequence
are replayed correctly, when a much longer sequence is used as input.
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(a) (b)

Figure 4.10: Averaged reverse replay error for sequences with different lengths. Figure
(a) and (b) show the performance of reverse replay on two RNNs trained with the same
settings on random sequences with lengths of 4, 5 and 6 time steps. The mean square
errors in these figures are average over 200 testing examples. These figures show that
replay errors for recent experience are bounded for different lengths of input sequences.

4.5 Biased Initial Parameters and Oscillations
An unexpected finding in our experiments is the discovery of oscillations in the hidden
layer. The presence of oscillation has intriguing relationship with the performance of
sequence learning. Given recent research about functions of oscillations observed in
animal brains (e.g., [37]), this discovery may provide us insights into the computation
involved in episodic memory.

An important step before training a neural network is initializing connection weights4.
Normally, the initial weights are drawn from a random distribution with zero mean,
which permits unbiased optimization in the whole weight space. However, we observed
a significant boost of the performance when the initial weights are biased with a neg-
ative mean. Table 4.1 summaries the relationship between the number of converging
epochs and weight biases. For RNNs trained for the same set of sequences, properly
biased initialization reduces required training epochs by about 30%, compared with the
conventional zero-mean initialization. In addition, the biased initialization nearly triples
the capacity of RNNs5. However, a too biased initialization harms the performance. We
found -0.5 to be roughly the optimal mean in our experiments. Although it is not entirely
clear why lowering the mean of initial weights dramatically facilitates learning, the over-
all inhibition effect created by negative weights may help reduce interference between
patterns.

Moreover, we observed interesting oscillatory patterns in the hidden layer activities

4Although the parameters of neural networks include both connection weights and biases, biases can
always be treated as weights connected with units with unit activity. For easy comparison with biology
observations, we use the term “connection weights” or “weights” instead of “parameters”.

5Here the capacity means the number of statistically independent sequences can be learned.
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Figure 4.11: Temporal oscillation patterns in the Hidden Layer of RNNs. The three
columns represent the activity of hidden units from three RNNs respectively, when re-
calling the same remembered sequence. The three RNNs have the same structure and
were trained with the same sequences, but their weights were initialized with random
distributions with different mean. The first has zero mean, the second has a mean of
-0.5, and the third has a mean of -0.8. In each of the three columns, each row of pixels
represent a hidden unit, and each column of pixels represents a times step. The gray level
of a pixel represents its activity.
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Mean of Weights Number of Epochs
0 43

-0.2 30
-0.5 29
-0.8 42*

Table 4.1: Sequence learning performance and initial weights.This table compares the
number of epochs needed for RNNs with the same structures to converge on the same
training set (18 sequences with 20 time steps). All of these RNNs have 150 hidden units,
5 input units and 5 output units. The RNN in the last row failed to converge with very
negative initial weights. Further experiments showed that it takes 42 epochs for the RNN
in the last row to converge for a training set with only half the number of sequences.
Therefore, the performance of the RNN in the last row is worse than the one with zero-
mean initial weights.

that are correlated with the mean of initial weights (figure 4.11). In general, more nega-
tive weights produce clearer oscillation patterns. These patterns can be explained by the
overall inhibitory effect of the neural network: when the hidden units are highly activated
in one time step, strong inhibition tends to mute them in the next time step. Then, the
released inhibition allows input to drive these hidden units to a high activated state again.
The oscillations may promote synchronized activity, although this remains to be seen.

Interestingly, these oscillations can clearly distinguish whether an input sequence has
been learned before. In figure 4.12, the oscillation patterns are largely unseen when the
input is a novel sequence. Analysis of the learned weight matrix shows that connection
weights between hidden units are highly asymmetric, which may be responsible for such
sequence sensitive dynamics. The results suggest that the oscillations might be important
for sequence learning, but the exact reason is unclear.
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Figure 4.12: Hidden unit states can distinguish novel sequences. When the RNN is
initialized with biased weights that give the optimal performance, states of the hidden
units clearly distinguish between a remembered sequence (left) and a novel sequence
(right).
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Chapter 5

Discussion

The interactions between hippocampus and other brain areas, especially the neocortex are
necessary in understanding brain functions such as various kinds of learning. However,
limited by the scope of this thesis, our model mainly addresses the hippocampus itself.
This chapter briefly outlines how our hippocampus model can be extended to shed light
on more general issues in neuroscience.

5.1 The hippocampus and the neocortex
The interaction between the hippocampus and the neocortex is crucial in coordinating
the brain’s memory system. Classical computational models of memory systems [65, 59]
suggest that the hippocampus and the neocortex play complementary roles [81].

In the framework proposed in [59], and further developed by [65], the hippocam-
pus rapidly learns experienced input as episodes (episodic memory), which later slowly
consolidates into the neocortex. In their proposal, an important purpose of the memory
system is to learn the structural relations from patterns in experiences, forming knowl-
edge that is able to benefit an animal in various ways. Although the neocortex is supposed
to be mainly responsible for learning such structural relations, from both psychological
experiments and simulations using artificial neural networks, this learning process has to
be slow in order to both learn deep structural relations associating different patterns and
not to disrupt previously learned associations. This slow learning rate makes the neocor-
tex incapable of learning directly from experiences without the help of a buffer system
that rapidly stores experiences in the first place. The hippocampus provides such a tem-
poral buffer for the neocortex, by quickly storing experiences without much processing
(see also [55, 90]).

The different functional roles of the hippocampus and the neocortex propose distinct
structural requirements. In addition to a slow learning rate in the neocortex, a hierarchical
structure is also helpful in discovering higher order relations (e.g. [40, 74]). On the
other hand, as discussed before, the hippocampus has to be able to learn quickly, and a
deep structure is not necessary. However, recurrent connections are necessary to form
temporal associations across a long time-span, as demonstrated in 4.

Moreover, the representations required by the hippocampus and the neocortex seem
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to be fundamentally different. For the neocortex, distributed representations are bene-
ficial because it is easier to discover associations between different patterns from over-
lapped representation brought about by distributed representations [39]. However, since
the main task of the hippocampus is to store near “raw” experiences as memory episodes,
or a sequence of patterns, the main priority is to reduce the interference between different
episodes. As a result, instead of being distributed, the neural representations in the hip-
pocampus are sparse, i.e., only a very small portion of hippocampal neurons are active
at the same time, so that different patterns are more likely to be represented by different
neurons. In our model, we use vectors representing functions with a specific shape (e.g.,
Gaussian function) to enforce the sparsity (chapter 3); in the hippocampus, the spar-
sity constraint due to both similar representation schemes and the interactions between
dentate gyrus and CA3 that are not yet well known[61].

Both sparse firing patterns and remapping contribute to the broader mechanism of
pattern separation. While different patterns will be represented distinctly under the sparse
firing of hippocampal neurons, patterns that are similar but occur in different contexts,
will also be represented differently because of remapping. As discussed earlier, the den-
tate gyrus, a part of the hippocampal formation sending input to the CA3 region of the
hippocampus, is one of the only two brain regions that are able to generate new neurons
(neurogensis) in adult mammals [2]. Adult neurogenesis in the dentate gyrus may play
an important role in pattern separation by further orthogonalizing the input from the en-
torhinal cortex [1, 7, 83]. Together, the sparsity of firing and remapping provide the basis
for pattern separation that to a large extent guarantees experiences in the memory will
not interfere with each other [50].

Interestingly, pattern completion, a function that is also important for episodic mem-
ory and demonstrated by experiments, functionally contradicts pattern separation [32,
65, 73]. Through pattern completion, input that that only partly matches the original
experiences may give rise to the same neural activities, i.e., the same episodic memory
[63]. In this way, pattern completion allows more robust and flexible representations,
as incomplete input patterns that are possibly caused by noise or changing environment
may be recovered. Pattern completion can be implemented as attractors in computational
models [16, 24, 71]. Because pattern separation and pattern completion are competing
demands when an input pattern comes, a decision needs to be made concerning whether
the pattern should be stored as a new pattern (pattern separation) or rather be used as
a cue to access previously stored patterns (pattern completion). This decision may be
reflected in different states of the hippocampus that are governed by a combination of
neural oscillations and other neurophysiology processes [61].

5.2 The hippocampus and reinforcement learning
Both forward and reverse replay may have a close connection with reinforcement learn-
ing. As discussed in [86], in forward replay (section 2.4), the hippocampus may support
a forward model generating informative expectancies of the agent’s (e.g. a rat’s) future
states. The co-activation of cells in ventral striatum signaling reward at the time of replay
(or sweep) implies that the expectancies were evaluated by the ventral striatum, which
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may implement the critic in the Actor-critic architecture. Given the rich information
that can be encoded in the state space (as in the memory space, chapter 3), model-based
learning based on this forward model should support flexible behaviors. The ability to
incorporate both external and internal information in the state space permits learning of
decision-making tasks modulated by latent variables such as internal motivation.

In contrast, since no synaptic change is required, reverse replay introduced in section
4.4 enables fast association between reward and actions in recent past. The relatively
short time-scale of reverse replay compared to forward replay may well support the com-
putation needed by temporal difference learning [82]. Due to the difficulties involved in
training (or pre-wiring) a RNN for fast reverse replay (section 4.4), both the length and
complexity of the replayed sequence is limited. Therefore, we suggest that, unlike for-
ward replay that generates expectancies with rich information about the environment,
reverse replay only associates significant actions and values. From this point of view,
reverse replay may better support model-free reinforcement learning.

For the more general control problem, the hippocampus may be involved in all three
kinds of controls: model-based, caching-based and episodic control [18, 48, 49]. How-
ever, different control strategies may be implemented through different mechanisms in
the hippocampus (e.g., forward vs. reverse replay), so the transition between differ-
ent control strategies becomes an additional issue [18]. In addition, especially for the
model-based control, a full forward model requires the coordination between different
brain areas in addition to the hippocampus [19] (e.g., [44]), so a more comprehensive
memory model incorporating semantic memory is likely required to better understand
the interaction between memory and reinforcement learning [59, 73, 47, 19].

5.3 Comparison with other models
To our knowledge, apart from our model, only [37] addressed both multi-modal repre-
sentations and sequence learning. In this very recent model, Hasselmo unifies nearly
all experimental findings about the hippocampus, from the molecular to system level.
Specifically, the central role of entorhinal cortex in his model gives insights into oscilla-
tions in the hippocampus. Based on different model design choices, his biologically re-
alistic model has physiologically grounded accounts of inputs from different modalities,
rather than a unified representation scheme at a higher level as in our model. However,
restricted by the biologically plausible Hebbian learning rules that is impossible to take
advantage of second-order information, as well as the seemingly under-utilized CA3 re-
current connections, his model is computationally less powerful than ours, which means
our model can encode more complex and longer memory episodes.

Another relatively comprehensive hippocampus model comes from Levy and col-
leagues [51]. Levy’s model simulated high-level hippocampal functions including re-
play from biologically plausible neural networks trained by elegant biologically plausible
learning rules specifically derived for learning associative memory [52]. In addition to
the hippocampus itself, his model also addresses interactions between the hippocampus
and the neocortex, proposing two forms of sequence compression mechanisms (on-line
and off-line compression). However, he uses ad-hoc style context and inhibitory neurons
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that are neither biologically nor mathematically well justified. Similarly restricted by the
biologically plausible Hebbian learning rules, his model only demonstrates the replay of
rather simple sequences [5].
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Chapter 6

Conclusions

Since the proposal of the hippocampus encoding a generic “memory” space [22], re-
searchers have generally accepted that the hippocampus can encode information from
different modalities. However, only a few computational model to date address this issue
(e.g., [37]). Our model, using the Neural Engineering Framework (NEF), is the only
one to our knowledge incorporating multi-modal information in a unified and systematic
manner. Our systematic approach makes the behavior of the model easy to characterize
by identifying specific mathematical operations. For example, neural integrators can be
used to control temporal dynamics of the model representations [24], and transformation
matrices can be constructed to account for the shift of place fields.

Based on this systematical representation scheme, we further explored the dynamics
supporting storage and retrieval of sequences of vectors as episodic memory. Compared
to previous models based on gradient-descent-like Hebbian rules (e.g., [87, 5, 37]), we
benefit from the state-of-the-art Hessian-Free Optimization algorithm (HF) [57, 58], re-
sulting much more powerful temporal information processing. Therefore, it is currently
the only hippocampus model able to replay long multi-dimensional sequences, support-
ing the hypothesis proposed in [86] from a computational perspective, linking reactiva-
tion of hippocampal activities to reinforcement learning problems. In addition, this is
also the first model demonstrating a RNN can replay recent temporal sequences using
persistent neural activities only. Based on these results, we make a testable prediction
that the forward and reverse replay are supported by different mechanisms, in which only
forward replay (and possibly “remote” reverse replay [17, 33]) requires synaptic change.

As the first adaptation of the HF algorithm in computational neuroscience, this thesis
provides an additional reference for challenging machine learning problems related to
RNNs, and is of merit methodologically in neuroscience research. In order to better
introduce the powerful HF method, the author derived most related techniques in the
appendix part of this thesis, aiming to present this algorithm in a intuitive and relatively
easy to understand way without losing necessary mathematical rigor. This self-contained
text on HF is another contribution of this thesis.

Due to time constraints, we have not fully integrated the representation and sequence
processing parts of the model. However, they are entirely compatible: they share the
same vector representations, and estimation of gradients can be applied to train neural
networks in NEF (Appendix B). In the future, we expect to continue exploring interac-
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tions between parts of a wider memory system and the ways in which memory systems
are used in reinforcement learning.

47



Appendix

48



Appendix A

Quadratic functions

Quadratic functions provide good approximations to other higher-order functions, while
remaining simple enough to maintain the good properties we shall soon discuss. As a
result, they are used as a basic case in our following derivations of the back-propogation
and the conjugate gradient method.

This appendix introduces some basic properties of quadratic functions that will be
helpful in understanding general optimization methods. A quadratic function, f (x) :
Rn→ R, has the following form:

f (x) = c+bx+
1
2

x>Ax (A.1)

Despite its simple form, when equation A.1 is used as the second-order approximation
(e.g., from Taylor’s expansion) of a higher-order function, the curvature information is
well preserved in matrix A. The quadratic function has gradients

g(x) = ∇ f (x) = b+Ax (A.2)

Equation A.2 holds true only when A is symmetric (otherwise ∇ f (x) = b+ 1
2(A+A>)x

). Here it is reasonable to assume the symmetry, because when used for approximation,
matrix A (either a Hessian matrix or an approximation of Hessian such as a Gauss-
Newton matrix) is always symmetric.

A symmetric matrix has the nice property of having a full set of orthonormal eigen-
vectors:

Aui = λiui (A.3)

ui ·u j =

{
0 i 6= j
1 i = j

, for i, j = 1, 2, ...N (A.4)

where A is a n×n symmetric matrix, u are eigenvectors and λ are eigenvalues. Because
of the orthogonality, the N eigenvectors span the whole N dimensional space.

Assuming that x∗is the point where the gradient ∇ f (x) of this quadratic function is
zero, we expand equation A.1 at x∗:

f (x) = f (x∗)+
1
2
(x− x∗)>A(x− x∗) (A.5)
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The first-order term disappeared because the gradient at this point is zero.
If A is positive semi-definite,

v>Av > 0 (A.6)

is true for any vector v. Therefore, f (x) has the minimal value of f (x∗) when A is posi-
tive definite. If A is negative semi-definite, i.e., v>Av 6 0, x∗ is the maximal point. If A
is indefinite, in which case the sign of v>Av can be both larger or smaller than zero, f (x)
forms a saddle plane. In a typical optimization problem that aims to minimize an ob-
jective function, A being positive semi-definite is more favorable, because the objective
function then has a global minimum. Function f (x) is called a convex function when A
is positive semi-definite.

To further analyze equation A.5, we can write (x− x∗) as a linear combination of the
eigenvectors of A:

x− x∗ = ∑
i

αiui (A.7)

Recall that ui are orthonormal basis (equation A.4), so there exists one and only one set
of coefficients α’s that satisfies equation A.7. Substituting equation A.7 into equation
A.5 and using equation A.3 we obtain:

f (x) = f (x∗)+
1
2 ∑

i
(αiui)∑

j
λ j(α ju j) (A.8)

which can be further simplified using the orthonormal property of u’s into:

f (x) = f (x∗)+
1
2 ∑

i
λiα

2
i (A.9)

Comparing the second term of equation A.9 and equation A.6, it is easy to find that all
the eigenvalues of positive semi-definite matrix need to be non-negative. Therefore, the
contours of f (x) form ellipses with axes aligned with the eigenvectors, and the length of
these axes are inversely proportional to the square roots of the eigenvalues.

Having a global minimum (for positive definite A matrix, or minima for positive
semi-definite A matrix) makes gradient-based optimization methods plausible on convex
quadratic functions, as least in theory, because when the step size is small enough, we can
always find the the global minimum by going down the gradient. However, equation A.9
reveals that for a point at the surface of f (x), the gradient along each eigenvectors can be
vastly different if the magnitudes of eigenvalues are distinct (the ellipsis is elongated).
In which case, convergence of gradient based methods become difficult1. A condition
number

c =
λmax

λmin
(A.10)

is used to measure the convergence property of a function. A low condition number
indicates this function is easy to converge, which is called well-conditioned. On the
contrary, large condition numbers mean functions are bad-conditioned. In the later case,
preconditioning may be used to lower the condition number.

1The intuitive reason is that we usually use a slower learning rate for large gradient to avoid overshoot-
ing, and use a faster learning rate for small gradient to accelerate learning. However, if the gradients along
different directions are very different, it is hard to find a learning rate that suite both.
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Appendix B

Back-propagation in NEF

In this appendix, we present detailed derivation of the back-propagation algorithm in
NEF. A two-layer toy neural network is used as an example to illustrate how parame-
ters of NEF models can be learned through back-propagation of errors. Following this
example, possible generalization of this derivation, including back-propagation through
time (BPTT), is briefly discussed. To make this part self-contained, necessary equations
appearing in the main text are repeated. Since the neural networks in NEF can be re-
garded as an extension of traditional artificial neural networks with additional notations
to characterize the heterogeneity and multi-dimensional responses, this derivation also
applies to simpler neural networks that are common in machine learning.

B.1 Notations
Figure B.1 shows the toy neural network for which we will derive learning rules for all its
parameters. This neural network maps an input vector X = (x1, x2, ..., xi, ...)

T , through
the neural dynamics of two layers of LIF neurons, p1, p2, ..., p j, · · · and q1, q2, ..., qk, ...,
to an output vector Y = (y1, y2, ..., yl, ...)

T .
Given a constant input current, the firing ratea of a LIF neuron is determined by its

activation function G(J), as described inB.1. Parameters τre f , τRC, and Jthreshold are hold

Figure B.1: A toy neural network
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Figure B.2: The activation function G(J) of a LIF neuron and it’s approximated first-
order derivative G′(J)∗.

constant in the derivation 1.

a = G(J) =
1

τre f − τRCln(1− Jthreshold
J )

(B.1)

In order to use this activation function in the back-propagation algorithm, we need
its first derivative. Although we can write the analytical form of G(J)’s first deriva-
tive as in equation B.2, note that G(J) is not differentiable at the threshold point, where
limJ→Jtrheshold+G′(J) = ∞. As a result, we need to approximate G′(J) by G′(J)∗that gen-
erally preserved the shape of G′(J) (figure B.2), as shown in equation B.3(ξ and φ are
small positive constants)

G′(J) =
τRC · Jthreshold

(1− Jthreshold
J ) · J2

/D2 (B.2)

D = τ
re f − τ

RCln(1− Jthreshold

J
)

G′(J)∗ =

{
G′(J) J > ξ

φ J < ξ
(B.3)

For neurons receiving external input directly, such as neuron p j, the input current is
given by the equation below, where e j is the encoder with the same length as the input
vector X , and b is the input bias of neuron p j. If we view the bias term as a neuron that
always has unit activity, we can see the bias magnitude as the weight of connection to

1In most simulations, these parameters remain constants. We can learn them through calculating the
gradients ofG(x) w.r.t. these parameters, but the process is not given in this appendix.
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this unit activity neuron. Therefore, The bias term can be learned the same way as other
connection weights. For this reason, we will not derive separated learning rule for bias
terms.

We can simplify it by combine the gain factor g jand an element of e j to form gain
factors, αi j, for each element in the input vector, thus gives equation B.5. The encoder
and the gain factor can be easily factored out after learning given the magnitude of either
of them.

Jp
j = γ j · eT

j ·X +bp
j (B.4)

Jp
j = ∑

i
αi j · xi +bp

j (B.5)

For neurons receiving input from other neurons, their input currents are given by
weighted sum of incoming activities. For example, the input current of neurons qk is
described by equation B.6, where w jk is the connection weights between neuron p jand
qk.

Jq
k = ∑

j
w jk ·ap

j +bq
k (B.6)

The output, Y , is decoded from linear combination of neural activities in the q layer.
This decoding process is governed by decoders, dkl , as described in equation B.7

yl = ∑
k

dkl ·aq
k (B.7)

To sum up, parameters of this toy neural network are: gain factors αi j, connection
weights w jk, and decoders dkl .2 Given a set of desired outputs Y ∗ The goal of supervised
learning in this toy neural network is to find proper parameters so that the model outputs
Y are as close to Y ∗as possible.

B.2 The Back-propagation Algorithm
Now we are going to derive the back-propagation algorithm for each parameter intro-
duced in the last section. The algorithm can be divided into forward pass and backward
pass. In the forward pass, we run through the neural network by applying the equations
described before, obtaining a model output Y . Then we can calculated the output error
by comparing it with the desired output Y ∗, and back-propagate this error to places that
need error signal to facilitate training.

More formally, learning is achieved through optimizing, maximizing for minimizing,
an objective function. The objective function, for minimizing, of the supervised learn-
ing problem described above can be written as equation B.8. To make model outputs
approach desired outputs, the first term is the sum of the squared error for each output
element across each training case c. Since large connection weights can make gradient

2As explained before, we treat bias terms as connection weights.
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descent unstable, we also add the second term, the sum of all connection weights, to
penalized large connection weights. In the following derivation, we will drop the sum-
mation of cases to simplify the notations.

E =
1
2 ∑

c
∑

l
(yc

l − yc∗
l )2 +

1
2

λ ∑
j
∑
k
(w jk)

2 (B.8)

To determine how E is affected by each element of Y , we take the partial derivative
with respect to yl:

∂E
∂yl

= yl− y∗l (B.9)

Given equation B.9 and equation B.7, we can calculate the partial derivative w. r. t.
the decoder dkl using the chain rule:

∂E
∂dkl

=
∂E
∂yl
· ∂yl

∂dkl
= (yl− y∗l ) ·a

q
k (B.10)

The effect on E from the activation of aq
kon yl is:

∂E
∂yl
· ∂yl

∂aq
k
= (yl− y∗l ) ·dkl (B.11)

Since aq
k acts on all y’s, to take into account all the decoders interact with neuron qk:

∂E
∂aq

k
= ∑

l

∂E
∂yl
· ∂yl

∂aq
k
= ∑

l
(yl− y∗l ) ·dkl (B.12)

Then we can then use the approximated gradient, equation B.3, to compute ∂E
∂Jq

k
:

∂E
∂Jq

k
=

∂E
∂aq

k
·

∂aq
k

∂Jq
k

(B.13)

= ∑
l
(yl− y∗l ) ·dkl ·G′(J)∗

Similarly, the following equations can derive by applying the chain rule and previous
derived intermediate results:

∂E
∂w jk

=
∂E
∂Jq

k
·

∂Jq
k

∂w jk
+

∂
1
2λ ∑ j ∑k(w jk)

2

∂w jk
(B.14)

= ∑
l
(yl− y∗l ) ·dkl ·G′(J)∗ ·ap

j +λw jk

∂E
∂ap

j
= ∑

j

∂E
∂Jq

j
·

∂Jq
j

∂ap
j

(B.15)

= ∑
j
∑
k
(yl− y∗l ) ·dkl ·G′(J)∗ ·w jk
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∂E
∂αi j

=
∂E
∂ap

j
·

∂ac
k

∂αi j
(B.16)

= ∑
j
∑
k
(yl− y∗l ) ·dkl ·G′(J)∗ ·w jk · xi

In equation B.14, λdetermines the penalty for large weights.

B.3 Learning Rules
Using the derivatives given by equation B.10, B.14, and B.16, the learning rules for all
parameters in our toy neural network can be written:

∆dkl =−ε
∂E
∂dkl

(B.17)

∆w jk =−ε(
∂E

∂w jk
+λw jk) (B.18)

∆αi j =−ε
∂E

∂αi j
(B.19)

In the above equations, ε is a small positive constant denoting the learning rate. We
usually introduced momentum to accelerate the speed of gradient descent, such as:

∆w jk(t) =−ε(
∂E

∂w jk
+λw jk)+β ·∆w jk(t−1) (B.20)

where the numbers in the brackets indicate the connection weights at a specific time step,
and0 < β < 1 is the magnitude of the momentum.

B.4 Extension
It is most straightforward to extend the toy model in this appendix to models with
more hidden layers. By continuing applying the chain rule, errors can be further back-
propagated to drive the learning of other parameters.

Another way of extending this model is to view the layers p and q as the states
of the same layer at two consecutive time steps, i.e. p(t) = q(t − 1). Thus, we can
derive the learning rule for Recurrent Neural Networks (RNN) by treating w jk as the
recurrent connection determines the transformation between two consecutive time steps.
This algorithm is also called Back-propagation through time (BPTT).
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Appendix C

Conjugate Gradients

The conjugate gradient method (CG) is the optimizer at the heart of the powerful Hessian-
Free optimization algorithm. By utilizing second-order information, it is guaranteed to
reach the global minimum of a quadratic error function in n steps, where n is the input
dimensionality of a function. For higher-order functions, such as the objective functions
of most neural networks, the non-linear version the conjugate gradient method is signifi-
cantly more efficient than algorithms utilizing only first-order information (basic gradient
descent, such as Appendix B). Additionally, it is more economical in both computation
and storage compared to quasi-Newton methods.

This self-contained appendix gives derivations of the conjugate gradient algorithm
that are essential for understanding the Hessian-Free optimization algorithm. It can also
be used as a brief introduction to the conjugate gradient method. For a more comprehen-
sive version, see the excellent introduction by [79].

C.1 Linear conjugate gradient methods
Let us start from the most basic linear CG, where the function to be minimized, f (x) :
RN→R, has the following quadratic form of equation A.1, with the gradient of equation
A.2. From basic calculus, a convex function f (x) reaches its minimum value f (x∗)
(AppendixA) when its gradient

g(x∗) = b+Ax∗ = 0 (C.1)

However, the direct evaluation of x∗ = − b
A

1is not plausible for large-scale problems,
where the inversion of A is too expensive. As a result, we seek iterative methods to com-
pute x∗numerically. In the following derivation, we write g(xi) as gi when appropriate.

The two central problems are

1. which direction we should search;

2. how large a step we should take along that direction.

1 This is a special case of Newton’s method.

56



C.1.1 Line search
First, we look at how to find an optimal step size αi, at step i, given a search direction
di. In other words, we try to find a value αithat minimizes f (xi +αidi). By taking the
directional derivative,

∂ f (xi+1)

∂α
= 0

∂ f (xi +αidi)

∂αi
= 0

g>i+1di = 0 (C.2)

then substituting equation A.2 to calculate the gradient,

(b+Axi+1)
>di = 0

(b+A(xi +αidi))
>di = 0

we obtain:

αi =−
(b+Axi)

>di

d>i Adi
(C.3)

This process is called line-search. If we use the opposite direction of the gradient at each
step as d, the same direction as in gradient descent

di =−gi (C.4)

equation C.3 and equation C.4 give the steepest descent algorithm, which uses the cur-
vature information (matrix A) to regularize step sizes.

Note that gi+1 and di being orthogonal means that after taking this step, we not only
minimize f (x) along the direction of di, but also reduce the length (strictly speaking,
square of length) of the gradient at its largest extent. Therefore, any change along di will
lengthen gi+1, because they are already orthogonal. This can be proved by taking the
derivative

∂ [g>i+1gi+1]

∂αi
= 0 (C.5)

Equation C.5 has the same solution of equation C.3.

C.1.2 Conjugate directions
In order to find the direction we should take at each step, we need to analyze the opti-
mization problem in greater depth. Note that the following statement are equal in the
context of minimizing a quadratic function f (x):

1. Minimizing f (x).

2. Reaching a point where where the gradient of f (x) is zero.

3. Reaching the minimal point x∗.
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The first statement is at the highest level, but it may not give us enough insight into the
optimization problem. For example, if we try to reduce the value of f (x) directly at each
iteration using gradient descent, the performance can be very bad for functions with low
condition numbers. On the contrary, the third statement is at the lowest level. However,
it is impractical since we don’t know x∗ in advance. Therefore, only statement 2 at the
middle is left to guide us in selecting the directions to take.

Given a direction di and a step size αi from equation C.3, we can obtain the gradient
at xi+1, gi+1. Following the discussion in the last paragraph, our goal is to find the next
step that continues reducing the gradient length towards zero, with the constraint that the
gradient already reduced by di (from gi) in the last step is not undone. From equation
C.2, we infer this can be satisfied by keeping the gradient at the next step, gi+2, still
orthogonal to direction di, so that step i also minimizes gi+2, in addition to gi+1, along
its direction di.

g>i+2di = 0

g(xi+1 +αi+1di+1)
>di = 0

[b+A(xi+1 +αi+1di+1)]
>di = 0

(b+Axi+1)
>di +αi+1d>i+1Adi = 0 (C.6)

From equation C.2, the first term of equation C.6 is zero. To guarantee the second term
is also zero, directions di+1 and di must satisfy

d>i+1Adi = 0 (C.7)

Directions satisfying equation C.7 are said to be conjugate, and this is where the name
“conjugate gradient” comes from.

To extend the previous argument using induction, since all the following steps also
should not undo the “work” by step i( along its direction di) we further require that

g>k di = 0 (C.8)

holds true for all k > 1. Applying equation C.6 repeatedly, we see all the search directions
must satisfy the conjugacy condition

d>i Ad j = 0 f or i 6= j (C.9)

C.1.2.1 Search directions are linearly independent

We then prove that if A is positive definite, these search directions are linearly indepen-
dent. Assuming these directions are not all linearly independent (reductio ad absurdum),
there exists such dk that

dk =
n

∑
i=0

γidi (C.10)

where γi are constant coefficients and γk = 0. From equation C.9

d>k Ad j = 0 (C.11)
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where j 6= k. Plugging-in equation C.10 into equation C.11 and simplifying i, we get

d>j Ad j = 0 (C.12)

which contradicts the positive definite assumption that gives d>j Ad j > 0 for any d j.
Therefore, there exists N linearly independent search directions d for this N dimensional
quadratic function f (x).

C.1.2.2 Gradients are linearly independent

We can also prove that the gradients at different steps are linearly independent in a similar
way. Assuming

gk =
n

∑
i=0

µigi (C.13)

multiply both sides by d0:
N

∑
i=0

µig>i d0 = 0 (C.14)

Using equation C.8, equation C.14 is simplified to

g0d0 = 0 (C.15)

which is false, since we never choose a search direction orthogonal to the gradient, as it
may not change the function value at all. Therefore, the gradients are linearly indepen-
dent.

Specifically, when the initial direction is chosen as d0 = −g0, we can use induction
to prove that all the N gradients are orthogonal to each other. From equation C.8 we have

g>0 gk = 0 f or 1 6 k 6 N (C.16)

In addition, given that g′s and d′s both span the same N-1 dimension space, we can write

gk =
N

∑
l=1

θldl (C.17)

From equation A.2,

gi+1−gi = A(xi+1− xi)

= αiAdi (C.18)

Now assuming
g>i gi+k = 0 (C.19)

using equations C.18 and C.17:

g>i+1gi+k = (gi +αiAdi)
>gi+k

= g>i gi+k +αid>i A(
N

∑
l=i+1

θldl)

= 0 (C.20)
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Together with equation C.16, g′s are orthogonal to each other.

g>i g j = 0 f or all i 6= j (C.21)

Note that many other derivations regard the orthogonality between gradients as an im-
portant property of conjugate gradients, but actually this is only true when the initial
direction is the opposite of its gradient (d0 = −g0). Nevertheless, as proved in section
C.1.4, the initial search direction generally does not affect the convergence of the conju-
gate gradient method.

C.1.3 Constructing conjugate directions
Although in theory we can select the start direction d0 and the starting point x0 arbitrarily,
the common practice is to start from x0 = 0 and initialize do =−g0. x0 = 0 guarantees the
non-constant part of the quadratic equation will be non-positive (actually 0) , providing a
good starting point for minimization2. Taking the initial direction as the gradient ensures
that the value of f (x) will reduce quickly and gives the nice property that all gradients are
orthogonal, as shown in section C.1.2.2. In addition, since the gradient will be evaluated
in all the following steps (equation C.3), such initialization makes the whole process
consistent.

After d0 = −g0 is obtained, the following directions can be constructed one by one
using the Gram-Schmidt process

di+1 = ui+1−
i

∑
k=0

βi+1,kdk (C.22)

where u′s are linearly independent vectors. Equation C.22 means we can construct a
series of conjugate directions3 by subtracting from a vector ui+1 the components of i
directions previously obtained. Given the independence of gradients (section C.1.2.2),
we use the gradients obtained at step i+ 1(gi+1) as ui+1 in equation C.22. Multiplying
both sides of equation C.22 by d>i A, we can simplify it using conjugacy and orthogonality
(equation C.8,C.9; here we drop the subscription k of β for simplicity)

0 = d>i Agi+1−βi+1d>i Adi

βi+1 =
g>i+1Adi

d>i Adi
(C.23)

Note that because of conjugacy between directions, β1, β2, ...βi are not relevant for con-
structing consecutive conjugate directions. Therefore, equation C.22 can be written as

di+1 = ui+1−βi+1,kdk (C.24)

2However, for Hessian-Free optimization, there are even better initial points (section E.3).
3Recall that the Gram-Schmidt process was first introduced to construct a set of orthogonal vectors.

Conjugacy sometimes are also called A-orthogonality, where A is the matrix at the middle of equation
C.9. Actually, the basic idea underlying the Gram-Schmidt process allow it to construct vectors with any
such orthogonal relationships.
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The matrix-vector product in equation C.23 can be avoided using equation C.18

βi+1 =
g>i+1(gi+1−gi)

d>i (gi+1−gi)
(C.25)

which is known as the Hestenes-Stiefel expression. It can be simplified using equation
C.8, C.24 to obtain the Polak-Ribiere form:

βi+1 =
g>i+1(gi+1−gi)

g>j gi
(C.26)

When we start with the opposite of the gradient as the initial direction, thus different gra-
dients are orthogonal (equation C.21), the Polak-Ribiere form can be further simplified
to the Fletcher-Reeves form

βi+1 =
g>i+1gi+1

g>i gi
(C.27)

All three expressions computing the coefficients β are the same when conjugacy between
direction is strictly held. This condition is generally true in the linear case, where only
minor numerical errors may affect conjugacy. Therefore, we usually use the simplest
one, equation C.27, in linear conjugate gradients.

C.1.4 Convergence of conjugate gradients
The conjugate gradient method is efficient because it is guaranteed to converge in n steps
for n dimensional quadratic functions. Now we prove why this is true (equation C.3,
C.23).

Suppose we have n conjugate directions d1, d2, ...dn constructed using equation C.23.
Since they are linearly independent (section C.1.2.1), they span the n dimensional space
where function f (x) is defined. Therefore, we can find a set of steps αidi leading to the
solution x∗ from an initial point x0

x∗− x0 =
n

∑
i=1

αidi (C.28)

Multiply both sides by d>0 A and use equation C.1 to get rid of x∗

−d>0 (b+Ax0) =
n

∑
i=1

αid>0 Adi (C.29)

Again, using equation C.9, we simplify the above equation and solve for

α0 =−
(b+Ax0)

>d0

d>0 Ad0
(C.30)

Similarly, we can solve all the coefficients

αi =−
(b+Axi)

>di

d>i Adi
(C.31)

which is the same as equation C.3. Therefore, we proved the conjugate gradient method
converges to the minimal point x∗ in N steps for any N dimensional quadratic function.
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C.1.5 The conjugate gradient algorithm
Since the derivation of conjugate gradients is quite complicated, here we summarize it in
the algorithm form. It may look slightly different from the derivation above because of
some pre-multiplication in order to improve the performance.

1. Initialize the starting position x← x0

2. g← b+Ax

3. d←−g

4. δi← g>g

5. p← Ad

6. α ← δi
d>p

7. x← x+αd

8. g← g+α p

9. δi−1← δi

10. δi← g>g

11. β ← δi
δi−1

12. d← r−βd

13. goto step 5 until meet stop condition

The stop condition in the last step can be reaching a certain precision or the maximum
iterations. Another good choice of the termination condition is the on described in [57],
which terminates the CG when the decrease of the objective function is small. It termi-
nates CG at iteration i when the following inequities satisfy:

i > k
φ(xi)< 0
φ(xi)−φ(xi−k)

φ(xi)
< kε

Where k = max(10, 0.1× i) and ε = 1e− 4 is chosen in the experiments in this thesis.
The ε is smaller than that in [57], because the regression here requires higher precision.
Although increasing ε may accelerate learning, a too large ε could produce low quality
steps that slow down the learning and even make the Hessian-Free optimization fail to
converge.
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C.2 Non-linear Conjugate gradient methods
Most practical problems, such as optimization in machine learning, are non-linear. We
can apply the linear conjugate gradient method described before with only slight modifi-
cation to the line-search and constructing conjugate direction steps.

For line-search, since the error surface is not quadratic, the first step one may tempt
to do is to substitute matrix A with the second-order derivative f ”(x), or the Hessian
matrix, the same as in the second-order expansion of f (x+δ ) at x

q(δ ) = f (x)+∇ f (x)>δ +δ
>Hδ (C.32)

where δ is the increment at a step. In other words, if x represents parameters at the
last step, δ represents the increment of these parameters from the last step. However,
equation C.3 is no longer able to minimize the error in one step. A simple solution is
to apply equation C.3 repeatedly until the the change of error function after one step is
smaller than a threshold value. This is actually the Newton-Raphson method. When the
second-order derivative of f (x) is not available or too expensive to compute, one may
approximate it using secant method or other line-search algorithms that do not depend
on second order information (see [79] for more information).

As discussed in section C.1.3, all three expressions of the coefficients β (equation
C.25, C.26 and C.27) are the same when conjugacy between directions is strictly held,
which is generally true in linear cases. However, the conjugacy deteriorates fast in the
non-linear case, in which matrix A, thus the definition of conjugacy, is constantly chang-
ing. In non-linear case, the Polak-Ribiere (equation C.26) form is found to perform
slightly better than the Fletcher-Reeves form. One reason might be that the assumption
of orthogonality between gradients, in order to obtain equation C.27, is usually not true,
as discussed in section C.1.2.2.

When applying the modified steps above, since conjugacy between search directions
is no longer preserve, CG generally cannot converge in N steps. For this reason, a com-
mon practice is to restart the conjugate gradient method after N steps. Despite the break
of conjugacy in non-linear problems, CG still has relatively good performance.

However, the non-linear conjugate gradient method, as well as many other second-
order algorithms, has the problem that it may be trapped in local minima or even local
maxima. These unfavored behaviors can be explained using the conclusion from ap-
pendix A: if the instantaneous Hessian at a step is negative-definite, the line-search will
move towards local maxima, increasing the error; if the Hessian is indefinite, the line-
search may either increase or reduce the error. As a result, once the Hessian is not
positive-definite, which usually happens for highly non-linear functions, the behavior of
conjugate gradients (and many other second-order optimization algorithms) may not be
as good as one may expect. Furthermore, even if the Hessian is always positive-definite,
when the line-search is exact, the error function will go to local minima. On the other
hand, if the line-search is inexact, the conjugacy will deteriorate even faster.
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Appendix D

An efficient way of computing
matrix-vector products

In the conjugate gradient method introduced in appendix C, many steps require com-
puting the product between a matrix and a vector (e.g., step 2 and 5 in the algorithm in
C.1.5). Since the matrix A in has the size of n×n for any n dimensional function f (x),
simply accessing matrix A has the complexity O(n2). In large-scale problems, such as
training neural networks with a reasonable size, the size of A will be too large for both
storing A and computing the matrix-vector product directly. This appendix introduces
the ℜ{·} operator[67] that efficiently computes matrix-vector products with linear com-
plexity (O(n)).

We start our derivation with the first-order expansion of f (x+∆x) at x

f (x+∆x) = f (x)+ f ′(x)>∆x+O(||∆x||2) (D.1)

Because of the error term O(||∆x||2), the expansion above is exact. The expansion can
be rewritten by substituting ∆x with the product of a scalar r and a vector v

f (x+ rv) = f (x)+ f ′(x)>rv+O(||rv||2) (D.2)

Rearranging equation D.2 and dividing both sides by the scalar r, we obtain the product
between f ′(x), a matrix, and the vector v1:

f ′(x)>v =
f (x+ rv)− f (x)

r
+O(|r|)

= lim
r→0

f (x+ rv)− f (x)
r

(D.3)

where we further drop the error term and obtain the exact product by taking the limit
r→ 0. Equation D.3 is actually the definition of the directional derivative of f (x) along
the direction v. Therefore, we can define the ℜ{·} operator2

ℜv{ f (x)} ≡ ∂

∂ r
f (x+ rv) |r=0 (D.4)

1In actual application in optimization, the matrix in the place of f ′(x) is usually a symmetric matrix,
such as a Hessian or Gauss-Newton matrix.

2The subscript v in equation D.4 is usually omitted for simplicity when no confusion will occur.
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Since ℜ{·} is a differential operator, rules of differential operators, such as chain rule,
product rule, quotient rule also apply to it:

ℜ{c · f (x)}= cℜ{ f (x)}

ℜ{ f (x)+g(x)}= ℜ{ f (x)}+ℜ{g(x)}

ℜ{ f (x)g(x)}= ℜ{ f (x)}g(x)+ f (x)ℜ(g(x))

R{ f (g(x))}= f ′((g(x))ℜ{g(x)}

ℜ{d f (x)
dt
}= dℜ{ f (x)}

dt
Specifically,

ℜ{x}= v

can be proved by the definition in equation D.3, D.4

ℜ{x} = lim
r→0

(x+ rv)− x
r

= v

It is exact the product
(x)′v = Iv = v

A straightforward application of theℜ{·} is to compute the product between Hessian
and another vector as a part of the nonlinear conjugate gradient method.
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Appendix E

Hessian-Free Optimization

E.1 Overview
With the background knowledge introduced in Appendices A, C and D, we can derive the
Hessian-Free optimization algorithm (HF). As discussed in section C.2, directly applying
the non-linear conjugate gradient method or other second-order algorithms may result in
unfavored behaviors caused by the Hessian matrices that are not positive semi-definite.
To solve this problem, the general idea behind the Hessian-Free Optimization is to reg-
ulate the local curvature (second-order) information, providing an ideal environment for
the conjugate gradient method1.

Following the discussion above, we functionally divide the Hessian-Free optimiza-
tion into two steps: local quadratic approximation and optimization. In the first step, a
positive-definite quadratic function is used to approximate the original non-linear objec-
tive function locally. In the second step, we optimize the quadratic function obtained
in the first step using the linear conjugate gradient method. Since only the quadratic
function is used for optimization, the convergence properties of the linear CG are well
preserved.

E.2 Positive semi-definite approximation
Recall that the problem of many second-order methods lies with the Hessian – it may
not be positive semi-definite. To solve this problem, we need to find a matrix guaranteed
to be positive semi-definite as an approximation of the Hessian, and use this matrix in
place of the Hessian to approximate the original objective function. We start to find this
positive semi-definite matrix by analyzing the Hessian2.

1The conjugate gradient method, instead of other second order optimizer, is used here, because it is
efficient in both storage and computation (both are linear) for large scale problems. A detailed comparison
of second-order methods is beyond the scope of this appendix. Please refer to text such as Chapter 7 of
[10] for more detailed account of different optimization algorithms.

2In this appendix, we write the objective function as f (θ) instead of f (x) to more clear indicate our
purpose of optimizing for parameters of a neural network.
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Following the notation from [77], we re-write the objective function as the composi-
tion of function L, M and N

f (θ) = L(M(N(θ))) = L◦M ◦N (E.1)

For a neural network with n input and m output units, N is the function mapping the
parameter set θ to the m outputs(input is given in the training set). M : Rm→ Rm is the
function of the output unit. For linear output units which are usually used in regression,
M is the identity function (i.e. multiplication by an identity matrix), whereas for classifi-
cation problems, M can be the logistic function (two class, binomial distribution) or the
softmax function (multiple classes, multinomial distribution). In addition, L : Rm→ R1

is the loss function measuring the discrepancy between model outputs and target outputs.
The loss function can be the squared error function or cross entropy error.

The choice of loss function depends on the output function M. If M is a linear output
function, the squared error function will be its matching loss function. On the other hand,
for logistic or softmax outputs, the cross entropy error will be the matching loss func-
tion. Matching loss functions are also called canonical response functions. Statistically,
the matching loss function is consistent with the maximal likelihood estimation. One
way to derive these matching loss functions is to first assume the distribution of model
output (Gaussian distribution for linear output units, binomial distribution for logistic
output units and multinomial distribution for softmax output units), and then simplify
the maximal likelihood function (see [10] for more detail).

With the notation of equation E.1, we can further rewrite the Hessian:

H =
∂

∂θ
(JL◦MJN) = J>N HL◦MJN +

m

∑
i=1

(JL◦M)iHNi (E.2)

where J’s are Jacobians, the first derivative of a function, and the second term of the
above equation denotes the sum across all m output units of the neural network. Another
good property of matching loss function is that if L and M are matching, the Jacobian
JL◦M can be simplified to the difference between the model output z and the target outputs
z∗,

JL◦M = z− z∗ (E.3)

Therefore, the second term of equation E.2 diminishes when θ approaches the true so-
lution θ ∗3. For this reason, we can discard the second term in equation E.2 without
affecting the purpose of optimizing, since this term approaches zero near the solution.
This gives the Gauss-Newton matrix

G≡ J>N HL◦MJN (E.4)

which we will use in place of the Hessian in equation C.32.
Still, all approximation-based algorithms have the problem of model-trust region.

When the conjugate gradient method optimize the approximated quadratic equation, if

3We call it “solution” in the context of solving the linear equation A.2 that gives the minimal value of
the quadratic function to be optimized. Therefore, θ ∗ is also the optimal parameter set.
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the step taken is too large (large δ in equation C.32), the approximation may be bad. As
a result, decrease in the (approximated) quadratic function may not be accompanied by
a similar decrease in the objective function. We thus need to regularize the step size,
usually by adding a Tikhonov term λδ>δ that penalizes large δ 4. After using the Gauss-
Newton matrix, and adding the Tikhonov term, we obtain the objective function

q(δ ) = f (θ)+∇ f (θ)>δ +δ
>(G+λ I)δ (E.5)

where I is the identity matrix.
Worth noting that equation E.5 is the same as the objective function in the Levenberg-

Marquardt algorithm when the neural network has linear output units, where G = J>N JN .
Therefore, we can understand the objective function in the Hessian-Free algorithm as an
extension of the Levenberg-Marquardt algorithm to non-linear outputs5. The parameter
λ in equation E.5 is also adjusted the same way as in the Levenberg-Marquardt algo-
rithm: {

λ = cλ φ < 1
4

λ = 1
c λ φ > 3

4
(E.6)

where c is a positive value (c is usually set to 10 in the classical Levenberg-Marquardt
algorithm, and set to 4 in Hessian-Free), and the positive number

φ =
the decrease of the quadratic function
the decrease of the original function

The intuition behind this heuristic of adjusting theλvalue is that if the decrease in the
objective function is small compared to the decrease in the quadratic function, the ap-
proximation is bad, so we need to increase λ to impose a more conservative step. On
the contrary, if φ is already large enough, thus the approximation is accurate, larger steps
can accelerate the optimization.

In [58], another method called the structural damping is used in conjunction with the
Tikhonov term to further regularize the objective function for recurrent neural networks
(RNN) by specifically penalizing the distortion compared with the non-linearity in the
hidden layer of a RNN. However, We do not find it useful in the tasks in this thesis.
Given that the structural damping is not a general approach, it is not presented here.

E.3 Optimization on quadratic approximation
Now we can put everything together, optimizing an objective function f (θn) through
optimizing its quadratic approximation qn(δ ) at each step using the conjugate gradient
methods. We stop the conjugate gradients once the value of qn(δ ) decreased to below
a tolerance value, thus obtaining a step δn. Next, we update both the approximated
quadratic function and parameters and optimize the new quadratic function qn+1 from
δn, where qn+1 is the approximation of the objective at θn+1 = θn + δn. Note that the

4It is also called L2 regularization, which is always written as 1
2 λ ||δ ||2

5However, the Levenberg-Marquardt algorithm does not use conjugate gradients as its optimizer.
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optimization on qn+1 starts from the direction of the last step δn, instead of 0 (section
C.1.3), since this initial direction usually significantly accelerates the conjugate gradient
method in the Hessian-Free optimization [57]. The reason might be that qn+1 and qn are
similar, so they are likely to have resembling minimal points.

In some situations, especially when the step-size becomes very small, the Tikhonov
regularization is not enough to deal with the very high local non-linearity. In these cases,
we shorten δn

6 through an inexact backtracking line-search to obtain a δ ∗n that better
accommodates the local surface. The Wolfe conditions can be used to govern this inexact
line search by finding a step length αk, so that δ ∗n =αkδn gives a sufficiently smaller value
of the objective function than δn. A step length αk is said to satisfy the Wolfe conditions
if

1.
f (θn +αkδn)6 f (θn)+ c1αkδ

>
n ∇ f (θn) (E.7)

2.
δ
>
n ∇ f (θn +αkδn)> c2δ

>
n ∇ f (θn) (E.8)

After the initialization α1 = 1, if any of the Wolfe conditions is violated, we update the
step length by backtracking αn+1 = ταn, where τ is a value smaller than 1 (0.7 in the
experiments in this thesis). Since the Wolfe condition is hard to satisfy, we usually limit
the times of backtracking performed (a limit of kmax = 5 is used here so that δ ∗n can not
be smaller than τ5δn).

E.4 Modified Passes
Backpropagation is a way of applying chain rule to calculate derivatives of a function.
In neural networks, the original backpropagation computes the gradient of an objective
function[74] (see also appendix B). Using the R-operator introduced in appendix D, we
can modify the original backward and forward passes to produce useful measures such
as Hessian, Fisher Information matrix or Gauss-Newton matrix[77].

As an example, this section gives detailed derivations of using forward and back
passes to calculate the product of a Gauss-Newton matrix and a vector v in a recurrent
neural network with linear output units and squared error objective function. We assume
the hidden units using the tanh function. Equations for other structures (not necessarily
neural networks) can be derived in similar ways.

In the following equations, “·” denotes matrix multiplication, and “∗” denotes ele-
ment wise multiplication.

6An additional “CG back-tracking” process is introduced in [57], in which the parameter is updated by
δ ′n that is obtained from go back a few steps of the conjugate gradient methods until if the back-tracking
process yields a smaller value of the original objective function. However, I found this process slows
down the overall convergence, and some time even make a few problems failed to converge, so the CG
back-tracking is not presented. The drawback of CG back-tracking might be a result of going back to local
minima that ignored by the smoothy quadratic approximation.
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E.4.1 Standard forward pass
This is the standard forward pass a typical recurrent neural network.

Initialize h0 = 0, run from time step 1 to the last step T:

yt =Whi · xt +Whh ·ht−1 +bh (E.9)

ht = tanh(yt) (E.10)

zt =Woh ·ht +bo (E.11)

f = ∑
t
(zt− z∗t )

> · (zt− z∗t ) (E.12)

E.4.2 Standard backward pass
The backward pass is obtained from take the derivative of the objective function using
the chain rule. Note it uses intermediate results from the standard forward pass.

Initialize ∂ f
∂yt+1

= 0, run from time step T backward to step 1:

∂ f
∂ zt

= zt− z∗t (E.13)

∂ f
∂ht

=Whh ·
∂ f

∂yt+1
+Woh ·

∂ f
∂ zt

(E.14)

∂ f
∂yt

= (1+hi)∗ (1−hi)∗
∂ f
∂ht

(E.15)

Only this line is responsible for structural damping:

∂ f
∂yt

=
∂ f
∂yt

+λ µ(1+ht)∗ (1−ht)∗ yt (E.16)

∂ f
∂Woh

=
∂ f
∂ zt
·h>i (E.17)

∂ f
∂bo

=
∂ f
∂ zt

(E.18)

∂ f
∂Whh

=
∂ f

∂yt+1
·h>i (E.19)

∂ f
∂bh

=
∂ f
∂yt

(E.20)

∂ f
∂Whi

=
∂ f
∂yi
· x>i (E.21)
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E.4.3 R-forward pass
The R-forward is derived from applying the R operator around equations for the standard
forward pass. It uses intermediate results from both standard forward and backward
passes.

InitializeR(h0) = 0

R(yt) = vWhi · xt + vWhh ·ht−1 +Whh ·R(ht−1)+ vbh (E.22)

R(ht) = (1+ht)∗ (1−ht)∗R(yt) (E.23)

R(zt) = vWoh ·ht +Woh ·R(hy)+ vbo (E.24)

E.4.4 R-backward pass
To construct the product between the Gauss-Newton matrix and vector v, we only R-
backpropagating through the loss function L , and then backpropagate in the standard
way. The only step different from standard backward pass is that we initialize R( ∂ f

∂ zt
) =

R(zt), rather than E.13. In calculating the Gauss-Newton matrix, this step can be under-
stood as back-propagating the product JNv, as defined by ℜ{Zt} (equation D.4), instead
of the error as in the standard backward pass. It uses the intermediate results from all
above passes.

E.4.5 Mini-batches
As described in section C.1.5, both the gradient and the matrix-vector product are calcu-
lated for conjugate gradients. However, the matrix-vector products need to be evaluated
much more often than the gradients, since for each HF step (optimization on a given
quadratic equation) the gradient only need to be evaluated once while as the matrix-
vector products need to be evaluated at each CG line-search step. Moreover, it’s clear
from the above passes that the evaluation of matrix-vector product is more expensive than
evaluating the gradients. Therefore, it is reasonable too consider using smaller batches,
as subsets of the full training batch, in evaluating the matrix-vector products, when the
training batch is large.

E.5 The algorithm
To summarize this appendix, the steps in the Hessian-Free optimization are outlined here:

1. Randomly initialize parameters of a modelθ ; initialize the first step δ = 0.

2. Run CG on the quadratic function q approximated at f (θ), noting (see section
C.1.5 for processes of CG):
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(a) Start CG from q(δ )

(b) Evaluate the gradient g using standard backpropagation.

(c) Evaluate the matrix-vector product (such as G · v) used in CG by modified
passes.

(d) Terminate CG when stop condition of CG meets, obtaining a step δ .

3. Use inexact backtracking line-search guided by the Wolfe conditions to obtain δ ∗.

4. Update the parameters by θ = θ +δ ∗.

5. Go to step 2 until termination conditions of HF meets.

The termination conditions of HF, which terminate the whole learning process, is some-
what task dependent. It usually includes reaching maximum epochs or exceeding a tol-
erance of error.
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