
Neurocomputing 44–46 (2002) 691–696
www.elsevier.com/locate/neucom

Linearly decodable functions from neural
population codes

M. Brandon Westovera ;∗, Chris Eliasmithb , Charles H. Andersona
aDepartment of Anatomy and Neurobiology, Washington University, School of Medicine,

St. Louis, MO 63110, USA
bDepartment of Philosophy, University of Waterloo, Waterloo, Canada, ON N2L 3G1

Abstract

The population vector is a linear decoder for an ensemble of neurons, whose response proper-
ties are nonlinear functions of the input vector. However, previous analyses of this decoder seem
to have missed the observation that the population vector can also be used to estimate functions
of the input vector. We explore the use of singular value decomposition to delineate the set
of functions which are linearly decodable from a given population of noisy neurons. c© 2002
Elsevier Science B.V. All rights reserved.
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Many sensory systems utilize a large number of neurons to make measurements
on inherently low-dimensional systems. Examples include the ∼1000 neurons in the
cricket cercal system that measure horizontal wind velocity [2]; and the much larger hair
cell population in the mammallian otolith that senses linear acceleration of the head,
a three-dimensional vector [1]. Although the responses of the individual neurons are
highly nonlinear and heterogeneous, a linear weighted sum of these nonlinear measures
often provides an exceptionally precise linear estimate of the underlying physical input.
Linear or “population vector” decoding is typically used to explore how neural systems
might implement a communication channel; that is, how downstream populations might
reconstruct the value of an encoded physical variable by speci8c synaptic weighting
and summing of a9erent sensory neuronal signals [4]. However, many downstream
populations may be more concerned with extracting transformations of the sensory
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input. Using the general framework we present below, such transformations can also
be computed by linear decoding.
The approach taken here is to view the computation of the decoding vector as

a linear combination of projections of the high-dimensional state vector of neuronal
activities onto a special set of axes. Combinations of projections along other axes
provide measures of nonlinear functions. Examples include the magnitude of the input
vector, or bilinear forms, like the vector cross product. We discuss below how to
determine the range of functions that can be robustly extracted in this manner.
Let x be a D-dimensional random vector representing the input to a set of N neurons,

with response curves {a1(x); a2(x); : : : ; aN (x)}. The response curves are a heteroge-
neous set of nonlinear, scalar-valued functions; and the input is physically restricted to
a 8nite range R, e.g. R={x : ‖x‖6 1}. For simplicity, we assume that x is uniformly
distributed on R.
We specify a set of N orthonormal vectors {ê1; ê2; : : : ; êN} (columns of the N × N

identity matrix) to serve as a basis (axes) for the population’s state space. In these
coordinates, the state vector for a given input x is

a(x) = a1(x)ê1 + a2(x)ê2 + · · ·+ aN (x)êN : (1)

Thus, the neuronal population {ai} maps the range R onto a surface a(x) in the
N -dimensional state space, parameterized by x. Noise in the neural encoding process
(e.g. jitter in spike times) introduces a cloud of uncertainty around each state point.
Next, let the desired transformation f(x) be a vector in a generalized vector space

F with inner product

〈f1(x); f2(x)〉=
∫
R
f1(x)f2(x) dx: (2)

For example, we may take F to be the set of continuous functions over R.
Finally, we specify how the desired transformation is to be extracted from the neural

activities by de8ning a decoding rule

f̂(x) =
N∑
i=1

ai(x)
i = a′(x)
; (3)

where 
=[
1; 
2; : : : ; 
N ]′ are the decoding vectors, or in the case of D=1, decoding
weights. Thus, the extracted approximation to f(x) will be a linear combination of
the neural response functions. The set of all possible combinations de8nes a vector
subspace F̂⊂ F. We seek an optimal projector 
 for projecting points along a(x) from
the state space onto F̂.
Having set the stage, the precise statement and solution of our problem becomes

geometrically clear (see Fig. 1a):

Find the function f̂(x)∈ F̂ which best approximates f(x)∈F; that is, the vector
in F̂ which minimizes the norm of the approximation error �= f(x)− f̂(x).

According to the well-known Projection Theorem, a unique solution f̂0(x) exists, and
is simply the orthogonal projection of f(x) onto F̂. Thus, the error will be orthogonal
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Fig. 1. (a) Projection theorem geometry. (b) State space rotation.

to the subspace spanned by the neural response functions; i.e.,

0 = 〈f(x)− f̂(x); aj(x)〉=
〈
f(x)−

N∑
i=1

ai(x)
i; aj(x)

〉
(4)

for all j = 1; : : : ; N . Solving, we obtain


i =
N∑
j=1

−1
ij 〈f(x); aj(x)〉; (5)

where

ij = 〈ai(x); aj(x)〉 (6)

is the gram matrix, whose entries represent the correlations between activities of neuron
pairs, averaged over the input range R.
The gram matrix is usually ill-conditioned, so its inverse cannot be computed directly.

This can be handled by adding statistically independent Gaussian noise to the neuronal
responses [4]. Instead, we use the pseudoinverse based on singular value decomposition
(SVD) [3, Chapter 2], because it reveals much about what functions can be extracted
from a population’s activities.
Using SVD, we decompose the gram matrix as

 =U′S′U; (7)

where S = diag{!1; !2; : : : ; !N} is the diagonal matrix of singular values in order of
decreasing magnitude; and U is a rotation matrix whose columns are the corresponding
eigenvectors. The columns {u1; u2; : : : ; uN} of U de8ne a new coordinate system for
the state space.
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In rotated coordinates, the state vector a(x) and the orthogonal projector 
 become
Ua(x) := �(x) = [�1(x); �2(x); : : : ; �N (x)]′; and U


:= �. The function approximation
can be reexpressed in rotated coordinates as

f̂(x) = a′(x)
= a′(x)U′U
= [Ua(x)]′[U
] = �′(x)�=
N∑
i=1

�i(x)�i: (8)

Each of the curves �i(x) represents the projection of the rotated state path �(x) onto a
coordinate axis ui. As before, f̂(x) is a linear combination of functions spanning the
subspace F̂.
Crucial di9erences distinguish the new and old representations. First, in the original

coordinates, the ordering of axes êi is arbitrary. However, projections along the rotated
axes ui are naturally ordered by the singular values of the gram matrix: Each singular
value measures the second moment of the state path �(x) about its associated axis.
Second, the spanning set {�i(x)} is now orthogonal:

〈�i(x); �j(x)〉= !i�ij;
which means that the �i(x)’s contribute uncorrelated information to the sum in (8), in
decreasing order of importance from i = 1 to N .
Fig. 1b illustrates these points for a hypothetical case, where D = 1, N = 2. Before

rotation, neither axis is indispensable to a representation of points on the curve a(x).
After rotation, the projection along axis u1 clearly captures most of the information.
Accordingly, truncating the expansion introduces only small changes in the error �.
In fact, noise in neuronal responses will destroy information along axes with small
singular values.
By examining the 8rst several � functions (i.e., the robust projections of �(x)) we

gain qualitative information about the nature and range of functions F̂ supported by
the population.
We 8rst examine a population with monotonic saturating response functions that

encode a scalar x (see Fig. 2a). One such well studied example is the neural population
that encodes horizontal eye position in the neural integrator [5].
In Fig. 2b we plot the 8ve �i(x) functions corresponding to the highest singular

values of the gram matrix. We see that this population supports an approximation
basis which looks roughly like a “rotated” set of orthogonal polynomials over the
interval −16 x6 1.

As expected, linear transformations f : x → �x are well supported by the population,
in addition to functions well approximated by low order polynomials (Fig. 2c). We
emphasize low order, because projections onto later axes are small and thus sensitive to
neuronal noise. For this population, we observe an approximately exponential decrease
in magnitude of the singular values with increasing polynomial order (not shown). The
number of �i(x)’s with signi8cant singular values, hence, the range of transformations
extractable from the population’s neural activities, can be expanded by increasing the
number of neurons or, perhaps more interestingly, by adjusting parameters governing
the encoding of x.
Note that this analysis fails if the nonlinear responses of the neurons in the population

are homogeneous. Clearly, in this case, linear weighted sums will simply reMect the
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Fig. 2. Top: Monotonic, broadly tuned population. Bottom: Gaussian-tuned population. (a) Tuning curves,
(b) 8rst 8ve �i(x)’s, (c) decoding results for f(x) = x, (d) decoding results for a localized function f(x).
Dotted line is the desired function; solid line is the actual result. For (a), (c), and (d), N = 20. For (b),
N = 200.

nonlinear responses of the individual neurons. This suggests that the diversity of real
neuronal responses is computationally important.
Next, for comparison, we consider a population of neurons having Gaussian tuning

curves (see Fig. 2a), modeled after ensembles frequently encountered in mammalian
cortical populations. Again we plot the 8rst 8ve projections of �(x) along the eigen-
vectors of this population’s gram matrix.
Several striking di9erences stand out. First, note the absence of a linear term. Pre-

dictably, attempts to extract linear transformations from this population are less success-
ful (Fig. 2c). However, the localized nature of these �i(x)’s renders them a reasonable
basis for approximating localized functions (Fig. 2d).
Thus, through the lens of the rotated state space, the di9erences between the response

functions of these populations are seen to imply qualitatively di9erent computational
potentialities.
We have described how the population vector can be generalized to compute func-

tions of input variables with linear decoding. The class of functions that can be decoded
with signi8cant robustness to noise depends on the form and diversity of neuronal re-
sponses in the population code. We are presently applying this observation to examine
the properties of neuron populations in several primary sensory systems to obtain insight
into the form of nonlinear transformations they can eNciently supply to downstream
neurons.
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