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Abstract

As neuromorphic hardware begins to emerge as a viable target platform for
artificial intelligence (AI) applications, there is a need for tools and software
that can effectively compile a variety of AI models onto such hardware. Nengo
(http://nengo.ai) is an ecosystem of software designed to fill this need with a suite
of tools for creating, training, deploying, and visualizing neural networks for
various hardware backends, including CPUs, GPUs, FPGAs, microcontrollers,
and neuromorphic hardware. While backpropagation-based methods are pow-
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erful and fully supported in Nengo, there is also a need for frameworks that are
capable of efficiently mapping dynamical systems onto such hardware while best
utilizing its computational resources. The neural engineering framework (NEF)
is one such method that is supported by Nengo. Most prominently, Nengo and
the NEF have been used to engineer the world’s largest functional model of the
human brain. In addition, as a particularly efficient approach to training neural
networks for neuromorphics, the NEF has been ported to several neuromorphic
platforms. In this chapter, we discuss the mathematical foundations of the NEF
and a number of its extensions and review several recent applications that use
Nengo to build models for neuromorphic hardware. We focus in-depth on a
particular class of dynamic neural networks, Legendre Memory Units (LMUs),
which have demonstrated advantages over state-of-the-art approaches in deep
learning with respect to energy efficiency, training time, and accuracy.

Keywords

Neural engineering framework · Nengo · Spiking neural networks ·
Dynamical systems · Legendre Memory Units · Deep learning ·
Neuromorphic hardware · Loihi · Braindrop

1 Introduction

The neural engineering framework (NEF) was proposed around the turn of the
century as a way to understand how spiking neural networks (SNNs) compute [29,
31]. After about a decade of use for building biologically focused models of various
brain functions, it began to be adopted as a way to program neuromorphic hardware
for real-time control [24] and to implement dynamical systems [39]. Recently, it has
seen widespread use on a variety of neuromorphic platforms, including Neurogrid
[13], Braindrop [67], SpiNNaker [65], TrueNorth [35], FPGAs [63, 99, 100], Loihi
[9, 25], and prototype VLSI circuits [14]. The common denominator across all of
these deployments is that of processing time-varying data using spiking neurons,
with the overarching goal of scalable, real-time, low-power computation.

In this chapter, we provide an introduction to the NEF and a recently extended
example of its use to develop a novel recurrent neural network (RNN), the Legendre
Memory Unit (LMU).We discuss why the NEF is suitable for neuromorphic
hardware and show examples of circuits, including the LMU, running on two
different neuromorphic platforms. We then compare the NEF to other methods of
building RNNs and provide quantitative results showing it is far more accurate and
space-efficient than its competitors. We also address some standard criticisms of the
NEF.

Overall, the NEF has been focused on building functional brain models or “neural
applications,” be they in simulation or in hardware. As a result, throughout our
discussion, we mention how the neural simulator Nengo can be used to construct
such networks and deploy them onto neuromorphic hardware. Nengo [5] is a
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Fig. 1 Spaun 2.0, the world’s largest functional brain model, performing an instruction following
task. The model is using (a) a spiking deep network to process (b) visual inputs, (c) a spiking
adaptive controller to control (d) its arm to write responses, (e) spiking high-dimensional attractor
networks to remember responses and stimuli, along with spiking action selection, learning, and
syntactic pattern inference components to follow dynamic instructions on the fly [12]

general-purpose neural development environment that supports many varieties of
networks, spiking and non-spiking, many varieties of optimization, backpropagation
and others, and many scales of systems, from single cells to millions of neurons. In
fact, Nengo and the NEF were used to build and run the world’s largest functional
brain model, Spaun [33], the latest version of which (see Fig. 1) has over six million
neurons and 20 billion connections [12]. Nengo is unique in supporting the NEF
natively, which is the main reason we refer to it throughout.

We refer the reader to Sharma et al. [76] and the Nengo documentation (http://
nengo.ai) for extensive and up-to-date tutorials that illustrate the use of Nengo for
cognitive modelling, deep learning, and neuromorphic hardware. This chapter draws
extensively from Voelker [88], which we regularly refer to for additional proofs,
formalization, and discussions surrounding the NEF and its use as a framework for
programming neuromorphics.

2 The Neural Engineering Framework (NEF)

Fundamentally, the NEF is a means of building, or ‘training’ recurrent neural
networks (RNNs). This is of interest because the RNN is the most computationally
powerful kind of neural network that we know how to physically implement. Stan-
dard artificial RNNs serve as a universal approximator to any finite-dimensional,

http://nengo.ai
http://nengo.ai
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causal, discrete-time, dynamical system [75].1 By using recurrent connections to
persist state information through time, thus endowing the network with an internal
memory, RNNs are able to compute functions outside the computational class
afforded by deep feed-forward neural networks: dynamical systems – functions
whose state evolves nonlinearly according to the history of its inputs. This enables
the network to exploit patterns in the input that span time along arbitrary temporal
scales, and, more generally, carry out arbitrary computations over time.

2.1 Principles of the NEF

In this section, we provide a detailed overview of the original formulation of the
NEF that has been adapted from Voelker and Eliasmith [92].

The NEF proposes a general approach to model dynamical systems in artificial
networks of spiking (and non-spiking) neurons. It does so by leveraging neural
nonlinearities and weighted synaptic filters as computational resources. The NEF
has been used to construct a wide variety of neural models, including a functioning
6.6 million neuron model of the human brain, dubbed “Spaun,” (see Fig. 1) that is
capable of performing perceptual, motor, and cognitive tasks [12, 33]. This model
incorporates many kinds of observed neural dynamics, including self-generated
oscillations, sustained activity, and point attractor dynamics.

As mentioned in the introduction, the flexibility of the NEF has led to it
being deployed on mixed-analog-digital neuromorphic chips as well as digital
architectures (see Sect. 4.1). Consequently, the NEF provides a practical method
for programming neuromorphic hardware, helping the field deliver on its promise
of an energy-efficient computing platform that emulates core principles of nervous
systems, namely, analog computation via neurons and synapses, and digital com-
munication via overlapping dendritic trees and hierarchical axonal arbors [10].

In the context of RNNs, the NEF provides generic machinery for training the
weights of a recurrent network of spiking (or non-spiking) neurons in order to
implement some particular dynamical system. This is made efficient through three
important steps:

1. The weight matrices are factored into n × q encoding and decoding matrices,
where q ∈ O (1) is the dimensionality of the dynamical state vector and n is the
number of neurons.

2. The optimization problem that determines each weight matrix is recast as a
batched least-squares problem that may be solved offline without needing to
explicitly simulate the network over time.

3. The dynamics of the synapses are leveraged as temporal bases for the overall
system.

1There is a similar theorem for continuous time [38].
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In the context of software implementation, these three steps lead to procedures
for training and simulating that are efficiently implemented – scaling as O (n) in both
time and space – by Nengo [5]. In the context of deep learning, backpropagation
is a useful tool for fine-tuning the performance of a network built using the
NEF and to learn functions that span multiple layers in such networks. Thus,
NengoDL [71] bidirectionally integrates Nengo with TensorFlow [1] – Google’s
popular toolkit for deep learning. With this extension, Nengo models can be
used within TensorFlow and vice-versa. In particular, NengoDL can be used to
apply TensorFlow’s backpropagation algorithm to any existing Nengo model, to
process batches of inputs in parallel, and to deploy models onto any hardware
that is supported by TensorFlow, including CPUs, GPUs, tensor processing units
(TPUs), and microcontrollers. Likewise, TensorFlow models can be converted using
NengoDL to run on neuromorphic hardware [e.g., 25].

The top-down approach taken by the NEF provides considerable transparency
into systematic relationships between neural nonlinearities, synapse models, time
constants, and network function. For instance, it becomes feasible to determine
the class of functions that are most accurately supported by a population (i.e.,
layer) of neurons [31, pp. 185–217]. Optimized architectures can therefore be
analytically derived for the case of specific functions, such as multiplication [44].
It also becomes viable to relate the time constants of the low-level dynamical
primitives (i.e., neurons and synapses) to the emergent dynamics of the network
[92]. Furthermore, by virtue of having functional spiking networks grounded in
biologically plausible mechanisms, it becomes possible to investigate connections
between cognitive models of psychological phenomena, neural data, and the effects
of drugs on behaviour and neurodegenerative disorders [27, 28, 32].

Conceptually, the NEF consists of three mathematical principles used to describe
neural computation:

1. Representation – The use of heterogeneous populations of neurons to encode
distributed representations of some time-varying state.

2. Transformation – The use of connection weights to decode nonlinear functions
of this state.

3. Dynamics – The use of synapse models to solve differential equations.

These three principles are summarized in Fig. 2 and explicated throughout the
next three sections.

The NEF’s primary strengths reside in providing a well-understood and efficient
means of engineering spiking neural models, and programming neuromorphic
hardware, to approximate computations with precision that scales as O

(√
n
)

in
the spiking case and O (n) in the non-spiking case [10, 31]. We now provide an
overview of these methods, applied to training both feed-forward and recurrent
connection weights, with an emphasis on mapping linear dynamical systems onto
SNNs – although these methods extend to nonlinear dynamical systems as well
[89, 91].
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Fig. 2 Three principles of the neural engineering framework (NEF), illustrated with n = 5
neurons and q = 2 dimensions. (1) Representation: Heterogeneous populations of neurons are
used to encode (E) distributed representations of some time-varying state (x). (2) Transformation:
Connection weights (W) are used to decode (Df) nonlinear functions (f) of this state from the
neural activity (a). (3) Dynamics: Synapse models (h) are used to solve differential equations,
specifically, f (x) ∗ h = x ⇐⇒ τ ẋ + x = f (x). Hidden units correspond to those “hidden” from
the optimization problem of solving for decoders

2.1.1 Principle 1: Representation
Let x(t) ∈ R

q denote a q-dimensional continuous time-varying signal, that is, to be
represented by a population of n spiking neurons. To describe this representation ,
we define a nonlinear encoding and a linear decoding that together determine how
neural activity relates to the represented vector.

First, we choose encoders E = [e1, . . . , en]� ∈ R
n × q, gains αi > 0, and biases

β i (i = 1 . . . n), as parameters for the following encoding:

csi(t) = αi 〈ei , x(t)〉 + βi

ai(t) = Gi [si(t)]

=
∑

m

δ
(
t − ti,m

)
,

(1)

where si(t) is the input current to the ith neuron, 〈·, ·〉 denotes a dot product, ai(t)
is the neural activity generated by the ith neuron encoding the vector x(t) at time t,
Gi[·] is the nonlinear transfer function modelling the spike-generation of a single
neuron, δ(·) is the Dirac delta, and {t}i,m is the sequence of spike-times generated by
the neuron model in response to the input current.
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A common choice of neuron model for Gi [·] is the leaky integrate-and-fire (LIF)
neuron model [53]. This model is considered to strike a convenient balance between
simplicity and biological realism [31, 88, 89], although the NEF can support more
biologically detailed neuron models [26, 78]. Likewise, neurons driven by nonlinear
conductances and dendritic interactions, rather than pure current sources, can be
leveraged by the NEF [79, 82].

The heterogeneous parameters that define the encoding, {(ei, αi, β i) : i = 1 . . . n},
determine the variety of nonlinear responses from the population. Typically, the
length of each encoder, ‖ei‖2, is fixed to 1, while αi > 0 controls its length. Then, ei

may be interpreted geometrically as a “preferred direction” vector, such that its dot
product similarity with x(t) determines the relative magnitude of si(t). The bias terms
β i effectively determine the sparsity of representation (i.e., which neurons are active
for a given x(t)), while the gain terms αi determine the density of spikes relative to
τ ref (i.e., how many spikes are generated by an active neuron). These parameters can
be randomly sampled from distributions constrained by the domain of x(t) and the
dynamic range of Gi[·], fit from neuroanatomical data (e.g., known tuning curves,
preferred directions, firing rates, sparsity, etc.; see, for instance, Friedl et al. [37]),
predetermined using prior knowledge of the desired transformation [44] or trained
via backpropagation through time [46–48, 71]. In essence, Eq. 1 defines a high-
dimensional nonlinear projection of the vector x(t), by taking its dot product with
an encoding matrix E and injecting the result into n heterogeneous spike generators.

Having defined an encoding, we introduce a postsynaptic filter, h(t), which
behaves as a model for the synapse. Specifically, this filter models the postsynaptic
current (PSC) triggered by action potentials arriving at the synaptic cleft. For now,
we set this to be an exponentially decaying PSC with time constant τ :

h(t) = 1

τ
e− t

τ , t ≥ 0. (2)

This low-pass synapse is also known as a “leaky integrator” and is the con-
ventional choice of synapse in the NEF. As discussed in Sect. 2.1, we can relax
this requirement by considering more general synapse models that are capable of
reproducing a much broader variety of PSCs.

We can now characterize the decoding of the neural response, which determines
the information extracted from the neural activities encoding x(t). Let D = [d1,
. . . ,dn] ∈ R

q × n be the decoding matrix used to decode a filtered version of x(t)
from the population’s activities, ai (t), at time t, as follows:

c (x ∗ h) (t) ≈
n∑

i=1

(ai ∗ h) (t)di

=
n∑

i=1

∑

m

h
(
t − ti,m

)
di ,

(3)
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where * is the convolution operator used to apply the synaptic filter.2 Eq. 3 takes
a linear combination of the filtered activities, in order to recover a filtered version
of the encoded signal. To complete the characterization of neural representation, we
must map the encoders, decoders, and synapse models onto a neural architecture and
solve for the optimal linear decoders D. This optimization is identical for Principles
1 and 2, as discussed below.

2.1.2 Principle 2: Transformation
The second principle of the NEF addresses the issue of computing transformations
of the represented signal. The encoding remains defined by Eq. 1. However, we now
decode a filtered version of some function, f: Rq → R

q, by applying an alternate
matrix of decoders to the same filtered spike trains:

Df = [
df

1, . . . , df
n

] ∈ R
q×n

(f (x) ∗ h) (t) ≈
n∑

i=1
(ai ∗ h) (t)df

i

=
n∑

i=1

∑

m

h
(
t − ti,m

)
df

i .

(4)

Now, we must solve for Df. For both Principles 1 and 2, we optimize for Df

over the domain of the signal, S = {x(t): t ≥ 0}, which is typically the unit q-ball
{v ∈R

q : ‖v‖2 ≤ 1} or the unit q-cube [−1, 1]q. This can be done, as is, by simulating
the population over time and solving a least-squares problem. But in order to do this
as efficiently and scalably as possible, we also reformulate the problem to avoid
needing to explicitly simulate the spike generation. We first let ri(v) be the limiting
average firing rate of the ith neuron under the constant input v ∈ S:

ri (v) = lim
t→∞

1

t

∫ t

0
ai

(
t ′
)
dt ′. (5)

For nonadaptive neuron models, Eq. 5 reduces to encoding v using a rate model.
For adaptive neuron models, other definitions for ri(v) may be considered, but

we limit our discussion here to the (nonadaptive) spiking LIF model. To account
for the variance introduced by neural spiking and other sources of uncertainty, we
introduce a white noise process η ∼ N (0, σ 2). The solution to Eq. 4 becomes the
following:

2By linearity of convolution, it does not matter whether the filter is applied before or after the
decoding or any subsequent encoding. For efficiency reasons, it is often applied in the lower-
dimensional (i.e., decoded) space. What is most efficient depends on the hardware and the sparsity
of neural activity relative to the integration timescale.
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Df = arg min
D∈Rq×n

∫

S

∥∥∥∥∥
f (v) −

n∑

i=1

(ri (v) + η) di

∥∥∥∥∥

2

2

dqv. (6)

Note that this optimization only depends on ri (v) for v ∈ S, as opposed to
depending on the signal x(t). Since we have replaced the optimization problem
involving spikes (Eq. 4) with one involving static nonlinearities, this sidesteps the
need to explicitly simulate the neurons over time when training. Furthermore, this
is a convex optimization problem, which may be solved by uniformly sampling S
[94] and applying a standard regularized least-squares solver to the sampled data
[5]. Nengo also supports alternative decoder solvers that optimize variants of Eq. 6
[e.g., 37, 51] and randomized singular-value- decomposition (SVD) solvers that take
O(mn) time and space, where m is the number of samples from S – but we do not
use them here.

The accuracy of this approach depends on the quality of the following approxi-
mation:

x(t) = v ⇒
n∑

i=1

(ai ∗ h) (t)df
i ≈

n∑

i=1

((ri (v) + η) ∗ h) (t)df
i . (7)

In Sect. 5.3, we discuss how our adoption of Eq. 7 has led many to mischaracter-
ize the NEF as using a “rate code,” which comes with significant baggage. Perhaps
surprisingly, this optimization procedure is mathematically correct for Poisson
spiking models and simple integrate-and-fire models, even as the frequency of the
state vector goes towards infinity and as the time constants of the filters approach
zero [88, Sect. 3.2.1].

It remains to map these encoding and decoding parameters onto a neural
architecture. Equations 1 and 4 are used to derive a connection weight matrix
between layers that implicitly computes the desired function f(x) within the latent
state space, Rq. Let ωi j be the “weight,” or coupling strength, between the jth

presynaptic neuron and the ith postsynaptic neuron. Specifically, the weight matrix
W = [ωi j] ∈ R

n × n, which maps activities from the jth presynaptic neuron to the
ith postsynaptic neuron (disregarding the gain and bias, for notational simplicity), is
given by

W = EDf. (8)

To project activities from one population to another (or back to itself), they are
decoded from an n-dimensional neuron space into the q-dimensional state space
and then encoded back into the n-dimensional neuron space. Thus, by linearity, the
process of decoding (Eq. 4) and then encoding (Eq. 1) is equivalent to taking the dot
product of the weight matrix W with a vector of neural activations. Consequently,
the matrices E and Df are a low-rank factorization of W. Although this assumes
linear synapses, the computations of nonlinear conductance-based synapses may be
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exploited by the NEF to encode nonlinear functions of the decoded variables across
multiple pre-populations [79, 82].

The crucial difference between the factorized and non-factorized forms is that
it takes O(qn) operations per simulation time-step to implement this dot product
in the factored form of Eq. 8, as opposed to O(n2) operations for a full weight
matrix. Since q is typically held constant, this yields a factor O(n) improvement in
simulation time. Similarly, this factorization yields an O(n) reduction in memory,
which significantly improves the scaling of neuromorphics [65].

2.1.3 Principle 3: Dynamics
Principle 3 is a method of harnessing the dynamics of the synapse model for
network-level information processing, in effect by solving differential equations
over time. For ease of explanation, we begin by focusing our discussion of NEF
dynamics on the neural implementation of continuous, linear time-invariant (LTI)
systems (see Fig. 3):

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t),
(9)

where the time-varying signal x(t) represents the system state, ẋ(t) its time-
derivative, y(t) the output, u(t) the input, and the time-invariant matrices (A,B,C,D)
fully describe the system [11]. This form of an LTI system is commonly referred to
as the state-space model.

For LTI systems, the dynamical primitive – that is, the source of the dynamics –
is the integrator. However, in the model that we consider, the dynamical primitive
at our disposal is the leaky integrator, given by the synapse (repeating Eq. 2, for
clarity):

h(t) = 1

τ
e− t

τ = L−1
{

1

τs + 1

}
, (10)

B + C +

A

D

u x y

Fig. 3 Block diagram for an LTI system. The integrator is driven by the signal ẋ(t). (Reproduced
from Voelker and Eliasmith [92, Fig. 1])
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where L −1{·} denotes the inverse Laplace transform and the latter representation
is referred to as a transfer function. Our approach is to represent the state vector
x(t) in a population of spiking neurons (Principle 1; Eq. 1), such that this same
vector is obtained by filtering an appropriate transformation with a leaky integrator
(Principle 2; Eq. 4). Thus, the goal of Principle 3 is to determine the transformations
required to implement Eq. 9, given that the required x(t) is obtained by some
convolution with a leaky integrator, rather than the perfect integrator assumed by
standard LTI formulations.

Principle 3 states that in order to implement Eq. 9 in a population of neurons
that represents x(t), we must compensate for the effect of “replacing” the integrator
with a leaky integrator by driving the synapse with τ ẋ(t) + x(t) instead of
only ẋ(t). This compensation is achieved as follows: implement the recurrent
transformation (τA + I)x(t) and the input transformation τB u(t) but use the same
output transformation C x(t) and the same pass-through transformation D u(t) [31,
pp. 221–225]. The resulting model is summarized in Fig. 4.

The correctness of this “mapping” procedure relies on three assumptions:

1. The synapse model is Eq. 10.
2. The network is simulated in continuous time (or the discrete time-step is

sufficiently small).
3. The necessary representations and transformations are sufficiently accurate, such

that the approximation error from Eq. 4 is negligible.

In the next section, we discuss recent work that extends Principle 3 to relax the
first and second assumptions, and in Voelker [88, Sect. 3.2.1], it is shown how the
third assumption holds.

Given the ability of Principle 2 to compute nonlinear functions (i.e., Eq. 4),
Principle 3 also naturally generalizes nonlinear dynamical systems.

Fig. 4 Block diagram for an LTI system, equivalent to Fig. 3, with the integrator replaced by
a first-order low-pass filter. The low pass is driven by the signal τ ẋ(t) + x(t) to ensure that it
implements the same system as in Fig. 3. The state x(t) may be represented and transformed
within a recurrently connected population of neurons by using Principles 1 and 2 to implement
the operations of each block. (Reproduced from Voelker and Eliasmith [92, Fig. 2])
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2.1.4 An Extension to the NEF: Generalizing Principle 3
Rapid growth in the field of neuromorphic engineering over the past 30 years
has accelerated the production of a large variety of neuromorphic architectures,
each with distinct constraints and trade-offs. Among these considerations are issues
involving discretization (in time), quantization (limited bit-precision for both neural
states and weight matrices), connectivity constraints, memory constraints, volume
of spike traffic, external input-output bandwidth and delays, thermal variability,
transistor mismatch, conversion of analog signals to digital pulses, and the intro-
duction of higher-order dynamics throughout. The NEF already solves many of
these problems in theory, with varying degrees of success in practice. Recently,
new extensions to the NEF have bolstered it with a variety of additional methods
and techniques for analyzing and leveraging spiking dynamical computations [89–
93]. In particular, the assumption of a specific synapse model, h(t), has been lifted
[88], Theorems 5.1.3 and 5.1.4]. This addresses many of the differences that emerge
between real brains, the idealizations made by the NEF, and the realities imposed
by neuromorphic hardware.

Specifically, Principle 3 now covers the general class of all linear continuous-
time synapse models of the form:

H(s) = 1 + ∑p

i=1bis
i

∑q

i=0 cisi
, (11)

as well as the analogous class of discrete-time synapse models, as used in digital
hardware. This encompasses the class of nearly all linear synapses, including all
that we are aware of in the literature [e.g., 4, 20, 70, 101], as well as the higher-
order synapses in neuromorphic hardware [89]. Nonlinear synapse models, such as
conductance-based synapses [e.g., 23, Eq. 6], can augment the computational power
of neural networks and are the active subject of study in the NEF [79, 81, 82].

3 Extended Example: The Legendre Memory Unit

A particularly important dynamical system that has not been discussed before in the
NEF literature is the pure continuous-time delay line. However, the NEF provides
perhaps the most natural set of tools to explicitly address the challenges of this
dynamical system. In order to implement such a system, one must represent a sliding
window of input history, or in other words, one must buffer the input signal into a
memory that continuously slides alongside the current input. In this section, we
discuss a novel, optimal, low-dimensional, linear approximation to a continuous-
time delay and then realize this Legendre Memory Unit [LMU; 95] using the NEF
in a recurrent spiking network. We then investigate its computational properties,
showing that the resulting network implements a clearly defined nonlinear encoding
of its input across the delay interval – isomorphic to a high-dimensional projection
of the shifted Legendre polynomials. This network uses a scale-invariant repre-



Programming Neuromorphics Using the Neural Engineering Framework 13

sentation, with a level of accuracy that depends on the input frequency, chosen
dimensionality (i.e., the order of the approximation), and particular synapse model.
The activity of the neurons in the LMU also bears a striking similarity to time cells
in the neuroscience literature [19, 92]. To our knowledge, this is the first network
to demonstrate that such a temporal code may be accurately realized by a spiking
dynamical network.

Reservoir computing approaches, such as liquid state machines [LSMs; 61] and
echo state networks [ESNs; 49], may be used to approximate a delay line. However,
since these networks use randomly chosen feedback weights, we show in Sect. 5.2
that they do so with relatively poor accuracy despite extensive hyper-optimization.
Such networks instead represent a random variety of nonlinear memory traces [59].
We also find that the delay line is a difficult function for FORCE [83] networks
to learn (Sect. 5.2); re-encoding the delayed output as a teaching signal ends up
“confusing” the network. The method that we discuss here works independently
of the simulation time-step and is optimal assuming the population of spiking
neurons – coupled with some model of the synapse – accurately represents a low-
dimensional, low-frequency vector space. Furthermore, we can use our extensions
discussed in Sect. 2.1, which improves our understanding of the relationship
between synapse models and network-level computations (see [88] for details).

In other work, it has been shown that our network, when expressed as an
RNN cell (without spikes), outperforms equivalently sized stacked long short-term
memories [LSTMs; 45] on computing long delays, predicting the Mackey-Glass
dataset – a difficult chaotic time-series benchmark – in training time, inference
time, and test accuracy [88], and sets a new state-of-the-art result for RNNs on
the permuted sequential MNIST benchmark [95].

To begin, consider a continuous-time delay line of θ seconds:

y(t) = (u ∗ δθ ) (t) = u (t − θ) , θ > 0, (12)

where δθ denotes the Dirac delta shifted forwards in time by θ . This system takes
a time-varying scalar signal, u(t), and outputs a purely delayed version, u(t – θ ).
The task of computing this function both accurately and efficiently in a biologically
plausible, spiking, dynamical network, is a significant theoretical challenge that, to
our knowledge, has previously remained unsolved.

The continuous-time delay is worthy of detailed consideration for several
reasons. First, it is nontrivial to implement using continuous-time spiking dynamical
primitives. Specifically, Eq. 12 requires that we maintain a sliding window of length
θ (i.e., the history of u(t), going θ seconds back in time). Thus, computing a delay
of θ seconds is just as hard as computing every delay of length θ ′, for all 0 ≤ θ ′ ≤ θ .
Since any finite interval of R contains an uncountably infinite number of points, an
exact solution for arbitrary u(t) requires that we maintain an uncountably infinite
amount of information in memory. Second, the delay provides us with a window of
input history from which to compute arbitrary nonlinear functions across time. For
instance, the spectrogram of a signal may be computed by a nonlinear combination
of delays, as may any finite impulse response (FIR) filter. Third, delays introduce a
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rich set of interesting dynamics into large-scale neural models, including oscillatory
bumps, traveling waves, lurching waves, standing waves, aperiodic regimes, and
regimes of multistability [74]. Fourth, a delay line can be coupled with a single
nonlinearity to construct a network displaying many of the same benefits as reservoir
computing [3].

3.1 Defining the LMU

It is impossible in practice (i.e., given finite-order continuous-time resources)
to implement an arbitrary delay. For instance, a white noise signal contains an
uncountably infinite amount of information within any finite window that cannot
be compressed any further [15]. To resolve this problem, we approximate u(t) as
a low-frequency signal or, equivalently, approximate Eq. 12 as a low-dimensional
system expanded about the zeroth frequency in the Laplace domain. Our choice
of a zero-frequency approximation is informed by an analysis [88], Sect. 3.1.6],
which suggests that neural systems require energy that grows linearly in the
representational frequency.

Here, we do not repeat the full derivation of the LMU [88, 92], but rather present
the two main results. First, we show that the following LTI is the optimal realization
of a delay of dimensionality q. Second, we relate the dynamics of this system to the
Legendre polynomials up to degree q – 1. The dynamical system is described by the
following equations:

θ ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

A = [a]i j ∈ R
q×q, ai j = (2i + 1)

{−1 i < j

(−1)i−j+1 i ≥ j

B = [b]i ∈ R
q×1, bi = (2i + 1) (−1)i , i, j ∈ [0, q − 1]

C = [c]i ∈ R
1×q, ci = 1

(13)

The choice of q corresponds to the dimensionality of the latent state vector x(t)
that is to be represented by Principle 1 and transformed by Principle 2. Principle 3
may then be used to map Eq. 13 onto a spiking dynamical network to accurately
implement an optimal low-frequency approximation of the delay. Since this system
depends only on θ by the rate at which x(t) is integrated, we may control the
length of the delay by adjusting the gain on the integration time constant [19]. The
NEF can be used to build such controlled dynamical systems, without introducing
multiplicative dendritic interactions or implausible on-the-fly connection weight
scaling [30].

To demonstrate, we implement a 1 s delay of 1 Hz band-limited white noise using
1,000 recurrently connected spiking LIF neurons representing a six-dimensional
vector space (see Fig. 5). The connections between neurons are determined by
applying Principle 3 (Sect. 2.1) to the state-space model derived above (Eq. 13,
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Fig. 5 Delay of 1 s implemented by applying standard Principle 3 to Eq. 13 using q = 6, dt = 1 ms,
1,000 spiking LIF neurons, and a low-pass synapse with τ = 0.1 s. The input signal is white noise
with a cutoff frequency of 1 Hz. The plotted spikes are filtered with the same τ = 0.1 s and encoded
with respect to 1,000 encoders sampled uniformly from the surface of the hypersphere (sorted by
time to peak activation, colored from lowest activity [blue] to highest activity [red]). (Reproduced
from Voelker and Eliasmith [92, Fig. 3], reprinted courtesy of The MIT Press)

q = 6) via the Padé approximants of the delay line. The normalized root-mean-
squared error (NRMSE; normalized so that 100% would correspond to random
chance) of the output signal is 4.8%. This is achieved without appealing to the
simulation time-step (dt = 1 ms); in fact, the network accuracy improves as dt
approaches zero due to the continuous-time assumption mentioned in Sect. 2.1.

When dt is nonzero (as is the case in digital hardware) or sufficiently large
relative to θ , the system of Eq. 13 can be discretized (e.g., using zero-order hold
or Euler’s method). To map the discretized LTI system onto a neural network, we
account for the discretization using the NEF extensions discussed in Sect. 2.1.

3.1.1 Temporal Representation
Although the LMU has its dynamics optimized for a single delay θ > 0, we may
still accurately decode any delay 0 ≤ θ ′ ≤ θ from the state of the same network,
as intuitively it needs to be holding onto this memory. In other words, the network
is representing a sliding window (i.e., history) of length θ . To compute these other
delays, we must approximate e–θ ′s with a transfer function:
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Fθ→θ ′(s) := C
(
s; θ, θ ′)

D (s; θ)
, (14)

of order [p/q], such that the denominator D(s; θ ) (which provides us with the
recurrent transformation up to a change of basis) depends only on θ , while the
numerator C(s; θ , θ ′) (which provides us with the output transformation up to a
change of basis) depends on some relationship between θ ′ and θ .

We have shown elsewhere that different decodings require different linear output
transformations (C) for each θ ′, as summarized by the following formulas [88]:

u
(
t − θ ′) ≈

q−1∑

i=0
Pi

(
θ ′
θ

)
xi(t), 0 ≤ θ ′ ≤ θ

Pi (r) = (−1)i
i∑

j=0

(
i

j

) (
i + j

j

)
(−r)j ,

(15)

where Pi (r) is the ith shifted Legendre polynomial [56, 73].
In other words, the q-dimensional state vector of the LMU represents a sliding

window of length θ . That is, a single LMU with some fixed θ > 0 may be used
to accurately decode any delay of length θ ′ (0 ≤ θ ′ ≤ θ ) by taking a linear
transformation of its state vector according to the coefficients of Eq. 15. Functions
of x(t) then correspond to computations across the input window, orthogonally
projected onto the Legendre polynomials – hence the name Legendre Memory Unit.

The significance of the Legendre polynomials lies in them being the unique
set of orthogonal polynomials (up to a normalization factor) across any finite
interval. In this case, the finite interval corresponds to the sliding window of time,
and the state of the system corresponds to the linear combination of polynomials
that approximate the said window. Hence, the polynomial basis forms a compact
representation of time that is determined online as the input signal is streamed into
the network. We are not aware of any other class of networks that have this unique
property. This is understood as being what has enabled the LMU to set a new state-
of-the-art result on the permuted sequential MNIST benchmark [95] – a challenging
stress test of an RNN’s ability to efficiently compute across a time-varying signal
representing the scrambled pixels of a handwritten digit.

In Fig. 6, we take different linear transformations of the same state vector by
evaluating Eq. 15 at various delays between 0 and θ , to decode the window of
input from the state of the system.3 This demonstrates that the LMU compresses
the input’s history (lasting θ seconds) into a low-dimensional state.

If we sweep Eq. 15 across θ ′ θ−1, we obtain the temporal “Legendre basis
functions” of the LMU (see Fig. 7 for an example). This provides a means of

3The optimization problem from Eq. 6 need only be solved once to decode x(t) from the neural
activity. The same decoders may then be transformed by each C without loss in optimality (by
linearity).
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Fig. 7 Temporal basis functions for the Legendre state-space realization of the LMU (q = 12).
Each line corresponds to the basis function of a single dimension (i) ranging from 0 (darkest) to
q – 1 (lightest). The ith basis function is the shifted Legendre polynomial over θ ′ θ−1 with degree
i. The state vector of the LMU takes a linear combination of these q basis functions in order to
represent a sliding window of length θ

understanding the relationship between the chosen state-space representation (i.e.,
the q-dimensional x(t)) and the underlying window representation (i.e., the infinite-
dimensional u(t)). In particular, each basis function corresponds to the continuous
window of history represented by a single dimension of the LMU. The instantaneous
value of each dimension acts as a coefficient on its Legendre basis function, to
contribute to the representation of the window at that point in time. Overall, the
entire state vector determines a linear combination of these q basis functions to
represent the window as it slides over time.

Mathematically, any linear transformation of x(t) is equivalent to a linear trans-
formation of the window [u(t – θ ), u(t)] projected onto the Legendre polynomials.
Thus, any integral transform, such as the Fourier transform or the Taylor series
expansion of u(t – θ ′) up to degree q – 1, can be approximated by taking a linear
transformation of the LMU’s state vector (see Voelker [88], Sect. 6.1.4 for details).
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The encoder of each neuron can also be understood directly in these terms
as taking a linear combination of the basis functions (via Eq. 1). Each neuron
nonlinearly encodes a projection of the sliding window onto some “preferred
window” determined by its own encoder. Since the state vector is encoded by
heterogeneous neural nonlinearities, the population’s spiking activity supports the
decoding of nonlinear functions across the entire window (i.e., functions that we can
compute using Principles 1 and 2). Therefore, we may conceptualize the LMU as a
temporal coding of the input stimulus, which constructs a low-dimensional state –
representing an entire window of history – to encode the temporal structure of the
stimulus into a nonlinear high-dimensional space of neural activities.

3.2 LMU Application Examples

3.2.1 Deep LMU Networks
We now consider an architecture that stacks multiple LMUs on top of one another,
to form a deep LMU (DLMU) chaining multiple delays together. For simplicity, we
consider the case where each delay has the same length, γ , and each layer has the
same dimensionality, q. Thus, k layers result in an overall delay of length θ = kγ
and represent kq dimensions in total.

The state vector of the ith layer is denoted xi (t), where i = 0 corresponds to the
deepest layer (i.e., the last delay) and i = k – 1 corresponds to the shallowest layer
(i.e., the first delay). Since each layer implements the transfer function [q – 1/q]e–γ s,
by the convolution theorem, the overall filter is the product of each transfer function.
Therefore, the error is characterized by the filter:

Eq,k (θs) = (
[q − 1/q] e−γ s

)k − e−θs . (16)

To gain insights into potential trade-offs between k and q, we require additional
constraints to keep the comparison meaningful. If our main constraint is the number
of neurons, then resource usage scales as O(kq) given a constant level of accuracy
per dimension. However, if our main constraint is the number of multiply-adds and
memory usage (i.e., connection density), then these scale as O(kq2) assuming the
use of factorized connection-weight matrices (as in the standard NEF formulation
and as realized on both SpiNNaker and Braindrop, but not Loihi).4 We evaluate
Eq,k(θs) while varying (q,k) in such a way that keeps the resource cost fixed (see
Fig. 8).

Depending on which resource-cost function is considered, we obtain very
different trade-offs for the amount of error at some desired operating point θs. In the
former case of minimizing neural resources, we should set k = 1 and minimize q
such that θs falls within the radius of convergence. This should come as no surprise,

4Also assuming the use of a dense state-space realization such as from zero-order hold discretiza-
tion of the LMU dynamics.
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as the LMU has been derived to optimally approximate the delay line, and so,
there is no benefit to adding additional layers if we are free to scale q. However,
for the latter case of minimizing connection density or the number of parameters,
then we should primarily minimize q and maximize k. In other words, deeper delay
structures provide a considerable payoff when the cost is O(kq2).

Furthermore, note that in Fig. 8, the error oscillates with dampened amplitude
beyond the radius of convergence for larger k. This can be seen from Eq. 16 by
noticing that [q – 1/q]e–γ s is a complex number with a magnitude less than 1, which
is then exponentiated to the power of k. By a triangle-inequality argument, this can
be shown to effectively regularize the error k times towards 1 outside the radius of
convergence [88].

The final consideration that should be made in picking (q,k) is in determining
the ideal nonlinear support for any function(s) to be computed across the window
of history. Since each dimension is encoded by a heterogeneous pool of neural
nonlinearities, this supports the decoding of nonlinear functions with respect to the
corresponding Legendre basis functions via Principles 1 and 2. Deeper networks
effectively partition the basis functions into individually orthogonalized segments
of input history, which enhances the complexity of the nonlinearities with respect
to each segment while limiting nonlinear interactions between segments. All of
this should be systematically taken into account when choosing the state-space
realization, the delay lengths of each layer, the dimensionality of each layer, and
the number of layers.

3.2.2 Acausal Deconvolution
In general, if one takes a communication channel, f (u) = u, constructed using
normal NEF methods, and stacks it k times, then the ith layer will represent
L –1{H(s)k U(s)}(t), that is, the input u(t) convolved k times with h(t). This is
demonstrated in Fig. 9 (Top), which encodes a 10 Hz band-limited white noise
signal through 8 layers of 2,500 spiking LIF neurons (τ = 100 ms). As we see,
deeper layers become progressively more low-pass-filtered in time. This has the
often5 undesirable effect of losing the information within the frequency content of
the input. This phenomenon contributes to the misconception that the NEF does not
support the high-speed transmission of information through networks, as discussed
in Sect. 5.3.

To solve this problem, we are free to scale the synaptic time constant, τ ,
arbitrarily small, so long as n is scaled as O(τ−2) to maintain the same level of feed-
forward precision [88, Table 3.1]. Alternatively, if τ cannot be changed, then one can
use Principle 3 to implement a low-pass filter (θs + 1)−1 with arbitrarily small θ ,
which likewise requires O(θ−2) neurons for some fixed accuracy. Our solution can
be viewed as a generalization of the latter.

5Goldman [43] has shown that repeated low-pass filtering can be usefully exploited to implement
an integrator, by summing across all of the filters.
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A natural solution falls out of the LMU: the current value of u(t) is represented
by the population that encodes x(t). It is not obvious that this should be the case,
as u(t) has been filtered by the synapse model (e.g., a low-pass filter) to produce a
filtered version (e.g., phase-shifted) of this signal. Nevertheless, the state vector is
reconstructing an unfiltered version of the window of input history, which includes
the current moment in time. Such a reconstruction is also known as a deconvolution
operation (i.e., the inverse convolution) and is an acausal operation in general. That
is, to perform deconvolution, in general, for arbitrary inputs, one requires future
knowledge of the input. The same applies to constructing Taylor series approximants
at the current moment in time.

The low-frequency approximation of the LMU essentially models the statistics of
the input and provides a robust estimate of the current u(t) from the spiking activity
of the population. The transformation to do so is simply a linear readout of the state
(Eq. 15 with θ ′ = 0):

u(t) ≈
q−1∑

i=0

Pi (0)xi(t). (17)

We use this fact in Fig. 9 (bottom) to instantaneously propagate the input
through eight layers, using the same neurons and low-pass synapses as in (top).
The difference between these two simulations is that the recurrence, local to each
layer, effectively undoes the synaptic filtering by using its internal model of the
input’s history. This demonstrates the utility of including recurrence at each layer,
not only to support dynamical computations but also to maintain the frequency
content of the input signal while facilitating high-speed computation through deep
neural structures.

4 A Neuromorphic Hardware Example

Among current neuromorphic hardware systems, a number support the compilation
of NEF networks, including a VLSI prototype [14], several FPGA implementa-
tions [8, 63, 99, 100], several GPU implementations [5, 71], and, most recently,
TrueNorth [35].

However, there are very few examples of functional large-scale models running
on neuromorphic hardware. We believe that this surprising lack of scale – in a
field that was essentially created to solve a problem in scaling – is primarily
due to a lack of co-designed NEF-like frameworks for translating computations,
specified in some high-level language (e.g., coupled differential equations), onto
distributed networks of physically coupled devices. These frameworks must be
correct, scalable, complete, robust, extensible, and finally realized on the physical
hardware itself, in order to be ultimately useful. In the case of the NEF, these
criteria have been validated by many of the extensions and analyses described in
Voelker [88], as well as by past work compiling networks onto Neurogrid [24],
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SpiNNaker [52, 64, 65], TrueNorth [35], and many other architectures [8, 14,
71, 99].

However, the current Nengo backends for Braindrop [67] and Loihi [42] are
brand new – as are the chips themselves [18, 66] – and thus currently fall short of
their promise to realize large-scale functional SNNs in neuromorphic hardware, for
the time being. For the case of Braindrop, its shortcoming is mainly by design: the
chip is 0.65 mm2 and implements 4,096 neurons. It is a proof-of-concept prototype
for research that can in principle be tiled to scale to much larger models in the future
and tailored towards the requirements of some application space. For the case of
Loihi, due to a combination of a lack of hardware support for factorized weight
matrices and limitations on connectivity and memory, the maximum recurrently
connected pool size is 342 neurons.6 And with current software workarounds,
the feed-forward precision stops scaling in NengoLoihi after about 400 neurons.
Nevertheless, this is the first and only software abstraction to currently make use of
Loihi [9] outside of Intel [57], and it is under active development. We expect this to
get significantly better with time.

Nevertheless, these two architectures – Braindrop and Loihi – represent signif-
icant milestones in the evolution of neuromorphic hardware. The first, Braindrop,
consumes energy roughly equivalent to 381 fJ per synaptic operation, for typical
network configurations, or about 10–20 times more than the human brain [10].
The second, Loihi, consumes about 24 pJ per synaptic operation, or about 50–
100 times more than Braindrop, but offers determinism and an unparalleled degree
of flexibility given its power budget. At the same time, these two neuromorphic
hardware architectures are about as different from one another as two could be
in the space of neuromorphic computing, with each posing very different sets of
challenges when it comes to compiling NEF networks.

The goal of this section is to demonstrate that the fundamentals for systematically
programming neuromorphic hardware are in place. We focus here on demonstrating
the principles of the NEF and a few of its extensions applied to the LMU. This
dynamical system is described in the high-level language of Nengo but mapped
onto two vastly different state-of-the-art neuromorphic architectures: Braindrop and
Loihi.

4.1 The LMU

We now instantiate the LMU on state-of-the-art neuromorphic hardware (see
Fig. 10). To implement the LMU, three pools, each containing 128 spiking LIF
neurons, are recurrently coupled and trained to optimally buffer a white noise test
signal – band-limited to 3 Hz – across a 100 ms sliding time window. Output spikes
are filtered using a low-pass synapse with τ = 20 ms and weighted to decode both
the state vector and the window of history via Eq. 15.

6Determined empirically using the NengoLoihi = 0.5.0 emulator
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Fig. 10 Legendre Memory Unit (LMU; q = 3, θ = 100 ms) running on state-of-the-art
neuromorphic hardware. (a) Nengo Braindrop implementation (Reproduced from Neckar et al.
[67, Fig. 16]). (b) Nengo Loihi (v0.5.0) implementation. (c) Overall error (NRMSE) for Braindrop,
Loihi, and a standard desktop CPU. The simulations of (a) and (b) correspond to a randomly
chosen trial from the first test case from (c). Loihi simulations performed by Xuan Choo from
Applied Brain Research, Inc. See text for details

For this experiment, we use identical Nengo model code for both neuromorphic
backends. On Braindrop (see Fig. 10(a), reproduced from Neckar et al. [67,
Fig. 16]), the chip is configured to use the default distribution of synaptic time
constants (mean τ ≈ 18 ms). For Loihi (see Fig. 10b), the recurrent time constant
is set to τ = 10 ms, and weight matrices are unfactored. We also compare this to
the reference Nengo simulator (τ = 10 ms) running the exact same model on a
conventional desktop CPU, to obtain a baseline level of performance. The overall
error is evaluated across the window θ ′ ∈ [0, θ ].
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Table 1 Performance of the Legendre Memory Unit (LMU) running on state-of-the-art neuro-
morphic hardware: Braindrop and Loihi. We also include Nengo’s emulation of the Loihi hardware,
and Nengo’s CPU reference backend. All four simulations use the same model code and test signals

Method 95% Confidence interval

Braindrop [0.156, 0.163]
Loihi [0.146, 0.153]
NengoLoihi emulator [0.145, 0.151]
Reference CPU [0.055, 0.059]

Table 1 reports the bootstrapped 95% confidence intervals across 25 trials of 10
separate test cases. Given the inherent variability in Braindrop’s analog computation
and its incredibly low power consumption relative to both Loihi and the CPU
solutions, it is surprisingly accurate given our anecdotal experience simulating
noisy small-scale dynamical spiking networks. However, these results reveal an
unexpected drop in precision on Loihi relative to the reference CPU solution. We
attribute this to a combination of the input’s encoding into spikes, the LIF neuron
model’s discretization in time, quantization errors in neural states and recurrent
weights, and the uniform ISIP criteria being systematically violated leading to state
discrepancy (see [88]).

5 The NEF Compared to Other Methods

5.1 Theoretical Comparison

Conventional RNNs are notoriously difficult to train and interpret in practice [6].
The paradigm of reservoir computing [RC; 49, 61] has managed to overcome some
of these limitations, by driving a fixed and randomly connected ensemble of neurons
and learning the desired output via linear decoding. The first-order reduced and
controlled error [FORCE; 83] method improves the performance of RC networks by
simultaneously re-encoding the learned output back into the reservoir and training
this feedback loop online using recursive least-squares. Despite the success of these
approaches, it remains difficult to interpret the high-dimensional representations
employed by the reservoir or to incorporate prior knowledge into the reservoir to
improve task performance. Full-FORCE [22] solves the latter problem by allowing
the desired state vector to be encoded into the network in the form of “hints” during
training but does so without accounting for the dynamics introduced by the synaptic
τ or carefully attending to the choice of encoding parameters, as in the NEF.

In all of these cases, however, random feedback ultimately leads to an inef-
ficient use of neural resources for dynamical systems that are predominantly
low-dimensional. Many have argued that dynamics in biological systems are unions
of low-dimensional attractor manifolds [16, 84, 97]. The NEF imposes such a low-
dimensional structure on the weight matrices themselves. Learning these dynamics
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is a somewhat separate matter; the NEF does not limit itself to situations where the
dynamics are known a priori. Techniques from system identification, optimization
in the time domain using a teacher signal [26], and backpropagation through time
[71] may all be applied to learn the dynamics from raw data.

We now consider the architectural relationships, focusing on the one-dimensional
input-output case for notational convenience. In the case of RC networks (see
Fig. 11a), a conceptual separation between a fixed reservoir of randomly connected
neural units and a learned readout is made. The reservoir is driven by encoding the
input signal, u(t) ∈R, using a random vector, ein ∈R

n. The units within the reservoir
are recurrently connected using a random matrix, W ∈ R

n × n, and a feed-forward
readout vector, d ∈ R

n, is optimized to decode some target, y(t) ∈ R. Intuitively, the
reservoir expands the input into a set of nonlinear temporal basis functions – referred
to as echoes – while the readout combines these dynamical traces to approximate the
desired target. Since the readout is typically a linear combination of the reservoir’s
activity, the decoders may be learned via least-squares regression. This is equivalent
to the optimization performed by the NEF on the output transformation but using
data that is collected by explicitly simulating the network. In contrast, the reservoir
is left untrained with dynamical properties that remain fixed, independently of the
desired task. While RC solves the issue of training RNNs, the problem of efficient
scaling remains.

The first-order reduced and controlled error [FORCE; 83] method extends ESNs
by learning a low-rank component of the recurrent weight matrix. This can be
decomposed into a separate feedback loop that autoencodes the desired output
back into the network (see Fig. 11b). Specifically, the recurrent weights include
an additional outer-product term, edT ∈ R

n × n, where e ∈ R
n is a fixed random

Fig. 11 Comparing the recurrent architectures of (a) reservoir computing (RC), (b) first-order
reduced and controlled error (FORCE), and (c) the neural engineering framework (NEF). Blue
weights are fixed and randomly chosen; orange weights are learned (online or offline). Each
ensemble is a pool that nonlinearly encodes the weighted activities. The input is omitted for
simplicity
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vector and d ∈ R
n is the same decoding vector from before. These weights decode

an approximation of the desired output, y(t), and subsequently encode it back into
the reservoir, alongside the random mixing from W. This additional loop improves
the performance of the network, assuming the underlying dynamics are at least
partially driven by a static function of the filtered and randomly encoded target
signal. However, this is not always the case (see Sect. 5.2). This discussion extends
to the full-FORCE method [22], which learns a full-rank matrix that encodes the
same state as in FORCE but using additional degrees of freedom, similar to Tripp
and Eliasmith [87].

The NEF provides an alternative method for building dynamical neural networks
(see Fig. 11c). Rather than relying on random feedback or always re-encoding the
output (in the case of FORCE), the NEF optimizes the recurrent weights to represent
the desired dynamical state. This can be understood as constructing an RC network
with an optimized reservoir, although the approaches were developed independently.
In the NEF, the desired dynamical state, x(t) ∈ R

q, is either expressed in closed form
as a set of dynamical equations or provided via time-series data (as is more typical
within RC). Then, the recurrent weight matrix is factored into EDT ∈ R

n × n, where
E ∈ R

n × q is a fixed encoding matrix, D ∈ R
n × q is a learned decoding matrix, and

a filtered combination of input and recurrent activations represent x(t). A central
observation made by the NEF is that the optimal D can be determined from x(t),
the selection of neuron models, the models of postsynaptic currents (PSCs), and
whether the simulation is analog or digital [92]. Like FORCE, the NEF may include
d as a column of D and e as a column of E, to re-encode y(t) – equivalent to asserting
that a filtered version of y(t) is a dimension of x(t). This assumption is made if and
only if it is helpful [e.g., to perform integration; 77]. If all relevant state variables are
identified and all target models are properly leveraged, then the high-dimensional
dynamics introduced by W serve absolutely no purpose.

5.2 Practical Comparison

We have developed a rigorous theory to understand the LMU in terms of its linear
dynamics and its nonlinear encoding of time and used the NEF to present a spiking
example in Fig. 5. Here, we show that the NEF outperforms reservoir computing
(RC) methods – using either spiking [LSM; 61] or rate-based [ESN; 49] neurons –
in memory capacity and nonlinear computation while reducing the simulation time
and space requirements by a factor of O(n).

5.2.1 Reservoir Computing: Linear Benchmark
Training a network to implement a delay is a natural way to measure the dynamical
system’s memory capacity – its ability to maintain a history of its input signal –
which is needed to compute any function over past inputs. Indeed, this task was
considered by ESNs in one of the earliest demonstrations of the RC paradigm
[50]. Theoretical and experimental results in the past have pointed to the limited
capability of random feedback to maintain memory [17, 98], in particular finding
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Table 2 Hyperopt parameters for the linear benchmark in Sect. 5.2

ESN LSM
NEF with
Rate LIF

NEF with
Rate Tan

NEF with
Spiking LIF

Gain 1.33 3.15 × 10−3 – – –
Radius 2.43 × 101 1.36 4.64 1.29 × 101 5.77 × 10−1

τ readout 6.87 × 10−3 6.04 × 10−2 6.06 × 10−2 8.73 × 10−2 2.18 × 10−2

τ recurrent 2.14 × 10−3 6.91 × 10−2 6.26 × 10−2 9.37 × 10−2 7.40 × 10−2

σ 2
readout 2.96 × 10−6 3.29 × 10−2 2.06 × 10−3 4.80 × 10−3 4.50 × 10−2

σ 2
recurrent – – 2.00 × 10−4 3.98 × 10−4 3.76 × 10−2

q – – 20 26 23

that linear feedback maximizes memory capacity [62] – consistent with Sect. 3,
and considering the linearity of a delay line – while being at odds with the
nonlinearities that are required to support useful computations across the memory.
This is consistent with our findings below. Moreover, the LMU provides a natural
way out of this predicament by using nonlinearities to approximate the required
linear feedback, without sacrificing the ability to nonlinearly transform the window.

For our benchmark task, weights were trained and validated using randomly
sampled 25 Hz band-limited white noise inputs. In addition, full-spectrum white
noise was added to the network during both training and testing. Accuracy was
measured by normalizing the root-mean-squared error against the root-mean-
squared target [NRMSE; 59]. As well, 95% confidence intervals were bootstrapped
and plotted. We ported a Python implementation of the ESN from [60] to Nengo and
implemented it analogously to the LMU. Nengo allows us to consider populations
of either spiking LIF neurons or non-spiking neurons with various rate curves,
without any additional changes to the model specification. In particular, LSMs were
implemented by replacing the tanh units with LIF spiking neurons, making them
comparable to our NEF networks but with full-rank weight matrices.

The hyperparameters of each method were optimized using 200 iterations of
Hyperopt with three trials per iteration, to maximize the validation error for
200 ms delays (see Table 2). Hyperparameters include an overall gain on the
recurrent feedback matrix (gain), a normalization factor for the input (radius),
time constants on both the readout and recurrent filters (τ readout, τ recurrent), L2-
regularization parameters for applicable least-squares problems (σ 2

readout, σ 2
recurrent),

and the dimensionality of the LMU (q).7

In all cases, we construct a reservoir of 1,500 neurons and then train separate
linear readouts to approximate various delays ranging from 100–200 ms (dt = 1 ms).
For the NEF case, the prescribed dynamical system is a θ = 200 ms delay,
implemented by mapping Eq. 13 onto a discretized low pass. Voelker [88] shows

7Hyperopt was used to the benefit of LSMs and ESNs. All hyperparameters (apart from q) had
minimal effect on the LMU’s performance compared to the usual defaults in Nengo.
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u[t ] h[t ] x[t ] y[t ]B̄ H

ĀH

Fig. 12 LMU model for digital architecture. The synapse h[t] is driven by A
H

x [t] + B
H

u [t] to
yield the state x[t]. This state is nonlinearly encoded by a heterogeneous population of neurons and
subsequently decoded to estimate the desired y[t]

that the delay length can be trained from raw data. Importantly, the same networks
are used to compute all of the different delays reported (Fig. 12).

As shown in Fig. 13, the NEF’s performance is slightly better than ESNs for both
LIF rate (i.e., non-spiking) neurons and tanh rate neurons and significantly better
than LSMs for spiking LIF neurons. This demonstrates that, in terms of memory
capacity, the LMU as a low-dimensional reservoir not only outperforms RC in the
rate-based case but also performs comparably to ESNs when using spikes. The task
is shown to be completely outside the grasp of LSMs (exceeding 90% error), due
to the difficulty of the computation and the unreliability of randomized spiking
feedback; Hyperopt minimizes both the gain and regularization hyperparameters
of the LSM to keep its output close to zero, as this minimizes validation error.8

The success of the LMU should not be surprising given that we have mapped the
ideal delay dynamics onto the reservoir. Nevertheless, as we will show below, the
readouts are capable of computing nonlinear functions across the delay interval,
from the same reservoir.

These networks were also simulated while varying the number of neurons from
100 to 2,500, in order to measure the real-time cost of simulation (see Fig. 14).
We again note that traditional RC suffers from scaling issues since the recurrent
weight matrices have O(n2) coefficients. Consequently, the NEF is more resource-
efficient than these RC methods by a factor of O(n). RC networks often include a
sparsity constraint of 20% connectivity, which is still O(n2), in order to improve
performance [58, 59]. We also considered ESNs with constant sparsity that balance
resource constraints with NEF networks but found that they did not perform
comparably (not shown). Furthermore, we found that the ESN breaks down for
numbers of neurons as few as q neurons, while in fact q linear rate neurons (with
linearly independent encoders) will suffice to perfectly implement Eq. 13, as q
linear-state variables are in exact correspondence with the ideal linear system (after
the appropriate discretization) (see Sect. 5.2).

8As additional validation, lower input frequencies or shorter delay lengths were possible with the
LSM.
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Fig. 14 Cost of simulating each RC network as the reservoir size is increased (bootstrapped across
10 trials). Conventional RC approaches require O(n2) space and time, while the NEF improves this
to O(n) for constant dimensionality

Another key finding is that, as shown in Table 2, Hyperopt discovers that a
radius of ≈ 24.3 performs the best with the ESN. This has the effect of scaling
the domain of the tanh curve from [−1, 1] to ≈ [−0.04, 0.04], which importantly
is well-approximated by a straight line, that is, tanh x ≈ x across this domain.
Thus, Hyperopt is indirectly leveraging the fact that the ESN’s memory capacity
is maximized when its neurons are linear, consistent with Dambre et al. [17].
Crucially, this limits the ability of the ESN to perform nonlinear computations
across the delay interval, as we now show.
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5.2.2 Reservoir Computing: Nonlinear Benchmark
To demonstrate our ability to compute nonlinear window functions, we consider the
function y(t) = u(t –θ ) u(t). When integrated over time, this is the autocorrelation of
u with lag θ , which has numerous applications in signal processing (e.g., detecting
repeating events). We fix θ = 0.1 s across all experiments. To compute this function
accurately, we sample a proportion of the encoders from the diagonal combinations
of Pi,d (0) and Pi,d (1) [44]. However, the particular choice of function is not
of importance, as the training can be data-driven or analyzed using theory from
Sect. 3.1.

Each input u(t) is sampled white noise band-limited with a cutoff frequency of
30 Hz. To optimize for the decoders, we map q-dimensional evaluation points onto
desired target outputs and apply Nengo’s regularized least-squares solver, which
bypasses the need to explicitly simulate the network on any input signals.

The model architecture of this LMU is, again, depicted in Fig. 12, whose
representation and transformations are realized using the NEF. For this experiment,
we considered the use of both sigmoidal (non-spiking) neurons and spiking LIF
neurons.

We used Hyperopt [7] to explore the space of model hyperparameters (e.g., q,
τ , input gain, recurrent gain, L2-regularization) across 100 iterations containing 10
trials each. Each network consisted of 1,000 neurons, simulated with a time-step
of dt = 1 ms. Each trial used a training signal of length 10,200, a testing signal of
length 2,200, and the first 200 outputs were discarded. We then cross-validated the
best set of hyperparameters (in terms of mean NRMSE across all test signals) using
another 25 trials.

We obtain a mean NRMSE of 5.9% for the sigmoid LMU, 51.8% for the spiking
LMU, and 84.3% for the tanh ESN. Reducing the input frequency from 30 Hz to
15 Hz improves the ESN’s accuracy to be on par with the non-spiking LMU, and
thus we attribute this difference to the inherent difficulty of autocorrelating a high-
frequency signal (relative to θ ) using random feedback weights, as opposed to using
optimally derived weights as in the LMU. In addition, trials took on average 5.10 s
for the sigmoid LMU, 6.44 s for the spiking LMU, and 17.7 s for the ESN. This
difference is a consequence of not simulating the LMU for training, and from using
factorized weight matrices (i.e., encoders and decoders) to simulate the LMU. These
results are consistent with that of the linear benchmark, except for the additional
observation that here the spiking LMU outperforms the rate ESN. This is because,
as explained previously, the ESN’s memory capacity requires linear tuning, which is
at odds with the nonlinearities required by functions such as autocorrelation. LSMs
were again unable to perform the task.

5.2.3 FORCE Learning
We also compared our NEF solution to both FORCE [83] and full-FORCE [22]
networks (also see Sect. 5.1). For this experiment, we first ported the same
implementation described in DePasquale et al. [22] to Nengo and verified that it
works as intended (using the same models and parameters) by teaching the network
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to produce decaying oscillations in response to unit impulses. We compared this
to the standard FORCE approach – which we refer to as “classic FORCE” –
and verified that it performed slightly worse than the full-FORCE network but
still better than an equivalent reservoir computer. Since Nengo allows for the
substitution of various spiking and non-spiking neuron models, we further validated
both implementations with spiking neurons as well and obtained reasonable levels
of accuracy, similar to DePasquale et al. [21], Thalmeier et al. [85], and Nicola and
Clopath [68].

However, we found that simply modifying the target signal to be a delayed
version of its low-frequency input signal, posed a significant challenge to these
networks. Thus, the learning rate was lowered from 1 to 10−3 and the time-step
set to dt = 5 ms, which we found to help regularize the solution. We thus also
considered a baseline approach: we took the original FORCE network but removed
the feedback loop that re-encodes the learned output. This makes it equivalent to an
ESN with a slightly different method of distributing the weights while learning the
decoders online. We refer to this last method as “no-FORCE.”

We now compare all three of these to an idealized NEF implementation of
the LMU (Eq. 13), consisting of just n = 6 linear units, coupled to one another
by a discretized mapping (q = 6). In this scenario, the only error that remains
is that arising from the use of Padé approximants to render the delay line finite-
dimensional. Each FORCE network consists of n = 500 non-spiking tanh neurons
(and O(n2) weights). The network is given 10 s of training data per trial. In all cases,
the training and test signals are randomly sampled 1 Hz band-limited white noise
signals, with 5 s of test data per trial. We compare all four networks by sweeping
θ across 0.01–1 s, with 10 trials at each value of θ (bootstrapped 95% confidence
intervals).

The results in Fig. 15 illustrate that the NEF’s six rate neurons outperform
all of the FORCE networks. The full-FORCE network performs well relative to
classic FORCE and no FORCE for short delays (θ < 0.1 ms). For longer delays
(θ > 0.1 s), the classic-FORCE network performs well relative to the other two
but still with error rates approaching 100% as θ → 1 s, or 200 time-steps. This
reveals a situation in which training the network to re-encode its target output
can hinder performance. The NEF solution proposes a means of understanding
this phenomenon. In particular, the target output is only one dimension among
six orthogonal dimensions that must all be encoded into the state of the network.
Focusing on this one dimension and letting the randomized feedback attempt to
fill in the rest leads to competing objectives between the low-dimensional linear
feedback required for optimal memory capacity and the high-dimensional chaos
induced by nonlinear random feedback.

5.3 Criticisms of the NEF

A long-standing debate in neuroscience has traditionally revolved around the
question of whether biological neurons transmit information using a “rate code”
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Fig. 15 Comparison of several FORCE learning methods versus the NEF on a delay task
Networks are trained to delay a time-varying input by θ seconds. Each FORCE network consists
of 500 tanh neurons, while the NEF network is six linear neurons

in which the information is encoded by the firing rates of individual neurons [2]
or a “spike-timing code” in which information is encoded by the precise temporal
patterns of spike trains [72] or likewise their temporal order in relation to one
another [86].

However, there is historically little consensus between neuroscientists as to what
exactly constitutes a rate code [31, pp. 89–91]. Gerstner [41] reviews at least three
different ways to define a rate code and notes that in many important ways they are
consistent with that of a timing-based code. Fairhall et al. [34] models the adaptive
dynamics of neurons in the fly visual system and concludes that principles of its
code depend on the timescale of interest. Eliasmith and Anderson [31] propose that
we should focus on the physical instantiation and functional consequences therein,
of any given approach to neural coding, rather than resorting to semantic labels that
are ultimately irrelevant.

Nevertheless, many have mislabelled the NEF as employing a rate-coding
scheme, including Lagorce and Benosman [55] and Frady and Sommer [36] for two
recent examples. Specifically, this mischaracterization has led to the misapplication
of many criticisms [40] that stem from the original proposal of Adrian [2], namely,
the need to average spike rates over long windows of time. We find this important
to clarify because it leads to imprudent conclusions or “myths” about the NEF such
as those claimed by Lagorce and Benosman [55] and Frady and Sommer [36]:



34 A. R. Voelker and C. Eliasmith

1. The NEF does not exhibit precise sequences of action potentials.
2. The NEF does not support high-speed neural computation.
3. The NEF does not display rhythmic activity.
4. The NEF requires very large numbers of neurons to compute simple functions.

We now challenge each claim in turn. For the first three, we refer to the same
simulation depicted in Fig. 16. This simulation applies the NEF, as described in Sect.
2.1, to the case of an autonomous two-dimensional oscillator (n = 5,000, τ = 0.1 s,
dt = 1 ms). The encoding parameters are randomly tiled across the two-dimensional
state space such that each neuron only responds to 25% of the state’s projection onto
its encoder (i.e., uniform [0.5, 1) intercepts), and each neuron would fire at a rate of
20–40 Hz if encoding a constant state with maximal similarity to its encoder. As we
explain, the firing statistics are not at all characterized by 20–40 Hz spike trains. We
omit the first 1.2 s of simulation to avoid initial transients.

1. The NEF can exhibit repeatedly precise sequences of action potentials.

See Fig. 16 inset. When comparing the spike trains between two separate
oscillations at the same phase, not only is the order of spiking consistent, as in rank
order coding [86], but also the spike timing is precise (± a couple of milliseconds).

2. The NEF readily supports high-speed neural information processing.

In our example, neurons respond quickly to encode the rapidly fluctuating
oscillatory state and do so without any system-level “delay” or undesired filtering.9

The precision of a feed-forward network scales as O
(
τ
√

n
)

[88, Table 3.1]. Thus,
one is free to set the synaptic time constant arbitrarily small, so long as the number
of neurons is increased in proportion. This is both theoretically and numerically
verified in Voelker [88]. This enables arbitrarily fast transmission of information
throughout the network when appropriate criteria are met (detailed in [88]). Yet,
even when constrained to longer time constants, Section 3.2 demonstrates a novel
deep NEF network that is capable of instantaneously propagating low-frequency
stimuli through eight layers of synaptic filters (τ = 0.1 s).

3. The NEF examples that invoke Principle 3 all display rhythmic activity.

The NEF was designed as a toolkit for modelling dynamic rhythmic activity
[29] such as the central pattern generator driving lamprey locomotion [30]. Indeed,
Fig. 16 clearly displays rhythmic activity at both the population level (see left) and
the activity level (see right). The properties of these rhythms can be understood
as arising from the dynamics of the postsynaptic currents, in response to the

9The postsynaptic filters are leveraged to participate in the required computation (see Principle 3;
Section 0.2.1). There is no unwanted phase shift.
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neural encoding of the state vector governed by some underlying set of differential
equations.

4. The NEF can compute difficult functions with any number of neurons.

Voelker [88] provides an example of ten spiking LIF neurons implementing a line
attractor (τ = 5 ms), as well as a six-neuron cell that outperforms LSTM cells. No
matter how complex the function, the mandate of the NEF is to leverage its neuron
models as a basis for that function. Sometimes, this can be done with sufficient
accuracy using a single neuron, and in other cases, one might need a few million
or even more (e.g., for Spaun). In general, the feed-forward precision scales as
O

(
τ
√

n
)
, while the dynamical precision scales as O

(
θ
√

n
)
, where θ is the time

constant of the dynamical system(under fairly weak assumptions). But one cannot
consider the questions of resource usage and functional precision in a vacuum. One
must resolve such questions with respect to the device-level models of the physical
hardware implementation as well as the intended target application.

The confusion surrounding rate coding in the NEF has essentially risen from the
adoption of Eq. 7. However, this merely reformulates the optimization procedure
to be more efficient, without sacrificing correctness, as proven in Voelker [88]. We
remark that, in Fig. 16, the firing statistics are completely unlike their rate model
counterparts, despite the target postsynaptic currents and overall system dynamics
remaining the same. That is, each neuron only fires at an average rate of 3 Hz
across the simulation, much slower than the 20–40 Hz rate that they would fire
at for constant inputs. Likewise, the postsynaptic impulse response that results from

a single spike decays to a factor of e– 10
3 ≈ 3.5%, before that same neuron triggers

another spike, on average. In general, neither the average rates, inter-spike intervals,
nor spike times tell the entire story.

But then, how does Eq. 7 hold if each neuron is not spiking at its intended rate?
Our proposal to resolve this seemingly paradoxical situation is to first establish a
new label: “postsynaptic current code.” This code does not care about the spike
rates of individual neurons; it is only sensitive to how well the weighted and
synaptically filtered spikes, when pooled across the entire population, approximate
some desired set of postsynaptic currents [corresponding to an affine transformation
of the required state vector; 87]. This is summarized by taking the encoding Eq. 1
and decoding Eq. 4, which fold into the weight Eq. 8 – and combining them in a
similar manner to Stöckel et al. [82]:

αi 〈ei , x(t)〉 + βi ≈
n∑

j=1

∑

m

ωi jh
(
t − tj,m

)
. (18)

In plain words, the represented state vector is linearly projected onto the
postsynaptic current of each neuron. Nothing needs to change about our exposition
of the NEF in order to accommodate this viewpoint of how it codes information.
How this works in light of Eq. 7 requires careful proof [88, Theorem 3.2.1], and
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the subtleties surrounding why this can matter are challenging. But as our example
illustrates, the NEF cannot be adhering to any single definition of rate or timing
code. Rather, it is representing desired transformations by mapping latent state
variables onto postsynaptic currents.

If one is still unconvinced, then, as mentioned in Sect. 5.1 when comparing the
NEF to RC and FORCE, one may forgo Eq. 7 and perform the optimization directly
in the spiking time domain [26, 37] or even apply back-propagation [71]. But the
fact of the matter is that this becomes unnecessary (and inefficient) for a large class
of interesting systems and models that we wish to explore.

Conclusion While we have addressed core criticisms of the NEF that are
often misconstrued, we do not want to suggest that the NEF is a panacea for
neural modelers. That is, the significant theoretical challenges posed by the many
biological nonlinearities found in neural systems remain when using the NEF. While
recent extensions to the framework have allowed more sophisticated NEF models
(see, e.g., Sect. 2.1), the NEF does not completely solve the general problem
of using an arbitrarily complex neuron model to perform any specifiable high-
level computation or dynamical system. Nevertheless, recent work has allowed
conductance-based synapses to be systematically introduced [79], has demonstrated
the introduction of various challenging synaptic and connectivity constraints [80],
and has shown how multicompartment, multi-channel neurons can be used in place
of simpler LIF neurons [26, 32]. Consequently, we consider the NEF a useful
tool for continuing to introduce additional biological complexity as needed while
being focused on neural function. In the context of neuromorphics, biological
complexity is often replaced with constraints from hardware implementations due to
ease of realization, fabrication variability, or intrinsic nonlinearity. Interestingly, the
mathematical and theoretical tools for handling these challenges, be they biological
or neuromorphic, are often similar.

6 Future Directions

As a general-purpose method for developing neural networks, both biologically
constrained and those focused purely on machine learning applications, the NEF is
currently supporting a wide variety of research directions. Here, we focus on those
more directly relevant to the neuromorphic community.

A significant challenge for this community is developing scalable, widely
available hardware, and clearly demonstrating its advantages. This is especially true
in the current context of a rapidly increasing number of targeted neural network
accelerators. One way that the NEF and specific networks like the LMU can help
in this increasingly complex landscape of neural hardware is to provide clear
points of comparison, many of which are likely to demonstrate the advantages of
neuromorphic chips. For instance, the LMU is a noise-robust approach that works in
a spiking network. As a result, it can be run on neuromorphic and non-neuromorphic
hardware. The same cannot be said for the standard LSTM. As a result, it is not
possible to run the exact same LSTM algorithm on both neuromorphic and non-



38 A. R. Voelker and C. Eliasmith

neuromorphic hardware. Since the LMU is beating the LSTM (and other leading
RNN architectures) on standard benchmarks in the non-neuromorphic case [95], it
can serve as a state-of-the-art approach to time-series problems that allows direct
comparison of neuromorphic and non-neuromorphic hardware. This is further made
possible by Nengo’s existing and future support of multiple hardware targets,
including neuromorphic and non-neuromorphic hardware. Such clean, fair, head-
to-head comparisons should make a clear case for the benefits of different hardware
approaches.

This same kind of direct transition between spiking and non-spiking networks is
supported in general by the NEF and directly in Nengo for the NEF and many other
approaches, including standard deep learning. As such, a core future direction is to
continue developing these and related methods to allow a smooth transition across
spiking and non-spiking algorithms and hardware. This means not only developing
algorithms like the LMU but also new kinds of representations (e.g., spatial semantic
pointers; Komer et al. [54]) and new techniques for interpolating between spiking
and non-spiking models [96, 69, submitted].

As mentioned, a core challenge for neuromorphics is scalability. Addressing this
requires large-scale, functional models that run on such hardware. As such, we are
pursing variants of the LMU, with a particular view to scalability, as well as co-
designing hardware and neural network architectures hand in hand. More generally,
the NEF supports building very large functional models (e.g., Spaun), so many such
NEF models should be able to provide challenging tests of hardware scalability.
However, the clean comparison of the LMU with other standard machine learning
RNNs makes it a natural choice for addressing the scaling challenge as well.

Finally, the ability of the NEF to allow the construction of large functional
models suggests an interesting connection point to common deep learning methods
like gradient descent. In particular, it is possible to backpropagate through standard
NEF models. This opens up the possibility of building large functional models, like
Spaun, that would be extremely difficult to learn “from scratch” and then fine-tune
them using backpropagation. This is currently supported with Nengo [71], although
it remains to be seen when and how such a technique can be fully exploited. Perhaps
this will prove to be a useful kind of “seeding” for large-scale architectures in deep
learning.

7 Conclusions

In this brief overview, we have provided an introduction to the NEF and some
examples of its application to building novel RNNs and mapping those onto
different kinds of neuromorphic hardware. While we have only scratched the
surface of example applications of the NEF, we have attempted to provide the
core theoretical foundations both formally and through examples. Our comparisons
to other approaches help to demonstrate that the NEF offers certain efficiency
and accuracy advantages, which is critical for neuromorphic applications that are
focused on low-power implementation. Coupled with implementation in the Nengo
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software, the NEF provides both theoretical and practical tools for building a wide
variety of spiking networks on a wide variety of hardware platforms. We hope
that the NEF, as it continues to evolve, finds application in ways we have not yet
anticipated.
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60. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network
training. Comput. Sci. Rev. 3(3), 127–149 (2009)

61. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new
framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–
2560 (2002)

62. Mitra, P.P., Stark, J.B.: Nonlinear limits to the information capacity of optical fibre commu-
nications. Nature. 411(6841), 1027 (2001)

63. Morcos, B., Stewart, T.C., Eliasmith, C., Kapre, N.: Implementing NEF neural networks on
embedded FPGAs. In: 2018 International Conference on Field-Programmable Technology
(FPT), pp. 22–29. IEEE (2018)

64. Mundy, A.: Real time Spaun on SpiNNaker. Ph.D. thesis, University of Manchester (2016)
65. Mundy, A., Knight, J., Stewart, T., Furber, S.: An efficient SpiNNaker implementation of

the neural engineering framework. In: International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE (2015)

66. Neckar, A.: Braindrop: A mixed-signal neuromorphic architecture with a dynamical systems-
based programming model. Ph.D. thesis, Stanford University (2018)

67. Neckar, A., Fok, S., Benjamin, B.V., Stewart, T.C., Oza, N.N., Voelker, A.R., Eliasmith,
C., Manohar, R., Boahen, K.. Braindrop: A mixed-signal neuromorphic architecture with



42 A. R. Voelker and C. Eliasmith

a dynamical systems-based programming model. In: Proceedings of the IEEE (Accepted)
(2019)

68. Nicola, W., Clopath, C.: Supervised learning in spiking neural networks with FORCE
training. Nat. Commun. 8(1), 2208 (2017)

69. Patel, K.P., Hunsberger, E., Batir, S., Eliasmith, C.: A spiking neural network for image
segmentation. Neuromorphic Computing and Engineering (2020) (submitted)

70. Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-dendritic
distributions of synaptic input. J. Neurophysiol. 30(5), 1138–1168 (1967)

71. Rasmussen, D.: NengoDL: Combining deep learning and neuromorphic modelling methods.
arXiv preprint arXiv:1805.11144 (2018)

72. Rieke, F., Warland, D.: Spikes: Exploring the Neural Code. MIT Press, Cambridge, MA
(1997)

73. Rodrigues, O.: De l’attraction des sphéroïdes, Correspondence sur l’É-cole Impériale Poly-
technique. Ph.D. thesis, Thesis for the Faculty of Science of the University of Paris (1816)

74. Roxin, A., Brunel, N., Hansel, D.: Role of delays in shaping spatiotemporal dynamics of
neuronal activity in large networks. Phys. Rev. Lett. 94(23), 238103 (2005)

75. Schäfer, A.M., Zimmermann, H.G.: Recurrent neural networks are universal approximators.
In: International Conference on Artificial Neural Networks, pp. 632–640. Springer (2006)

76. Sharma, S., Aubin, S., Eliasmith, C.: Large-scale cognitive model design using the Nengo
neural simulator. In: Biologically Inspired Cognitive Architectures, pp. 86–100. Elsevier B.V.,
Amsterdam (2016)

77. Singh, R., Eliasmith, C.: A Dynamic Model of Working Memory in the PFC During a
Somatosensory Discrimination Task. In: Computational and Systems Neuroscience, Cold
Spring Harbor Laboratory (2004)

78. Singh, R., Eliasmith, C.: Higher-dimensional neurons explain the tuning and dynamics of
working memory cells. J. Neurosci. 26, 3667–3678 (2006)

79. Stöckel, A., Eliasmith, C.: Passive nonlinear dendritic interactions as a computational
resource in spiking neural networks. Neural Comput. 33, 1–33 (2020)

80. Stöckel, A., Stewart, T.C., Eliasmith, C.: Connecting biological detail with neural compu-
tation: Application to the cerebellar granule-golgi microcircuit. In: 18th Annual Meeting of
the International Conference on Cognitive Modelling. Society for Mathematical Psychology,
Toronto (2020)

81. Stöckel, A., Voelker, A.R., Eliasmith, C.: Point Neurons with Conductance-Based Synapses in
the Neural Engineering Framework. Technical Report. Centre for Theoretical Neuroscience,
Waterloo (2017)

82. Stöckel, A., Voelker, A.R., Eliasmith, C.: Nonlinear synaptic interaction as a computational
resource in the neural engineering framework. In: Cosyne Abstracts, Denver (2018)

83. Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural
networks. Neuron. 63(4), 544–557 (2009)

84. Sussillo, D., Barak, O.: Opening the black box: Low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Comput. 25(3), 626–649 (2013)

85. Thalmeier, D., Uhlmann, M., Kappen, H.J., Memmesheimer, R.-M.: Learning universal
computations with spikes. PLoS Comput. Biol. 12(6), e1004895 (2016)

86. Thorpe, S., Gautrais, J.: Rank order coding. In: Computational Neuroscience, pp. 113–118.
Springer (1998)

87. Tripp, B., Eliasmith, C.: Neural populations can induce reliable postsynaptic currents without
observable spike rate changes or precise spike timing. Cereb. Cortex. 17(8), 1830–1840
(2006)

88. Voelker, A.R.: Dynamical systems in spiking neuromorphic hardware. Ph.D. thesis, Univer-
sity of Waterloo (2019)

89. Voelker, A.R., Benjamin, B.V., Stewart, T.C., Boahen, K., Eliasmith, C.: Extending the Neural
Engineering Framework for nonideal silicon synapses. In: IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, Baltimore (2017)



Programming Neuromorphics Using the Neural Engineering Framework 43

90. Voelker, A.R., Eliasmith, C.: Methods and systems for implementing dynamic neural
networks. US Patent App. 15/243,223 (patent pending) (2016)

91. Voelker, A.R., Eliasmith, C.: Methods for applying the neural engineering framework to
neuromorphic hardware. arXiv preprint arXiv:1708.08133 (2017)

92. Voelker, A.R., Eliasmith, C.: Improving spiking dynamical networks: Accurate delays,
higher-order synapses, and time cells. Neural Comput. 30(3), 569–609 (2018)

93. Voelker, A.R., Eliasmith, C.: Legendre memory units in recurrent neural networks. PCT App.
PCT/CA2020/00989 (patent pending) (2019)

94. Voelker, A.R., Gosmann, J., Stewart, T.C.: Efficiently Sampling Vectors and Coordinates from
the n-Sphere and n-Ball. Technical Report. Centre for Theoretical Neuroscience, Waterloo
(2017)
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