
ARTICLE Communicated by Gordon Pipa

Improving Spiking Dynamical Networks: Accurate Delays,
Higher-Order Synapses, and Time Cells

Aaron R. Voelker
arvoelke@uwaterloo.ca
Centre for Theoretical Neuroscience and David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Chris Eliasmith
celiasmith@uwaterloo.ca
Centre for Theoretical Neuroscience, University of Waterloo, Waterloo,
ON N2L 3G1, Canada

Researchers building spiking neural networks face the challenge of im-
proving the biological plausibility of their model networks while main-
taining the ability to quantitatively characterize network behavior. In this
work, we extend the theory behind the neural engineering framework
(NEF), a method of building spiking dynamical networks, to permit the
use of a broad class of synapse models while maintaining prescribed dy-
namics up to a given order. This theory improves our understanding of
how low-level synaptic properties alter the accuracy of high-level com-
putations in spiking dynamical networks. For completeness, we provide
characterizations for both continuous-time (i.e., analog) and discrete-time
(i.e., digital) simulations. We demonstrate the utility of these extensions
by mapping an optimal delay line onto various spiking dynamical net-
works using higher-order models of the synapse. We show that these
networks nonlinearly encode rolling windows of input history, using
a scale invariant representation, with accuracy depending on the fre-
quency content of the input signal. Finally, we reveal that these meth-
ods provide a novel explanation of time cell responses during a delay
task, which have been observed throughout hippocampus, striatum, and
cortex.

1 Introduction

One of the central challenges in computational neuroscience is understand-
ing how dynamic stimuli can be processed by neural mechanisms to drive
behavior. Recurrent connections, cellular responses, and synaptic responses
are ubiquitous sources of dynamics throughout the mammalian brain that
must work in concert to support dynamic information processing (Kandel,
Schwartz, & Jessell, 2000). How these low-level mechanisms interact in

Neural Computation 30, 569–609 (2018) © 2018 Massachusetts Institute of Technology
doi:10.1162/NECO_a_01046

570 A. Voelker and C. Eliasmith

order to encode information about the history of a stimulus, across time,
is the subject of considerable study. One approach to better understanding
these mechanisms is to construct models that capture central features of
neural dynamics while implementing higher-level information processing.

The neural engineering framework (NEF; Eliasmith & Anderson, 1999,
2003) proposes a method to model such dynamical systems in networks of
spiking neurons (see Abbott, DePasquale, & Memmesheimer, 2016; Denève
& Machens, 2016, for reviews of other methods). The NEF has been used to
construct a wide variety of neural models, including a 2.3 million neuron
functioning model of the human brain, capable of performing perceptual,
motor, and cognitive tasks (Eliasmith et al., 2012). This model incorporates
many kinds of observed neural dynamics, including oscillations, sustained
activity, and point attractor dynamics. The flexibility of the NEF has led to
its deployment on mixed-analog-digital neuromorphic chips (Choudhary
et al., 2012; Corradi, Eliasmith, & Indiveri, 2014; Voelker, Benjamin, Stew-
art, Boahen, & Eliasmith, 2017; Voelker & Eliasmith, 2017) and digital ar-
chitectures (Bekolay et al., 2013; Wang, Hamilton, Tapson, & van Schaik,
2014; Mundy, Knight, Stewart, & Furber, 2015; Berzish, Eliasmith, & Tripp,
2016). Consequently, the NEF provides a practical method for programming
neuromorphics, thus helping the field realize its promise of a low-energy
computing platform that emulates core principles of the nervous system
(Boahen, 2017).

However, the NEF typically assumes an exponential model of the postsy-
naptic current (PSC) evoked by an action potential, which has a biologically
implausible, instantaneous rise time. This model is also known as a first-
order low-pass filter. In contrast, the synapse models used in mixed-analog-
digital neuromorphic chips are nonideal, featuring higher-order dynamics
due to parasitic capacitances (Voelker, Benjamin et al., 2017). Similarly, the
synapse models commonly used in biological models incorporate distinct
rise and fall times due to separate timescales of transmitter binding and
unbinding, as well as axonal transmission delays due to the finite-velocity
propagation of action potentials (Roth & van Rossum, 2009). To widen the
scope of the NEF, we characterize the network-level effects of these higher-
order synapse models and harness them to implement certain classes of
dynamical systems with improved accuracy.

A particularly important dynamical system that has not been imple-
mented using the NEF is the pure continuous-time delay line. This sys-
tem must represent a rolling window of input history. We provide a
novel derivation of an optimal low-dimensional linear approximation to a
continuous-time delay and prove that the resulting delay network nonlin-
early encodes its input across the delay interval. This network uses a scale-
invariant representation, with a level of accuracy that depends on the input
frequency, chosen dimensionality (i.e., the order of the approximation), and
particular synapse model. Low-dimensional representations (e.g., ≤ 27) of
low-frequency signals (e.g., ≤ 50 Hz) are pervasive in biological systems

Improving Spiking Dynamical Networks 571

(Cunningham & Byron, 2014; Waernberg & Kumar, 2017; Pulvermüller, Bir-
baumer, Lutzenberger, & Mohr, 1997; Singer, 1999). To our knowledge, this
work is the first to demonstrate that such a temporal code may be accurately
implemented using a spiking dynamical network.

Reservoir computing approaches, such as liquid state machines (Maass,
Natschläger, & Markram, 2002) and echo state networks (Jaeger, 2001),
may be used to approximate a delay line. However, since these networks
use randomly chosen feedback weights, it is likely that they do not effi-
ciently produce the dynamics of a pure delay. Rather, these networks rep-
resent a random variety of nonlinear memory traces (Lukoševičius, 2012).
Discrete approaches to short-term memory, such as those taken by White,
Lee, and Sompolinsky (2004) and Ganguli, Huh, and Sompolinsky (2008),
while optimal in an information-theoretic sense, rely fundamentally on sin-
gle time-step delays between rate-based neurons. In contrast, the method
that we propose here works independently of the simulation time step,
and is optimal assuming the population of spiking neurons—coupled with
some model of the synapse—accurately represents a low-dimensional, low-
frequency vector space. Furthermore, our framework is extended to ac-
count for arbitrary linear synapses, which improves our understanding of
the relationship between synapse models and network-level computation.
A detailed comparison of our method to reservoir computing remains the
subject of future work.

A distinguishing feature of this work is that we begin the problem with a
mathematical description of the ideal dynamics for the delay line and then
proceed by mapping this description onto a spiking neural network (us-
ing the NEF and its extensions). This is in contrast to methods that use on-
line learning or backpropagation through time with rate-based neurons (De
Vries & Principe, 1992; Sussillo & Abbott, 2009) or spiking neurons (Nicola
& Clopath, 2016; Huh & Sejnowski, 2017; Gilra & Gerstner, 2017; Alemi,
Machens, Denève, & Slotine, 2017). That is, we do not require any sophis-
ticated training regimes involving online learning or backpropagation; our
delay network is trained offline using convex optimization (i.e., regularized
least squares), which yields a more complete understanding of its employed
representation and dynamics.

The remainder of this article is structured as follows. In section 2, we in-
troduce the NEF, placing an emphasis on the mapping of continuous-time
linear systems onto the canonical low-pass model of the synapse. In section
3.1, we use the NEF to derive a spiking dynamical network that delays its
input signal by some fixed length of time and then analyze this network in
section 3.2 to characterize how it nonlinearly encodes the stimulus across a
rolling window. In section 4, we extend the NEF to characterize the effects
of higher-order synapse models and account for both continuous-time (i.e.,
for analog hardware) and discrete-time (i.e., for digital hardware) simula-
tions. In section 5, we exploit the methods from section 4 to demonstrate
their utility in computing delays and provide insights into possible neural

572 A. Voelker and C. Eliasmith

mechanisms. Specifically, we harness a small delay in the synapse model to
improve the accuracy of a larger network-level delay. And we illustrate the
relevance of our delay network to biological modeling through qualitative
and quantitative comparisons to the responses of time cells (Eichenbaum,
2014), suggesting a new characterization of how temporal representations
may arise in the brain.

2 Neural Engineering Framework

The neural engineering framework (NEF; Eliasmith & Anderson, 1999,
2003) consists of three mathematical principles used to describe neural
computation. The NEF is most commonly applied to building dynamic
(i.e., recurrent) spiking neural networks, but also applies to nonspiking
and feedforward networks. Its primary strength lies in providing a well-
understood and efficient means of engineering spiking neural models,
and programming neuromorphic hardware, to perform mathematically de-
scribed computations (Eliasmith, 2013; Boahen, 2017). In this section, we
provide an overview of these methods applied to training both feedforward
and recurrent connection weights in order to implement linear dynami-
cal systems, although these methods extend to nonlinear dynamical sys-
tems as well (Voelker, Benjamin et al., 2017; Voelker & Eliasmith, 2017). We
present this framework in a manner that is consistent with the Nengo 2.4.0
simulator (Bekolay et al., 2013), which implements the NEF among other
approaches.

2.1 Principle 1: Representation. Let x(t) ∈ R
q denote a q-dimensional

time-varying signal that is to be represented by a population of n spiking
neurons. To describe this representation, we define a nonlinear encoding
and a linear decoding that together determine how neural activity relates
to the represented vector.

First, we choose encoders E = [e1, . . . , en]� ∈ R
n×q, gains αi > 0, and bi-

ases βi, i = 1 . . . n, as parameters for the encoding, which map x(t) to neural
activities. These parameters are fit from neuroanatomical data (e.g., tuning
curves, preferred directions, firing rates, sparsity; see Friedl, Voelker, Peer,
& Eliasmith, 2016, for a recent example) or randomly sampled from distri-
butions constrained by the domain of x(t) and the dynamic range of the
neuron models. In either case, the encoding is defined by

ax
i (t) = Gi

[
αi
〈
ei, x(t)

〉+ βi
]
, i = 1 . . . n, (2.1)

where ax
i (t) is the neural activity generated by the ith neuron encoding the

vector x(t) at time t, 〈·, ·〉 denotes a dot product, and Gi[·] is the nonlinear
dynamical system for a single neuron (e.g., a leaky integrate-and-fire, neu-
ron, a conductance-based neuron). Then ax

i (t) =∑m δ (t − ti,m), where δ(·)

Improving Spiking Dynamical Networks 573

is the Dirac delta and
{
ti,m
}

is the sequence of spike times generated by
equation 2.1.

Having defined an encoding, we introduce a postsynaptic filter h(t),
which acts as the synapse model by capturing the dynamics of a receiving
neuron’s synapse. In particular, this filter models the postsynaptic current
(PSC) triggered by action potentials arriving at the synaptic cleft. For now,
we fix h(t) = 1

τ
e− t

τ to be an exponentially decaying PSC with time constant
τ , which is equivalent (in the Laplace domain) to the canonical first-order
low-pass filter (also known as a leaky integrator). This is the conventional
choice of synapse in the NEF, since it strikes a convenient balance between
mathematical simplicity and biological plausibility (Eliasmith & Anderson,
2003). In section 4, we return to this point by considering more general
synapse models that are capable of capturing a much broader variety of
PSCs.

We can now characterize the decoding of the neural response, which de-
termines the information extracted from the neural activities encoding x(t).
Let D = [d1, . . . , dn]� ∈ R

n×q be the decoding matrix that decodes x(t) from
the population’s activities

(
ax

i (t)
)

at time t. This linear decoding is described
by

(x ∗ h) (t) ≈
n∑

i=1

(ax
i ∗ h)(t)di, (2.2)

where ∗ is the convolution operator that is used to apply the synaptic filter.
Equation 2.2 takes a linear combination of the filtered activities in order to
recover a filtered version of the encoded signal.1 To complete the character-
ization of neural representation, we solve for the optimal linear decoders
D. This optimization is identical for principles 1 and 2, as discussed below.

2.2 Principle 2: Transformation. The second principle of the NEF ad-
dresses the issue of computing transformations of the represented signal.
The encoding remains defined by equation 2.1. However, we now decode
some desired function of x(t), f : Rq → R

q,2 by applying an alternate matrix
of decoders Df = [df

1, . . . , df
n]� ∈ R

n×q to the same activities:

(f(x) ∗ h) (t) ≈
n∑

i=1

(ax
i ∗ h)(t)df

i . (2.3)

1
It is more accurate to apply the filter to both sides, since in general, the (time-

invariant) decoders alone cannot compensate for the filter applied to the activities (this
instead becomes the role of principle 3).

2
We may also consider transformations where the range has a different dimension, but

the described framework will suffice for our purposes.

574 A. Voelker and C. Eliasmith

For both principles 1 and 2, we optimize for Df over the domain of the sig-
nal, S = {x(t) : t ≥ 0}, which is typically the unit q-ball {v ∈ R

q : ‖v‖2 ≤ 1}
or the unit q-cube [−1, 1]q. To determine these decoders, we first let ri(v) be
the limiting average firing rate of the ith neuron under the constant input
v ∈ S:

ri(v) = lim
t→∞

1
t

∫ t

0
av

i (t′) dt′. (2.4)

For nonadaptive neuron models, equation 2.4 reduces to encoding v using
a rate model. For adaptive neuron models, other definitions for ri(v) may be
considered, but we limit our discussion here to the (nonadaptive) spiking
LIF model. To account for the variance introduced by neural spiking and
other sources of uncertainty, we introduce a white noise term η ∼ N (0, σ 2).
The optimality criterion for Df is therefore

Df = arg min
D∈Rn×q

∫
S

∥∥∥∥∥f(v) −
n∑

i=1

(ri(v) + η)di

∥∥∥∥∥
2

dqv. (2.5)

Note that this optimization depends on only ri(v) for v ∈ S, as opposed
to depending on the signal x(t). In other words, the optimization is de-
termined strictly by the distribution of the signal, and not according to
its particular dynamics. Furthermore, this is a convex optimization prob-
lem, which may be solved by uniformly sampling S (Voelker, Gosmann, &
Stewart, 2017) and applying a standard regularized least-squares solver to
the sampled data (Bekolay et al., 2013). Monte Carlo sampling introduces
O
(1√

m

)
error into the integral from equation 2.5, where m is the number

of samples, but this can be improved to Õ
(1

m

)
—effectively squaring m—

by the use of quasi–Monte Carlo methods (Fang & Wang, 1994; Knight,
Voelker, Mundy, Eliasmith, & Furber, 2016). Nengo also supports alterna-
tive decoder solvers that optimize variations of equation 2.5 (e.g., Friedl
et al., 2016; Kauderer-Abrams et al., 2017), but we do not use them here.

The accuracy of this approach relies on ri(v) being a suitable proxy for
ax

i (t) whenever x(t) = v. This zeroth-order approximation clearly holds in
the steady state for constant x(t) and turns out to be ideal in practice for low-
frequency x(t) (Eliasmith & Anderson, 2003, appendix F.1), and likewise for
h(t) that filter out high frequencies (i.e., when the synaptic time-constant τ

is large).
Equations 2.1 and 2.3 may then be used to derive a connection weight

matrix between layers to implicitly compute the desired function f(x)
within the latent vector spaceRq. Specifically, the weight matrix W = [ωi j] ∈
R

n×n, which maps activities from the jth presynaptic neuron to the ith post-
synaptic neuron (disregarding the gain, bias, and synapse), is given by

ωi j = 〈ei, df
j

〉
. (2.6)

Improving Spiking Dynamical Networks 575

Consequently, the matrices E and Df are a low-rank factorization of W . In
other words, the process of decoding (see equation 2.3) and then encoding
(see equation 2.1) is equivalent to taking the dot product of the full-rank
weight matrix W with the neural activities.

This factorization has important consequences for the computational ef-
ficiency of neural simulations. The crucial difference between the factorized
and nonfactorized forms is that it takes O(qn) operations per simulation
time step to implement this dot product in the factored form of equation
2.6, as opposed to O(n2) operations for a full-rank weight matrix. Since q
is typically held constant, this yields a factor O(n) improvement in simula-
tion time. Similarly, this factorization yields an O(n) reduction in memory,
which significantly improves the scaling of neuromorphics (Mundy et al.,
2015). In essence, this factorization provides a way to describe the network’s
latent state vector x(t). This, in turn, permits us to perform useful compu-
tations by transforming the state vector with O

(1√
n

)
error in the presence of

spike-noise (Eliasmith & Anderson, 2003).

2.3 Principle 3: Dynamics. Principle 3 is a method of harnessing the
dynamics of the synapse model for network-level information processing.
We begin by focusing our discussion of NEF dynamics on the neural imple-
mentation of continuous, linear time-invariant (LTI) systems,

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), (2.7)

where the time-varying signal x(t) represents the system state, ẋ(t) its time
derivative, y(t) the output, u(t) the input, and the time-invariant matrices
(A, B, C, D) fully describe the system (Brogan, 1991). This form of an LTI
system is commonly referred to as the state-space model, but there are many
other equivalent forms, which we will refer to later.

For LTI systems, the dynamical primitive—that is, the source of the
dynamics—is the integrator (see Figure 1). However, the dynamical primi-
tive at our disposal is the leaky integrator, given by the canonical first-order
low-pass filter modeling the synapse

h(t) = 1
τ

e− t
τ = L−1

{
1

τ s + 1

}
, (2.8)

where L−1{·} denotes the inverse Laplace transform.3 To be more precise,
our approach is to represent the state vector x(t) in a population of spiking
neurons (principle 1; see equation 2.1) such that this vector is obtained by

3
For comparison, the Laplace transform of the integrator is L {1} = 1

s .

576 A. Voelker and C. Eliasmith

Figure 1: Block diagram for an LTI system. The integrator is driven by the signal
ẋ(t).

Figure 2: Block diagram for an LTI system, equivalent to Figure 1, with the in-
tegrator replaced by a first-order low-pass filter. The low-pass is driven by the
signal τ ẋ(t) + x(t) to ensure that it implements the same system as in Figure 1.

filtering some linearly decoded spike trains with a leaky integrator (prin-
ciple 2; see equation 2.3). Thus, the goal of principle 3 is to determine the
transformations required to implement equation 2.7, given that x(t) is ob-
tained by some convolution with a leaky integrator rather than the perfect
integrator depicted in Figure 1.

Principle 3 states that in order to implement equation 2.7 in a popula-
tion of neurons that represents x(t), we must compensate for the effect of
“replacing” the integrator with a leaky integrator (compare Figures 1 and
2), that is, by driving the synapse with τ ẋ(t) + x(t) instead of only ẋ(t). This
compensation is achieved as follows: implement the recurrent transforma-
tion (τA + I)x(t) and the input transformation τBu(t), but use the same out-
put transformation Cx(t), and the same pass-through transformation Du(t)
(Eliasmith & Anderson, 2003). Specifically, this may be implemented in a
spiking dynamical network by representing x(t) via principle 1 and then us-
ing principle 2 to decode the needed transformations. The resulting model
is summarized in Figure 2.

Improving Spiking Dynamical Networks 577

The correctness of this “mapping” procedure relies on three assump-
tions: (1) the synapse model is equation 2.8, (2) the network is simulated
in continuous time (or the discrete time step is sufficiently small), and (3)
the necessary representations and transformations are sufficiently accurate
such that the approximation error O

(1√
n

)
from equation 2.3 is negligible. In

other words, assuming n is sufficiently large, the architecture of Figure 2 is
equivalent to Figure 1, but using the leaky integrator instead of an integra-
tor as the dynamical primitive (Eliasmith & Anderson, 2003). Consequently,
both systems compute the exact same signals x(t) and y(t). In section 4.1, we
provide a novel proof of this equivalence. In sections 4.2 to 4.4, we extend
principle 3 to remove the first and second assumptions.

Principle 3 is useful for accurately implementing a wide class of dy-
namical systems (e.g., integrators, oscillators, attractor networks) to solve
specific problems that frequently arise in neural modeling (e.g., Eliasmith
& Anderson, 2000; Singh & Eliasmith, 2004, 2006; Eliasmith, 2005). Fur-
thermore, the class of state-space models is isomorphic to the class of all
finite-dimensional causal linear filters or, equivalently, all rational (finite-
order) proper transfer functions, which is a large and useful class of dy-
namical systems employed widely in control applications (Brogan, 1991).
Given the ability of principle 2 to compute nonlinear functions (see equa-
tion 2.3), principle 3 also naturally generalizes to nonlinear dynamical sys-
tems, but this is outside the scope of this work; we refer readers to Voelker,
Benjamin et al. (2017) and Voelker and Eliasmith (2017) for recent nonlinear
extensions.

3 Spiking Delay Networks

Afundamental dynamical system that has not yet been discussed within the
NEF literature is the continuous-time delay line of θ seconds,4 expressed as

y(t) = (u ∗ δ−θ)(t) = u(t − θ), θ > 0, (3.1)

where δ−θ denotes a Dirac delta function shifted backward in time by θ . This
system takes a time-varying scalar signal, u(t), and outputs a purely de-
layed version, u(t − θ). The task of computing this function both accurately
and efficiently in a biologically plausible, spiking, dynamical network is a
significant theoretical challenge that, to our knowledge, has previously re-
mained unsolved.

The continuous-time delay is worthy of detailed consideration for sev-
eral reasons. First, it is nontrivial to implement using continuous-time
spiking dynamical primitives. Specifically, equation 3.1 requires that we

4
Voelker and Eliasmith (2015) proposed an NEF model but did not include detailed

analysis or extensions.

578 A. Voelker and C. Eliasmith

maintain a rolling window of length θ (i.e., the history of u(t), going θ sec-
onds back in time). Thus, computing a delay of θ seconds is just as hard
as computing every delay of length θ ′ for all 0 ≤ θ ′ ≤ θ . Since any finite
interval of R contains an uncountably infinite number of points, an exact
solution for arbitrary u(t) requires that we maintain an uncountably in-
finite amount of information in memory. Second, the delay provides us
with a window of input history from which to compute arbitrary nonlin-
ear functions across time. For instance, the spectrogram of a signal may be
computed by a nonlinear combination of delays, as may any finite impulse
response (FIR) filter. Third, delays introduce a rich set of interesting dynam-
ics into large-scale neural models, including oscillatory bumps, traveling
waves, lurching waves, standing waves, aperiodic regimes, and regimes of
multistability (Roxin, Brunel, & Hansel, 2005). Fourth, a delay line can be
coupled with a single nonlinearity to construct a network displaying many
of the same benefits as reservoir computing (Appeltant et al., 2011). Finally,
examining the specific case of the continuous-time delay introduces sev-
eral methods and concepts we employ in generally extending the NEF (see
section 4).

3.1 Implementation. As it is impossible in practice (i.e., given finite-
order continuous-time resources) to implement an arbitrary delay, we will
instead approximate u(t) as a low-frequency signal or, equivalently, approx-
imate equation 3.1 as a low-dimensional system expanded about the zeroth
frequency in the Laplace domain. We begin by transforming equation 3.1
into the Laplace domain, L

{
y(t)
} = L

{
u(t)
}
L
{
δ−θ (t)

}
and then using the

fact that L
{
δ−θ (t)

} = e−θs to obtain

F(s) := L
{
y(t)
}

L
{
u(t)
} = e−θs, (3.2)

where F(s) is known as the transfer function of the system, defined as the
ratio of the Laplace transform of the output to the Laplace transform of
the input. Equation 3.2 should be understood as an equivalent way of ex-
pressing equation 3.1 in the Laplace domain, where the variable s denotes a
complex frequency. Thus far, we have only described the transfer function
that we would like the network to implement.

The state-space model discussed in section 2.3 (see equation 2.7) is re-
lated to its transfer function by

F(s) = C(sI − A)−1B + D. (3.3)

Conversely, a transfer function can be converted into a state-space model
satisfying equation 3.3 if and only if it can be written as a proper ratio of
finite polynomials in s (Brogan, 1991). The ratio is proper when the degree

Improving Spiking Dynamical Networks 579

of the numerator does not exceed that of the denominator. In such a case,
the output will not depend on future input, so the system is causal. The
degree of the denominator corresponds to the dimensionality of the state
vector and therefore must be finite. These two conditions align with physi-
cally realistic constraints where time may only progress forward and neural
resources are limited.

However, the pure delay (see equation 3.2) has infinite order when ex-
pressed as a ratio of polynomials in s, and so the system is irrational, or
infinite dimensional. Consequently, no finite state-space model will exist
for F(s), which formalizes our previous intuition that an exact solution is
impossible for finite, continuous-time systems. To overcome this, we must
approximate the irrational transfer function e−θs as a proper ratio of finite-
order polynomials. We do so using its Padé approximants—the coefficients
of a Taylor series extended to the ratio of two polynomials—expanded
about s = 0 (Padé, 1892; Vajta, 2000):

[
p/q
]

e−θs = Bp(−θs)
Bq(θs)

,

Bm(s) :=
m∑

i=0

(
m
i

)
(p + q − i)!

(p + q)!
si. (3.4)

This provides the transfer function of order p in the numerator and order
q in the denominator that optimally approximates equation 3.2 for low-
frequency inputs (i.e., up to order p + q).

After choosing 0 ≤ p ≤ q, we may numerically find a state-space model
(A, B, C, D) that satisfies equation 3.3 using standard methods5 and then
map this system onto the synapse using principle 3. However, naively ap-
plying this conversion leads to numerical issues in the representation (i.e.,
dimensions that grow exponentially in magnitude) due in part to the facto-
rials in equation 3.4.

To overcome this problem, we derive an equivalent yet normalized state-
space model that we have not encountered elsewhere. We do so for the case
of p = q − 1, since this provides the best approximation to the step response
(derived in section A.1),

A =

⎛⎜⎜⎜⎜⎝
−v0 −v0 · · · −v0

v1 0 · · · 0

0
. . .

. . .
...

0 0 vq−1 0

⎞⎟⎟⎟⎟⎠ ,

B = (v0 0 · · · 0)�,

C = (w0 w1 · · · wq−1),

D = 0,

(3.5)

5
For instance, the function tf2ss in Matlab or SciPy.

580 A. Voelker and C. Eliasmith

Figure 3: Delay of 1 s implemented by applying standard principle 3 to equa-
tion 3.5 using q = 6, dt = 1 ms, 1000 spiking LIF neurons, and a low-pass
synapse with τ = 0.1 s. The input signal is white noise with a cutoff frequency
of 1 Hz. The plotted spikes are filtered with the same τ = 0.1 s and encoded
with respect to 1000 encoders sampled uniformly from the surface of the hyper-
sphere (sorted by time to peak activation).

where vi := (q+i)(q−i)
i+1 θ−1 and wi := (−1)q−1−i

(
i+1

q

)
, for i = 0 . . . q − 1. This

model is now equivalent to equation 3.4, but without any factorials and in
the form of equation 2.7.6 The choice of q corresponds to the dimensional-
ity of the latent state vector x(t) that is to be represented by principle 1 and
transformed by principle 2. Principle 3 may then be used to map equation
3.5 onto a spiking dynamical network to accurately implement an optimal
low-frequency approximation of the delay.

To demonstrate, we implement a 1 s delay of 1 Hz band-limited white
noise using 1000 recurrently connected spiking LIF neurons representing
a six-dimensional vector space (see Figure 3). The connections between
neurons are determined by applying principle 3 (see section 2.3) to the
state-space model derived above (see equation 3.5, q = 6) via the Padé

6
In section A.3, we provide some additional manipulations of the state-space model.

Improving Spiking Dynamical Networks 581

Figure 4: Decoding a rolling window of length θ . Each line corresponds to
a different delay, ranging from 0 to θ , decoded from a single delay network
(q = 12). (Left) Error of each delay, as the input frequency is increased relative
to θ . Shorter delays are decoded more accurately than longer delays at higher
frequencies. A triangle marks θ = Frequency−1. (Right) Example simulation de-
coding a rolling window of white noise with a cutoff frequency of θ−1 Hz.

approximants of the delay. The normalized root-mean-squared error
(NRMSE) of the output signal is 0.048 (normalized so that 1.0 would cor-
respond to random chance). This is achieved without appealing to the sim-
ulation time step (dt = 1 ms); in fact, as shown in section 5.2, the network
accuracy improves as dt approaches zero due to the continuous-time as-
sumption mentioned in section 2.3 (and resolved in section 4.2).

3.2 Temporal Coding. The q-dimensional state vector of the delay net-
work represents a rolling window of length θ . That is, a single delay net-
work with some fixed θ > 0 may be used to accurately decode any delay
of length θ ′ (0 ≤ θ ′ ≤ θ). Different decodings require different linear output
transformations (C) for each θ ′, with the following coefficients (derived in
section A.2):

wq−1−i =
(

q

i

)−1 i∑
j=0

(
q

j

)(
2q − 1 − j

i − j

)(−θ ′

θ

)i− j

, i = 0 . . . q − 1.

(3.6)

The underlying dynamical state remains the same.
In Figure 4, we take different linear transformations of the same state vec-

tor by evaluating equation 3.6 at various delays between 0 and θ to decode
the rolling window of input from the state of the system.7 This demonstrates

7
The optimization problem from equation 2.5 need only be solved once to decode x(t)

from the neural activity. The same decoders may then be transformed by each C without
loss in optimality (by linearity).

582 A. Voelker and C. Eliasmith

Figure 5: Temporal basis functions of the delay network (q = 12). Each line cor-
responds to the basis function of a single dimension (i) ranging from 0 (darkest)
to q − 1 (lightest). The ith basis function is a polynomial over θ ′

θ
with degree i

(see equation 3.6). The state vector of the delay network takes a linear combina-
tion of these q basis functions in order to represent a rolling window of length θ .

that the delay network compresses the input’s history (lasting θ seconds)
into a low-dimensional state.

In Figure 5, we sweep equation 3.6 across θ ′
θ

to visualize the tempo-
ral “basis functions” of the delay network. This provides a way to under-
stand the relationship between the chosen state-space representation (i.e.,
the q-dimensional x(t)) and the underlying window representation (i.e., the
infinite-dimensional u(t)). In particular, each basis function corresponds to
the continuous window of history represented by a single dimension of the
delay network. The instantaneous value of each dimension acts as a coeffi-
cient on its basis function, contributing to the representation of the window
at that time. Overall, the entire state vector determines a linear combina-
tion of these q basis functions to represent the window. This is analogous to
the static function representation explored previously within the context of
principles 1 and 2 (Eliasmith & Anderson, 2003).

The encoder of each neuron can also be understood directly in these
terms as taking a linear combination of the basis functions (via equation
2.1). Each neuron nonlinearly encodes a projection of the rolling window
onto some “preferred window” determined by its own encoder. Since the
state vector is encoded by heterogeneous neural nonlinearities, the popula-
tion’s spiking activity supports the decoding of nonlinear functions across
the entire window (i.e., functions that we can compute using principles 1
and 2). Therefore, we may conceptualize the delay network as a temporal
coding of the input stimulus, which constructs a low-dimensional state, rep-
resenting an entire window of history, to encode the temporal structure of
the stimulus into a nonlinear high-dimensional space of neural activities.

To more thoroughly characterize the delay dynamics, we analyze the be-
havior of the delay network as the dimensionality is increased (see Figure
6). Specifically, we perform a standard principal component analysis (PCA)
on the state vector for the impulse response and vary the order from q = 3

Improving Spiking Dynamical Networks 583

Figure 6: Impulse response of the delay network with various orders (q) of Padé
approximants. (Top) The state vector x(t) projected onto its first three principal
components. (Bottom) The length of the curve x up to time t, computed using the
integral

∫ t
0 ‖ẋ(t′)‖ dt′ (normalized to 1 at t = θ). This corresponds to the distance

traveled by the state vector over time. The dashed line marks the last inflection
point, indicating when x(t) begins to slow down.

to q = 27. This allows us to visualize a subset of the state vector trajecto-
ries, via projection onto their first three principal components (see Figure 6,
top). The length of this trajectory over time distinguishes different values
of q (see Figure 6, bottom). This length curve is approximately logarithmic
when q = 6, convex when q ≤ 12, and sigmoidal when q > 12. To generate
this figure, we use a delay of θ = 10 s, but in fact, this analysis is scale invari-
ant with time. This means that other delays will simply stretch or compress
the impulse response linearly in time (not shown).

The delay network is scale invariant with the delay length over input
frequency, that is, the accuracy for a chosen order is a function of s × θ (see
the units in Figure 4, for instance). More specifically, for a fixed approxima-
tion error, the delay length scales as O

(q
f

)
, where f is the input frequency.

Then the accuracy of the mapped delay is a function of the relative magni-
tude of the delay length to q

f , whose exact shape depends on the considered
synapse model. To determine these functions for a wide class of synapses,
we proceed by extending the NEF.

4 Extending the Neural Engineering Framework

With the example of building a continuous-time delay in hand, we now pro-
ceed to extend principle 3 to arbitrary linear synapses. We focus on building
a comprehensive theory for linear systems, but many of these same tech-
niques also carry over to the case of nonlinear dynamical systems with

584 A. Voelker and C. Eliasmith

heterogeneous synapses (Voelker, Benjamin et al., 2017; Voelker & Elia-
smith, 2017).

Let F(s) be the transfer function for the linear dynamics that we wish to
implement (see equations 2.7 and 3.3), and let H(s) be the transfer function
for an arbitrary linear synapse model (H(s) = L

{
h(t)
}
). As stated in sec-

tion 2.3, introducing the synapse model means replacing the integrator (s−1)
with H(s). This is equivalent to replacing s with H(s)−1. Notably, substitut-
ing H(s) for the integrator results in the transfer function F

(
H(s)−1

)
, which

no longer implements the original, desired dynamics F(s). However, we
would like to ensure that the new dynamics match the originally specified
F(s). The key insight is that we can determine a new function, FH (s), such
that FH

(
H(s)−1

) = F(s). That is, we can solve for a function that provides
the original dynamics when implemented using the transfer function H(s)
as the dynamical primitive. This is formalized by the following definition:

Definition 1. A function FH (s) maps F onto H if and only if it satisfies

FH
(

1
H(s)

)
= F(s). (4.1)

This definition compactly expresses the notion of a change of dynami-
cal primitive in that F(s) is mapped from the canonical primitive, s−1, onto
some new primitive, H(s). Trivially, F(s) maps itself onto s−1. Nontrivial ex-
amples are given throughout sections 4.1 to 4.4.

Once we identify an FH (s) that maps F onto H, any state-space model(
AH, BH, CH, DH

)
that satisfies

FH (s) = CH (sI − AH)−1
BH + DH (4.2)

will implement the desired dynamics when using H(s) as the dynamical
primitive, by equations 3.3 and 4.1 (see Figure 7).

Therefore, supposing FH (s) satisfies definition 1 and that it is convertible
to a state-space model (see equation 2.7), then Figure 7 is just another form
of Figure 1, but with the integrator replaced by the synapse. Note that this
construction, on its own, does not specify how to find a satisfying FH (s) or
whether such a function exists, or whether it can be converted to a state-
space model. We provide several examples leading to such a specification
in section 4.4.

Before proceeding, we remark that the above theory directly carries over
from the continuous-time domain to the discrete-time domain. The discrete-
time formulation of an LTI system is similar to equation 2.7, but increments
time in steps of length dt:

x[t + dt] = Āx[t] + B̄u[t],

y[t] = C̄x[t] + D̄u[t], (4.3)

Improving Spiking Dynamical Networks 585

Figure 7: Block diagram for an LTI system, equivalent to Figure 1, with the in-
tegrator replaced by a more general linear filter H(s). The state-space model(
AH, BH, CH, DH

)
is obtained from some transfer function FH (s) that maps F

onto H, as defined in the text. This generalizes Figure 2 to arbitrary linear
synapse models.

where the discrete state-space model
(
Ā, B̄, C̄, D̄

)
fully defines the system.

The discrete-time equivalent to the Laplace transform is the z-transform,
named for its use of the variable z to denote the complex frequency domain.
In this domain, z−1 plays the role of s−1 by performing a discrete shift for-
ward, one step in time (i.e., a delay of one time step) instead of integration.
A well-known result is that the transfer function of this discrete LTI sys-
tem, defined as the ratio of the z-transform of the output to the z-transform
of the input, is equal to F(z) = C̄(zI − Ā)−1B̄ + D̄. Consequently, all of the
previous discussion carries over to discrete LTI systems. In particular, for a
discrete synapse expressed using the z-transform, H(z), we have the analo-
gous definition:

Definition 2. A function FH (z) maps F onto H if and only if it satisfies

FH
(

1
H(z)

)
= F(z). (4.4)

Given some FH (z) that maps F onto H, any state-space model (ĀH, B̄H,

C̄H, D̄H) that satisfies

FH (z) = C̄H (zI − ĀH)−1
B̄H + D̄H (4.5)

will implement the desired dynamics F(z) when using H(z) as the dynam-
ical primitive. Hence, the task of determining FH (·) is identical for both
continuous- and discrete-time domains; it is only F(·) and H(·) that differ.

4.1 Continuous Low-Pass Synapse. The first example we consider
demonstrates that our new theory recovers the standard form of principle 3

586 A. Voelker and C. Eliasmith

from the NEF (see section 2.3). For the case of a continuous-time first-order
low-pass filter (see equation 2.8), H(s) = 1

τ s+1 , let

FH (s) := C (sI − (τA + I))−1 (τB) + D

= C
((

s − 1
τ

)
I − A

)−1

B + D.

Then

FH (τ s + 1) = C
((

(τ s + 1) − 1
τ

)
I − A

)−1

B + D

= F(s),

which satisfies definition 1. Therefore, by equation 4.2,

AH = τA + I, CH = C,

BH = τB, DH = D. (4.6)

This completes our novel proof of principle 3 from section 2.3.

4.2 Discrete Low-Pass Synapse. When simulating any NEF network
on a digital computer, we necessarily use time steps of some length dt > 0
to advance the state of the network, updating at discrete moments in time
(Bekolay et al., 2013). For instance, Nengo currently uses a default of dt = 1
ms and implements a zero-order hold (ZOH) discretization of the synap-
tic filter. Implementing ZOH means that all continuous-time signals are
held constant within each time step. This discretization of equation 2.8
gives

H(z) = 1 − a
z − a

, a := e− dt
τ .

If our desired transfer function is expressed in continuous time, F(s), we
should also discretize it to F(z) = C̄(zI − Ā)−1B̄ + D̄, with the same time
step, and again using ZOH discretization for consistency. Let

FH (z) := C̄
(

zI − 1
1 − a

(
Ā − aI

))−1 (1
1 − a

B̄
)

+ D̄

= C̄
(
(z(1 − a) + a) I − Ā

)−1 B̄ + D̄.

Improving Spiking Dynamical Networks 587

Then,

FH
(

z − a
1 − a

)
= C̄

((
z − a
1 − a

(1 − a) + a
)

I − Ā
)−1

B̄ + D̄

= F(z),

which satisfies definition 2. Therefore, by equation 4.5,

ĀH = 1
1 − a

(
Ā − aI

)
, C̄H = C̄,

B̄H = 1
1 − a

B̄, D̄H = D̄, (4.7)

provides an exact implementation of the desired system for digital archi-
tectures, regardless of the simulation time step (assuming ZOH).

4.3 Delayed Continuous Low-Pass Synapse. Next, we consider a
continuous-time first-order low-pass filter with a time-delay of λ:

H(s) = e−λs

τ s + 1
. (4.8)

This same model has been proposed by Roth and van Rossum (2009, equa-
tion 6.2) as a more realistic alternative to equation 2.8, which includes an
axonal transmission delay of length λ (on the order of τ) to account for the
finite-velocity propagation of action potentials. By commutativity of convo-
lution, modeling the delay in the synapse (as in equation 4.8) is equivalent
to modeling the delay in spike propagation. Equation 4.8 may also be used
to account for feedback delays within some broader setting (e.g., when the
feedback term is computed via some delayed system).

Letting d := λ
τ

e
λ
τ , and W0(·) denote the principal branch of the Lambert-

W function (Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996), we invert y :=
H(s)−1 as follows:

y = (τ s + 1) eλs

⇐⇒ λ

τ
e

λ
τ y =

(
λs + λ

τ

)
eλs+ λ

τ

⇐⇒ W0(dy) = λs + λ

τ

⇐⇒ 1
λ

W0(dy) − 1
τ

= s,

588 A. Voelker and C. Eliasmith

where the second-last line assumes that |η| < π and λRe [s] + λ
τ

> −η cot η,
where η := λIm [s], in order for λs + λ

τ
to be within the principal branch

(Corless et al., 1996, equation 4.4).8 Therefore,

FH (s) := F
(

1
λ

W0(ds) − 1
τ

)
(4.9)

�⇒ FH (H(s)−1) = FH (y) = F(s).

As a demonstration of how we might use this mapping, suppose the de-
sired transfer function for our system is a time delay of θ seconds, F(s) =
e−θs (see equation 3.2). In this setting, we are attempting to “amplify” a delay
of λ seconds in the synapse into a system delay of θ seconds at the network
level. Letting c := e

θ
τ and r := θ

λ
, and then substituting F(s) into equation 4.9

provides the required function:

FH (s) = exp
{
−θ

(
1
λ

W0(ds) − 1
τ

)}
= c exp

{−rW0(ds)
} = c

(
W0(ds)

ds

)r

.

This may be numerically converted into a state-space model, of arbitrary
dimensionality q, via the

[
q − 1/q

]
Padé approximants of the following

Maclaurin series:

FH (s) = cr
∞∑

i=0

(i + r)i−1

i!
(−ds)i. (4.10)

To our knowledge, there is no closed-form expression for the Padé approx-
imants of equation 4.10, but there are methods to compute them accurately
and in O(q2) time (Sidi, 2003). Given these approximants, we may follow
the same procedure from section 3.1 to obtain an LTI system in the form of
equation 2.7. In section 5.2, we use this approach to improve the accuracy
of the delay network demonstrated in section 3.1. We remark that each of d,
c, and r is a dimensionless (i.e., unitless) constant that can be used to relate
measurable properties of a biological system that may be governed by this
description to the necessary network-level computations.

4.4 General Linear Synapse. Finally, we consider the general class of
all linear synapse models of the form

H(s) = 1∑k
i=0 cisi

, (4.11)

8
A simpler (but only sufficient) condition is Re [s] ≥ − 1

τ
and |Im [s] | < π

2λ
. Thus, it

suffices to consider input frequencies < 1
4λ

Hz.

Improving Spiking Dynamical Networks 589

for some polynomial coefficients (ci) of arbitrary degree k. To the best of
our knowledge, this class includes the majority of linear synapse models
used in the literature. For instance, this includes the first-order low-pass
synapse that is standard in the NEF. It also includes the second-order al-
pha synapse, 1

(τ s+1)2 (Rall, 1967)—the convolution of two exponentials with
identical time constants—which is commonly used in biological models
(Koch & Segev, 1989; Destexhe, Mainen, & Sejnowski, 1994b; Mainen & Se-
jnowski, 1995; Destexhe, Mainen, & Sejnowski, 1998; Roth & van Rossum,
2009). The alpha synapse essentially filters the spike trains twice, to pro-
duce PSCs with finite (noninstantaneous) rise times. In addition, equation
4.11 includes a generalization of the alpha synapse, the double exponen-
tial synapse, 1

(τ1s+1)(τ2s+1) (Wilson & Bower, 1989)—the convolution of two
exponentials with time constants τ1 and τ2—that has different rise and fall
times to account for the separate timescales of rapid transmitter binding
followed by slow unbinding (Destexhe et al., 1994b; Häusser & Roth, 1997;
Roth & van Rossum, 2009). The double exponential is also a suitable model
to account for parasitic capacitances in neuromorphic hardware (Voelker,
Benjamin et al., 2017). Furthermore, equation 4.11 includes a higher-order
generalization of the alpha synapse, the gamma kernel, 1

(μ−1s+1)k (De Vries &
Principe, 1992, equation 19). Finally, this class contains more exotic models,
such as the Q-bandpass synapse model, 1

1
ω2 s2+ 1

ωQ s+1
, where ω is the peak fre-

quency in radians per second and Q is inversely proportional to the band-
width. Such synapses have been used to model bandpass filtering from
mechanoreceptors in the fingertip (Friedl et al., 2016) or from rods in the
retina (Armstrong-Gold & Rieke, 2003).

As well, in section A.5, we demonstrate how to use equation 4.11 to
model synapses with pure delays and to prove a complete connection to
ZOH discretization. Specifically, by the use of Padé approximants, we may
rewrite any transfer function with a Taylor series expansion (even those that
are irrational or improper) in the form of equation 4.11, albeit with some ra-
dius of convergence. This permits us to model, for instance, synapses with
pulse-extended responses (Voelker, Benjamin et al., 2017).9 Similarly, the
delayed low-pass, equation 4.8, may be expressed in the form of equation
4.11. Finally, any linear combinations of the aforementioned synapse mod-
els will also be a member of this class. Nonlinear synapse models, such as
conductance-based synapses (e.g., Destexhe, Mainen, & Sejnowski, 1994a,
equation 6), are a current subject of study in the NEF (Stöckel, Voelker, &
Eliasmith, 2017).

To map F onto equation 4.11, we begin by defining our solution to FH (s)
in the form of its state-space model (see equation 4.2),

9
Padé approximants are computed “manually” by Voelker, Benjamin et al. (2017, equa-

tions 9–11) to obtain a second-order approximation in the form of equation 4.11.

590 A. Voelker and C. Eliasmith

AH =
k∑

i=0

ciAi, CH = C,

BH =
⎛⎝ k−1∑

j=0

s j
k∑

i= j+1

ciAi− j−1

⎞⎠B, DH = D, (4.12)

which we claim satisfies the required identity, FH (H(s)−1) = F(s) (equation
4.1). To prove this claim, we first rearrange the following expression:⎛⎝ k−1∑

j=0

s j
k∑

i= j+1

ciAi− j−1

⎞⎠ (sI − A) =
k−1∑
j=0

k∑
i= j+1

s jciAi− j−1(sI − A)

=
k∑

i=0

i−1∑
j=0

s jciAi− j−1(sI − A)

=
k∑

i=0

ci

⎛⎝ i−1∑
j=0

s j+1Ai−(j+1) − s jAi− j

⎞⎠
=

k∑
i=0

ci
(
siAi−i − s0Ai−0)

=
(

k∑
i=0

cisi

)
I −

k∑
i=0

ciAi

= H(s)−1I − AH .

We then complete the proof by substituting this result and the state-space
model into our expression for the mapped transfer function from equation
4.2:

FH (H(s)−1) = CH (H(s)−1I − AH)−1BH + DH

= C(H(s)−1I − AH)−1

⎛⎝ k−1∑
j=0

s j
k∑

i= j+1

ciAi− j−1

⎞⎠B + D

= C(sI − A)−1B + D

= F(s).

An alternative derivation may also be found in Voelker and Eliasmith (2017,
section 2.2). An interesting insight gained with this solution is that it is not,
in general, the case that BH is time invariant, since it depends on s. As a

Improving Spiking Dynamical Networks 591

result, solutions will often not be a typical state-space model in the form of
equation 2.7.

Nevertheless, such solutions can still be implemented, as is, in practice.
Since s j is the jth-order differential operator, this form of BH states that we
must supply the jth-order input derivatives u(j) for all j = 1 . . . k − 1. When
k = 1, as in section 4.1, this is trivial (no derivatives are needed). For k > 1,
let us first define BH

j := (∑k
i= j+1 ciAi− j−1

)
B. Then equation 4.12 shows that

the ideal state-space model must implement the input transformation as a
linear combination of input derivatives,

∑k−1
j=0 BH

j u(j). If the derivatives of
the input are available to the model, then the FH (s) we described may be
used to precisely implement the desired F(s).

However, if the required derivatives are not included in the neural rep-
resentation, then it is natural to use a ZOH method by assuming u(j) = 0,
for all j = 1 . . . k − 1:

BH = BH
0 =

(
k∑

i=1

ciAi−1

)
B, (4.13)

with AH , CH , and DH as before (see equation 4.12). This is now an equiva-
lent model to equation 4.12 assuming ZOH, and in the form of the standard
state-space model (see equation 2.2). In section A.4, we characterize the dy-
namics of this new system in terms of F and H (independent of the chosen
state-space model) for general inputs. We find that equation 4.13 adds k − 1
new dimensions, for every dimension in F, to the state underlying the re-
sulting dynamical system. In section A.5, we show that our results yield a
novel derivation of ZOH discretization for LTI systems.

To our knowledge, this specific state-space architecture has not been
explored in theory or in practice. Given that equation 4.12 requires the
input derivatives to accurately compute low-dimensional network-level
dynamics, this strongly suggests that it is important to represent and com-
pute derivatives in neural systems. Methods of computing derivatives have
been explored by Tripp and Eliasmith (2010) within the NEF. As well, it has
long been suggested that adaptive neural mechanisms (e.g., synaptic de-
pression or spike rate adaptation) may also play a fundamental role in com-
puting such derivatives (Abbott & Regehr, 2004; Lundstrom, Higgs, Spain,
& Fairhall, 2008). However, there has typically been less emphasis placed
on understanding temporal differentiation in comparison to other temporal
operators, such as integration (Tripp & Eliasmith, 2010).

Finally, we again note that these results translate directly to the discrete-
time domain. The required state-space matrices are the same as in equation
4.12, but with (c̄i) corresponding to the coefficients of H(z), bars affixed to
each state-space matrix, and z substituted for s in B̄H . However, the z j op-
erator is a shift backward by j time steps (i.e., an acausal lookahead), and

592 A. Voelker and C. Eliasmith

so the ZOH assumption is instead u[t + j(dt)] = u[t] for all j = 1 . . . k − 1.
Thus, the discrete analog to equation 4.13 is

B̄H =
⎛⎝ k−1∑

j=0

k∑
i= j+1

c̄iĀi− j−1

⎞⎠ B̄. (4.14)

5 Results

We are now in a position to bring together the two main themes of this work:
implementing delays and extending the NEF to employ a wide variety of
synapse models. To do so, we provide two example applications of our the-
ory. First, we demonstrate that we can map the delay system onto a vari-
ety of synapse models used in practice. We show that including an axonal
transmission delay in the synapse model significantly improves the abil-
ity of the network to compute continuous-time delays (and, by extension,
any system that can be expressed in terms of delayed signals). Second, we
explore intriguing similarities between our delay network responses and
the recently discovered time cells (Eichenbaum, 2014; Tiganj, Hasselmo, &
Howard, 2015), suggesting that this theory may provide a new understand-
ing of these observed temporal responses in hippocampus, stratium, medial
prefrontal cortex (mPFC), and elsewhere in cortex (Mello, Soares, & Paton,
2015; Luczak, McNaughton, & Harris, 2015).

5.1 Methods. All networks were built and simulated using Nengo 2.4.0
(Bekolay et al., 2013), a Python tool for simulating large-scale neural net-
works, with the nengolib 0.4.1 extension (Voelker, 2017; Voelker & Elia-
smith, 2017). Simulations were run on a standard desktop computer10 using
Python 2.7.3, Numpy 1.11.3, and SciPy 0.18.0rc1, linked with the Intel Math
Kernel Library (MKL).

All simulations used a 1 ms time step (with exception to Figure 9, which
used a time step of 0.01 ms) and Nengo’s default configurations for hetero-
geneous tuning curves and spiking LIF parameters. As detailed in section
A.3, encoders were either sampled from the unit-axis vectors or scattered
uniformly along the surface of the hypersphere using quasi–Monte Carlo
methods. We further normalized the delay systems using balanced realiza-
tions and Hankel singular values.

The architecture of each network follows the setup described by the NEF
in section 2. A tutorial by Sharma, Aubin, and Eliasmith (2016) provides
some additional details regarding the software application of NEF meth-
ods. Figures were created using Seaborn (Waskom et al., 2015) and are re-
producible via https://github.com/arvoelke/delay2017.

10
Intel Core i7-4770 CPU @ 3.40 GHz.

Improving Spiking Dynamical Networks 593

Figure 8: Comparing standard principle 3 to our NEF extensions. (Left) Error
from mapping a 27-dimensional 0.1 s delay onto 1000 spiking LIF neurons while
varying the simulation time step (dt). The input to the network is white noise
with a cutoff frequency of 50 Hz. Unlike our extension, the standard form of
principle 3 does not account for dt. A dashed vertical line indicates the default
time step in Nengo. Error bars indicate a 95% confidence interval bootstrapped
across 25 trials. (Right) Mapping the delay system onto a delayed continuous
low-pass synapse (with parameters τ

θ
= 0.1 and λ

τ
= 1). The order of the delay

system (q) is varied from 6 (lightest) to 27 (darkest). Each line evaluates the er-
ror in the frequency response,

∣∣e−θs − FH (H(s)−1)
∣∣, where FH is determined by

mapping the delay of order q onto equation 4.8 using one of the two following
methods. The method of our extension, which accounts for the axonal transmis-
sion delay, has a monotonically increasing error that stabilizes at 1 (i.e., the high
frequencies are filtered). The standard principle 3, which accounts for τ but ig-
nores λ, alternates between phases of instability and stability as the frequency
is increased.

5.2 Delay Networks with Higher-Order Synapses. We begin by mak-
ing the practical point that it is crucial to account for the effect of the simula-
tion time step in digital simulations if the time step is not sufficiently small
relative to the timescale of the desired network-level dynamics. To demon-
strate this, we simulate a 27-dimensional delay network using 1000 spiking
LIF neurons, implementing a 0.1 s delay of 50 Hz band-limited white noise.
We vary the simulation time step (dt) from 0.1 ms to 2 ms. The accuracy
of our extension does not depend on dt (see Figure 8, left). When dt = 1
ms (the default in Nengo), the standard principle 3 mapping (see equation
4.6) obtains an NRMSE of 1.425 (43% worse than random chance) versus
0.387 for the discrete low-pass mapping that accounts for dt (see equation
4.7), a 73% reduction in error. As dt approaches 0, the two methods become
equivalent.

More to the point, we can analyze the delay network’s frequency re-
sponse when using a delayed continuous low-pass synapse (see equation
4.8) instead of the canonical low-pass (see equation 2.8) as the dynami-
cal primitive. This provides a direct measure of the possible improvement

594 A. Voelker and C. Eliasmith

Figure 9: The pure delay mapped onto spiking networks with various synapse
models (with parameters q = 6, τ

θ
= 0.1, λ

τ
= 1, τ1 = τ , and τ1

τ2
= 5). (Left) Error

of each mapping in the frequency domain. This subfigure is scale invariant with
θ . (Right) Example simulation when θ = 0.1 s and the input signal is white noise
with a cutoff frequency of 15 Hz, corresponding to the triangle (over 1.5) from
the left subfigure. We use a time step of 0.01 ms (10 μs) and 2000 spiking LIF
neurons.

gains when using the extension. Figure 8, right compares the use of prin-
ciple 3 (which accounts for τ but ignores λ) to our extension (which fully
accounts for both; see section 4.3) when λ = τ . The figure reveals that in-
creasing the dimensionality improves the accuracy of our extension while
magnifying the error from principle 3. In the worst case, the principle 3
mapping has an absolute error of nearly 1015. In practice, saturation from
the neuron model bounds this error by the maximum firing rates. Regard-
less, it is clearly crucial to account for axonal transmission delays to accu-
rately characterize the network-level dynamics.

To more broadly validate our NEF extensions from section 4, we map the
delay system onto (1) a continuous low-pass synapse (see section 4.1), (2) a
delayed continuous low-pass synapse (see section 4.3), and (3) a continuous
double exponential synapse (see section 4.4). We apply each extension to
construct delay networks of 2000 spiking LIF neurons. To compare the accu-
racy of each mapping, we make the time step sufficiently small (dt = 10 μs)
to emulate a continuous-time setting. We use the Padé approximants of or-
der [5/6] for both equations 3.4 and 4.10. For the delayed low-pass, we again
fix τ

θ
= 0.1 and λ

τ
= 1. For the double exponential, we fix τ1 = τ and τ1

τ2
= 5.

Expressing these parameters as dimensionless constants keeps our results
scale invariant with θ .

Figure 9 reveals that axonal delays may be effectively amplified 10-fold
while reducing the NRMSE by 71% compared to the low-pass (see Figure
9, right; NRMSE for low-pass = 0.702, delayed low-pass = 0.205, and dou-
ble exponential = 0.541). The double exponential synapse outperforms the
low-pass, despite the additional poles introduced by the ZOH assumption

Improving Spiking Dynamical Networks 595

in equation 4.13 (see section A.4 for analysis). This is because the double
exponential filters the spike noise twice. Likewise, by exploiting an axonal
delay, the same level of performance (e.g., 5% error) may be achieved at
approximately 1.5 times higher frequencies, or equivalently for 1.5 times
longer network delays, when compared to the low-pass synapse (see Figure
9, left). In summary, accounting for higher-order synaptic properties allows
us to harness the axonal transmission delay to more accurately approximate
network-level delays in spiking dynamical networks.

Together, these results demonstrate that our extensions can significantly
improve the accuracy of high-level network dynamics. Having demon-
strated this for delays, in particular, suggests that the extension is useful for
a wide variety of biologically relevant networks. To make this point more
concrete, we turn to a consideration of time cells.

5.3 Time Cells. We now describe a connection between the delay net-
work from section 3 and recent neural evidence regarding time cells. Time
cells were initially discovered in the hippocampus and proposed as tempo-
ral analogs of the more familiar place cells (Eichenbaum, 2014). Similar pat-
terns of neural activity have since been found throughout striatum (Mello
et al., 2015) and cortex (Luczak et al., 2015) and have been extensively stud-
ied in the rodent mPFC (Kim, Ghim, Lee, & Jung, 2013; Tiganj, Jung, Kim,
& Howard, 2016).

Interestingly, we find that our delay network produces qualitatively sim-
ilar neural responses to those observed in time cells. This is shown in Figure
10, by comparing neural recordings from mPFC (Tiganj et al., 2016, Figures
4C and 4D) to the spiking activity from a network implementing a delay of
the same length used in the original experiments. Specifically, in this net-
work, a random population of 300 spiking LIF neurons maps a 4.784 s delay
onto an alpha synapse (τ = 0.1 s) using our extension. The order of the ap-
proximation is q = 6 (see equation 3.5), and the input signal is a rectangular
pulse beginning at t = −1 s and ending at t = 0 s (height = 1.5). The simu-
lation is started at t = −1 s and stopped at t = 5 s.

We also note a qualitative fit between the length curve for q = 6 in Fig-
ure 6 and the peak response times in Figure 10. Specifically, Figure 6 (bot-
tom) models the nonuniform distribution of the peak response time of the
cells as the length of the trajectory of x(t) through time. Implicit in this
model are the simplifying assumptions that encoders are uniformly dis-
tributed and that the L2-norm of the state vector remains constant through-
out the delay period. Nevertheless, this model produces a qualitatively
similar curve when q = 6 to both peak response times from Figure 10 (right;
see overlay).

More quantitatively, we performed the same analysis on our simulated
neural activity as Tiganj et al. (2016) performed on the biological data to
capture the relationship between the peak and width of each time cell.
Specifically, we fit the spiking activity of each neuron with a gaussian to

596 A. Voelker and C. Eliasmith

Figure 10: Comparison of time cells to an NEF delay network. Top: Spiking ac-
tivity from the rodent mPFC (reproduced from Tiganj et al., 2016, Figures 4C and
4D, by permission of Oxford University Press). Neural recordings were taken
during a maze task involving a delay period of 4.784 s. Bottom: Delay network
implemented using the NEF (see text for details). Seventy-three time cells are
selected by uniformly sampling encoders from the surface of the hypersphere.
(A) Cosine similarity between the activity vectors for every pair of time points.
The diagonal is normalized to the warmest color. The similarity spreads out
over time. (B) Neural activity sorted by the time to peak activation. Each row is
normalized between 0 (cold) and 1 (warm). We overlay the curve from Figure
6, bottom (q = 6) to model the peak response times.

model the peak time (μt) and the standard deviation (σt) of each cell’s “time
field.”11 This fit was repeated for each of the 250 simulated spiking LIF neu-
rons that remained after selecting only those that had at least 90% of their
spikes occur within the delay interval. The correlation between μt and σt

had a Pearson’s coefficient of 0.68 (ρ < 10−34), compared to 0.52 (ρ < 10−5)
for the biological time cells. An ordinary linear regression model linking μt

11
We set a1 = P = S = 0 in equation 1 from Tiganj et al. (2016), since we have no exter-

nal variables to control.

Improving Spiking Dynamical Networks 597

(independent variable) with σt (dependent variable) resulted in an intercept
of 0.27 ± 0.06 (standard error) and a slope of 0.40 ± 0.03 for our simulated
data, compared to 0.27 ± 0.07 and 0.18 ± 0.04, respectively, for the time cell
data. We note that we used the same bin size of 1 ms, modeled the same de-
lay length, and did not perform any parameter fitting beyond the informal
choices of 90% cutoff, dimensionality (q = 6), area of the input signal (1.5),
and synaptic time constant (τ = 0.1 s).

Neural mechanisms previously proposed to account for time cell re-
sponses have either been speculative (Tiganj et al., 2016) or rely on grad-
ually changing firing rates from a bank of arbitrarily long, ideally spaced
low-pass filters (Shankar & Howard, 2012; Howard et al., 2014; Tiganj et al.,
2015; Tiganj, Shankar, & Howard, 2017). It is unclear if such methods can
be implemented accurately and scalably using heterogeneous spiking neu-
rons. We suspect that robust implementation is unlikely given the high pre-
cision typically relied on in these abstract models.

In contrast, our proposed spiking model has its network-level dynam-
ics derived from first principles to optimally retain information throughout
the delay interval, without relying on a particular synapse model or bank
of filters. All of the neurons recurrently work together in a low-dimensional
vector space to make efficient use of neural resources. By using the meth-
ods of the NEF, this solution is inherently robust to spiking noise and other
sources of uncertainty. Furthermore, our explanation accounts for the non-
linear distribution of peak firing times as well as its linear correlation with
the spread of time fields.

The observation of time cells across many cortical and subcortical areas
suggests that the same neural mechanisms may be used in many circuits
throughout the brain. As a result, the neural activity implicated in a variety
of delay tasks may be the result of many networks optimizing a similar
problem to that of delaying low-frequency signals recurrently along a low-
dimensional manifold. Such networks would thus be participating in the
temporal coding of a stimulus by representing its history across a delay
interval.

6 Conclusion

We have discussed two main theoretical results. The first provides a method
for accurately implementing continuous-time delays in recurrent spiking
neural networks. This begins with a model description of the delay system
and ends with a finite-dimensional representation of the input’s history that
is mapped onto the dynamics of the synapse. The second provides a method
for harnessing a broad class of synapse models in spiking neural networks
while improving the accuracy of such networks compared to standard NEF
implementations. These extensions are validated in the context of the delay
network.

598 A. Voelker and C. Eliasmith

Our extensions to the NEF significantly enhance the framework in
two ways. First, it allows those deploying the NEF on neuromorphics to
improve the accuracy of their systems given the higher-order dynamics of
mixed-analog-digital synapses (Voelker, Benjamin et al., 2017; Voelker &
Eliasmith, 2017). Second, it advances our understanding of the effects of
additional biological constraints, including finite rise times and pure time
delays due to action potential propagation. Not only can these more so-
phisticated synapse models be accounted for, but they may be harnessed to
directly improve the network-level performance of certain systems.

We exploited this extension to show that it can improve the accuracy of
discrete-time simulations of continuous neural dynamics. We also demon-
strated that it can provide accurate implementations of delay networks with
a variety of synapse models, allowing systematic exploration of the rela-
tionship between synapse- and network-level dynamics. Finally, we sug-
gested that these methods provide new insights into the observed temporal
properties of individual cell activity. Specifically we showed that time cell
responses during a delay task are well approximated by a delay network
constructed using these methods. This same delay network nonlinearly en-
codes the history of an input stimulus across the delay interval (i.e., a rolling
window) by compressing it into a q-dimensional state, with length scaling
as O

(q
f

)
, where f is the input frequency.

While we have focused our attention on delay networks in particular, our
framework applies to any linear time-invariant system. As well, though we
have not shown it here, as with the original NEF formulation, these methods
also apply to nonlinear systems. As a result, these methods characterize
a very broad class of combinations of synapse- and network-level spiking
dynamical neural networks.

Many important questions still remain concerning the interactions of
principles 1, 2, and 3. While the error in our transformations scale as O

(1√
n

)
due to independent spiking, it has been shown that near-instantaneous
feedback may be used to collaboratively distribute these spikes and scale
the error as O

(1
n

)
(Boerlin, Machens, & Denève, 2013; Thalmeier, Uhlmann,

Kappen, & Memmesheimer, 2016). This reduction in error has potentially
dramatic consequences for the efficiency and scalability of neuromorphics
by reducing total spike traffic (Boahen, 2017). However, it is currently un-
clear whether this approach can be applied to a more biologically plausi-
ble setting (e.g., using neurons with refractory periods) while retaining this
linear scaling property. Similarly, we wish to characterize the network-level
effects of spike-rate adaptation, especially at higher input frequencies, in or-
der to understand the computations that are most accurately supported by
more detailed neuron models. This will likely involve extending our work
to account for nonlinear dynamical primitives and subsequently harness
their effects (e.g., bifurcations) to improve certain classes of computations.

Improving Spiking Dynamical Networks 599

Appendix: Supplementary Derivations

A.1 Normalized State-Space Delay. In this appendix, we symbolically
transform equation 3.4 into a normalized state-space model that avoids the
need to compute any factorials. We first do so for the special case of p =
q − 1, since this provides the best approximation to the step response (Vajta,
2000). We begin by expanding equation 3.4:

[q − 1/q]e−θs =
∑q−1

i=0

(
q − 1

i

)
(2q − 1 − i)!(−1)iθ isi

∑q
i=0

(
q
i

)
(2q − 1 − i)!θ isi

=
1

θ q (q−1)!

∑q−1
i=0

(q−1)!
(q−1−i)!i! (2q − 1 − i)!θ isi(−1)i

sq + 1
θ q (q−1)!

∑q−1
i=0

q!
(q−i)!i! (2q − 1 − i)!θ isi

=
∑q−1

i=0 cisi

sq +∑q−1
i=0 disi

,

where di := q(2q−1−i)!
(q−i)!i! θ i−q and ci := (−1)i

(q−i
q

)
di.

This transfer function is readily converted into a state-space model in
controllable canonical form:

A =

⎛⎜⎜⎜⎜⎝
−dq−1 −dq−2 · · · −d0

1 0 · · · 0

0
. . .

. . .
...

0 0 1 0

⎞⎟⎟⎟⎟⎠ ,

B = (1 0 · · · 0)�,

C = (cq−1 cq−2 · · · c0),

D = 0.

To eliminate the factorials in di and ci, we scale the ith dimension of
the state vector by dq−1−i, for all i = 0 . . . q − 1. This is achieved without
changing the transfer function by scaling each (B) j by dq−1− j, each (C)i by
1/dq−1−i, and each (A)i j by dq−1−i/dq−1− j, which yields the equivalent state-
space model:

A =

⎛⎜⎜⎜⎜⎝
−v0 −v0 · · · −v0

v1 0 · · · 0

0
. . .

. . .
...

0 0 vq−1 0

⎞⎟⎟⎟⎟⎠ ,

B = (v0 0 · · · 0)�,

C = (w0 w1 · · · wq−1),

D = 0,

where vi := (q+i)(q−i)
i+1 θ−1 and wi := (−1)q−1−i

(i+1
q

)
for i = 0 . . . q − 1. This fol-

lows from noting that v0 = dq−1 and vi := dq−1−i/dq−i for i ≥ 1.

600 A. Voelker and C. Eliasmith

A similar derivation applies to the case where p = q, although it results
in a pass-through (D �= 0) that is suboptimal for step responses. For brevity,
we omit this derivation and instead simply state the result:

A =

⎛⎜⎜⎜⎜⎝
−v0 −v0 · · · −v0

v1 0 · · · 0

0
. . .

. . .
...

0 0 vq−1 0

⎞⎟⎟⎟⎟⎠,

B = (−v0 0 · · · 0)�,

C = (2(−1)q 0 2(−1)q 0 · · · · · ·),
D = (−1)q,

where vi = (q+i+1)(q−i)
i+1 θ−1, for i = 0 . . . q − 1.

In either case, A and B depend on the delay length solely by the scalar fac-
tor θ−1. As a result, we may control the length of the delay by adjusting the
gain on the input and feedback signals. The NEF can be used to build such
controlled dynamical systems without introducing multiplicative dendritic
interactions or implausible on-the-fly connection weight scaling (Eliasmith
& Anderson, 2000). The identification of this control factor is connected to
a more general property of the Laplace transform, F

(
a−1s

) = L
{
a f (at)

}
for

all a > 0, that we can exploit to modulate the width of any filter on-the-fly
(in this case affecting the amount of delay; results not shown).

A.2 Decoding Separate Delays from the Same Network. Although the
delay network has its dynamics optimized for a single delay θ > 0, we can
still accurately decode any delay 0 ≤ θ ′ ≤ θ from the same network. This
means that the network is representing a rolling window (i.e., history) of
length θ . This window forms a temporal code of the input stimulus.

To compute these other delays, we optimally approximate e−θ ′s with a
transfer function Fθ→θ ′ (s) := C(s; θ,θ ′)

D(s; θ) of order [p/q], such that the denomina-
tor D(s; θ) (which provides us with the recurrent transformation up to a
change of basis) depends only on θ , while the numerator C(s; θ, θ ′) (which
provides us with the output transformation up to a change of basis) de-
pends on some relationship between θ ′ and θ .

From equation 3.4, we may write the denominator as

D(s; θ) =
q∑

i=0

di(θ)si, di(θ) :=
(

q
i

)
(p + q − i)!

(p + q)!
θ i.

We then solve for the numerator as follows:

[p/q]e−θ ′s =
∞∑

i=0

(−θ ′s)i

i!
= C(s; θ, θ ′)

D(s; θ)

Improving Spiking Dynamical Networks 601

⇐⇒ C(s; θ, θ ′) =
(∞∑

i=0

(−θ ′s)i

i!

)⎛⎝ q∑
j=0

d j(θ)s j

⎞⎠+ O(sp+1).

By expanding this product and collecting similar terms, the correct numer-
ator up to order p ≤ q is

C(s; θ, θ ′) =
p∑

i=0

ci(θ, θ ′)si, ci(θ, θ ′) :=
i∑

j=0

(−θ ′)i− j

(i − j)!
d j(θ).

Therefore, the optimal readout for a delay of length θ ′, given the dynamics
for a delay of length θ , is determined by the above linear transformation of
the coefficients

(
d j(θ)

)p
j=0.

We remark that ci(θ, θ) =
(p

i

)
(p+q−i)!

(p+q)! (−θ)i, since Fθ→θ (s) = [p/q]e−θs, by

uniqueness of the Padé approximants and by equation 3.4. As a corollary,
we have proved that the following combinatorial identity holds for all p, q ∈
N, and i ∈ [0, min{p, q}]:

(
p

i

)
=

i∑
j=0

(−1) j

(
q

j

)(
p + q − j

i − j

)
.

For the case when p = q − 1, we may also apply the same state-space
transformation from section A.1 to obtain the normalized coefficients for
the C transformation (i.e., with A, B, and D from equation 3.5):

wq−1−i =
⎛⎝ i∑

j=0

(−θ ′)i− j

(i − j)!

(
q

j

)
(2q − 1 − j)!

(2q − 1)!
θ j

⎞⎠
×
(

(q − i)!i!(2q − 1)!
θ q(q − 1)!q(2q − 1 − i)!

θ q−i
)

=
i∑

j=0

(
q
j

)(
(2q − 1 − j)!

(i − j)!(2q − 1 − i)!

)(
(q − i)!i!

q!

) (
θ j−i) (−θ ′)i− j

=
(

q

i

)−1 i∑
j=0

(
q

j

)(
2q − 1 − j

i − j

)(−θ ′

θ

)i− j

, i = 0 . . . q − 1.

A.3 Remarks on Choice of State-Space Model. Although the transfer
function is in fact a unique description of the input-output behavior of an
LTI system, the state-space model (equation 2.7) is not. In general, one may

602 A. Voelker and C. Eliasmith

consider any invertible matrix T with the same shape as A and observe that
the state-space model (TAT−1, TB, CT−1, D) has the same transfer function
as (A, B, C, D). Thus, the state-space model is unique only up to a change
of basis. However, in the NEF, the basis T may be “absorbed” into the rep-
resentation of x(t) by using the encoders ET in principle 1, which in turn
results in the decoders Df(T−1)� from principle 2. In other words, consider-
ing an alternative state-space model is equivalent to considering a change
of basis for the representation.

In practice, when aiming to accurately represent x(t) using few neurons,
it is important to balance the relative range of values within each dimension,
such that a typical trajectory for x(t) stays within the space represented by
the distribution of encoders, consistent with the samples of S (see equation
2.5), and the dynamic range of each neuron. We balance the range of values
by numerically computing the T that results in a “balanced realization” of
(A, B, C, D) (Laub, Heath, Paige, & Ward, 1987; Perev, 2011). We then set the
encoders to be unit length and axis aligned and optimize each dimension
independently by using the methods from section 2.2. As mentioned in the
main text, we occasionally include encoders that are scattered uniformly
along the surface of the hypersphere using quasi–Monte Carlo sampling—
specifically, using the inverse transform method applied to the Sobol se-
quence with a spherical coordinate transform (Fang & Wang, 1994; Knight
et al., 2016)—to visualize a distributed representation. Finally, we occasion-
ally scale each dimension by a diagonal transformation T with the ith diag-
onal equaling maxt

∣∣xi(t)
∣∣where xi(t) is obtained by simulating the desired

system directly on a randomly sampled input. We also experimented with
a diagonal transformation T with the ith diagonal corresponding to the re-
ciprocal of two times the sum of the Hankel singular values (Glover & Part-
ington, 1987) of the subsystem corresponding to xi(t). This has the effect of
bounding the absolute value of each dimension above by 1 in the worst case
(Khaisongkram & Banjerdpongchai, 2007). We have found that these meth-
ods of normalizing state-space models typically improve the robustness of
our networks across a wide range of parameters.

It is worth noting that the mappings from section 4—with the exception
of equations 4.10 and 4.13—do not alter the representation of x(t). Disre-
garding these exceptions, the same choice of basis is conveniently carried
over to the implemented network. Yet it is also the case that the dynam-
ics of the system mapped by equation 4.13 do not depend on the chosen
state-space model. This fact is proven implicitly in the following section by
characterizing the dynamics in terms of F(s) and H(s) alone.

A.4 Analysis of Poles Resulting from Equation 4.13. Consider the FH

determined by equation 4.13, when the derivatives of the input signal are
inaccessible. Let F̂(s) := FH (H(s)−1) be the dynamics of the implemented
system for this particular FH . Due to the ZOH assumption, F̂ �= F in general,
and so FH does not technically map F onto H (see definition 1). As discussed
in section 4.4, the approximation satisfies equation 4.1 only when the input

Improving Spiking Dynamical Networks 603

is held constant. To be clear, F̂(s) = F(s) for s = 0 but not necessarily for
s �= 0. Thus, it is important to characterize the difference between F̂ and F
for general inputs.

To do so, we can examine the poles of the transfer function F(s) = C(s)
D(s) ,

which are defined as the complex roots of D(s). The poles of a system fully
define the dynamics of its state (up to a change of basis). For instance, a
system is exponentially stable if and only if Re [s] < 0 for all poles s ∈ C.
Furthermore, s ∈ sp(A) if and only if s is a pole, where sp(A) denotes the
eigenvalues of the state-space matrix A.12 Therefore, we may characterize
the poles of F̂ in terms of the poles of F, in order to understand the behavior
of the implemented system.

We begin by deriving the poles of FH , recalling that AH =∑k
i=0 ciAi. Let

v �= 0 be an eigenvector of A with eigenvalue λ, so that

Av = λv �⇒ AHv =
k∑

i=0

ciAiv =
(

k∑
i=0

ciλ
i

)
v.

Hence, sp
(
AH
) = {∑k

i=0 ciλ
i : λ ∈ sp(A)

}
is the full set of eigenvalues for

AH . This is also true for equation 4.12 since AH is identical, but we do not
need this fact.

The denominator of F̂ may now be written as
∏

λ∈sp(A)

(
H(s)−1 −∑k

i=0 ciλ
i
)
. Therefore, the poles of F̂ are the roots of the q polynomials:

P (φ) :=
k∑

i=0

ci
(
φi − λi) , λ ∈ sp(A).

A trivial set of roots is φ = λ, and thus each pole of F is also a pole of F̂, as
desired. However, for a synapse of order k, there will also be k − 1 additional
poles for every pole of F. For this system to behave as F given low-frequency
inputs, we must have the old poles dominate the new poles. That is, we
require Re [λ] � Re [φ] for all φ �= λ.

To provide a specific example, let us consider the double exponential
synapse, H(s)−1 = (τ1s + 1)(τ2s + 1),

�⇒ P (φ) = τ1τ2φ
2 + (τ1 + τ2)φ − (τ1τ2λ

2 + (τ1 + τ2)λ) = 0

⇐⇒ φ =
−(τ1 + τ2) ±

√
(τ1 + τ2)2 + 4τ1τ2

(
τ1τ2λ2 + (τ1 + τ2)λ

)
2τ1τ2

= −(τ1 + τ2) ± (2τ1τ2λ + (τ1 + τ2))
2τ1τ2

.

12
Note that sp(A) = sp(TAT−1) for any invertible matrix T with the same shape as A.

604 A. Voelker and C. Eliasmith

In this instance, the + case gives back the known poles, φ = λ, and the −
case provides the new poles, φ = (− τ1+τ2

τ1τ2
− λ
)
. Consequently, the poles of F̂

are the poles of F, duplicated and reflected horizontally about the real line
−b, where b := τ1+τ2

2τ1τ2
(and the imaginary components are unchanged).

Interestingly, b may be rewritten as
(

τ1+τ2
2

)
/

√
τ 2

1 τ 2
2 , which is the ratio of

the arithmetic mean to the geometric mean of {τ1, τ2}, which may in turn be
interpreted as a cross-entropy expression (Woodhouse, 2001).

Regardless, F̂ behaves like F when Re [λ] � −b. For the delay system (see
equation 3.5), Re [λ] ∝ − q

θ
(in fact, the mean value across all q poles achieves

equality), and so we need b � q
θ

. This predicts that a delay system using
the double exponential synapse, without access to the input’s derivative,
must necessarily implement a delay that is proportionally longer than q

b .
Otherwise, the second-order dynamics from the synapse will dominate the
system-level dynamics. We note that b−1 is longest for the case of the alpha
synapse (b−1 = τ) and shortest for the case of the low-pass synapse (b−1 → 0
as τ2 → 0).

A.5 Relationship to Discretization. As an aside, there is an interesting
connection between definition 1 and the well-known problem of discretiz-
ing a linear dynamical system. A discrete LTI system (see equation 4.3) is
identical to a continuous LTI system (see equation 2.7), with three adjust-
ments: (1) the integrator s−1 is replaced by a time delay of dt seconds, (2) the
input signal is sampled every dt seconds, and (3) the output signal is sam-
pled every dt seconds. Focusing on point 1, this is precisely the notion cap-
tured by definition 1 with respect to

H(s) = e−(dt)s = 1
e(dt)s

= 1∑∞
i=0

(dt)i

i! si
,

by the Maclaurin series of ex. This is in the form of equation 4.11 with ci =
(dt)i

i! as k → ∞. These coefficients are also the [0/∞] Padé approximants of∑∞
i=0

(−dt)i

i! si.
If we make the ZOH assumption that the input signal is held piecewise-

constant over each continuous-time interval of length dt, then u(j) = 0 for
all j ≥ 1. Therefore, by equation 4.13, an equivalent state-space model is

AH =
k∑

i=0

ciAi =
k∑

i=0

(A(dt))i

i!
= eA(dt), CH = C,

BH =
(

k∑
i=1

ciAi−1

)
B = A−1 (AH − I

)
B, DH = D,

Improving Spiking Dynamical Networks 605

which is precisely the discrete state-space model (Ā, B̄, C̄, D̄) obtained by
ZOH discretization. This follows from the fact that points 2 and 3 coincide
with the use of the model from equation 4.3.

This connection helps highlight the generality and consistency of our
theory. In particular, the important procedure of discretizing linear state-
space models may be viewed as an instance of accounting for changes in
dynamical primitives. Furthermore, as one should hope, the ZOH assump-
tion recovers the correct result, which is normally proven by integrating the
linear differential equations over the interval [0, dt].

Acknowledgments

We are very grateful for the motivation stemming from discussions with
Terrence C. Stewart and Kwabena Boahen. We also thank Zoran Tiganj
for inspiring the connection between time cells and our delay network.
This work was supported by CFI and OIT infrastructure, the Canada
Research Chairs program, NSERC Discovery grant 261453, ONR grants
N000141310419 and N0001415l2827, and NSERC CGS-D funding.

References

Abbott, L., DePasquale, B., & Memmesheimer, R.-M. (2016). Building functional net-
works of spiking model neurons. Nature Neuroscience, 19(3), 350–355.

Abbott, L., & Regehr, W. G. (2004). Synaptic computation. Nature, 431(7010), 796–803.
Alemi, A., Machens, C., Denève, S., & Slotine, J.-J. (2017). Learning arbitrary dynamics

in efficient, balanced spiking networks using local plasticity rules. arXiv:1705.08026.
Appeltant, L., Soriano, M. C., Van der Sande, G., Danckaert, J., Massar, S., Dambre,

J., . . . Fischer, I. (2011). Information processing using a single dynamical node as
complex system. Nature Communications, 2, 468.

Armstrong-Gold, C. E., & Rieke, F. (2003). Bandpass filtering at the rod to second-
order cell synapse in salamander (Ambystoma tigrinum) retina. Journal of Neuro-
science, 23(9), 3796–3806.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D.,
. . . Eliasmith, C. (2013). Nengo: A Python tool for building large-scale functional
brain models. Frontiers in Neuroinformatics, 7.

Berzish, M., Eliasmith, C., & Tripp, B. (2016). Real-time FPGAsimulation of surrogate
models of large spiking networks. In Proceedings of the International Conference on
Artificial Neural Networks. Berlin: Springer.

Boahen, K. (2017). A neuromorph’s prospectus. Computing in Science and Engineering,
19(2), 14–28.

Boerlin, M., Machens, C. K., & Denève, S. (2013). Predictive coding of dynamical vari-
ables in balanced spiking networks. PLoS Computational Biology, 9(11), e1003258.

Brogan, W. L. (1991). Modern control theory (3rd ed.). Upper Saddle River, NJ: Prentice
Hall.

Choudhary, S., Sloan, S., Fok, S., Neckar, A., Trautmann, E., Gao, P., . . . Boa-
hen, K. (2012). Silicon neurons that compute. In Proceedings of the International

606 A. Voelker and C. Eliasmith

Conference on Artificial Neural Networks (vol. 7552, pp. 121–128). Berlin: Springer-
Verlag.

Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., & Knuth, D. E. (1996). On the
Lambert W function. Advances in Computational Mathematics, 5(1), 329–359.

Corradi, F., Eliasmith, C., & Indiveri, G. (2014). Mapping arbitrary mathematical
functions and dynamical systems to neuromorphic VLSI circuits for spike-based
neural computation. In Proceedings of the IEEE International Symposium on Circuits
and Systems. Piscataway, NJ: IEEE.

Cunningham, J. P., & Byron, M. Y. (2014). Dimensionality reduction for large-scale
neural recordings. Nature Neuroscience, 17(11), 1500–1509.

Denève, S., & Machens, C. K. (2016). Efficient codes and balanced networks. Nature
Neuroscience, 19(3), 375–382.

Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994a). An efficient method for com-
puting synaptic conductances based on a kinetic model of receptor binding. Neu-
ral Computation, 6(1), 14–18.

Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994b). Synthesis of models for ex-
citable membranes, synaptic transmission and neuromodulation using a com-
mon kinetic formalism. Journal of Computational Neuroscience, 1(3), 195–230.

Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic
transmission. Methods in Neuronal Modeling, 2, 1–25.

De Vries, B., & Principe, J. C. (1992). The gamma model—a new neural model for
temporal processing. Neural Networks, 5(4), 565–576.

Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for
mapping memories. Nature Reviews Neuroscience, 15(11), 732–744. doi:10.1038
/nrn3827

Eliasmith, C. (2005). A unified approach to building and controlling spiking attractor
networks. Neural Computation, 7(6), 1276–1314.

Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition.
New York: Oxford University Press.

Eliasmith, C., & Anderson, C. H. (1999). Developing and applying a toolkit from a
general neurocomputational framework. Neurocomputing, 26, 1013–1018.

Eliasmith, C., & Anderson, C. H. (2000). Rethinking central pattern generators: A
general approach. Neurocomputing, 32–33, 735–740.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representa-
tion, and dynamics in neurobiological systems. Cambridge, MA: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., & Rasmussen,
D. (2012). A large-scale model of the functioning brain. Science, 338(6111), 1202–
1205.

Fang, K. T., & Wang, Y. (1994). Number-theoretic methods in statistics. London: Chap-
man & Hall.

Friedl, K. E., Voelker, A. R., Peer, A., & Eliasmith, C. (2016, 01). Human-inspired neu-
rorobotic system for classifying surface textures by touch. Robotics and Automation
Letters, 1(1), 516–523. doi:10.1109/LRA.2016.2517213

Ganguli, S., Huh, D., & Sompolinsky, H. (2008). Memory traces in dynamical sys-
tems. Proceedings of the National Academy of Sciences, 105(48), 18970–18975.

Gilra, A., & Gerstner, W. (2017). Predicting non-linear dynamics: A stable local learning
scheme for recurrent spiking neural networks. arXiv:1702.06463.

http://dx.doi.org/10.1038/nrn3827
http://dx.doi.org/10.1109/LRA.2016.2517213

Improving Spiking Dynamical Networks 607

Glover, K., & Partington, J. R. (1987). Bounds on the achievable accuracy in model
reduction. In R. F. Curtain (Ed.), Modelling, robustness and sensitivity reduction in
control systems (pp. 95–118). New York: Springer-Verlag.

Häusser, M., & Roth, A. (1997). Estimating the time course of the excitatory synaptic
conductance in neocortical pyramidal cells using a novel voltage jump method.
Journal of Neuroscience, 17(20), 7606–7625.

Howard, M. W., MacDonald, C. J., Tiganj, Z., Shankar, K. H., Du, Q., Hasselmo, M.
E., & Eichenbaum, H. (2014). A unified mathematical framework for coding time,
space, and sequences in the hippocampal region. Journal of Neuroscience, 34(13),
4692–4707.

Huh, D., & Sejnowski, T. J. (2017). Gradient descent for spiking neural networks.
arXiv:1706.04698.

Jaeger, H. (2001). The echo state approach to analysing and training recurrent neu-
ral networks (GMD Technical Report, 148). Bonn, Germany: German National
Research Center for Information Technology.

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Thomas, M., Siegelbaum S. A., & Hud-
speth, A. J. (2000). Principles of neural science (Vol. 4). New York: McGraw-Hill.

Kauderer-Abrams, E., Gilbert, A., Voelker, A. R., Benjamin, B. V., Stewart, T. C., &
Boahen, K. (2017). Apopulation-level approach to temperature robustness in neu-
romorphic systems. In Proceedings of the IEEE International Symposium on Circuits
and Systems. Piscataway, NJ: IEEE.

Khaisongkram, W., & Banjerdpongchai, D. (2007). On computing the worst-case
norm of linear systems subject to inputs with magnitude bound and rate limit.
International Journal of Control, 80(2), 190–219.

Kim, J., Ghim, J.-W., Lee, J. H., & Jung, M. W. (2013). Neural correlates of inter-
val timing in rodent prefrontal cortex. Journal of Neuroscience, 33(34), 13834–
13847.

Knight, J., Voelker, A. R., Mundy, A., Eliasmith, C., & Furber, S. (2016). Efficient SpiN-
Naker simulation of a heteroassociative memory using the neural engineering
framework. In Proceedings of the International Joint Conference on Neural Networks.
Piscataway, NJ: IEEE.

Koch, C., & Segev, I. (1989). Methods in neural modeling. Cambridge, MA: MIT Press.
Laub, A. J., Heath, M. T., Paige, C., & Ward, R. (1987). Computation of system bal-

ancing transformations and other applications of simultaneous diagonalization
algorithms. IEEE Transactions on Automatic Control, 32(2), 115–122.

Luczak, A., McNaughton, B. L., & Harris, K. D. (2015). Packet-based communication
in the cortex. Nature Reviews Neuroscience, 16, 745–755.

Lukoševičius, M. (2012). Reservoir computing and self-organized neural hierarchies. Un-
published doctoral dissertation, Jacobs University, Bremen.

Lundstrom, B. N., Higgs, M. H., Spain, W. J., & Fairhall, A. L. (2008). Fractional dif-
ferentiation by neocortical pyramidal neurons. Nature Neuroscience, 11(11), 1335–
1342.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without sta-
ble states: Anew framework for neural computation based on perturbations. Neu-
ral Computation, 14(11), 2531–2560.

Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neu-
rons. Science, 268(5216), 1503.

608 A. Voelker and C. Eliasmith

Mello, G. B., Soares, S., & Paton, J. J. (2015). A scalable population code for time in
the striatum. Current Biology, 25(9), 1113–1122.

Mundy, A., Knight, J., Stewart, T. C., & Furber, S. (2015). An efficient SpiNNaker
implementation of the neural engineering framework. In Proceedings of the Inter-
national Joint Conference on Neural Networks. Piscataway, NJ: IEEE.

Nicola, W., & Clopath, C. (2016). Supervised learning in spiking neural networks with
FORCE training. arXiv:1609.02545.

Padé, H. (1892). Sur la représentation approchée d’une fonction par des fractions
rationnelles. Annales scientifiques de l’École Normale Suprieure, 9, 3–93.

Perev, K. (2011). Approximation of pure time delay elements by using Hankel norm
and balanced realizations. Problems of Engineering Cybernetics and Robotics, 64, 24–
37.

Pulvermüller, F., Birbaumer, N., Lutzenberger, W., & Mohr, B. (1997). High-
frequency brain activity: Its possible role in attention, perception and language
processing. Progress in Neurobiology, 52(5), 427–445.

Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different
soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30(5),
1138–1168.

Roth, A., & van Rossum, M. C. (2009). Modeling synapses. Computational Modeling
Methods for Neuroscientists, 6, 139–160.

Roxin, A., Brunel, N., & Hansel, D. (2005). Role of delays in shaping spatiotemporal
dynamics of neuronal activity in large networks. Physical Review Letters, 94(23),
238103.

Shankar, K. H., & Howard, M. W. (2012). A scale-invariant internal representation of
time. Neural Computation, 24(1), 134–193.

Sharma, S., Aubin, S., & Eliasmith, C. (2016). Large-scale cognitive model design
using the Nengo neural simulator. Biologically Inspired Cognitive Architectures, 17,
86–100. doi:10.1016/j.bica.2016.05.001

Sidi, A. (2003). Practical extrapolation methods: Theory and applications. Cambridge:
Cambridge University Press.

Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of rela-
tions? Neuron, 24(1), 49–65.

Singh, R., & Eliasmith, C. (2004). A dynamic model of working memory in the PFC
during a somatosensory discrimination task. Cosyne Abstracts.

Singh, R., & Eliasmith, C. (2006). Higher-dimensional neurons explain the tuning
and dynamics of working memory cells. Journal of Neuroscience, 26, 3667–3678.

Stöckel, A., Voelker, A. R., & Eliasmith, C. (2017). Point neurons with conductance-based
synapses in the neural engineering framework (Tech. Rep.). Waterloo, ON: Centre for
Theoretical Neuroscience.

Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63(4), 544–557.

Thalmeier, D., Uhlmann, M., Kappen, H. J., & Memmesheimer, R.-M. (2016). Learn-
ing universal computations with spikes. PLoS Comput. Biol., 12(6), e1004895.

Tiganj, Z., Hasselmo, M. E., & Howard, M. W. (2015). A simple biophysically plausi-
ble model for long time constants in single neurons. Hippocampus, 25(1), 27–37.

Tiganj, Z., Jung, M. W., Kim, J., & Howard, M. W. (2016). Sequential firing codes
for time in rodent medial prefrontal cortex. Cerebral Cortex. doi:10.1093/cercor
/phw336

http://dx.doi.org/10.1016/j.bica.2016.05.001
https://dx.doi.org/10.1093/cercor/phw336

Improving Spiking Dynamical Networks 609

Tiganj, Z., Shankar, K. H., & Howard, M. W. (2017). Neural scale-invariant time-
frequency decomposition for detection of spatiotemporal features. Manuscript submit-
ted for publication.

Tripp, B., & Eliasmith, C. (2010). Population models of temporal differentiation. Neu-
ral Computation, 22, 621–659.

Vajta, M. (2000). Some remarks on Padé-approximations. In Proceedings of the 3rd
TEMPUS-INTCOM Symposium. Veszprém, Hungary.

Voelker, A. R. (2017). Nengolib: Additional extensions and tools for modelling dynamical
systems in Nengo. https://github.com/arvoelke/nengolib/

Voelker, A. R., Benjamin, B. V., Stewart, T. C., Boahen, K., & Eliasmith, C. (2017).
Extending the neural engineering framework for nonideal silicon synapses. In
Proceedings of the IEEE International Symposium on Circuits and Systems. Piscataway,
NJ: IEEE.

Voelker, A. R., & Eliasmith, C. (2015). Computing with temporal representations
using recurrently connected populations of spiking neurons. In Connecting net-
work architecture and network computation. Banff International Research Station for
Mathematical Innovation and Discovery. doi:10.14288/1.0304643

Voelker, A. R., & Eliasmith, C. (2017). Methods for applying the neural engineering frame-
work to neuromorphic hardware. arXiv:1708.08133.

Voelker, A. R., Gosmann, J., & Stewart, T. C. (2017). Efficiently sampling vectors and
coordinates from the n-sphere and n-ball (Tech. Rep.) Waterloo, ON: Centre for The-
oretical Neuroscience. doi:10.13140/RG.2.2.15829.01767/1

Waernberg, E., & Kumar, A. (2017). Low dimensional activity in spiking neuronal net-
works. bioRxiv. doi:10.1101/109900

Wang, R., Hamilton, T. J., Tapson, J., & van Schaik, A. (2014). A compact neural core
for digital implementation of the neural engineering framework. In Proceedings of
the Biomedical Circuits and Systems Conference (pp. 548–551). Piscataway, NJ: IEEE.

Waskom, M., Botvinnik, O., Hobson, P., Warmenhoven, J., Cole, J. B., Halchenko, Y.,
. . . Meyer, K. (2015). seaborn: v0.6.0. Zenodo. doi:10.5281/zenodo.19108

White, O. L., Lee, D. D., & Sompolinsky, H. (2004). Short-term memory in orthogonal
neural networks. Physical Review Letters, 92(14), 148102.

Wilson, M. A., & Bower, J. M. (1989). The simulation of large-scale neural networks.
In C. Koch (Ed.), Methods in neuronal modeling (pp. 291–333). Cambridge, MA: MIT
Press.

Woodhouse, I. H. (2001). The ratio of the arithmetic to the geometric mean: A cross-
entropy interpretation. IEEE Transactions on Geoscience and Remote Sensing, 39(1),
188–189.

Received April 4, 2017; accepted September 18, 2017.

https://github.com/arvoelke/nengolib/
http://dx.doi.org/10.14288/1.0304643
http://dx.doi.org/10.13140/RG.2.2.15829.01767/1
http://dx.doi.org/10.1101/109900
http://dx.doi.org/10.5281/zenodo.19108

