
ar
X

iv
:1

70
8.

08
13

3v
1

 [
q-

bi
o.

N
C

]
 2

7
A

ug
 2

01
7

Methods for applying the Neural Engineering

Framework to neuromorphic hardware

Aaron R. Voelker and Chris Eliasmith

Centre for Theoretical Neuroscience, University of Waterloo

August 29, 2017

Abstract

We review our current software tools and theoretical methods for apply-
ing the Neural Engineering Framework to state-of-the-art neuromorphic hard-
ware. These methods can be used to implement linear and nonlinear dynami-
cal systems that exploit axonal transmission time-delays, and to fully account
for nonideal mixed-analog-digital synapses that exhibit higher-order dynamics
with heterogeneous time-constants. This summarizes earlier versions of these
methods that have been discussed in a more biological context (Voelker & Elia-
smith, 2017) or regarding a specific neuromorphic architecture (Voelker et
al., 2017).

1 Introduction

This report is motivated by the recent influx of neuromorphic computing architec-
tures including SpiNNaker [1], Neurogrid [2], Brainstorm [3], IBM’s TrueNorth [4],
BrainScaleS [5], and ROLLS [6], among others. These are massively-parallel, low-
power, analog, and/or digital systems (often a mix of the two) that are designed
to simulate large-scale artificial neural networks rivalling the scale and complexity
of real biological systems. Despite growing excitement, we believe that methods to
fully unlock the computational power of neuromorphic hardware are lacking. This is
primarily due to a theoretical gap between our traditional, discrete, von Neumann-
like understanding of conventional algorithms and the continuous spike-based signal
processing of real brains that is often emulated in silicon [7].

We use the term “neural compiler” to refer loosely to any systematic method of
converting an algorithm, expressed in some high-level mathematical language, into
synaptic connection weights between populations of spiking neurons [8]. To fully
leverage neuromorphic hardware for real-world applications, we require neural com-
pilers that can account for the effects of spiking neuron models and mixed-analog-
digital synapse models, and, perhaps more importantly, exploit these details in useful
ways when possible. There exist various approaches to neural engineering, includ-
ing those by Denève et al. [9, 10] and Memmesheimer et al. [11]. However, the
Neural Engineering Framework (NEF; [12, 13]) stands apart in terms of software
implementation (Nengo; [8, 14, 15, 16]), large-scale cognitive modeling [17, 18], and
neuromorphic applications [1, 2, 3, 19, 20, 21, 22, 23]. Competing methods consis-
tently exclude important details, such as refractory periods and membrane voltage
leaks, from their networks [9, 11]. The NEF, on the other hand, embraces biological
complexity whenever it proves computationally useful [24] and/or improves contact

1

http://arxiv.org/abs/1708.08133v1

with neuroscience literature [25]. This approach to biological modeling directly mir-
rors a similar need to account for the details in neuromorphic hardware when building
neural networks [19, 20, 26].

Nevertheless, there are many open problems in optimizing the NEF for state-
of-the-art neuromorphics. In particular, we have been working to account for more
detailed dynamics in heterogeneous models of the post-synaptic current (PSC) in-
duced by each spike, as well as delays in spike propagation [24, 26, 27, 28]. The
purpose of this report is to summarize our methods, both theoretical and practical,
that have progressed in this direction. There are similar challenges in extending the
NEF to account for multi-compartment neuron models [25, 29], conductance-based
synapses [30], and to minimize the total number of spikes [7] – but these topics will
not be addressed in this report.

The remainder of this report assumes that the reader is already comfortable with
Nengo and the NEF in the context of engineering dynamical systems (i.e., “Princi-
ple III”). A technical yet accessible overview of the NEF can be found in [31], and a
tutorial for Nengo (version 2) can be found in [15].

2 Accounting for Synaptic Dynamics

This section provides a theoretical account of the effect of higher-order linear synapse
models on the dynamics of the network, by summarizing the extensions from [24]
and [26]. This yields two novel proofs of Principle III from the NEF, and generalizes
the principle to include more detailed synapses, including those modeling axonal
transmission delays.

2.1 Linear systems

Here we focus our attention on linear time-invariant (LTI) systems:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

where the time-varying vector x(t) represents the system state, y(t) the output, u(t)
the input, and the time-invariant “state-space” matrices (A,B,C,D) fully determine
the system’s dynamics. We will omit the variable t when not needed.

Principle III from the NEF states that in order to train the recurrent connection
weights to implement (1)—using a continuous-time lowpass filter h(t) = (1/τ)e−t/τ

to model the PSC—we use Principle II to train the decoders for the recurrent trans-
formation (τA + I)x, input transformation τBu, output transformation Cx, and
passthrough transformationDu [13, pp. 221–225]. This drives the recurrent synapses
with the signal τ ẋ + x so that their output is the signal x, in effect transforming
the synapses into perfect integrators with respect to ẋ. The vector x is then repre-
sented by the population of neurons via Principle I. Thus, this provides a systematic
approach for training a recurrent neural network to implement any linear dynamical
system. Now we show that this approach generalizes to other synaptic models.

For these purposes, the transfer function is a more useful description of the LTI
system than (1). The transfer function is defined as the ratio of Y (s) to U(s), given
by the Laplace transforms of y(t) and u(t) respectively. The variable s denotes a
complex value in the frequency domain, while t is non-negative in the time domain.

2

The transfer function is related to (1) by the following:

F (s) =
Y (s)

U(s)
= C(sI −A)−1B +D. (2)

The transfer function F (s) can be converted into the state-space model (A,B,C,D)
if and only if it can be written as a proper ratio of finite polynomials in s. The ratio
is proper when the degree of the numerator does not exceed that of the denominator.
In this case, the output will not depend on future input, and so the system is ‘causal’.
The order of the denominator corresponds to the dimensionality of x, and therefore
must be finite. Both of these conditions can be interpreted as physically realistic
constraints where time may only progress forward, and neural resources are finite.

Continuous Identity In order to account for the introduction of a synaptic filter
h(t), we replace the integrator s−1 in (2) with H(s), where H(s) = L{h(t)}. This
new system has the transfer function C(H(s)−1I − A)−1B + D = F (H(s)−1). To
compensate for this change in dynamics, we must invert the change-of-variables s ↔
H(s)−1. This means finding the required FH(s) such that FH(H(s)−1) is equal to
the desired transfer function, F (s). We highlight this as the following identity:

FH

(
1

H(s)

)

= F (s). (3)

Then the state-space model (AH ,BH ,CH ,DH) satisfying (2) with respect to FH(s)
will implement the desired dynamics (1) given h(t).

Discrete Identity For the discrete (i.e., digital synapse) case, we begin with F (z)
and H(z) expressed as digital systems. The form of H(z) is usually determined by
the hardware, and F (z) is usually found by a zero-order hold (ZOH) discretization
of F (s) using the simulation time-step (dt), resulting in the discrete LTI system:

x[t+ dt] = Āx[t] + B̄u[t]

y[t] = C̄x[t] + D̄u[t].
(4)

Here, we have the same relationship as (2),

F (z) =
Y (z)

U(z)
= C̄(zI − Ā)−1B̄ + D̄. (5)

Therefore, the previous discussion applies, and we must find an FH(z) that satisfies:

FH

(
1

H(z)

)

= F (z). (6)

Then the state-space model (ĀH , B̄H , C̄H , D̄H) satisfying (5) with respect to FH(z)
will implement the desired dynamics (4) given h[t]. In either case, the general prob-
lem reduces to solving this change-of-variables problem for various synaptic models.
We now provide a number of results. More detailed derivations are available in [24].

Continuous Lowpass Synapse Replacing the integrator s−1 with the standard
continuous-time lowpass filter, so that H(s) = 1

τs+1 :

FH(τs+ 1) = F (s) ⇐⇒ FH(s) = C(sI − (τA + I))−1(τB) +D (7)

which rederives the standard form of Principle III from the NEF [13].

3

Discrete Lowpass Synapse Replacing the integrator with a discrete-time lowpass
filter H(z) = 1−a

z−a in the z-domain with time-step dt, where a = e−
dt

τ :

FH

(
z − a

1− a

)

= F (z) ⇐⇒ FH(z) = C̄

(

zI −
1

1− a
(Ā− aI)

)
−1(

1

1− a
B̄

)

+ D̄.

(8)

Therefore, ĀH = 1
1−a (Ā − aI), B̄H = 1

1−a B̄, C̄H = C̄, and D̄H = D̄. This map-
ping can dramatically improve the accuracy of Principle III in digital simulations
(e.g., when using a desktop computer) [24].

Delayed Continuous Lowpass Synapse Replacing the integrator with a con-

tinuous lowpass filter containing a pure time-delay of length λ, so that H(s) = e−λs

τs+1 :

FH

(
τs+ 1

e−λs

)

= F (s) ⇐⇒ FH(s) = F

(
1

λ
W0(ds)−

1

τ

)

, (9)

where d = λ
τ e

λ

τ and W0(xe
x) = x is the principal branch of the Lambert-W func-

tion [32].1 This synapse model can be used to model axonal transmission time-delays
due to the finite-velocity propagation of action potentials, or to model feedback de-
lays within a broader control-theoretic context. To demonstrate the case where a
pure time-delay of length θ is the desired transfer function (F (s) = e−θs), we let

c = e
θ

τ and r = θ
λ to obtain the required transfer function:

FH(s) = c

(
W0(ds)

ds

)r

= cr

∞∑

i=0

(i + r)i−1

i!
(−ds)i. (10)

We then numerically find the Padé approximants of the latter Taylor series. More
details and validation may be found in [24] and [27].

General Case Finally, we consider any linear synapse model of the form:

H(s) =
1

∑k
i=0 cis

i
, (11)

for some polynomial coefficients (ci) of arbitrary degree k. To the best of our knowl-
edge, this class includes the majority of linear synapse models used in the literature.
For synapses containing a polynomial numerator with degree q > 1 (e.g., considering
the Taylor series expansion of the box filter ǫ−1(1−e−ǫs)s−1), we take its [0, q]-Padé
approximants to transform the synapse into this form within some radius of conver-
gence.2 To map F (s) onto (11), we begin by defining our solution to FH(s) in the
form of its state-space model:

AH =

k∑

i=0

ciA
i, CH = C,

BH =

k−1∑

j=0

sj
k∑

i=j+1

ciA
i−j−1

B, DH = D,

(12)

1This assumes that |η| < π and λRe [s] + λ

τ
> −η cot η, where η := λIm [s] [24].

2This is equivalent to the approach taken in [26, equations (9)-(11)].

4

which we claim satisfies (3). To validate this claim, we assert the following algebraic
relationship (proven in [24]):

H(s)−1I −AH =

k∑

i=0

ci
(
siI −Ai

)
=

k−1∑

j=0

sj
k∑

i=j+1

ciA
i−j−1

 (sI −A).

We now verify that (12) satisfies (3):

FH(H(s)−1) = CH(H(s)−1I −AH)−1BH +DH

= C(H(s)−1I −AH)−1

k−1∑

j=0

sj
k∑

i=j+1

ciA
i−j−1

B +D

= C(sI −A)−1B +D = F (s).

Since sj is the jth-order differential operator, this form of BH states that we must
supply the jth-order input derivatives u(j), for all j = 1 . . . k−1. To be more precise,

let us first define BH
j :=

(
∑k

i=j+1 ciA
i−j−1

)

B. Then (12) states that the ideal

state-space model must implement the input transformation as a linear combination
of input derivatives,

∑k−1
j=0 B

H
j u(j). However, if the required derivatives are not

included in the neural representation, then it is natural to use a ZOH method by
assuming u(j) = 0, for all j = 1 . . . k − 1:

BH =

(
k∑

i=1

ciA
i−1

)

B, (13)

with AH , CH , and DH as in (12). This is now an equivalent model to (12) assuming
ZOH, and in the form of the standard state-space model (1).

The same derivation also applies to the discrete-time domain, with respect to the
discrete synapse (corresponding to some implementation in digital hardware):

H(z) =
1

∑k
i=0 c̄iz

i
. (14)

Here, the only real difference (apart from notation) is the discrete version of (13):

B̄H =

k−1∑

j=0

k∑

i=j+1

c̄iĀ
i−j−1

 B̄. (15)

These mappings are made available by ss2sim and LinearNetwork in nengolib 0.4.0 [28].
Additional details may again be found in [24].

2.2 Nonlinear systems

Here we derive two theorems for nonlinear systems, by taking a different perspective
that is consistent with §2.1. This generalizes the approach taken in [26], which con-
sidered the special case of a pulse-extended (i.e., time-delayed) double-exponential.

We wish to implement some desired nonlinear dynamical system,

ẋ(t) = f(x,u), (16)

5

using (11) as the synaptic filter h(t). Letting w(t) = fh(x,u) for some recurrent
function fh and observing that x(t) = (w ∗ h)(t), we may express these dynamics in
the Laplace domain:

X(s)

W(s)
=

1
∑k

i=0 cis
i

⇐⇒ W(s) = X(s)

k∑

i=0

cis
i =

k∑

i=0

ci
[
siX(s)

]

⇐⇒ w(t) =

k∑

i=0

cix
(i)

since s is the differential operator. This proves the following theorem:

Theorem 1. Let the function computed along the recurrent connection be:

fh(x,u) =

k∑

i=0

cix
(i) (17)

where x(i) denotes the ith time-derivative of x(t), and ci are given by (11). Then the
resulting dynamical system is precisely (16).

For the discrete case, we begin with some desired nonlinear dynamics expressed
over discrete time-steps:

x[t+ dt] = f̄(x,u), (18)

using (14) as the synaptic filter h[t], followed by an analogous theorem:

Theorem 2. Let the function computed along the recurrent connection be:

f̄h(x,u) =

k∑

i=0

c̄ix
[i] (19)

where x[i] denotes the ith discrete forwards time-shift of x, and c̄i are given by (14).
Then the resulting dynamical system is precisely (18).

The proof for the discrete case is nearly identical. For sake of completeness, let
w[t] = f̄h(x,u) for some recurrent function f̄h and observe that x[t] = (w ∗ h)[t]:

X(z)

W(z)
=

1
∑k

i=0 c̄iz
i

⇐⇒ W(z) = X(z)

k∑

i=0

c̄iz
i =

k∑

i=0

c̄i
[
ziX(z)

]

⇐⇒ w[t] =

k∑

i=0

c̄ix
[i]

since z is the forwards time-shift operator.

6

Continuous Lowpass Synapse For standard Principle III, we have H(s) = 1
τs+1

=⇒ k = 1, c0 = 1 and c1 = τ ,

=⇒ fh(x,u) = c0x
(0) + c1x

(1) = x+ τ ẋ = τf(x,u) + x. (20)

Note that (20) is consistent with (7) and with Principle III from the NEF.

Discrete Lowpass Synapse For the discrete case of Principle III, we haveH(z) =
1−a
z−a , where a = e−dt/τ =⇒ k = 1, c̄0 = −a(1− a)−1, c̄1 = (1− a)−1,

=⇒ f̄h(x,u) = c̄0x
[0] + c̄1x

[1] = (1− a)−1(f̄(x,u)− ax). (21)

Note that (21) is consistent with (8).

Continuous Double Exponential Synapse For the double exponential synapse:

H(s) =
1

(τ1s+ 1)(τ2s+ 1)
=

1

τ1τ2s2 + (τ1 + τ2)s+ 1
(22)

=⇒ fh(x,u) = x+ (τ1 + τ2)ẋ+ τ1τ2ẍ

= x+ (τ1 + τ2)f(x,u) + τ1τ2

(
∂f(x,u)

∂x
· f(x,u) +

∂f(x,u)

∂u
· u̇

)

.

(23)

In the linear case, this simplifies to:

fh(x,u) =
(
τ1τ2A

2 + (τ1 + τ2)A+ I
)
x+ (τ1 + τ2 + τ1τ2A)Bu+ τ1τ2Bu̇.

Linear Systems As in §2.1, Theorems 1 and 2 require that we differentiate the
desired dynamical system. For the case of nonlinear systems, this means determining
the (possibly higher-order) Jacobian(s) of f , as shown in (23). For the special case of
LTI systems, we can determine this analytically to obtain a closed-form expression.
By induction it can be shown that:

x(i) = Aix+

i−1∑

j=0

Ai−j−1Bu(j).

Then by expanding and rewriting the summations:

fh(x,u) =

k∑

i=0

cix
(i)

=

k∑

i=0

ci

Aix+

i−1∑

j=0

Ai−j−1Bu(j)

=

(
k∑

i=0

ciA
i

)

︸ ︷︷ ︸

Recurrent
Matrix

x+

k−1∑

j=0

k∑

i=j+1

ciA
i−j−1

B

︸ ︷︷ ︸

Input Matrices

u(j). (24)

7

The discrete case is identical:

f̄h(x,u) =

(
k∑

i=0

c̄iĀ
i

)

︸ ︷︷ ︸

Recurrent
Matrix

x+

k−1∑

j=0

k∑

i=j+1

c̄iĀ
i−j−1

 B̄

︸ ︷︷ ︸

Input Matrices

u[j]. (25)

This gives a matrix form for any LTI system with a kth order synapse, provided we
can determine u(j) or u[j] for 0 ≤ j ≤ k − 1. Again, (24) is consistent with (12) and
(13), as is (25) with (15).

3 Accounting for Synaptic Heterogeneity

We now show how §2 can be applied to train efficient networks where the ith neuron
has a distinct synaptic filter hi(t), given by:

Hi(s) =
1

∑ki

j=0 cijs
j
. (26)

This network architecture can be modeled in Nengo using nengolib 0.4.0 [28]. This
is particularly useful for applications to neuromorphic hardware, where transistor
mismatch can change the effective time-constant(s) of each synapse. To this end, we
abstract the approach taken in [26]. We show this specifically for Theorem 1, but
this naturally applies to all methods in this report.

Recalling the intuition behind Principle III, our approach is to separately drive
each synapse hi with the required signal fhi(x,u) such that each PSC becomes the
desired representation x. Thus, the connection weights to the ith neuron should
be determined by solving the decoder optimization problems for fhi(x,u) using the
methods of §2 with respect to the synapse model hi. This can be repeated for each
synapse to obtain a full set of connection weights. While correct in theory, this
approach displays two shortcomings in practice: (1) we must solve n optimization
problems, where n is the number of post-synaptic neurons, and (2) there are O(n2)
weights, which eliminates the space and time efficiency of using factorized weight
matrices [1].

We can solve both issues simultaneously by taking advantage of the linear struc-
ture within fhi that is shared between all hi. Considering Theorem 1, we need to
drive the ith synapse with the function:

fhi(x,u) =

ki∑

j=0

cijx
(j).

Let dj be the set of decoders optimized to approximate x(j), for all j = 0 . . . k, where
k = maxi ki. By linearity, the optimal decoders used to represent each fhi(x,u) may
be decomposed as:

dfhi

=

ki∑

j=0

cijd
j .

Next, we express our estimate of each variable x(j) using the same activity vector a:

x̂(j) =
〈
a,dj

〉
.

8

Now, putting this all together, we obtain:

〈

a,dfhi

〉

=

ki∑

j=0

cij
〈
a,dj

〉
=

ki∑

j=0

cij x̂
(j) ≈ fhi(x,u). (27)

Therefore, we only need to solve k+1 optimization problems, decode the “matrix
representation”

[
x̂(0), x̂(1), . . . , x̂(k)

]
, and then linearly combine these k + 1 different

decodings as shown in (27)—using the matrix of coefficients cij—to determine the
input to each synapse. This approach reclaims the advantages of using factorized
connection weight matrices, at the expense of a factor O(k) increase in space and
time efficiency.

4 Discussion

We have reviewed three major extensions to the NEF that appear in recent publi-
cations. These methods can be used to implement linear and nonlinear systems in
spiking neurons recurrently coupled with heterogeneous higher-order mixed-analog-
digital synapses. This provides us with the ability to implement NEF networks in
state-of-the-art neuromorphics while accounting for, and sometimes even exploiting,
their nonideal nature.

While the linear and nonlinear methods can both be used to harness pure spike
time-delays (due to axonal transmission) by modeling them in the synapse, the lin-
ear approach provides greater flexibility. Both extensions can first transform the
time-delay into the standard form of (11) via Padé approximants, which maintains
the same internal representation x as the desired dynamics (within some radius of
convergence). But the linear extension also allows the representation to change, since
it is only concerned with maintaining the overall input-output transfer function re-
lation. In particular, we derived an analytic solution using the Lambert-W function,
which allows the neural representation x, and even its dimensionality, to change ac-
cording to the expansion of some Taylor series. The linear case is also much simpler
to analyze in terms of the network-level transfer function that results from substi-
tuting one synapse model for another. For all other results that we have shown, the
linear extension is consistent with the nonlinear extension, as they both maintain
the desired representation by fully accounting for the dynamics in the synapse.

Acknowledgements

We thank Wilten Nicola for inspiring our derivation in §2.2 with his own phase-
space derivation of Principle III using double exponential synapses for autonomous
systems (unpublished). We also thank Kwabena Boahen and Terrence C. Stewart
for providing the idea used in §3 to separately drive each hi, and for improving this
report through many helpful discussions.

9

References

[1] A. Mundy, J. Knight, T. C. Stewart, and S. Furber, “An efficient SpiNNaker implementation
of the Neural Engineering Framework,” in The 2015 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, IEEE, 2015.

[2] S. Choudhary, S. Sloan, S. Fok, A. Neckar, E. Trautmann, P. Gao, T. Stewart, C. Eliasmith,
and K. Boahen, “Silicon neurons that compute,” in International Conference on Artificial
Neural Networks (ICANN), pp. 121–128, Springer, 2012.

[3] “Projects - The neuromorphics project - Stanford University.”
http://brainstorm.stanford.edu/projects/ . Accessed: 2017-08-12.

[4] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L.
Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014.

[5] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale neuro-
morphic hardware system for large-scale neural modeling,” in IEEE International Symposium
on Circuits and systems (ISCAS), pp. 1947–1950, IEEE, 2010.

[6] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. Indiveri,
“A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and
128k synapses,” Frontiers in neuroscience, vol. 9, 2015.

[7] K. Boahen, “A neuromorph’s prospectus,” Computing in Science & Engineering, vol. 19, no. 2,
pp. 14–28, 2017.

[8] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen, X. Choo,
A. R. Voelker, and C. Eliasmith, “Nengo: A Python tool for building large-scale functional
brain models,” Frontiers in Neuroinformatics, vol. 7, no. 48, 2014.

[9] M. Boerlin, C. K. Machens, and S. Denève, “Predictive coding of dynamical variables in
balanced spiking networks,” PLoS Comput Biol, vol. 9, no. 11, p. e1003258, 2013.

[10] M. A. Schwemmer, A. L. Fairhall, S. Denève, and E. T. Shea-Brown, “Constructing precisely
computing networks with biophysical spiking neurons,” The Journal of Neuroscience, vol. 35,
no. 28, pp. 10112–10134, 2015.

[11] D. Thalmeier, M. Uhlmann, H. J. Kappen, and R.-M. Memmesheimer, “Learning universal
computations with spikes,” PLoS Comput Biol, vol. 12, no. 6, p. e1004895, 2016.

[12] C. Eliasmith and C. H. Anderson, “Developing and applying a toolkit from a general neuro-
computational framework,” Neurocomputing, vol. 26, pp. 1013–1018, 1999.

[13] C. Eliasmith and C. H. Anderson, Neural engineering: Computation, representation, and
dynamics in neurobiological systems. MIT press, 2003.

[14] T. C. Stewart, B. Tripp, and C. Eliasmith, “Python scripting in the Nengo simulator,” Frontiers
in Neuroinformatics, vol. 3, 2009.

[15] S. Sharma, S. Aubin, and C. Eliasmith, “Large-scale cognitive model design using the Nengo
neural simulator,” Biologically Inspired Cognitive Architectures, 2016.

[16] J. Gosmann and C. Eliasmith, “Automatic optimization of the computation graph in the Nengo
neural network simulator,” Frontiers in Neuroinformatics, vol. 11, p. 33, 2017.

[17] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and D. Rasmussen, “A
large-scale model of the functioning brain,” science, vol. 338, no. 6111, pp. 1202–1205, 2012.

[18] C. Eliasmith, How to build a brain: A neural architecture for biological cognition. Oxford
University Press, 2013.

[19] J. Dethier, P. Nuyujukian, C. Eliasmith, T. C. Stewart, S. A. Elasaad, K. V. Shenoy, and K. A.
Boahen, “A brain-machine interface operating with a real-time spiking neural network control
algorithm,” in Advances in Neural Information Processing Systems (NIPS), pp. 2213–2221,
2011.

10

http://brainstorm.stanford.edu/projects/

[20] F. Corradi, C. Eliasmith, and G. Indiveri, “Mapping arbitrary mathematical functions and
dynamical systems to neuromorphic VLSI circuits for spike-based neural computation,” in
IEEE International Symposium on Circuits and Systems (ISCAS), (Melbourne), 2014.

[21] J. Knight, A. R. Voelker, A. Mundy, C. Eliasmith, and S. Furber, “Efficient SpiNNaker simu-
lation of a heteroassociative memory using the Neural Engineering Framework,” in The 2016
International Joint Conference on Neural Networks (IJCNN), IEEE, 07 2016.

[22] M. Berzish, C. Eliasmith, and B. Tripp, “Real-time FPGA simulation of surrogate models of
large spiking networks,” in International Conference on Artificial Neural Networks (ICANN),
2016.

[23] A. Mundy, Real time Spaun on SpiNNaker. PhD thesis, University of Manchester, 2016.

[24] A. R. Voelker and C. Eliasmith, “Improving spiking dynamical networks: Accurate delays,
higher-order synapses, and time cells,” (under review), 2017.

[25] C. Eliasmith, J. Gosmann, and X.-F. Choo, “BioSpaun: A large-scale behaving brain model
with complex neurons,” ArXiv, 2016.

[26] A. R. Voelker, B. V. Benjamin, T. C. Stewart, K. Boahen, and C. Eliasmith, “Extending the
Neural Engineering Framework for nonideal silicon synapses,” in IEEE International Sympo-
sium on Circuits and Systems (ISCAS), (Baltimore, MD), IEEE, 05 2017.

[27] A. R. Voelker and C. Eliasmith, “Methods and systems for implementing dynamic neural
networks,” (patent pending), 07 2016.

[28] “Nengolib – Additional extensions and tools for modelling dynamical systems in Nengo.”
https://github.com/arvoelke/nengolib/. Accessed: 2017-08-12.

[29] P. Duggins, “Incorporating biologically realistic neuron models into the NEF,” Master’s thesis,
University of Waterloo, Waterloo, ON, 2017.

[30] A. Stöckel, “Point neurons with conductance-based synapses in the Neural Engineering Frame-
work,” tech. rep., Centre for Theoretical Neuroscience, Waterloo, ON, 2017.

[31] T. C. Stewart, “A technical overview of the Neural Engineering Framework,” tech. rep., Centre
for Theoretical Neuroscience, Waterloo, ON, 2012.

[32] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert
W function,” Advances in Computational mathematics, vol. 5, no. 1, pp. 329–359, 1996.

11

https://github.com/arvoelke/nengolib/

	1 Introduction
	2 Accounting for Synaptic Dynamics
	2.1 Linear systems
	2.2 Nonlinear systems

	3 Accounting for Synaptic Heterogeneity
	4 Discussion

