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Abstract

Prescribed Error Sensitivity (PES) is a biologically plausible super-
vised learning rule that is frequently used with the Neural Engineering
Framework (NEF). PES modifies the connection weights between popula-
tions of neurons to minimize an external error signal. We solve the discrete
dynamical system for the case of constant inputs and no noise, to show
that the decoding vectors given by the NEF have a simple closed-form ex-
pression in terms of the number of simulation timesteps. Moreover, with
γ = (1 − κ‖a‖2) < 1, where κ is the learning rate and a is the vector of
firing rates, the error at timestep k is the initial error times γk. Thus,
γ > −1 implies exponential convergence to a unique stable solution, γ < 0
results in oscillatory weight changes, and γ ≤ −1 implies instability.

1 Introduction

The Neural Engineering Framework (NEF), proposed by Eliasmith and Ander-
son (2003), is a method of constructing biologically plausible spiking networks.
To build and simulate such models, the Centre for Theoretical Neuroscience
makes extensive use of the open-source software, Nengo (Bekolay et al., 2014).

The NEF typically learns its connection weights offline, but Nengo also sup-
ports a number of biologically plausible supervised and unsupervised learning
rules to learn these weights online. By far, the most commonly used learning
rule in Nengo is the Prescribed Error Sensitivity (PES) rule, which learns a func-
tion by minimizing an external error signal (Bekolay et al., 2013). This learning
rule has been used to model episodic memory (Trujillo and Eliasmith, 2014),
hierarchical reinforcement learning (Rasmussen and Eliasmith, 2014), adaptive
motor control (Komer, 2015), and many other tasks.

While the usage and overall “effect” of the learning rule is intuitively clear,
several questions have not been explicitly addressed to date:

• Under what conditions is the rule guaranteed to converge to a unique
optimal solution?

• How does the learning rate affect the rate of convergence?

• Can we be precise about the form of the weights as a function of time,
and the form of the optimal solution, if one exists?

This work aims to address all of these questions under the restricted setting
of constant inputs and no noise.
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Figure 1: Network diagram used to analyze the PES rule. A connection from
x to y learns to output y∗ by minimizing |y∗ − y|. The error signal forms a
modulatory connection to modify the weights between x and y.

2 Prescribed Error Sensitivity

For the analysis, we setup a network in Nengo containing an ensemble of n
neurons, inject a constant scalar input x, and minimize an error signal e = y∗−y
using the PES rule, where y is the scalar output of the ensemble, and y∗ is the
ideal output (see Fig. 1). The connection weights then learn to represent y∗

when presented with x. This work naturally extends to the case where x is a
vector, and so we only consider the scalar case for simplicity.

Let a ∈ Rn be the rate activity of each neuron without noise. This is given
by the first principle of the NEF, and depends only on x. From here on we
assume that a 6= 0, otherwise our ensemble is not properly encoding x, in which
case PES will have no effect. The PES rule then applies the following update
rule at each timestep:

∆d = κea (1)

where κ > 0 is the learning rate, and d ∈ Rn is the decoding vector for the
connection weight matrix such that, by the first principle of the NEF,

y = dTa. (2)

Now, to formulate the problem, let d[k] ∈ Rn be the value of the decoding
vector d at the kth timestep of the Nengo simulation, for all k ∈ N. Our
goal is to give a closed-form expression for d[k] and its convergent solution.
For notational convenience, the use of ∞ will imply a limit (e.g. d[∞] :=
limk→∞ d[k]). Therefore, we will answer the following: given κ, a, y∗, and d[0],
what is d[k] for k ∈ N and d[∞]?

3 Theorem

Let γ = (1− κ‖a‖2) < 1, and e0 = y∗ − d[0]Ta be the initial error, then

d[k] = d[0] + e0
a

‖a‖2
(1− γk), k ∈ N (3)

and so the error at timestep k is y∗ − d[k]Ta = e0γ
k. In particular, if γ > −1,

then d[∞] exists and is given by the unique solution,

d[∞] = d[0] + e0
a

‖a‖2
. (4)

On the other hand, if γ ≤ −1 then the system is unstable.
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3.1 Discussion

An immediate consequence is that the error y∗− y goes to 0 exponentially with
rate γ. When γ < 0, this results in oscillations around the optimal solution.
When γ > −1, the limit exists and is given by the stable optimum (4).

The error given by (3) implies that if we desire an approximation factor of
ε times the initial error in k timesteps, then set the learning rate to

κ = (1− ε1/k)/‖a‖2.

The theorem essentially states that the optimal solution is achieved by in-
creasing the decoders by the normalized activity vector scaled by the initial
error. In hindsight, this should be somewhat intuitive. If we look at (1),
only a scaled version of a is ever added to the decoders, and so it makes
sense that the final difference could only be some multiple of a. If we sup-
pose that d[∞] converges, and furthermore d[∞]Ta = y∗, then we may indeed
solve d[∞]Ta = d[0]Ta + αaTa for the required scaling factor α = e0

aT a
. Con-

versely, we can verify that indeed the above d[∞] decodes y∗ by evaluating

d[∞]Ta = d[0]Ta + e0
aT a
aT a

= y∗.
However, this is not a proof, since we have supposed that the optimal solution

exists and is unique, while there are infinitely many solutions to uTa = y∗.
Specifically, u = d[∞] + v, where vTa = 0, all of which are stable since they
have zero error. We must therefore show that only one of these solutions is
reachable (namely v = 0), and that γ gives the exponential rate of convergence.

4 Proof

The first step is to formulate the equation for d[k] using linear algebra. Let
k ∈ N. Combining (1) and (2) with e = y∗ − y, gives us:

d[k + 1]T = d[k]T + κ(y∗ − d[k]Ta)aT

= d[k]T (I − κaaT )︸ ︷︷ ︸
A

+κy∗aT︸ ︷︷ ︸
cT

.

The last two components are labeled by the matrix A ∈ Rn,n and the vector
c ∈ Rn, since they will appear frequently throughout the analysis. This also
allows us to express the above relationship compactly as:

d[k + 1]T = d[k]TA+ cT . (5)

It is important to note that neither A nor c depend on d[k]. A depends
solely on a, which is fixed for a given x by the first principle of the NEF. c
depends only on a and y∗, which are again also fixed. Therefore, d[k], and thus
d[∞], can be found inductively:

d[k]T = d[0]TAk +

k−1∑
i=0

cTAi. (6)

In order to find a closed-form expression for (6) we must essentially charac-
terize the effect of repeated multiplication and addition by using the eigende-
composition of the system. This is done by interpreting (5) as the state-space
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representation of a discrete linear control system with constant input, where
the “state” is given by the current decoders. Since A is symmetric, this is also
equivalent to d[k+1] = Ad[k]+c, but it turns out that the eigendecomposition
of the former system has a nicer interpretation.

We proceed with some basic results on A = I−κaaT , and then move toward
a construction that reveals the eigenvectors of the whole system, which in turn
proves the main theorem.

Since A is symmetric, by the spectral theorem it can be diagonalized to A =
VWV T , where V is orthonormal (V −1 = V T ), and W is diagonal. Moreover,
the columns of V are the unit eigenvectors of A (giving us an n-dimensional
eigenbasis), and their corresponding eigenvalues are on the respective diagonals
in W . Now, since A differs only from I by an outer product, it has very specific
structure.

Lemma 4.1. a is an eigenvector of A with eigenvalue γ < 1.

Proof. Recalling that γ = 1− κ‖a‖2,

Aa = (I − κaaT )a

= (a− aκaTa)

= γa

Since a 6= 0 is non-negative, we know ‖a‖2 > 0 (nd κ > 0), thus γ < 1.

Lemma 4.2. The remaining n − 1 eigenvectors of A are orthogonal to a with
eigenvalue 1.

Proof. The first part follows trivially from the fact that A can be diagonal-
ized and so the remaining n − 1 dimensions must span a subspace that is
orthogonal to a (by lemma 4.1). To be precise, the remaining eigenvectors
form an orthonormal basis for the nullspace of aT , with eigenvalue 1, because
Au = u ⇐⇒ (I − aaT )u = u ⇐⇒ 0 = aaTu ⇐⇒ aTu = 0, since a 6= 0.

Geometrically, this means that the mapping A modifies a single dimension
of the vector, namely the line spanning a with eigenvalue γ < 1. The remaining
portion, in the hyperplane orthogonal to a, remains untouched. Given condi-
tions on κ so that γ > −1, in the limit A∞ will zero out the dimension spanned
by a. In fact, these two lemmas are enough to diagonalize A, which we use to

show that A∞ = I − aaT

‖a‖2 (below). This makes intuitive sense since Pa = aaT

‖a‖2
is a projection onto a, and so A∞u = u− Pau gives us the portion of u that is
orthogonal to a. To see this more rigorously, let V0 be equal to V with all but
its first column ( a

‖a‖ ) set to zero. That is, V = V0 +
(
0 V1

)
. Then since the

first diagonal of W∞ goes to zero,

A∞ = VW∞V T

= (V − V0)V T

= I − V0V T

= I − a

‖a‖
aT

‖a‖

= I − aaT

‖a‖2
.
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Of course, this is only half the story, since we have not yet involved c, which
is the sole bearer of y∗. To this end, we use the following construction:

Ã =

(
A 0
cT 1

)
∈ Rn+1,n+1, d̃[k] =

(
d[k]

1

)
∈ Rn+1.

It is easy to see that d̃T [k]Ã will multiply d[k] by A and add cT , so by induction
this allows us to rewrite (5) as a single matrix multiply:

d̃[k]T = d̃[0]T Ãk. (7)

Lemma 4.3. Let β = cT a
(γ−1)‖a‖ , then ã =

( a
‖a‖
β

)
is an eigenvector of Ã with

eigenvalue γ.

Proof. ã is well-defined since γ < 1.

Ãã =

(
Aa
‖a‖

cT a
‖a‖ + β

)
=

(
γa
‖a‖
cT aγ

(γ−1)‖a‖

)
= γã, by lemma 4.1.

We remark that the last component of ã can be simplified to:

β =
cTa

(γ − 1)‖a‖
=

κy∗aTa

−κ‖a‖2‖a‖
= − y∗

‖a‖
.

Lemma 4.4. Suppose u is an eigenvector of A such that Au = u, then ũ =

(
u
0

)
similarly satisfies Ãũ = ũ.

Proof.

Ãũ =

(
Au
cTu

)
=

(
u

κy∗aTu

)
=

(
u
0

)
= ũ

since aTu = 0 from lemma 4.2.

Now observe that (0, 0, . . . , 1)T ∈ Rn+1 is an eigenvector for Ã with eigen-
value 1, and so we have found n+1 eigenvectors for Ã. Recall that A = VWV T .
Without loss of generality, suppose the columns of V are arranged so that a

‖a‖ is

the first column (using lemma 4.1). Then, construct b = (β, 0, . . . , 0)T ∈ Rn+1,
and place all n+ 1 eigenvectors in a square matrix,

Ṽ =

(
V 0
bT 1

)
with corresponding eigenvalues

W̃ =

(
W 0
0T 1

)
.

Then ÃṼ = Ṽ W̃ by lemmas 4.3 and 4.4. To complete the diagonalization,
we must show that Ṽ is invertible by arguing that the eigenvectors we found
are linearly independent, or better yet by explicitly constructing the inverse:

Ṽ −1 =

(
V T 0

−bTV T 1

)
=

(
V T 0

−β aT

‖a‖ 1

)
.

Finally, we are ready to diagonalize Ã:
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Lemma 4.5. Ã = Ṽ W̃ Ṽ −1 =

(
V 0
bT 1

)(
W 0
0T 1

)(
V T 0

−bTV T 1

)
.

Proof.

Ṽ Ṽ −1 =

(
V 0
bT 1

)(
V T 0

−bTV T 1

)
=

(
V V T 0

bTV T − bTV T 1

)
= I

We are now ready to prove the main theorem. The purpose of obtaining the
above diagonalization is that it enables us to give a closed-form solution for d̃[k]
via (7) and lemma 4.5. Let V1 ∈ Rn,n−1 be equal to V without its first column,

such that V =
(

a
‖a‖ V1

)
.

d[k]T =

(
d[0]

1

)T ( a
‖a‖ V1 0

β 0T 1

)
γk

1
. . .

1


 aT

‖a‖
V T1
−β aT

‖a‖



=
(
d[0]T a

‖a‖ + β d[0]TV1 1
)

γk

1
. . .

1


 aT

‖a‖
V T1
−β aT

‖a‖



=
(
γk(d[0]T a

‖a‖ + β) d[0]TV1 1
) aT

‖a‖
V T1
−β aT

‖a‖


= γk(d[0]T

a

‖a‖
+ β)

aT

‖a‖
+ d[0]TV1V

T
1 − β

aT

‖a‖

= d[0]T (I − aaT

‖a‖2
) +

y∗

‖a‖2
aT − γk(y∗ − d[0]Ta)

aT

‖a‖2

= d[0]T + e0
aT

‖a‖2
(1− γk)

To find the limit as k →∞, recall from lemmas 4.3 and 4.4 that the spectrum
of the system is sp(Ã) = sp(A) = {γ, 1, 1, ...}, by lemma 4.1. Thus, (7) requires
that |γ| < 1 in order for d[∞] to exist. Since γ < 1, d[∞] converges ⇐⇒ γ >
−1. If γ ≤ −1, then the state explodes. In the stable condition,

d[∞]T = d[0]T (I − aaT

‖a‖2
)︸ ︷︷ ︸

A∞

+
y∗

‖a‖2
aT︸ ︷︷ ︸∑∞

i=0 cTAi

To get the error at timestep k, we use (2) to obtain

(d[∞]T − d[k]T )a = e0γ
k a

Ta

‖a‖2
= e0γ

k

which concludes the proof. �
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Figure 2: Comparison of the analytical error given by the theorem to the simu-
lated error in Nengo. Each line indicates the error y∗ − y over time for a single
trial, for a random number of rate neurons (noiseless) from the range [10, 200],
a random learning rate from [10−6, 5 × 10−4], a random x from [−1, 1], and a
random y∗ from [−1, 1]. In all trials, the analytical error is shown with a dashed
line, with a root-mean-square error of less than 10−14.
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