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Abstract

The basal ganglia are a group of subcortical nuclei that contain about 100
million neurons in humans. Di�erent modes of basal ganglia dysfunction lead to
Parkinson's disease and Huntington's disease, which have debilitating motor and
cognitive symptoms. However, despite intensive study, both the internal compu-
tational mechanisms of the basal ganglia, and their contribution to normal brain
function, have been elusive. The goal of this thesis is to identify basic principles that
underlie basal ganglia function, with a focus on signal representation, computation,
dynamics, and plasticity.

This process begins with a review of two current hypotheses of normal basal
ganglia function, one being that they automatically select actions on the basis of
past reinforcement, and the other that they compress cortical signals that tend to
occur in conjunction with reinforcement. It is argued that a wide range of experi-
mental data are consistent with these mechanisms operating in series, and that in
this con�guration, compression makes selection practical in natural environments.
Although experimental work is outside the present scope, an experimental means
of testing this proposal in the future is suggested.

The remainder of the thesis builds on Eliasmith & Anderson's Neural Engineer-
ing Framework (NEF), which provides an integrated theoretical account of compu-
tation, representation, and dynamics in large neural circuits. The NEF provides
considerable insight into basal ganglia function, but its explanatory power is po-
tentially limited by two assumptions that the basal ganglia violate. First, like most
large-network models, the NEF assumes that neurons integrate multiple synaptic
inputs in a linear manner. However, synaptic integration in the basal ganglia is
nonlinear in several respects. Three modes of nonlinearity are examined, including
nonlinear interactions between dendritic branches, nonlinear integration within ter-
minal branches, and nonlinear conductance-current relationships. The �rst mode
is shown to a�ect neuron tuning. The other two modes are shown to enable alter-
native computational mechanisms that facilitate learning, and make computation
more �exible, respectively.

Secondly, while the NEF assumes that the feedforward dynamics of individ-
ual neurons are dominated by the dynamics of post-synaptic current, many basal
ganglia neurons also exhibit prominent spike-generation dynamics, including adap-
tation, bursting, and hysterses. Of these, it is shown that the NEF theory of
network dynamics applies fairly directly to certain cases of �ring-rate adaptation.
However, more complex dynamics, including nonlinear dynamics that are diverse
across a population, can be described using the NEF equations for representation.
In particular, a neuron's response can be characterized in terms of a more complex
function that extends over both present and past inputs. It is therefore straight-
forward to apply NEF methods to interpret the e�ects of complex cell dynamics at
the network level.

The role of spike timing in basal ganglia function is also examined. Although
the basal ganglia have been interpreted in the past to perform computations on
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the basis of mean �ring rates (over windows of tens or hundreds of milliseconds)
it has recently become clear that patterns of spikes on �ner timescales are also
functionally relevant. Past work has shown that precise spike times in sensory
systems contain stimulus-related information, but there has been little study of how
post-synaptic neurons might use this information. It is shown that essentially any
neuron can use this information to perform �exible computations, and that these
computations do not require spike timing that is very precise. As a consequence,
irregular and highly-variable �ring patterns can drive behaviour with which they
have no detectable correlation.

Most of the projection neurons in the basal ganglia are inhibitory, and the e�ect
of one nucleus on another is classically interpreted as subtractive or divisive. The-
oretically, very �exible computations can be performed within a projection if each
presynaptic neuron can both excite and inhibit its targets, but this is hardly ever
the case physiologically. However, it is shown here that equivalent computational
�exibility is supported by inhibitory projections in the basal ganglia, as a simple
consequence of inhibitory collaterals in the target nuclei.

Finally, the relationship between population coding and synaptic plasticity is
discussed. It is shown that Hebbian plasticity, in conjunction with lateral con-
nections, determines both the dimension of the population code and the tuning of
neuron responses within the coded space. These results permit a straightforward
interpretation of the e�ects of synaptic plasticity on information processing at the
network level.

Together with the NEF, these new results provide a rich set of theoretical prin-
ciples through which the dominant physiological factors that a�ect basal ganglia
function can be more clearly understood.
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Chapter 1

Introduction

This introductory chapter brie�y describes the basal ganglia, and introduces the
Albin/DeLong model, a conceptual model of basal ganglia pathology. This model
has been a key tool for understanding basal ganglia function for two decades, and
modern basal ganglia research can be understood in terms its limitations. Building
on this research, and on developments in other areas of theoretical neuroscience, the
goal of this thesis is to articulate basic principles that govern information processing
in these nuclei.

1.1 Basal Ganglia

The basal ganglia are a densely interconnected group of subcortical nuclei, including
the striatum, the substantia nigra, the globus pallidus, and the subthalamic nucleus.
The basal ganglia (BG) lie beneath the cerebral cortex and around the thalamus,
and are strongly connected with both structures.

Major intrinsic and extrinsic connections of the basal ganglia are shown in Figure
1.1. Much of this connectivity can be understood in terms of feedback loops with
the cortex. The cortex projects massively to the striatum, which is the main input
structure of the basal ganglia. The main output nuclei are the internal segment of
the globus pallidus (GPi), and the substantia nigra pars reticulata (SNr). These
project to the thalamus, which projects to the cortex, completing the loop. There
are multiple paths from the striatum to the output nuclei.

An unusual feature of the basal ganglia is that the projection neurons of most
nuclei contain the neurotransmitter GABA, and have an inhibitory e�ect on their
targets. The shortest path through the basal ganglia (called the �direct pathway�
or �primary axis�) consists of the projection from the striatum to the GPi, and
from the GPi to the thalamus. Both of these projections are inhibitory, and the
GPi neurons are tonically active. Thus cortical excitation of the striatum inhibits
GPi neurons, which then �re more slowly, and inhibit thalamic neurons less than
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cortex

thalamus

striatum

SNcSNr

GPe

GPi

STN

MD

VA

VL

CM
/Pf

brainstem

Transmitters
Dopamine (modulatory)

Glutamate (excitatory)

GABA (inhibitory)

Figure 1.1: Major connections of the cortico-basal ganglia-thalamo-cortical system
(abstracted from various sources including [293, 294, 173, 387]). Abbreviations:
CM: centromedian nucleus of the thalamus; Pf: parafascicular nucleus; VA: ventral
anterior nucleus; VL: ventral lateral nucleus; MD: medio-dorsal nucleus; SNc: sub-
stantia nigra pars compacta; GPe: external globus pallidus; GPi: internal globus
pallidus; SNr: substantia nigra pars reticulata; STN: subthalamic nucleus. Arrow-
head shapes indicate the main neurotransmitter of each projection (see key bottom
left). Connections that are particularly massive are shown with larger arrowheads.
Numerous minor connections are omitted for simplicity. The substantia nigra,
globus pallidus, and STN are almost completely composed of neurons that project
to other nuclei. However, the striatum contains several types of locally-projecting
interneurons (see [387] for review). All of the thalamic nuclei shown here contain
GABAergic local circuit neurons.
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usual. Thalamic neurons can then �re more quickly, and excite the cortex more.
Direct-pathway striatal activity is thus said to disinhibit the thalamus.

In addition to the direct pathway there are a number of side loops. One of
these is the �indirect pathway�, which consists of the inhibitory projection from the
striatum to the external segment of the globus pallidus (GPe), the inhibitory pro-
jection from GPe to the subthalamic nucleus (STN), and the excitatory projection
from STN to the output nuclei. Striatal activity has a net inhibitory e�ect on the
thalamus along this pathway. The direct and indirect pathways arise from distinct
groups of projection neurons in the striatum. Both groups are morphologically
similar, and contain GABA. However the two groups are distinct in that those of
the direct pathway contain dopamine receptors of the D1 family and cotransmit
substance P and dynorphin, while those of the indirect pathway contain D2-family
receptors and cotransmit enkephalin. The D1 and D2 receptors mediate di�erent
post-synaptic e�ects.

As shown in Figure 1.1, there are other major paths through the basal ganglia.
Of particular interest is the inhibitory projection from GPe to GPi. Axons of this
projection form dense bundles of inhibitory synaptic contacts around the cell bodies
of the target GPi neurons, suggesting a strong coupling [294]. Another pathway
that has received much attention recently is the direct projection from the cortex to
the STN. Cortical in�uences reach the basal ganglia output structures more quickly
via this path than via the more massive path through the striatum [272].

1.1.1 Basal Ganglia Function

It is not clear what the basal ganglia do in the healthy brain. A variety of sug-
gestions have been made, including roles in reinforcement learning and sequence
production. Mink [262] and others have suggested that when the cortex selects and
executes an action, the basal ganglia act to inhibit competing actions and facili-
tate the selected action. Since the loops that connect with motor and non-motor
cortical areas are similar in many respects, it has been proposed that in�uence of
the basal ganglia on motor and non-motor functions may be analogous. The basal
ganglia may also have similar in�uences on di�erent motor processes, so there is
particular interest in studying their role in motor systems that are relatively well
characterized, such as the oculomotor system [156, 115] and the circuits controlling
vocalization in songbirds [105]. Evidence related to normal basal ganglia function
is reviewed at length in Chapter 2.

1.1.2 Basal Ganglia Dysfunction

Unfortunately, it is much more clear what the basal ganglia do when they are not
working properly.
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Parkinson's Disease

Much of the practical motivation for studying the basal ganglia is due to Parkin-
son's Disease (PD), which causes focused degeneration of the dopamine-releasing
neurons of the substantia nigra compacta (SNc; see Figure 1.1). PD is the second-
most common neuro-degenerative condition (after Alzheimer's Disease). The con-
dition slowly progresses in severity and resistance to treatment. Patients develop
striking motor de�cits, including di�culty initiating movement (akinesia), slowness
of movement (bradykinesia), resting tremor, rigidity, shu�ing gait, and balance
impairments. Particularly impacted are sequential or simultaneous coordinated
movements [333, 47, 48], and movements demanding high precision [10]. Many
patients medicated with levodopa develop involuntary movements after some pe-
riod of treatment [139, 112]. Patients also su�er from cognitive impairments, and
treatments have cognitive side-e�ects.

PD has diverse causes, including inherited mutations and exposure to envi-
ronmental toxins. However, all cases of PD appear to involve dysfunction of α-
synuclein, a protein which is thought to be involved in neurotransmitter release.
High levels of α-synuclein are expressed throughout the brain [339], so it is not im-
mediately obvious why damage in PD should be concentrated in the SNc. However,
some byproducts of dopamine metabolism are highly reactive, and it is possible that
α-synuclein either enhances their production or interferes with their inactivation
[307].

Much of the scienti�c study of Parkinsonism has been based on animal models.
Primates can be rendered Parkinsonian by administration of the toxin 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), which selectively a�ects dopaminergic
neurons. Other animal models include rats lesioned with 6-hydroxy-dopamine, and
various genetic manipulations, particularly in mice. Molecular mechanisms can also
be studied in insects (e.g. [116]).

Treatment of PD typically begins with drugs that compensate for the loss of
dopamine-releasing neurons [268]. Administration of levodopa, a chemical precur-
sor of dopamine, enhances the dopamine output of surviving cells. Other drugs
act directly on dopamine receptors. Drug-based treatments become less e�ective
as the disease progresses, and must often be complemented by surgical interven-
tions. Surgery can involve lesioning parts of the basal ganglia which are believed in
later disease stages to be generating dysfunctional output. Chronic high-frequency
electrical stimulation of the same areas is an e�ective alternative, with advantages
over lesioning, in that the stimulation can be �ne-tuned after the operation, or
discontinued if necessary. GPi stimulation improves drug tolerance by reducing
drug-induced dyskinesias; STN stimulation improves other major PD symptoms,
allowing lower drug dosages [211, 269]. There has also been promising research re-
lated to other potential interventions, such as cell therapy [228] and immunization
[244].
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Other Basal Ganglia Disorders

Huntington's disease involves progressive loss of striatal neurons. In contrast with
PD, the primary sign in early stages of Huntington's is choreic movement (involun-
tary, writhing, vaguely dance-like movement). Bradykinesia develops with disease
progression, although it is di�erent from the bradykinesia of PD [50]. Non-motor
symptoms (e.g. personality changes) are also di�erent from those of PD.

Dystonia is a family of conditions that cause involuntary movement and ab-
normal postures. Some cases arise from an identi�able injury, which is often to
the basal ganglia [217, 71], and some have no obvious pathology. Some authors
have reported changes in �ring patterns and reduction in mean �ring rates in GPi,
although this may be an artefact of general surgical anaesthesia [171]. Lesion [375]
and electrical stimulation [374, 171] of the GPi have been used to treat dystonia.

Tourette syndrome is also thought to be related to basal ganglia dysfunction,
although the exact cause is unclear [263]. Symptoms include motor tics, and uncon-
trolled stereotyped behaviours including (in a minority of cases) verbal outbursts.
There is also evidence of basal ganglia involvement in schizophrenia, obsessive-
compulsive disorder, and attention-de�cit-hyperactivity disorder.

1.2 Albin/DeLong Model

An elegant conceptual model of basal ganglia motor pathology (Figure 1.2) was
introduced in in�uential reviews by Albin, Young & Penney [11] and DeLong [96].
This model is consistent with key points of basal ganglia anatomy and the ma-
jor neurotransmitter e�ects, and accounts (qualitatively) for many symptoms of
Parkinson's disease, Huntington's disease, and ballism (involuntary ballistic move-
ment). The model is also consistent with new observations that emerged around
the same time, such as the overactivity of STN in PD, relief of PD symptoms with
STN lesion, and the di�erent e�ects of D1 and D2 receptor activation.

The model emphasizes the opposing e�ects of the direct and indirect pathways.
The direct pathway is characterized as promoting cortical activity, including partic-
ularly movement-related activity in the supplementary motor area of the cortex. In
this pathway, striatal neurons disinhibit thalamic neurons (via the GPi and SNr),
which in turn excite cortical cells. In contrast, the indirect pathway is proposed to
inhibit cortical activity. The striatal neurons at the head of this pathway disinhibit
STN via GPe, causing the excitatory STN neurons to increase activity in GPi and
SNr, which inhibits the thalamus. It is not speci�ed how the two pathways might
interact to in�uence movement. Various possibilities are consistent with the model,
including that the direct pathway encourages a desired movement while the indi-
rect pathway discourages others, and that balance between the direct and indirect
pathways scales movements in some way [383].
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Figure 1.2: The Albin/DeLong model's account of activity in the major basal
ganglia projections, in health and Parkinson's disease. Th=thalamus; other abbre-
viations as in text. Dark lines indicate excitatory connections, light lines indicate
inhibitory connections, and dashed lines represent dopamine-containing connec-
tions. Flat ends are pre-synaptic and round ends are post-synaptic. On the right,
relative changes in activity in PD are indicated by line thickness (i.e. thinner line
indicates less activity than normal; thicker indicates more activity). Adapted from
[11] and [96].

Recall that the striatal neurons at the heads of the direct and indirect pathways
contain di�erent dopamine receptors. In the Albin/DeLong model, dopamine in-
creases activity in the striatal neurons of the direct pathway (via D1 receptors) and
decreases activity of the striatal neurons of the indirect pathway (via D2 receptors).
Thus with depleted dopamine in PD, the balance shifts in favour of the indirect
pathway, consistent with symptoms of slowed movement and di�culty initiating
movement.

D2-containing neurons are preferentially destroyed in the early stages of Hunt-
ington's disease. The model can therefore account for associated choreic move-
ments, on the basis of reduced activity in the indirect pathway. The di�erential
e�ect of dopamine via D1 and D2 receptors is also consistent with the amelioration
of Huntington's disease symptoms by D2 receptor antagonists. Ballism resembles
an acute version of chorea. Ballism is normally caused by destruction of the STN,
so it is also accounted for by the model, as a decrease in inhibitory BG output
arising from a disruption of the indirect pathway.
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1.2.1 Limitations of the Albin/DeLong Model

Several limitations arise from the model's simplicity. It omits several major anatom-
ical connections, including the direct projection from GPe to GPi, the cortico-
subthalamic projection, and the thalamostriatal projection. It also overstates the
distinctions between direct and indirect pathways. Many striatal axons branch to
both GPe and GPi [291, 231], and D1 and D2 receptors are co-localized (although
in di�erent concentrations) on most striatal projection neurons (medium-spiny neu-
rons) [8].

Furthermore, since the model is qualitative, only vague predictions are made as
to the activities of various neuronal populations. It ignores intrinsic properties
of the nuclei, such as neuronal diversity, connections intrinsic to each nucleus,
and membrane dynamics. It is also simplistic in its representation of extrinsic
connections. For example the only predictions made regarding the BG in�uence on
the cortex are that it will be greater or lesser in various circumstances. So while
the model is generally consistent with many disease symptoms, it does not predict
them with precision or in detail. It does not account for the Parkinsonian tremor
symptom.

Moreover, predictions of the model con�ict with several recent observations.
Although there were early indications that GPe activity was reduced in PD, more
recent studies have not provided strong support. GPe �ring rates in dopamine-
lesioned rats and monkeys are reduced only moderately (and may return to normal
in a matter of weeks), and long-term metabolic activity in GPe is generally un-
changed [224]. Also, STN activity is not strongly correlated with GPe activity in
the healthy brain [371], and the con�rmed increase in STN activity in PD appears
to have less to do with GPe than with other factors [224, 291]. Predicted di�erences
in GPi �ring rates between PD and Huntington's disease patients are not consis-
tently observed [356, 347]. The model does accurately predict that STN or GPi
lesion in PD would improve hypokinetic symptoms. However, in con�ict with the
model, hyperkinetic symptoms are also improved by these lesions. Also, thalamic
lesions would be expected to worsen PD symptoms, but in fact improve them [283].
The model also does not account for the fact that high-frequency stimulation of the
thalamus, pallidum, and STN produce similar clinical outcomes to lesions of these
nuclei [46].

Even the existence of the indirect pathway through the STN is not beyond
doubt. Some studies suggest that the parts of the STN that receive input from
GPe project back primarily to GPe [294], while other results suggest that most
STN neurons that project to GPe collateralize to GPi, and that these are not
physically segregated from those that project exclusively to the output nuclei [326].

Despite these limitations, the fact that the Albin/DeLong model elegantly ac-
counts for a number of major characteristics of basal ganglia activity and disease
makes it an important reference point against which to compare more sophisticated
models. It is also important to acknowledge the great impact the model has had, not
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only in organizing research, but also in leading to lesion and stimulation treatments
for advanced PD, which are the most e�ective options currently available.

1.3 Principles, Models, and Principled Models

The Albin/DeLong model is important background for any dicussion of the basal
ganglia, but it is hardly the state of the art. Much more speci�c proposals have
been made about the in�uence of the basal ganglia on the cortex, and sophisticated
computational models have accompanied them. The next chapter will take a close
look at some of these proposals, and further review will accompany each later
chapter as needed.

In the mean time, the remainder of this chapter introduces the intended role of
the present thesis in ongoing basal ganglia research. Broadly speaking, the goal of
this thesis is to use engineering methods (e.g. signals and systems theory; numerical
simulations) to achieve a better understanding of how the basal ganglia work. The
obvious way to do this would be to develop a new computational model. However,
while models play an important supporting role in this thesis, the main focus is on
identifying more basic theoretical points. This section explains the rationale behind
this emphasis.

1.3.1 Principles

The 20th century witnessed the discovery of many key principles of neuroscience,
without which it would now be hard to imagine thinking about brain function at
all. Some of the most fundamental are as follows:

1. Action potentials are all-or-nothing events; the information conveyed by an
action potential consists of the time at which it occurs.

2. Rapid information �ow at chemical synapses is uni-directional, from the presy-
naptic neuron to the post-synaptic neuron.

3. All of the chemical synapses originating from a single neuron release the same
primary neuro-transmitter.

All of these principles are approximations, and there are exceptions. However, the
approximations are close, and the exceptions are relatively rare. The brain can be
understood much more clearly if it is considered in terms of principles like these,
rather than as a massive list of individual cases. A principle distills a pattern of
facts into more manageable form. If we want to understand the brain more clearly,
we will have to unearth more principles.
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1.3.2 Models

Models provide an additional, complementary aid to understanding. A conceptual
model, like the Albin/DeLong model, organizes diverse observations into a simple
framework that (very roughly) re�ects the behaviour of a complex system.

Recently, computational models have provided additional rigour. The key fac-
tor that distinguishes computational models from conceptual ones is that computa-
tional models are expected to function. This means that no parameter can be left
unspeci�ed. Model development can therefore expose missing data, and/or lead to
new ideas about which data are important, ultimately suggesting new experiments.
It has even been argued that computational models are the ultimate goal of neu-
roscience [255]. This is because the brain is so complex that no matter how many
facts about it are obtained through experiments, that there is no hope of accurately
understanding these facts unless they are integrated in a rigorous and quantitative
manner.

Computational models can be highly abstract. Abstract computational mod-
els are essentially well-speci�ed conceptual models, and they provide a means of
formalizing simple ideas about how a system works. At the other end of the spec-
trum, there is increasing interest in more sophisticated models that embrace com-
plex physiological details. One reason for this is the realization that neurons are
complex, noisy physical devices, which 1) may actually be incapable of behaving
like elegant equations, and on the other hand, 2) can clearly do things that have
yet to be described with equations. Another reason for this interest is that, ideally,
realistic models can be experimented on, i.e. manipulated and measured much like
real brains, but with far greater �exibly.

However, as these models become more sophisticated, they must also rely in-
creasingly on tractable principles, or they run the risk of becoming incomprehensible
themselves. Furthermore, only a tiny fraction of the brain's parameters can be mea-
sured (e.g. the human brain has about 100 trillion synapses, of varying strength), so
sophisticated computational models are severely underconstrained. Less-principled
models run a greater risk of �tting the available data without re�ecting the essential
structure of the corresponding system.

1.3.3 Principled Models

These considerations motivate Eliasmith & Anderson's [111] Neural Engineering
Framework (NEF), from which this thesis draws heavily. At the core of the frame-
work are three key theoretical principles (their wording):

1. Neural representations are de�ned by the combination of nonlinear encoding
and weighted linear decoding.
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2. Transformations of neural representations are functions of variables that are
represented by neural populations. Transformations are determined using an
alternately weighted linear decoding.

3. Neural dynamics are characterized by considering neural representations as
control-theoretic state variables.

As discussed in detail in Chapter 3, the above principles and the associated equa-
tions provide a systematic way to develop models that integrate diverse experimen-
tal data, including high-level behavioural data and lower-level electrophysiological
data.

So perhaps a good way to understand the basal ganglia would be to model them
using the NEF. But there are two limitations inherent in this approach. The �rst
is that despite the systematicity introduced by the framework, there remain many
free parameters. It would be hard to determine whether a principled NEF model
that �t a great deal of experimental data was unique in doing so.

However, a more fundamental limitation is that it is not clear that the NEF
principles encompass all of the features of basal ganglia circuits that are relevant
to their behaviour. For example, a closer look at NEF's treatment of network
dynamics (the third principle, above) reveals assumptions which, strictly speaking,
do not hold for many basal ganglia neurons.

Such points of divergence between the NEF and the basal ganglia (described
in more detail in Chapter 3) have become a major focus of this thesis. Where
the above principals either diverge from reality or do not clearly relate to it, one
could reasonably choose to either ignore the di�erences, or to build a less principled
model that respects them. However, it is probably more useful in the long term to
set the task of modelling aside, and to search in these mismatches for additional
principles.

1.4 Principles of Basal Ganglia Function

The principles that have emerged from this work are listed below, in the order in
which they appear in the following chapters. As principles go, these are relatively
humble and special-purpose. However, they all contribute to a richer understanding
of the computational capacities of the basal ganglia networks.

1. Dimensionality reduction is an e�ective precursor for action selection, and
may precede action selection in feedforward basal ganglia circuits. (Section
2.4) Dimensionality reduction and action selection are currently alternative
hypotheses regarding basal ganglia function, each of which agrees more closely
with a di�erent subset of the experimental data. This section illustrates that
the hypotheses are compatible, and discusses potential functional advantages
of their combination in a single system.
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2. Nonlinear dendrites can perform computations in the absence of presynap-
tic tuning-curve diversity. (Section 4.4) This is a more general point about
computation in large networks. Network models often assume that neurons
combine synaptic inputs in a near-linear manner, but there is evidence to the
contrary. With linear synaptic integation, computation in a network is con-
strained by the range of diversity in the responses of di�erent neurons. This
section illustrates that dendritic nonlinearities can work around this require-
ment.

3. Neurons can �exibly extract information from inputs that have neither time-
varying spike rates nor precise spike timing. (Section 5.3) Most models of
the basal ganglia assume that information is carried in the rate at which neu-
rons emit spikes, but there is growing evidence that the timing of individual
spikes is important. This section illustrates that computation can proceed
independently of spike rates, even when spike timing is highly variable.

4. Inhibitory projections can calculate nonlinear, non-monotonic functions. (Sec-
tion 6.3) In contrast with the cortex, most projection neurons in the basal
ganglia are inhibitory. Inhibition is usually equated with subtraction or di-
vision. This section shows that inhibition in a population code can subserve
complex and �exible computations.

5. Cell-intrinsic dynamics enable computations based on input history. (Section
7.4) Most basal ganglia neurons exhibit nonlinear intrinsic �ring dynamics,
complicating quantitative theories of information representation. This section
shows that representation in these neurons can be re-cast in terms of higher-
dimensional representation of past and present inputs.

6. Hebbian plasticity can set the dimension and tuning of a population code.
(Section 8.4) Neurons in the basal ganglia represent information in large
groups, or populations. The details of this representation are established
by synaptic plasticity, but the relationships between synaptic plasticity and
population coding are not well understood. This section shows how local
mechanisms of plasticity can determine two of the three key variables of a
population code.

The above observations are theoretical principles, in the sense that each one of them
could serve as a building block for a variety of basal ganglia models, either alone or in
combination with others. The following chapters attempt to encourage this usage,
by addressing each principle separately, rather than potentially obscuring them
within a single complex model. However, they are each presented in the context
of the more basic principles of the NEF, which provides a coherent underlying
structure that clari�es the relationship between each of the above principles and
the others.

Finally, a number of them also apply to networks outside the basal ganglia, par-
ticularly to cortical networks. The discussion in the following chapters is therefore
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generalized to other systems wherever possible. This makes the focus broader at
times than the basal ganglia, but this does not interfere with the goal of elucidat-
ing basal ganglia function. The commonalities between the basal ganglia and other
networks are at least as informative as the di�erences.
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Chapter 2

Action Selection vs. Dimensionality

Reduction

Because the basal ganglia are central structures, far removed from sensory organs
and muscles, identifying their function has not been straightforward. In the last
decade, the dominant hypothesis has been that they automatically select context-
appropriate actions. This hypothesis is broadly consistent with electrophysiologi-
cal and anatomical evidence, behavioural data from reinforcement-learning exper-
iments, and disease symptoms. An alternative hypothesis [37] is that the basal
ganglia serve mainly to reduce the dimensionality of contextual information. This
review chapter argues that the dimensionality reduction hypothesis is at least as
consistent with anatomical and electrophysiological evidence as the action selection
hypothesis, but that it fails to account for behavioural data. However, it is further
argued that dimensionality reduction in the input stage of the basal ganglia would
be an e�ective substrate for learning of action selection via reinforcement. From this
perspective, the key outstanding question is: Where in the basal ganglia-cortical
loop is the mapping from context to action performed? An experimental approach
for addressing this question is proposed.

2.1 Introduction

The severity of symptoms in advanced Parkinson's disease makes it clear that the
basal ganglia can have a major in�uence on cortical function. The Albin/DeLong
model describes conditions in which this in�uence can become pathologically im-
balanced. However, the nature of this in�uence is not completely clear. This is
partly because the basal ganglia are central structures, several steps removed from
both sensory organs and muscles.

The issue is further clouded by the fact that the functions of many of the
cortical areas with which the basal ganglia are connected are themselves poorly-
characterized or controversial. The relative exception is the motor areas of the
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cortex. These are the best-understood of the basal ganglia targets, so one would
expect the motor functions of the basal ganglia to be the most readily elucidated,
and these functions have indeed received the most attention. However, even the
precise function of the primary motor cortex (in which many projection neurons
synapse directly onto primary motor neurons [109]) remains a subject of debate
[362]. Nevertheless, its activity is closely correlated with movement execution (e.g.
[129, 73]), suggesting a relatively direct role in driving movement.

In contrast to relatively direct role of the motor cortex in controlling the muscles,
both the basal ganglia and cerebellum have relatively few descending projections,
instead forming feedback loops with di�erent cortical areas [167], including all of
the motor areas [109]. Damage to the cerebellum can result in delayed movement
initiation and poor coordination of di�erent movement components. Di�erent le-
sions and disorders of the basal ganglia have varied e�ects, but some of these e�ects
relate clearly to high-level decisions between di�erent courses of action [34]. Accord-
ingly, it has been argued that basal ganglia anatomy and physiology are consistent
with the role of automatically selecting actions that are adapted to the state of the
animal's environment, and simultaneously suppressing the selection of alternative
actions (e.g. [309, 52]). This mapping from context to action is thought to be
established by reinformement learning (e.g. [165, 332]).

However, the basal ganglia do more than select motor actions. They also project
to prefrontal areas of the cortex [16], suggesting that they play a role in cognitive
activity (e.g. working memory, declarative memory retrieval, representation of
goals). Accordingly, Parkinson's disease and Huntington's disease have cognitive
symptoms as well as motor symptoms [108, 216], and the basal ganglia are impli-
cated in several neuro-psychiatric conditions, including obsessive-compulsive disor-
der, attention-de�cit-hyperactivity disorder, Tourette syndrome, and schizophrenia.
Loops through the basal ganglia that a�ect cognitive and limbic areas of cortex have
anatomy similar to the motor loops [16, 258], suggesting that the role of the basal
ganglia in cognition may be analogous to that in motor control, i.e. that they select
internal, cognitive actions, based on prior reinforcement [45, 309, 151].

Interestingly, this general form of the action-selection hypothesis has enjoyed
great traction in the cognitive science community. A generalized selection mech-
anism would resemble a production system, i.e. a set of context-driven rules that
guide behavior (a concept from arti�cial intelligence). One particularly success-
ful cognitive modelling architecture, ACT-R [23], treats the basal ganglia as the
anatomical substrate of a production system that guides communication between
di�erent cortical areas. ACT-R models are much farther removed from the under-
lying neurophysiology than models in neuroscience. But they model much more
sophisticated behavior (e.g. eye movements in a complex air tra�c control task
[25]), with striking success. In these models, the basal ganglia select internal ac-
tions, such as retrieval of an item from declarative memory, or setting a subgoal in
a complex task. Recent fMRI experiments generally support the timing of basal
ganglia involvement predicted by these models [23] (but see [24]).
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To summarize, the action-selection hypothesis has substantial experimental sup-
port, is plausibly related to the in�uence of basal ganglia on motor and non-motor
frontal areas, and (although the neurophysiological details remain to be worked
out) continues to make sense in models of complex behavior.

But challenges to this hypothesis remain. One puzzling issue is that fairly
large lesions of the basal ganglia output nuclei as treatment for Parkinson's disease
result in relatively mild impairment [283] (although lesioned patients do not move
as smoothly or as quickly as healthy controls [200]). This suggests that if the basal
ganglia are a selector of actions (or more generally, a production system), they are
not the only one. Furthermore, lesions of the basal ganglia output nuclei in healthy
experimental animals lead to noticeable de�cits, but most of these are not obviously
related to selection [164, 266, 100] (but see [223]).

More critically, the action selection hypothesis is not the only one that �ts
much of the data. In particular, the anatomy and electrophysiology of the basal
ganglia are also largely consistent with the hypothesis that their main function is to
reduce the dimensionality of contextual information, in a manner that emphasizes
reward-relevant context [37].

The remainder of this chapter reviews the experimental evidence regarding basal
ganglia function, and argues that the dimensionality-reduction hypothesis �ts the
anatomical and electrophysiological data at least as well as the action selection
hypothesis, but that some of the behavioral data are more consistent with action
selection. It is further argued that dimensionality reduction would provide an
e�ective input stage for an action selection system, so that these hypotheses do
not necessarily con�ict. From this perspective, the key question is not whether
the basal ganglia perform reduction or selection, but where in the basal ganglia
pathways the map from context to action occurs.

2.2 Competing Theories

2.2.1 Action Selection

The action selection hypothesis is a natural elaboration of the Albin/DeLong model,
in that one way to interpret the opposing e�ects of the direct and indirect pathways
is that they respectively select some actions and supress others [99].

In an in�uential review, Mink [262] argued that 1) a central action-selection
mechanism is necessary to prevent con�icting use of resources (e.g. muscles), 2)
the basal ganglia are appropriately positioned for this function, since they receive
convergent input from much of the cortex and project to the cortical areas that
in�uence behaviour, 3) the selection function is consistent with internal circuitry
of the basal ganglia, as well as basal ganglia disease symptoms (see also [264]),
and electrophysiological and lesion experiments. Mink proposed that the hyper-
direct pathway inhibits most candidate actions, through the relatively-divergent
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projections of the STN [292], while stronger and more focused activity in the direct
pathway disinhibits a single selected action. Redgrave and colleagues [309, 143] have
made similar arguments, and developed a series of computational models based on
this theme (e.g. [169]).

Multiple Selection Mechanisms

In order to evaluate the action-selection hypothesis, it will be important to dis-
tinguish between a few di�erent modes of selection. Animals select actions in at
least two ways. Some actions are goal-oriented, and sensitive to changes in both
action-outcome contingencies and the reward value of outcomes. Others are stimu-
lus driven, or habitual, and less sensitive to changing relationships between actions
and rewards. There is recent evidence that the basal ganglia participate in both of
these kinds of action selection. In particular, lesions of basal ganglia circuits that
project to motor cortical areas reduce the propensity for stimulus-driven actions
[395], while lesions of parallel basal ganglia circuits that project to prefrontal areas
reduce the propensity for goal-oriented actions [397]. In the goal-oriented case,
the basal ganglia probably do not select motor plans directly. They may instead
contribute to the normal operation of prefrontal cognitive and working memory
circuits [124], which among other things can make sophisticated action-related de-
cisions, and subsequently in�uence the motor cortex via direct projections [363].
As mentioned above, the similarity between motor and non-motor basal ganglia
circuits suggests that their contribution to prefrontal computations in this instance
may relate to selection of cognitive steps toward the goal-oriented determination of
motor plans.

Daw et al. [91] showed that stimulus-driven and goal-oriented selection mecha-
nisms are optimal in di�erent situations. They further proposed that these mecha-
nisms normally operate in parallel, and that behaviour is dominated by the system
that identi�es a preferred action with greater con�dence.1 This group has also sug-
gested that animals may sometimes simply duplicate their previous actions on the
basis of declarative memory of similar situations [220]. This would constitute a third
type of action selection. For humans, instruction-following arguably constitutes a
distinct fourth mechanism, which is particularly important in situations that are
novel to the individual [23]. In summary, there are multiple ways in which animals
can select actions, and the basal ganglia may participate directly or indirectly in
all of them. However, this review is concerned with the hypothesis that the basal
ganglia perform selection directly, i.e. that their output biases selection of discrete
alternative activity patterns in their cortical targets. Of the various mechanisms
for selection of overt behaviours, stimulus-driven selection of motor actions is the
one that relates most directly to this hypothesis.

1This proposal was motivated by the behaviour of lab rats in experimental settings, in which the
rats have nothing better to do than optimize rewards. In more complex environments, practical
advantages of the stimulus-driven mechanism (e.g. shorter reaction time; less interference with
concurrent tasks) may take on more importance.
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Reinforcement Learning

The models of Mink [262], Gurney et al. [143], and others focus on the mechanisms
by which an animal selects from a list of discrete candidate actions over short
time scales. But how does an animal come to prefer one action over others in
the �rst place? It has long been recognized that animals' decisions are in�uenced
by reinforcement [360], i.e. positive and negative outcomes associated with similar
decisions in the animal's past experience. There are striking parallels between basal
ganglia physiology and the mechanics of temporal-di�erence (TD) learning, a key
reinforcement-learning algorithm from the machine-learning �eld [353].

TD learning is a means by which an agent can maximize the rewards it obtains in
a complex environment. In contrast with other reinforcement learning algorithms,
1) it does not require complete a priori knowledge of the environment in order to
learn an optimal context-dependent decision policy, and 2) it learns continuously,
incorporating new information as it is encountered, even at times when a reward
is neither expected nor available. One way to implement the TD algorithm is with
a component that makes decisions (an �actor�), and another component that keeps
track of the rewards associated with various environmental states, and uses this
information to critique the actor's decisions (the �critic�).

The output of the critic closely resembles the activity of dopamine neurons.
For example, when monkeys self-initiate movement to a food reward, dopamine
neurons are moderately active before movement, and �re a burst when the food is
touched. Similar activity is observed when monkeys begin learning to associate a
visual or auditory cue with an opportunity to obtain food by performing some task.
However, when the task is well learned, dopamine neurons burst when the cue is
presented, but not when the reward is obtained [316]. In fact there is a pause in
tonic �ring if the reward is unexpectedly withheld [158]. The �ring of dopamine
neurons in these experiments seems to re�ect errors in the monkeys' expectations
of reward, which is precisely the output of the critic in TD learning. The analogy
between the actor-critic architecture and the basal ganglia is strengthened by the
fact that the dopamine signal modulates cortico-striatal synaptic plasticity [312]. If
the striatum represents context-speci�c actions, this modulation corresponds to the
way in which the actor modi�es its decision policy based on input from the critic.
Several computational models have mapped the actor/critic TD architecture onto
the basal ganglia in a more detailed manner [185].

2.2.2 Reinforcement-Driven Dimensionality Reduction

Although the action-selection hypothesis is consistent with a variety of experimen-
tal evidence (discussed further below), it also ignores some of the more striking
anatomical and electrophysiological characteristics of the basal ganglia. One such
characteristic is the funnel-like structure of the direct pathway � there are about
one tenth as many striatal neurons as there are cortical neurons that project to the
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striatum [403], and (depending on the species) a further reduction of 2-3 orders of
magnitude between the striatum and the output nuclei [37, 387]. Another is that
in contrast with the cortex [372], the �ring activity of neighbouring basal ganglia
neurons tends to be uncorrelated, or very weakly correlated (i.e. to have a fairly
�at cross-correlation function [51]). These unusual characteristics are not obviously
incompatible with action selection, but it is troubling that they have no obvious
role in action selection either.

These features motivated Bar-Gad, Bergman and colleages [35, 37, 36] to pro-
pose that the main function of the basal ganglia is to reduce the dimensionality
of diverse cortical data, and distribute it back to the cortex in compressed form.
This compression would provide a means of making more information available to
individual cortical neurons, since each cortical neuron can receive a limited number
of synaptic inputs.

They further proposed that dopamine modulation of plasticity in the cortico-
striatal synapses would bias this compression, so that information more relevant to
rewards would be compressed with higher �delity. They developed a computational
model of dopamine-gated plasticity in cortico-striatal synapses, and showed that
it caused high-�delity compression of inputs that appeared in conjunction with
dopamine signals, while other information was essentially ignored [37].

Plenz & Kitai [300] introduced a similar model of the striatum, including both
dimensionality reduction and low correlations, although they did not address rein-
forcement bias.

2.3 Experimental Evidence

The action selection and reinforcement-driven dimensionality reduction (RDDR)
hypotheses are di�erent enough that one would expect little di�culty in di�eren-
tiating them on the basis of experimental evidence. However, as discussed below,
while di�erent lines of evidence are more suggestive of one hypothesis or the other,
most of the data can be reasonably interpreted as consistent with both. Neverthe-
less, 1) RDDR accounts more elegantly for certain anatomical and electrophysio-
logical data, and 2) certain behavioural data support action selection. It will be
argued in Section 2.4 that there may be no con�ict between these observations, if
RDDR is part of the mechanism for action selection.

2.3.1 Anatomical Evidence

Anatomical Funnelling

As discussed above, a major factor motivating the RDDR model is the funnel-like
anatomy of the feedforward basal ganglia (BG) pathways. There are many fewer
striatal neurons than cortical neurons projecting to the striatum, and many fewer
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neurons in the output nuclei than the striatum. This reduction is consistent with
the reduction in representational complexity hypothesized by RDDR. Furthermore,
a two-stage reduction, with stronger nonlinearities in the �rst stage (consistent with
strongly nonlinear responses of medium spiny neurons [280]) facilitates reduction of
nonlinear input patterns [37], which may be important for compressing nonlinear
relationships between contextual variables.

The cortico-striatal stage of funnelling is not particularly suprising in the context
of action selection either. It just implies that the context for action selection is more
complex than the action choices themselves (not necessarily than the parameters
of action execution, control of which is managed by other structures). But the
striato-pallidal reduction is more puzzling. Fewer neurons could imply either that
1) information is represented with lower �delity in the output nuclei, or 2) less
complex information is represented. But neither of these possibilities �ts well with
action-selection models.

For example, funnelling at this level might make sense if di�erent groups of stri-
atal neurons represented di�erent candidate actions, while a single group of output
neurons acted together to represent whichever action the striatum selected. How-
ever, the �ring of movement-related neurons in the output nuclei varies with speci�c
actions (e.g. movement at one joint in a certain direction), in much the same way
as striatal neurons [13, 181]. Accordingly, action selection models assume parallel
channels all the way through the direct pathway, each of which codes a di�erent
action independently. A more plausible alternative is that multiple independent
modules in the striatum select actions independently, and these choices are some-
how combined in the output nuclei [140]. This would account for a several-fold
reduction in the number of neurons, but would not predict the observed 100-fold
or greater reduction.

A more subtle possibility is that the output nuclei represent the same informa-
tion as the striatum, with the same �delity, but in a manner that permits fewer
downstream computations. If n neurons are required to represent a value (e.g. an
action) with a certain degree of �delity, then roughly nd neurons are required to
support the computation of arbitrary nonlinear functions of d values [111].2 If the
output nuclei represent nonlinear functions of multiple action representations in the
striatum, then the associated redundancy required in the striatum could easily ex-
plain its greater size. However, existing action-selection models have not proposed
any such computations.

Finally, it must also be acknowledged that the neural code is not understood well
enough that a tight correlation between numbers of neurons and representational
complexity can be taken for granted. Interestingly, the average �ring rates of output
neurons are higher than those of the striatum. If spikes in each region convey similar
amounts of information, then the reduction in representational capacity may not
be as great as the anatomy suggests.

2This assumes near-linear synaptic integration, an assumption that is discussed at length in
Chapter 4.
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In summary, anatomical funnelling in the direct pathway is clearly consistent
with RDDR, and it is unclear to what extent this anatomy is consistent with action
selection, because the possibilities remain largely unexplored.

Granularity of Parallel Channels

Action selection models (e.g. [169, 52]) assume that feedforward basal ganglia
pathways are made up of parallel channels. Each channel is taken to correspond
to an action. Lateral interactions between channels in the direct pathway, and
feedforward interactions in other pathways, are assumed to mediate competition
between candidate actions [133]. There is ample evidence that the feedforward
pathways consist of multiple distinct channels, but it is not clear that there are
enough channels to separately code the thousands of actions that an animal might
automate through reinforcement learning.

Projections from sensorimotor, oculomotor, limbic, and associative cortical re-
gions fall on largely distinct striatal regions [293]. The cortico-subthalamic projec-
tion is also similarly segregated [209], and this separation is maintained in most
other basal ganglia nuclei [16]3, and in the projections of the output nuclei through
the thalamus to cortical targets [195]. Thus the cortico-basal ganglia circuit consists
of functionally-distinct parallel circuits. Within the sensorimotor circuit there are
further topographical distinctions (related to di�erent body parts) in the striatum,
pallidum, STN, and thalamus [16, 240, 131]. There is also evidence that loops con-
nected with arm-related areas of the premotor, supplementary motor, and primary
motor cortices are distinct [348].

However, other anatomical data suggest a high degree of feedforward integra-
tion. The dendritic �elds of GPi neurons are large and disk-shaped, and incoming
striatal �bres run perpendicularly to these disk-shaped �elds, intersecting many of
them [123], which suggests that single pallidal cells may integrate data from large
ensembles of striatal neurons [298]. Consistent with this view, �bres from small
areas of the striatum spread through relatively large areas of the GPi [153].

Quantitative results indicate that each pallidal neuron receives synaptic con-
tacts from only about 1000 striatal cells, or about 0.001% of the human striatum,
and a single striatal cell innervates only about 25 di�erent pallidal cells [392]. Avail-
able anatomical data do not reveal whether each of these 25 pallidal cells receives
input from the same 1000 striatal cells (consistent with a high degree of channel
segregation), or partially overlapping sets of striatal cells, or largely di�erent sets
(consistent with low segregation within a few large channels).

Correlations between the �ring patterns of pairs of GPi cells seem to suggest
the latter. Cross-correlograms for pairs of GPi cells might be expected to show
peaks around zero o�set, for pairs of cells that receive many common inputs. Such

3Although motor and associative information is mingled in the SNr [293], and there is probably
substantial collateral excitation within STN [134].
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correlations are normally very rare [277, 306], suggesting that pairs of GPi cells
receive input from weakly overlapping sets of striatal cells. However, low correla-
tions are also predicted by RDDR, for neurons that share many inputs [37], due to
di�erences in synaptic weights.

Interestingly, correlations increase with striatal dopamine depletion [277, 306,
51]. This has been taken as evidence that di�erent pallidal cells normally represent
information from di�erent sources, but that this segregation breaks down with
dopamine loss [51, 383]. These results can be interpreted as implying a lack of �ne
anatomical channel segregation.

This interpretation should be treated with caution, because correlated activity
occurs mostly in conjunction with widespread �ring rate oscillations [226]. However,
dopamine-related changes in the speci�city of movement-related activity support
the same interpretation. While pallidal neurons normally respond in very speci�c
conditions, for example in conjunction with movement in a certain direction at a
certain joint [267, 118, 148], striatal dopamine in�uences this speci�city. Responses
to passive limb movement are both more common and less speci�c in GPi with
striatal dopamine loss [118, 54]. Responses are also elicited by striatal stimulation
in a greater variety of locations [366]. It has been proposed that dopamine regulates
functional coupling between parallel subcircuits by vetoing divergent glutamater-
gic input to striatal neurons [51]. The e�ect may also relate to the modulation
by dopamine of lateral inhibition in the striatum [144], or to the facilitation by
dopamine of the �ring of striatal projection neurons that are in a state such that
�ring is already likely [154].

In summary, 1) anatomical data do not speci�cally support the existence of
�ne-grained channels, 2) the apparent dopamine dependence of neurons' response
speci�city argues against anatomical segregation, if not against functional segrega-
tion, and 3) uncorrelated �ring suggests that if small channels exist, they do not
encode actions using correlated �ring-rate increases or spike timing.

However, although �ne-grained channels are often seen as a prediction or as-
sumption of action selection models, their relevance to the hypothesis is question-
able. Many of the same computations could, in theory, be carried out by either
segregated or mixed channels. In particular, a large group of neurons that codes
a d-dimensional vector can perform similarly to d separate groups of neurons that
encode scalars. There are subtly-di�erent implications for function approximation
and robustness to noise in these two cases (discussed further in Chapters 3 and 8).
But a distributed vector code would by no means preclude either independent ac-
tivation of di�erent functional channels, or competition between them. This would
be true even if each neuron participated simultaneously in many di�erent channels.

Convergence of Diverse Cortical Signals

Whether or not there any many �ne-grained parallel channels through the basal
ganglia, the segregation of coarse channels (particularly sensori-motor, cognitive,
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and limbic) is clear. Coarse segregation raises key questions related to the action
selection hypothesis: 1) how much action-relevant contextual information reaches
motor cortex through basal ganglia pathways, and 2) does this contextual infor-
mation converge with motor signals in a manner that is consistent with action
selection? Action selection would be facilitated by convergence of motor and other
contextual information in the striatum. Convergence at this level would allow di-
verse contextual information to drive an action channel. Importantly, it would also
allow dopamine modulation of context-action mapping at corticostriatal synapses,
consistent with the actor-critic analogy.

Axons from small regions of cortex diverge to broad areas of the striatum, so
the parts of striatum innervated by non-adjacent points in the cortex necessarily
overlap [403]. On smaller scales, this overlap often takes the form of inter-digitation
of projections from di�erent regions rather than convergence [335], although pro-
jections from functionally-related cortical areas sometimes converge [120]. Close
interdigitation of cortico-striatal projections implies that even where their axons
do not overlap, the dendritic arbor of a single striatal neuron may intersect ax-
ons from multiple interdigitated cortico-striatal projections, potentially integrating
information from multiple sources.

However, as discussed above, the associative, motor, and limbic cortico-striatal
projections, and large subdivisions within them, are largely separate. Furthermore,
the associated cortico-BG loops appear to be largely closed on themselves. One line
of evidence in this direction comes from a series of studies by Strick and colleagues.
In early studies, they injected anterograde tracers into di�erent motor cortical ar-
eas, and found little overlap between the labelled striatal regions, supporting the
concept of distinct input channels. In further studies they injected Herpes virus
into di�erent cortical areas. Injection of a Herpes strain that neurons transport
in the retrograde direction showed that di�erent cortical areas receive input pri-
marily from segregated areas of GPi [260], supporting the concept of segregated
output channels. Furthermore, patterns of connectivity within the basal ganglia
suggest that the input channel associated with a certain cortical area is connected
to the output channel associated with the same area [348]. Similarly, later stud-
ies employed the rabies virus, which is transported retrogradely to �rst, second,
and third-order neurons. Injections into di�erent cortical areas labelled distinct
third-order regions in the striatum. Injection of a conventional anterograde tracer
in the primary motor cortex showed that this area projected to the same part of
the striatum from which it received third-order projections [195]. The general im-
pression from these studies is that the parallel loops through the basal ganglia are
largely closed, i.e. that a region of basal ganglia that receives input from a certain
cortical area will project back largely to the same area. However, these loops are
not exclusively closed, because the di�erent regions of the striatum overlap at their
boundaries [192].4

4There is at least one other notable exception to the closed-loop rule [195]. Speci�cally, 10-20%
of the third-order neurons in striatum that were labelled retrogradely from M1 injection were in
the ventral striatum, a limbic region. This suggests a route by which limbic information can
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A recent study used di�usion-weighted imaging tractography to con�rm the
presence of closed loops in individual human subjects [107]. This study also reported
substantial overlap at the boundaries of the loops associated with di�erent cortical
areas. However, the latter result is di�cult to interpret, because 1) sparse and
dense connections were not di�erentiated, and 2) it was based on data that were
merged across subjects (there may be individual variations across individuals on
the order of scan resolution; for example, compare the two subjects in Figure 12 of
[215]).

In any case, although there is some degree of overlap between the loops, the
picture that emerges from these studies is not one in which each action channel
receives all of the contextual information that might be relevant to its selection.
Instead, it appears that the basal ganglia neurons that in�uence movement receive
the majority of their information from sensori-motor cortical areas that code similar
movement. A closed sensori-motor loop is perfectly consistent with proposals (e.g.
[262, 59]) that multiple candidate actions are coded in the cortex and vetted by basal
ganglia. But it is inconsistent with the idea that diverse contextual information
contributes to this vetting [165, 350].

Of course, sensori-motor information is itself an important part of the context
for future actions. For example, when a person is seated, proprioceptive data alone
would be su�cient to turn o� the reactions that maintain standing balance � a
subtlety that is often absent in Parkinson's disease. Furthermore, projections from
visual areas converge onto the sensory-motor striatum [43], providing a possible
route for mapping visual stimuli to motor actions. However, information in the
prefrontal cortex (e.g. working memory, declarative memory, and goal states) also
bears on action selection. Closed loops do not argue against the action selection
hypothesis, but they restrict it, by implying a relatively narrow range of selection-
rule antecedents.

However, while cortico-striatal convergence consistent with the actor-critic model
is in doubt, diverse contextual information certainly converges elsewhere in these
circuits, speci�cally in the substantia nigra, thalamus, and cortex.

Midbrain dopamine neurons (primarily in SNc) project densely to the striatum,
and receive reciprocal projections from the same striatal areas. However, projec-
tions from SNc to striatum terminate more broadly than the reciprocal projections.
Furthermore, this greater breadth is directed in a hierarchy from limbic to cognitive
to motor areas of the striatum [145]. This connectivity pattern suggests a hierarchy
of reinforcement, in which a�ective information subserves reinforcement of cognitive
performance, and cognitive information in turn subserves reinforcement of motor
performance. However, the activity of dopamine neurons is spatially homogenous
[328], so it is not clear to what extent this anatomical spiral corresponds to a spiral
of information. In any case, this pathway is primarily modulatory, rather than
excitatory (although some dopamine neurons co-transmit glutamate [72], so it is

a�ect cortical motor activity. Although the route from the ventral striatum to M1 is not clear,
convergence with the motor channel is probably downstream of the striatum.
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not likely to provide the type of convergence required by actor-critic-like selection
models (e.g. [165, 350]).

However, a spiral of excitatory connections exists at the other end of the cortico-
BG circuit, between the thalamus and the cortex. Cognitive and motor areas of
the cortex are each connected reciprocally with di�erent thalamic areas, but there
are also non-reciprocal connections from limbic cortex to cognitive thalamus, and
from cognitive cortex to motor thalamus [250]. A�erents from caudal motor areas
also diverge to the medio-dorsal thalamic nucleus [173], which has strong reciprocal
connections with the dorso-lateral prefrontal cortex. The thalamo-cortical loops
therefore provide a pathway for communication across parallel channels.

Furthermore, this pathway may bring diverse context signals together with ac-
tion signals in the striatum. The centromedian and parafascicular nuclei of the
thalamus, which are the primary source of thalamostriatal neurons [343], do not
participate in the spiral discussed above. Most studies to date have indicated that
the participating thalamic nuclei (the ventral lateral, ventral anterior, and medial
dorsal nuclei) project minimally to the striatum [188]. However, there is some re-
cent evidence of more substantial projections (particularly from the ventral lateral
nucleus [249]), which arise largely from thalamocortical collaterals [343]. So while
the thalamo-cortical loops provide a site of cross-channel integration at the basal
ganglia output, this integration may also extend back to the striatum.

Finally, cognitive and motor areas of the cortex are themselves directly con-
nected [363]. An under-explored question is the extent to which the basal ganglia
gate communication between di�erent cortical circuits, rather than carrying infor-
mation between them directly. Gating of cortical circuits would bring rich contex-
tual data to bear on action selection, through the relatively massive intracortical
connections, as compared with the low-capacity output of basal ganglia.

In summary, while the main pathways of the associative, limbic, and motor loops
are largely closed, there are also several points of contact. Overlap at the boundaries
of striatal regions provides a potential site of integration that would be consistent
with the convergence of context and motor signals in the cortico-striatal projection.
However, this convergence would be unavailable to action channels that originate
away from these boundaries. In contrast, sites of more extensive integration (i.e.
cortex and thalamus) may support more extensive use of converging information
in selection, although it is less clear how these pathways relate to actor-critic-like
reinforcement learning.

Lateral Inhibitory Interactions

Medium spiny neurons, the projection neurons of the striatum, inhibit both the
internal and external segments of the globus pallidus. However, they also collat-
eralize extensively within the striatum [387], inhibiting primarily other neurons of
the same type. Action selection models that include these mutually-inhibitory in-
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teractions (e.g. [165, 41, 384]) interpret them as a means of competition between
con�icting action channels.

In the RDDR framework, they are instead taken to decorrelate the activity
of neighbouring neurons, so that each neuron learns to extract di�erent features
of the input. This interpretation comes from theoretical studies of dimensionality
reduction networks (e.g. [121, 122, 212]), which rely on lateral inhibition to prevent
each neuron that receives the same input from redundantly extracting the same
features (contrast with [281]).

These di�erent interpretations lead to di�erent predictions about the strength
of lateral inhibition. Competition between actions would require strong enough
synaptic interactions that the neurons at the head of a single action channel could
silence neurons in other channels. In contrast, lateral inhibition in dimensionality-
reduction models becomes weaker with learning, as the �ring of neighbouring neu-
rons becomes less correlated. So RDDR predicts weak lateral inhibitory synapses
in mature networks.

In the �rst study to directly investigate the issue, Jaeger et al. [182] recorded in-
tracellularly from striatal neurons while triggering action potentials in other nearby
neurons, and failed to �nd any evidence of functional inhibitory interactions (de-
spite dense physical connections). However, subsequent studies that averaged the
membrane potential over many stimuli [85, 369, 210, 144] revealed weak, generally
asymmetric interactions between a minority of neuron pairs. On the basis of these
studies, Tepper et al. [357] argued that the lateral connections between medium
spiny neurons were too weak to prevent or strongly modify their �ring. Blocking
inhibitory GABA receptors in the striatum can increase the �ring rates of medium
spiny neurons substantially [278], but Tepper et al. [357] attributed this e�ect
to a small population of inhibitory interneurons. These interneurons are part of
the feedforward cortico-striatal path, and therefore do not support lateral compe-
tition. Compared with lateral synapses, feedforward inhibitory synapses are about
six times as strong individually, and twice as reliable. Furthermore, the feedfor-
ward neurons �re an order of magnitude faster. On the other hand, there are about
two orders of magnitude more lateral than feedforward synapses onto an average
medium spiny cell. Taking all of these di�erences into account, lateral and feedfor-
ward inhibition of a typical spiny neuron may have comparable magnitudes, when
averaged over long enough periods of time. What is less clear is whether lateral
synapses provide near-constant background inhibition that a�ects �ring activity
subtly (as argued by Tepper et al.), or whether small pairwise correlations in the
activity of neighbouring medium spiny neurons add up across a large population,
to produce stronger, more transient e�ects.

Tepper et al. [357] also took the fact that only a small proportion (10-15%)
of the possible reciprocal connections between medium spiny neurons exist as an
argument against RDDR. They pointed out that this sparse connectivity resembled
that of a mature RDDR network in which weak synapses had been pruned, but
that substantial new learning in such a network would require the formation of new
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synaptic contacts, a process for which there is no direct evidence in the striatum.
However, as shown in Chapter 8, there is no di�culty in performing dimensionality
reduction in a network with sparse lateral connections. Sparse lateral connections
result in stronger compression, with greater redundancy in the compressed code,
which allows more �exible computations on the basis of compressed information.

In summary, the sparseness of lateral inhibitory connections does not rule out
RDDR, and their weakness does not rule out competition between action channels.
Furthermore, although some action-selection models have assumed that the dense
collaterals of medium spiny neurons mediate competition, this assumption is not
essential to the hypothesis. Other models (e.g. [262]) instead emphasize feedforward
competition in projections between basal ganglia nuclei (although this mechanism
would not permit disinhibition of the winning channel). Further complicating the
situation, both excitatory and inhibitory terminals within the striatum are inhibited
presynaptically [279, 214]. Depending on the �ne structure of these connections,
presynaptic inhibition might mediate negative feedback (for which there is evidence
[278]), competition between feedforward pathways, or both. So, even if it is more
clearly established in the future that lateral striatal connections are too weak to
mediate competition, this will not rule out the action selection hypothesis. However,
it will leave the hypothesis without an explanation for another prominent and
unusual structural feature of the network.

Indirect Pathway, Hyperdirect Pathway, and Loops

Although the Albin/DeLong indirect pathway through the STN has been ques-
tioned, GPe neurons project directly to GPi [294], creating another, slightly shorter
indirect pathway. STN axons (part of the Albin/DeLong indirect pathway) di-
verge extensively [326], but individual GPe axons form large multi-synaptic baskets
around the cell body of a single target cell in GPi [294], synapsing only weakly onto
other cells.

This pathway may supress actions that lead to poor outcomes. In support of
this view, the D2-containing neurons, which are concentrated at the head of this
pathway, are involved in learning to avoid bad decisions [125]. Remarkably, the
vast majority of input from the motor cortex to the indirect pathway arises from
collaterals of descending motor neurons [219], raising the possibility that motor
actions are suppressed through this pathway largely on the basis of in-progress
actions.

If the indirect pathway avoids poor outcomes, this could be taken to provide a
separate argument against competition via lateral inhibition in the striatum. Com-
petion between selection channels makes sense, because it would prevent attempts
to perform two incompatible actions at once. But it would be counterproductive
for an action-selection channel to compete with another channel that supresses
the selection of a competing action. Speci�city in the structure of lateral striatal
connections would be needed in order to avoid this (e.g. direct pathway channels
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should only inhibit other direct pathway channels). However, direct and indirect
pathway neurons synapse onto each other [400, 28].

The cortex also projects directly to the STN, forming a �hyperdirect pathway�
which bypasses the striatum, and through which cortical information reaches the
output nuclei more quickly than through the direct pathway [272]. Frank et al.
[126] provide evidence that this pathway signals the degree of con�ict between
action choices, and slows decision making in high-con�ict situations, in people with
advanced Parkinson's disease. STN lesion in an otherwise healthy brain (e.g. as a
result of a stroke) can result in ballism, a severe condition that involves involuntary
�ailing movement [98], suggesting that the STN act routinely to supress impulsive
movements.

Bar-Gad et al. [37] suggest that the hyperdirect pathway, which is less segre-
gated than the direct pathway, might support more globally-aware compression (in
parallel with localized compression in the direct pathway). Regarding the indirect
pathway, if D2-containing neurons learn from pauses in dopamine �ring, much like
D1-containing neurons learn from dopamine bursts, this would suggest that as the
direct pathway compresses context associated with reward (i.e. �exploitable con-
text�), the indirect pathway might compress context associated with poor outcomes
(i.e. �risky context�). From this perspective, relatively broad excitation of the out-
put nuclei by STN would reduce represention of exploitable context and accentuate
representation of risky context. This might (for example) draw attention to minor
negative factors in high-con�ict win-win decisions.

Summary

Although the action-selection hypothesis has received a great deal of attention, it
does not yet account for two striking features of basal ganglia anatomy, i.e. fun-
nelling along the main axis, and extensive lateral connections in the striatum. There
is also insu�cient evidence for �ne channel segregation, a common assumption of
action-selection models, but this assumption is not essential. Motor signals converge
with all potentially-relevant contextual signals in the cortex and thalamus, but it is
not clear whether there is enough convergence in the striatum to justify actor-critic
models that have been advanced to explain reinforcement learning of actions. In
contrast, RDDR is consistent with funnelling, lateral inhibition in the striatum,
lack of channel segregation, and restricted convergence in the striatum. Finally,
the roles of the indirect and hyper-direct pathways within the RDDR framework
have received little attention.

2.3.2 Electrophysiological Evidence

Action-Related Activity

The striatum contains neurons that �re at a variety of phases of motor tasks, in-
cluding preparation for movement, around movement onset, during the movement
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itself, and while waiting for a cue to move [331]. In sequences of repeated move-
ments, some motor striatal neurons �re at the onset of the sequence while others
�re at the onset of each repeated movement [201].

The �ring of many striatal neurons is related to the direction of movement [15],
and some also �re in relation to force required for movement [82]. When target
direction is dissociated from limb movement direction (using a computer display),
most direction-related cells associate with target direction [14].

Downstream from the striatum, movement-related modulation of the �ring of
individual pallidal neurons also tends to correspond to movement of a certain joint
in a certain direction [95, 267]. The �ring of di�erent cells in the STN is associated
with movements of the limbs [97, 382] or eyes [115].

Broadly speaking, this movement-related activity is consistent with the selection
of motor actions. However, while some striatal cells �re only with active movement,
others �re regardless of whether movement is active or passive (i.e. induced by
the experimenter), and some �re only with passive movement [18]. Responses to
passive movement are also reported in the pallidum [97, 148], and STN [97, 382].
Activity related to passive movement obviously does not drive action selection.
However, this activity is consistent with RDDR, since the actual movement of the
body (regardless of the cause) is useful information, particularly for the planning
subsequent movements.

Another important detail is the timing of movement-related activity. The ac-
tivity of some BG neurons is modulated before the earliest myoelectric activity,
while that of the majority is modulated later [12, 181]. The same can be said of
neurons in the cortex and cerebellum [98]. However, BG activity tends to change
after cortical activity (e.g. [128, 237]). For example, although some striatal cells �re
well before movement onset, cortical cells in the supplementary motor area �re still
earlier [15, 317]. Furthermore, movement-related �ring activity in the basal ganglia
often persists well beyond the completion of the associated movement [181].

Perhaps more strangely, Lau & Glimcher [215] report a subset of neurons in the
primate striatum with activity tuned to movement direction, but beginning sub-
stantially after movement completion. This activity occurred in a reward-delivery
period of the task, but was not sensitive to actual reward delivery.

All of this timing is consistent with RDDR, but reconciling late movement-
related activity with action selection is more complex. As discussed above, some
action selection models propose that candidate actions are vetted in the basal gan-
glia only after they are initially coded in the cortex. This would account for the
tendency for movement-related activity to occur later in basal ganglia than cor-
tex, but not for the fact that much movement-related basal ganglia activity follows
movement initiation [265, 26], and that some [215] follows movement termination.
Another possibility is that automated actions that are obtained by reinforcement
learning in the basal ganglia are subsequently transferred to the cortex. Well-
learned actions might then be selected in parallel by both the cortex and basal
ganglia, but the cortex might be slightly faster.
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A recent study by Kobayashi et al. [206] provides more speci�c support for the
reinforcement-driven bias in striatal coding that is hypothesized by RDDR. In this
study, primates performed saccades to cued locations. Rewards were delivered with
saccades in a single direction only, and the direction varied in di�erent trial blocks.
Neural activity in the cortex varied with the required saccade direction. However,
the activity of many neurons in the caudate nucleus varied with saccade direction
only when the saccade direction corresponded to the rewarded direction.

In summary, responses to passive movement, the late timing of movement-
related activity, and reinforcement-contingent coding of some movements are all
consistent with RDDR. But in the context of action selection, they imply 1) other
redundant (and faster) selection mechanisms outside basal ganglia, and 2) non-
selection-related activity within basal ganglia.

Reward-Related Activity

A series of studies by Schultz and colleagues (reviewed by [329]) showed that the
activity of midbrain dopamine neurons re�ects errors in the animal's prediction of
rewards. This pattern of dopamine neuron activity has since been con�rmed by
several other labs (reviewed by [330]). As discussed in Section 2.2, this activity
corresponds to the reward-prediction error signal of TD learning.

Dopamine-mediated reward prediction error �gures prominently in action se-
lection models based on the actor-critic architecture (e.g. [165]). These models
are appealing because 1) dopamine modulates corticostriatal plasticity, consistent
with the proposed role of the critic in modifying context-contingent choices of the
actor, and 2) as discussed above, TD learning suggests a powerful means by which
an animal can develop a behavioural policy that maximizes rewards. Notably, a
TD-like mechanism would allow an animal to associate a reward not only with the
decision that immediately precedes it, but also with a chain of earlier decisions that
may also have been critical for obtaining the reward.

In support of this interpretation, abstract TD-learning models predict the be-
haviour of human subjects in a variety of reinforcement learning tasks, and re-
ward predictions and errors in TD models correlate with various fMRI and EEG
signals (reviewed by [74]). Despite these parallels, detailed basal ganglia models
based on the actor-critic architecture have been criticised as making physiologically-
unrealistic assumptions, and of not modelling the actor component in enough detail
[185]. However, alternative architectures have been proposed, which agree more
closely with biology, while supporting essentially the same role for dopamine in
reinforcement-based action selection (e.g. [93, 289]).

More fundamental challenges to the critic analogy arise from the behaviour of
dopamine neurons in non-rewarding situations. Dopamine neurons typically exhibit
a pause in �ring after aversive events such as a pinch, aversive air pu�, etc., which
is similar to their response to reward omission. However, a minority of neurons
in the dopaminergic nuclei increase their �ring in response to these stimuli, and
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the neurons that pause sometimes �re more quickly after pausing [330]. Positive
responses to aversive stimuli are at odds with the general pattern of agreement
between dopamine activity and reward prediction error, so they present a potential
challenge to reinforcement-learning models based on this view of dopamine. How-
ever, there is evidence that the neurons with short-latency positive responses to
aversive stimuli belong to the small minority of non-dopaminergic neurons in these
nuclei [370].

Dopamine neurons also burst brie�y and with short latency to novel but ap-
parently neutral sensory stimuli [370, 308]. These responses can be reconciled with
reinforcement learning in a number of ways. For example, some visual stimuli may
be inherently rewarding (as argued by [53]). Also, a dopamine signal that con�ates
reward with novelty might encourage exploratory behaviour [370].

In summary, despite ongoing challenges, the activity of dopamine neurons is
essentially consistent with the role of the critic, in reinforcement learning of an
action-selection policy. In contrast, the RDDR hypothesis is not sensitive to the
precise pattern of dopamine activity. Generally, its correlation with reward pre-
diction error would bias the compression process toward the earliest contextual
information from which rewards could be predicted, but there would be little harm
(and possibly some bene�t) in also compressing novel stimuli with higher �delity.

Stimulus-Related Activity

Somatosensory, auditory, and extrastriate visual cortex project substantially to
the striatum. These sensory signals could potentially provide useful contextual
information, which reinforcement learning processes could map onto striatal action
representations. For example, a particular visual stimulus could be mapped onto
an appropriate motor response.

But striatal neurons also respond directly to sensory stimuli. For example, in the
somatosensory domain, many neurons in the putamen respond at short latency (25-
50ms) to loads that are applied externally to the arm [83]. Whether these responses
are really sensory is not beyond doubt, because load application triggers trans-
cortical re�exive motor responses with EMG onset at slightly greater latency [245]
(so this activity could be driven either by somatosensory neurons, or by collaterals
of the same motor neurons that drive EMG activity after a descending conduction
delay). However, tactile stimuli also elicit striatal activity [60], and Parkinson's
disease impairs performance in sensory discrimination tasks [60].

Visual stimuli also elicit responses in the striatum. Some of these responses
might actually re�ect reward prediction errors, in cases where the stimuli are as-
sociated with an opportunity for the animal to earn a reward (e.g. [12]). Others
are enhanced if the animal makes a saccade to the stimulus [155]. However, while
some nominally-sensory responses in the striatum could be interpreted as motor or
reward signals, others are less ambiguous [60], and are therefore inconsistent with
a narrow view of action selection.
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On the other hand, the basal ganglia probably also in�uence sensory cortical
processes. They project (narrowly) to the visual cortex [259]. Functionally, lesions
impair vision in infants [257], and visual hallucinations are a common side-e�ect of
dopamine medication in Parkinson's disease [117]. It is therefore possible that the
basal ganglia in�uence sensory processes in much the same way that they in�uence
motor and cognitive processes (for example, selectively).

Summary

To summarize, 1) the activity of dopamine neurons is consistent with either action
selection or dimensionality reduction; 2) sensory responses in the striatum argue
against a purely motor/cognitive selection function, but they are consistent with
a selection-related sensory function; and 3) in contrast, movement-related activity
(particularly responses to passive movements and the late timing of basal ganglia
activity) are more di�cult to reconcile with action selection than with RDDR.

2.3.3 Behavioural Evidence

The action-selection hypothesis makes fairly clear predictions about the in�uence
of the basal ganglia on behaviour. In particular, experimental manipulations of
basal ganglia should show clear roles in driving movement, and in distinguishing
between alternatives on the basis of past reinforcement. This section argues that
for the most part the experimental evidence bears these predictions out.

In contrast, novel behavioural predictions of RDDR (as opposed to electrophys-
iological predictions) have been slow to emerge. This is not surprising, because the
e�ects of RDDR on the cortex would be more subtle than those of action selec-
tion. On the other hand, since the basal ganglia project densely to cortical motor
areas [109], one might ask what aspects of motor control would bene�t particu-
larly from the reinforcement-biased, compact representation of context that RDDR
would provide. Di�erent degrees of involvement might be expected in di�erent mo-
tor behaviours, but this type of input would seem to be more useful for high-level
choices than for low-level control. In other words, the basal ganglia might a�ect
similar types of overt behaviour regardless of whether they perform RDDR or se-
lection, although RDDR should have a more subtle in�uence on a broader range of
behaviour.

Involvement in Movement Execution

As suggested indirectly by disease symptoms, activity in the basal ganglia does
not just re�ect movement, but can cause movement as well. Microstimulation
of the motor striatum can produce muscle activity at a latency of about 20 ms
[201]. It can also produce movements (largely about a single joint) that are scaled
with stimulation strength [17, 18]. These data are compatible with RDDR, in
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that stimulation might approximate the representation of a contextual trigger for
movement. They are also clearly consistent with action selection.

However, the basal ganglia are also implicated in aspects of movement execu-
tion that are less-clearly related to selection. For example, Parkinson's disease is
associated with movements of reduced amplitude, including small strides [270] and
handwriting [284], suggesting basal ganglia involvement in movement scaling.

The symptoms of Parkinson's disease should be interpreted with caution, be-
cause 1) the disease also damages neurons outside the basal ganglia [55], and 2)
gradual onset of symptoms gives the rest of the brain ample opportunity to adapt,
possibly leading to secondary e�ects.

However, the in�uence of the healthy basal ganglia on movement has been stud-
ied more directly, through acute manipulations of the output nuclei. Studies in mon-
keys, in which the GPi was cooled [163], its activity inhibited by the GABA-receptor
agonist muscimol [266, 175, 378], or its cells lesioned with kianic acid [162, 266],
have reported slowed arm movements and reduced muscle activity, usually with
no e�ect on reaction times. Some studies also reported excessive co-contraction of
antagonist muscles [266], or variable reaction-time e�ects [175]. These variations
may have related either to the involvement of the GPe, and/or involvement of as-
sociative as well as motor loops. One study [194] reported co-contraction with GPe
lesion, but not GPi lesion.

A recent study that carefully isolated injections to motor areas of the GPi
reported reduced muscle activity, and slowed movements that undershot their tar-
gets [100]. These lesions had little e�ect on reaction times, and did not cause
co-contraction [100].

Together, these results suggest that the role of the healthy basal ganglia in motor
control is not limited to selection, but extends to movement parameterization.5

Involvement in Reinforcement Learning

In a well-known study, Knowlton et al. [204] showed a double dissociation between
1) declarative memory, and 2) implicit memory for probabilistic stimulus-outcome
contingencies, which implicated the basal ganglia in the latter. Subjects performed
a �weather prediction� task, in which they tried to predict the outcome �rain� or
�shine�, after viewing sets of neutral images with which these outcomes were prob-
abilistically associated. Patients with Parkinson's disease were unable to improve
their performance with practice. In contrast, patients with amnesia did improve
with practice, but had great di�culty answering follow-up questions about details
of the experiment. These results provide evidence that the basal ganglia are in-
volved in probabilistic classi�cation based on trial and error experience. In this

5It has also been suggested that the basal ganglia contribute to on-line motor control through
selection of discrete corrective sub-movements [166]. However, related pallidal activity may not
be early enough to drive these corrections (see Figure 8 in [166]), and on-line corrections are
unimpaired by GPi lesions [100].
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early study, the di�erence in classi�cation performance between the Parkinson's
and amnesic groups was not actually statistically signi�cant, and disappeared after
extended practice. However, subsequent studies provide additional support for the
role of the basal ganglia in probabilistic reinforcement learning [304, 150, 338].

In the classi�cation task of Knowlton et al. [204], participants had two ways to
improve: 1) by repeating choices that led to success in the past, and 2) by avoiding
choices that led to failure. Frank et al. [127] dissociated these two mechanisms, and
found evidence for striatal involvement in both. Subjects were repeatedly shown
three pairs of visual stimuli (Japanese characters), asked to choose one stimulus
from the pair, and then told whether or not they chose correctly. The correct
choices were determined randomly with di�erent probabilities. For one pair (which
the authors called A and B), stimulus A was the correct choice 80% of the time.
In other pairs the probability of each stimulus being correct was closer to 50%.
After a training phase with feedback, A and B were each paired with more neutral
stimuli, in a testing phase without feedback. This allowed separate assessment
of the participants' tendency to choose A as opposed to avoiding B. Subjects with
Parkinson's disease excelled at learning to choose A while on dopamine medication,
and excelled at learning to avoid B while o� medication. Intriguingly, patients o�
medication appeared to be better than age-matched controls at learning to avoid B.
These results implicate the basal ganglia and dopamine in both �Go� and �NoGo�
learning based on reinforcement.

What are the physiological correlates of Go vs. NoGo learning? As discussed
previously, dopaminergic neurons burst when rewards are higher than expected, and
pause when rewards are lower than expected [330]. Furthermore, dopamine mod-
ulates plasticity at corticostriatal synapses [312]. One possibility is that dopamine
bursts strengthen excitatory cortical synapses onto the D1-containing neurons at
the head of the direct pathway, and that dopamine pauses strengthen the corre-
sponding synapses at the head of the indirect pathway. A later study by Frank et
al. [125] showed variations in Go/NoGo learning in healthy subjects with genetic
di�erences related to striatal D1 and D2 receptors, supporting this interpretation.

These results implicate striatal D1 and D2 receptors in learning to select ac-
tions with good outcomes and to avoid actions with bad outcomes, respectively,
consistent with the hypothesis of action selection via reinforcement learning.

Reconciling these results with RDDR is less straightforward. There are several
possible interpretations. Firstly, in successful and failed trials, respectively, the di-
rect and indirect pathways might code whichever stimuli are presented (e.g. A and
B). In this case, RDDR might encourage recognition of these stimuli by cortical
circuits, but it would provide no basis for distinguishing between them. This pos-
sibility con�icts with evidence of striatal dopamine involvement in di�erentiating
these stimuli. Secondly, RDDR might preferentially code the stimulus to which the
subject directs the most attention in each trial, which is likely to be the one that
the subject chooses. In this case, RDDR would provide a basis for distinguish-
ing between stimuli. For example, A would be coded preferentially by the direct
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pathway, as part of the context of success, and B would be coded preferentially by
the indirect pathway, as part of the context of failure. This possibility might be
tested by forcing subjects to attend to the non-selected stimulus prior to feedback.
Finally, RDDR might compress cortical representations of actions (e.g. �select A�).

The latter two cases could operate simultaneously, and would be consistent with
basal ganglia activity related to sensory input, and the late timing of movement-
related activity, respectively. In either case, RDDR would not be an alternative to
action selection, but part of its mechanism. In particular, compression of contextual
information might be one step in the process of reinforcement-guided selection.

Involvement in Habits

Yin et al. [395] showed that stimulus-response habits in rats (as opposed to goal-
oriented actions) rely on the dorsolateral striatum. Rats were trained extensively to
press a lever for sucrose rewards. Sucrose was then devalued in some rats by pairing
it repeatedly with lithium chloride injection, which induces nausea, so that the rats
no longer consumed sucrose when they had free access to it. When exposed again
to the lever, intact rats continued to press it, despite devaluation of the sucrose
outcome. However, rats with lesions of the dorsolateral striatum pressed the lever
much less often when sucrose was devalued. In a separate study [396], rats with
similar initial training were (later in the experiment) rewarded instead when they
refrained from pressing the lever. Rats with muscimol infusion in dorsolateral
striatum reduced lever pressing when the reward contingency changed, but control
rats did not (these di�erences persisted the following day without drug infusion, so
this was not due to a simple impairment in the ability to press the lever).

These results directly implicate the dorsolateral striatum in habitual stimulus-
response action selection. In order to interpret these results within the RDDR
framework, it must be hypothesized that these habits are formed primarily on the
basis of compressed contextual data. The establishment of compressed striatal
representations in habit learning might explain why as habit learning progresses,
fewer striatal neurons are active in association with habitual movements, but those
few are active more strongly [355], and the activity of striatal units increasingly
focuses around speci�c phases of a more complex task [40].

2.3.4 Summary

The behavioural predictions of RDDR are less de�nite than those of action selection.
However, RDDR might be expected to impact movement more broadly and subtly
than a selection mechanism. The in�uence of the basal ganglia on movement scaling
is consistent with this interpretation.

The involvement of the basal ganglia in reinforcement learning tasks and habit-
ual actions is clearly consistent with the action-selection hypothesis. If the basal
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ganglia perform RDDR, rather than selection, this involvement implies that in-
formation compression is important for these behaviours. Section 4 discusses this
possibility in more detail.

2.4 Compatible Theories

2.4.1 Series Hypothesis

Anatomical and electrophysiological evidence are consistent for the most part with
both the action selection and RDDR hypotheses. However, RDDR provides a sim-
pler explanation for several observations, including anatomical funnelling, weak
(but dense) lateral inhibition in the striatum, late movement-related activity, and
responses to passive movement. On the other hand, although the e�ects of GPi
lesions suggest a role for the basal ganglia in movement parameterization, experi-
ments in reinforcement learning implicate the basal ganglia motor loops in habitual
action selection.

If alternative hypotheses are consistent with di�erent lines of evidence, one
wonders whether they are mutually exclusive. RDDR and action selection are
compatible in series, in that actions could (in theory) be selected on the basis of
compressed rather than raw contextual data. A series architecture would account
for diverse experimental evidence.

Furthermore, compressed contextual data would facilitate selection, in that it
would enable convergence of a greater amount of relevant contextual information
onto individual selection neurons. It would also �lter out reward-irrelevant context
signals, which would facilitate learning by reducing noise arising from spurious
context-action relationships. The information entering the selection system would
therefore be organized in a manner that emphasized important environmental cues
for action, based on the animal's accumulated experience.

More importantly, RDDR would facilitate generalization. When an environ-
ment is complicated and/or the context variables are continuous, an agent encoun-
ters novel situations routinely, and performance depends critically on generalization
from previously-encountered states [353]. If action selection were based on com-
pressed contextual data, then compression should make this generalization more
robust, by reducing the e�ective dimension of the context space without reducing
the number of samples.

Similarly, reinforcement learning requires estimation of the reinforcement value
of each state. This process requires the same type of generalization across dis-
tinct contexts, and would bene�t in the same way from appropriately-compressed
contextual data. Sahani [320] discusses essentially the same issue from another
perspective, pointing out that the reinforcement value of a context is likely to be
more parsimoniously associated with underlying causes than with sensory data. He
then proposes a biologically plausible mechanism by which di�use reinforcement
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signals might optimize sensory coding in the cortex, for use in value-function ap-
proximation. RDDR in the striatum would provide a complementary mechanism
for achieving the same goal. Speci�cally, instead of optimizing sensory codes to sup-
port extraction of reward-relevant latent variables, the extraction of latent variables
would be biased along reward-relevant dimensions.

Relatedly, Swinehart & Abbott [354] showed that dimensionality reduction fa-
cilitates reinforcement learning of function approximation (this is distinct from the
problem of value-function approximation during reinforcement learning of a se-
lection policy). In their method, a target function is approximated by weighted
basis functions. The weights are changed randomly, and reinforcement consolidates
changes that lead to improved approximation. With a large number of basis func-
tions, the large dimension of the weight space slows this semi-random approach to
the optimal weights. Compressing the input simpli�es the search. At �rst glance,
it seems that a similar mechanism might underlie action selection in the striatum.
Speci�cally, an intrinsically random element in striatal neurons could select actions
at random, and with success, reinforcement could strengthen weights associated
with coincident contextual signals, making the successful action more likely to be
performed again in the same context. However, closed loops and timing of action-
related activity (discussed above) suggest that if the striatum does select actions, it
does so by vetting candidate actions that are coded in the cortex rather generating
its own actions at random. On the other hand, if the striatum instead represents
compressed contextual data, reinforcement signals within the cortex might shape
function approximation based on its output, in a similar manner.

2.4.2 Site of Context-Action Mapping

If RDDR and action selection operate in series, where is contextual information
mapped to actions? One possibility is that the mapping occurs in the projection
from the striatum to the output nuclei (so that the output nuclei represent action
signals). However, responses to passive movement observed in the output nuclei,
and the later timing of movement-related activity there compared with the cortex,
argue against this. It is also unclear how mappings at this site would be estab-
lished and maintained. As argued further in Chapter 8, either reinforcement or
supervisory signals are needed in order to establish a mapping from one type of
information to another (e.g. from contextual information to action; as opposed
to simply reorganizing contextual information). Dopamine innervation of the out-
put nuclei [381] might play a role, although it is not as dense as in the striatum.
The hyper-direct pathway could conceivably provide a supervisory signal, but this
role would be inconsistent with extensive collateralization and divergence in this
pathway, and with evidence for its role in slowing decisions [126].

In contrast, thalamic or cortical mapping would allow convergence of RDDR
output with prefrontal signals that subserve other, more cognitive modes of action
selection (e.g. declarative memory of what has worked in the past; instruction fol-
lowing). This would provide a pathway for automation of these cognitive selection
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mechanisms over time. Speci�cally, these cognitive signals would provide appro-
priate teaching signals for supervised learning of context-action mapping, so that
intermediate cognitive steps could eventually be skipped.

The possibility of automating cognitive processes in this manner does not pre-
clude the additional possibility that parallel processes might explore the action
space in a more random manner. Both the cortex and the thalamus [344] receive
substantial dopamine input, which could consolidate successful variations [213].
Accordingly, EEG signals that re�ect reward prediction errors are found over the
motor cortex on the side used to carry out a decision [75]. However, if relevant cog-
nitive information were available, it would make exploration more e�cient. This
type of transfer from cognitive to automated control would essentially cause the
animal to behave as it had in the past, unless it paid attention. This would be
consistent with shifts in activity from motor to prefrontal circuits, when human
subjects pay attention to their performance in overlearned motor tasks [189].

Finally, although context could plausibly be mapped onto actions in either the
thalamus or cortex, it is not certain that the mapping occurs in one step, or that
context and action signals are anatomically segregated.

2.4.3 Experimental Tests

Although there are several possible sites of context-action mapping, the basic ques-
tion relevant to the RDDR hypothesis is whether this mapping occurs primarily in
the cortico-striatal projections, i.e. whether striatal activity is more closely related
to context or action (Figure 2.1). A basic strategy for addressing this question
would be to 1) train a habitual response in rats, 2) block synaptic plasticity in the
striatum, 3) remap the stimulus to a new response, and then 4) test whether the
new mapping is sensitive to reward devaluation. If not, i.e. if the new response is
habitual, this would suggest that the striatum had coded the relevant context for
action, while the mapping to a selected action was performed elsewhere.

Such an experiment would resemble the study of Yin et al. [395], which provided
evidence for the role of the dorso-lateral striatum in habitual actions (as discussed
above). In their experiment, rats learned to press a lever to obtain a sucrose reward.
Rewards were provided on a variable-interval schedule, in order to make the rats'
responses habitual (response extinction is rapid when rewards are devalued after
continuously-reinforced training; e.g. [114]). The interval schedule dissociates the
lever-pressing response from the rats' expectation of reward, so that the antecedent
for the lever-pressing action becomes simply the opportunity to press the lever. This
experiment does not clarify whether the critical information coded in striatum is
the availability of the lever, or the lever-pressing action itself.

In order to test this distinction in a similar experiment, rats could initially be
trained to manipulate a lever in some way (e.g. push it to the left), and then
trained to manipulate it di�erently (e.g. move it to the right) after blocking stri-
atal plasticity. Long-term synaptic potentiation in the striatum can be inhibited by
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Figure 2.1: With respect to the possible role of RDDR in action selection, the
fundamental question is whether context-action mapping occurs in projections onto
the striatum, or later in the feedforward pathways.

NMDA-receptor blockade (e.g. [29]). Long-term depression can proceed indepen-
dently of NMDA [238]. However, it requires retrograde signalling at the synapse,
and is sensitive to mRNA translation inhibitors [393]. After inital training to es-
tablish stimulus-driven behaviour, striatal plasticity would be minimized by local
drug injections, and the reward contingency changed (e.g. to rightward lever push).
Only one action should be possible in the second phase, because alternative actions
remain goal-directed even after extensive interval training [394]. If the contribu-
tion of the dorso-lateral striatum to habitual actions is to represent exploitable
context, this representation should remain intact while plasticity is blocked, and
newly learned responses to this contextual information should be resistant to reward
devaluation.

2.5 Conclusion

The action selection and RDDR hypotheses are attempts to summarize the function
of a very complex system. There are inherent limitations associated with this goal:
1) neither hypothesis predicts the complex anatomy and physiology of the basal
ganglia in detail, and 2) each basic hypothesis can be interpreted in a number of
ways (one consequence of which is the wide variety of published action selection
models). Ultimately, it is doubtful whether the behaviour of these 108 coupled,
nonlinear neurons can be re�ected faithfully in a simple model. But the system can
be understood more clearly if we can identify the simple model that is minimally
misleading.

The anatomical and electrophysiological evidence reviewed here leans in favour
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of RDDR, but the behavioural evidence supports action-selection. These potentially-
con�icting interpretations can be reconciled by the further hypothesis that dimen-
sionality reduction in the striatum serves as the input stage for action selection in
the pallidum, thalamus, and/or cortex.

2.5.1 Reinforcement Learning

Dopamine responses resemble reward prediction error in the temporal-di�erence
model of reinforcement learning, which makes it appealing to think of the striatum
as the actor in the actor-critic model. The series hypothesis presented here contra-
dicts this idea, and this is itself a reason for skepticism. Although detailed models
comparing the actor-critic architecture to basal ganglia have limitations, the gen-
eral outlines of the actor-critic concept of basal ganglia have received a great deal
of attention and scrutiny (much more than RDDR).

Part of the appeal of the actor-critic concept of basal ganglia is that it goes a
long way toward doing away with the homunculus. TD learning leads to complex,
adaptive behaviour in models. Because the basal ganglia are conserved across many
species, it is tempting to think that something like TD learning in the basal ganglia
might account for much complex, adaptive animal behaviour.

The series hypothesis separates the reinforced selection policy from the part
of the brain where it is expected, i.e. the dopamine-dense striatum. However,
midbrain dopamine neurons also project throughout the cortex, and in�uence cor-
tical plasticity [213]. So the series hypothesis does not argue against basal ganglia
involvement in reinforcement learning, but suggests a way in which reinforcement
learning could be made more practical for complex environments, i.e. by structuring
context representation to emphasize salient features, and facilitating generalization
to novel situations.

2.5.2 Next Steps

It makes little sense to discuss principles of basal ganglia function without consid-
ering what the basal ganglia do. Because of the complexity of the basal ganglia
circuits, and the central location of the basal ganglia in the brain, their function
is not obvious. However, the literature reviewed here suggest that 1) RDDR is
consistent with striatal anatomy and physiology, 2) action selection is consistent
with the in�uence of basal ganglia on behaviour. This chapter has further argued
that RDDR may serve as an input stage for action selection. One way forward from
these arguments would be to encapsulate them in a sophisticated computational
model, and compare the model's behavior with as many observations as possible.
However, a directly-relevant experimental test is possible, as outlined above, so that
would be a more appropriate �rst step.
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Furthermore, while a great deal is known about the anatomy and physiology
of basal ganglia circuits, questions remain about their basic computational prop-
erties. For example, what computations can inhibitory projections perform? How
do cell-intrinsic �ring dynamics interact with computation? Although useful basal
ganglia models have been developed in the past, without addressing questions like
these, more sophisticated models will increasingly require answers. Because this
is a theoretical thesis, the experimental work is deferred, and the remainder of
the thesis focuses on elucidating the basic computational properties of the basal
ganglia circuits. In conjunction with future experimental work, the computational
properties explored in the following chapters should ultimately contribute to more
advanced and comprehensive models of basal ganglia function.
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Chapter 3

Population Coding

This chapter reviews theoretical aspects of population coding, i.e. information
representation by distributed patterns of neural activity, which is a key feature of
information processing in the basal ganglia.

Whenever an externally-identi�able signal (e.g. reward delivery, movement
about a certain joint, etc.) is correlated with basal ganglia activity, it is corre-
lated with not one, but many basal ganglia neurons. This is why electrophysiolo-
gists are consistently able to �nd neurons responsive to the particular conditions of
their experiments, despite the fact that a typical experiment will examine less than
.001% of the neurons in the basal ganglia. Furthermore, individual basal ganglia
neurons sometimes participate in the coding of diverse information, e.g. movement
direction in combination with visual stimuli [12, 146], applied load [83], or reward
expectancy [27]. Thus the basal ganglia represent information in the form of dis-
tributed neural codes, or population codes. In this respect, the basal ganglia are
typical of mammalian neural systems.

This chapter reviews population-coding, and introduces the Neural Engineering
Framework (NEF), a coherent theory of population coding that also addresses the
relationship between population codes and network dynamics. Finally, the chapter
closes with a discussion of �cosine tuning�, which plays an important role in the
NEF.

3.1 Introduction

Not all neural systems use population codes. In some invertebrate circuits, each
neuron has a distinct and well-de�ned role, which is conserved across individuals
of a species, and circuit behavior can be strongly a�ected by damage to a single
neuron. The abdominal ganglion of the snail Aplysia [191] is a well-studied example.
Still other systems are hybrids. For example, in the cricket cercal system, about
1000 correlated primary sensory neurons project to a small number of identi�ed
interneurons that have distinct roles [359].

41



However, population coding is ubiquitous in mammalian central nervous sys-
tems. In these circuits, any single item of information is represented by many
neurons, so that the activity of any single neuron has little impact on the rep-
resentation of that information. For example, a visual stimulus moving across a
certain part of the visual �eld, in a certain direction, will cause �ring activity in a
large number of neurons in the middle temporal area of the primate cortex [246].
Collectively, the �ring of these neurons contains information about the motion of
the visual stimulus (i.e. encodes the stimulus). Similarly, populations of neurons
in the primary visual cortex code for the orientation of visual contours [168], and
populations in the hippocampus code for spatial location, which can be inferred
from multiple sensory modalities [282].

One reason population codes are useful is that the activity of any one neuron
typically has an ambiguous relationship with the underlying signal. This is because
individual neurons are noisy, and typically active over a wide range of signal values
(wider than the resolution needed by the system). Studies by Georgopoulos et al.
[129, 130] provided the �rst clear illustration that populations of such imprecisely-
tuned neurons can carry precise information. They recorded the �ring activity of
neurons in the arm area of the primate motor cortex, and found that individual neu-
rons �red most quickly during (and just prior to) movement of the arm in a certain
direction, which they called the neuron's �preferred direction�. However, neurons
were broadly tuned: they also �red at above-baseline rates during movements in
quite di�erent directions, up to about 90 degrees from the preferred direction. The
broad tuning of these neurons appeared to con�ict with the precision of movements
under their control. However, Georgopoulos et al. were able to accurately predict
movement direction from the recorded activity of multiple neurons. To estimate
movement direction from population activity, they used a weighted average of pre-
ferred direction vectors, with each vector weighted by the increase in its activity
above baseline. This method provided reasonably accurate predictions of movement
direction, even during delay periods prior to movment. Their success demonstrates
that population activity as a whole contains accurate information about the mon-
key's intended movement direction, despite the broad tuning of individual cells.
This principle is vividly con�rmed in more recent experiments, in which restrained
monkeys can feed themselves using robotic arms that are controlled by the decoded
activity of neurons in the motor cortex [373].

Throughout the cortex, the activity of neurons in a small neighbourhood is typ-
ically correlated. Therefore, regardless of whether a corresponding external signal
can be identi�ed, it is reasonable to think of the population as coding some underly-
ing signal � if not a sensory or motor signal, then perhaps a complex transformation
of past and present sensory and/or motor signals.

Information coding through correlated neuronal activity has a clear disadvan-
tage in terms of energy e�ciency. The human brain uses about 20% of the energy
of the whole body. Most of this energy could be conserved by reducing the redun-
dancy inherent in population coding. Alternatively, doing away with population
coding would increase the representational capacity of the brain by one to three
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orders of magnitude. Not surprisingly, in the face of this pressure, population cod-
ing also provides important advantages. Three key advantages are discussed in the
following sections.

3.1.1 Noise Reduction via Redundancy

There are many sources of noise in neural systems. For example, it is common for
a presynaptic terminal to fail to release synaptic vesicles when a neuron spikes (e.g.
[19]). A practical advantage of population coding is that if the noise in di�erent
neurons is statistically independent, then the accuracy with which a population
represents information improves inde�nitely with increasing population size (by
the central limit theorem).

However, neuronal noise is often correlated, and correlated noise limits coding
accuracy, regardless of the number of participating neurons. Zohary et al. [404]
showed that weak covariation observed in the �ring rates of pairs of cortical neurons
(in the middle temporal area) has a large e�ect at the population level. Speci�-
cally, the predicted signal to noise ratio of the population code does not increase
inde�nitely with increasing population size, but saturates with about 100 neurons.
This limits the useful size of a population for coding accuracy purposes (although
noise reduction is not the only bene�t of a population code, as discussed below).

Interestingly, noise correlations can also improve coding. As a simple example,
if a value is encoded in the di�erence between two �ring rates, then the code is
not corrupted by random co-variation in these rates, whereas it is corrupted if
the rates exhibit independent random variations. More generally, if signal-related
and noise-related correlations between di�erent neurons are in opposite directions,
correlated noise corrupts a population code less than noise that is uncorrelated
between neurons [31].

In the same way that a population code reduces noise under normal circum-
stances, it will also reduce the impact of damage to part of the population (this is
clear if one thinks of damage as low-frequency noise). Furthermore, the fact that
a population-coding network is relatively insensitive to damage to a small number
of neurons may provide �exibility that is useful during learning.

3.1.2 Computation via Diversity

A second bene�t of population coding is that, compared to a single-neuron code,
a population code can support more sophisticated and �exible transformations of
represented signals. The scope of transformations that can be performed in a
projection from one population to another can be understood by analogy with
arti�cial neural networks. A feedforward network with one hidden layer of sigmoidal
units can approximate any smooth function with arbitrary precision, provided the
hidden layer is su�ciently large [84]. This is intuitive for a network with one input
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neuron. In such a network, the activity of each neuron in the hidden layer is a
function of one variable, i.e. the �ring rate of the input neuron. If di�erent hidden-
layer neurons have di�erent weights and biases, their �ring rates become in�nitely
varied functions of the input. If there are enough of them, they can span any �nite-
dimensional space of functions of the input. An output neuron can then decode any
function of the input, through an appropriate linear combination of hidden-layer
activities. Similarly, networks with n input neurons can approximate functions of
n dimensions. This is true for any neuron model in which output is a non-linear
function σ of the sum of inputs and an intrinsic bias, where σ approaches zero as the
net input approaches negative in�nity, and saturates as the net input approaches
in�nity [84]. Therefore the result applies not only to arti�cial neural networks, but
also to a wide variety of more physiologically-realistic neuron models.

In the context of population coding, the �ring rates of neurons in a population
can be interpreted as functions of the low-dimensional information that they encode,
rather than higher-dimensional functions of the �ring rates of the many correlated
neurons that drive them. Much like the hidden-layer neurons discussed above, if
there are enough neurons in a population, and enough variety in their tuning curves,
then arbitrary functions of the encoded space can be extracted by a post-synaptic
neuron through appropriate choice of synaptic weights (Figure 3.1).

The diversity of tuning curves that is required for �exible transformation can
arise simply from random variation between neurons. Further diversity may be
enforced by competitive interactions between di�erent neurons within the popula-
tion. The pattern of diversity can also be optimized for the task, resulting in more
e�cient use of neurons. Such task-related focusing of tuning curve diversity is es-
sentially what the back-propagation algorithm [319] achieves in hidden layers of a
feed-forward network. The back-propagation algorithm itself is not physiologically
realistic [81]. However, there are more realistic algorithms that perform comparably
[390].

3.1.3 Representation of Uncertainty

Finally, population codes provide a way to represent uncertainty about represented
values. An animal must frequently act on the basis of incomplete or ambiguous
sensory data about its environment. Wiser decisions are possible if the animal's
representation of the environment includes not only best estimates of environmental
signals, but also information about the certainty of those estimates. One decision
an animal might make is to collect more information, in order to reduce uncertainty
to the point where a more critical decision can be made.

The problem is not unique to perception. Even if the instantaneous value of a
signal is unambiguous, an animal sometimes has to act on its predicted future value.
For example, Jane Goodall [137] relates an incident in which a young chimpanzee
died while trying to jump from one high tree branch to another, because a gust of
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Figure 3.1: Computation with a population of neurons that are tuned to a one-
dimensional signal (left panels) is analogous to computation with a feedforward
arti�cial neural network with one input unit (right panels). A, Firing rates (nor-
malized) of a population of neuron models, as a function of a one-dimensional
encoded signal. These neuron models have randomly-selected parameters, which
produce uniform distributions over ranges of threshold and peak �ring rate. B,
Sigmoidal responses of various hidden-layer units in a feedforward arti�cial neural
network, as a function of a single input. These units have randomly-selected input
weights and biases. C, A function (solid line) of the encoded signal, and its ap-
proximation (dashed line) as a linear combination of the tuning curves in (A). D,
Function of the input (solid line) and approximation (dashed line) by an output
unit, as a linear combination of the tuning curves in (B).
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wind arose mid-jump. The brain of an older chimpanzee might have contained a
more accurate representation of this uncertainty, and made a di�erent decision.

In theory, a single-neuron code could provide information about both a parame-
ter estimate and its uncertainty, in di�erent frequency bands. However, population
codes allow more sophisticated representations of uncertainty. This is illustrated
by several types of stochastic arti�cial neural networks, in which binary nodes have
a certain probability of being active in each time step (e.g. the Boltzmann machine
[157]). These networks learn to model the probability distribution of their inputs,
in such a way that novel inputs can be classi�ed stochastically. Interestingly, these
networks can also generate novel patterns that conform to a certain category of
input.

Other network models have been devised in which instantaneous activity en-
codes a probability distribution. The �rst was due to Anderson [21, 22], who
proposed a variation on the population vector model [130], in which each neuron's
activity corresponds to a probability density function (PDF) rather than a vector.
Population activity can then be interpreted as a composite PDF, which is the nor-
malized sum of each neuron's PDF, weighted by the corresponding neuron's �ring
rate. These ideas are among the roots of the Neural Engineering Framework, which
is discussed below. The constraint that each neuron's activity corresponds to a
PDF turns out to be unnecessary, and the model has since been re�ned so that
individual neurons contribute more general basis functions to a composite PDF
at the population level [39]. Other related models have also been developed (e.g.
[321, 401]).

3.2 Neural Engineering Framework

The population-coding concepts described above were integrated by Eliasmith &
Anderson [111] into a coherent theoretical framework, called the Neural Engineer-
ing Framework (NEF). The term �neural engineering� has since come to be strongly
associated with brain-machine interfaces. In the NEF, the term is instead used to
emphasize that the brain solves practical problems using practical (i.e. noisy, sat-
urating, failure-prone) components, and that consequently, many of the analytical
methods that have been developed to solve engineering problems are well-suited for
studying neural systems. The framework is based on the three following principles
(their wording):

1. Neural representations are de�ned by the combination of nonlinear encoding
and weighted linear decoding.

2. Transformations of neural representations are functions of variables that are
represented by neural populations. Transformations are determined using an
alternately weighted linear decoding.
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3. Neural dynamics are characterized by considering neural representations as
control theoretic state variables.

The central concept in this framework is that of neural representation, i.e. that
the activity of a population of neurons �represents� something. Population activity
may represent a fact about the physical world (such as a sound, the location of part
of the body, etc.), or an abstract object that is relevant to information processing.
Mathematically, the framework describes representation of scalars, vectors, and
functions, which together can be used to model a great variety of physical and
abstract entities.

The physiology of representation is probably most intuitive in terms of the
senses. The transducer cells of sensory organs (e.g. retina, basilar membrane, mus-
cle spindles) are connected to neurons. The �ring patterns of these neurons are
determined by the signals (e.g. light, sound, muscle length) to which these cells
are sensitive. Furthermore, to the extent that the nervous system is sensitive to
di�erences between signals (e.g. between two light levels), di�erent signals produce
di�erent overall patterns of activity in the group of neurons that are connected
to the sense organ. So the activity of these neurons contains encoded informa-
tion about the physical world. Primary sensory neurons are connected to deeper
neurons, allowing sensory information to propagate through the brain. Di�erent
patterns of connectivity can result in di�erent transformation of sensory informa-
tion, or its combination with information from other sources.

3.2.1 Representation

The NEF theory of neural representation combines prior work on 1) decoding sin-
gle spike trains through linear �ltering [314], and 2) optimal linear decoding of
population vectors [1, 323], and generalizes the description of representation be-
yond scalars and vectors to include representation of functions. For simplicity, the
discussion will focus on vector representation (scalars are just one-dimensional vec-
tors, and functions are just in�nite-dimensional vectors, which can be approximated
arbitrarily well as high-dimensional vectors).

There are two aspects of representation: encoding and decoding. The descrip-
tion of encoding begins with the current Ji that enters each neuron as a function of
the represented vector x (ignoring for the moment the physiological source of this
current):

Ji(x) = αiφ̃
T
i x + J biasi ,

where αi is a scale factor, φ̃i is an encoding unit vector (e.g. -1 or 1 in the scalar
representation case), and J biasi is a �bias current�, which models all the e�ects that
contribute to baseline �ring, in the absence of input. Neural activity ai is a function
G(•) of current,

ai(x) = Gi[Ji(x)] + ηi(t),
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where ηi(t) summarizes the various sources of noise that a�ect the neuron's output.
This equation determines the neuron's tuning curve, i.e. its activity as a function of
the represented variable x. Gi(•) is generally a non-linear, non-decreasing function
of Ji(x). This means that for a given magnitude of x, the neuron's activity is
greatest when x is aligned with the neuron's encoding vector (or preferred-direction
vector) φ̃i. This form of tuning is called cosine tuning, because φ̃Ti x ∝ cos(θ), where
θ is the angle between φ̃i and x. Cosine tuning is discussed further in Section 3.3.

Depending on the level of detail of the model, ai(x) can itself be a scalar that
corresponds to the neuron's �ring rate, or it can be a more detailed spike-based
description, for example a sum of impulses,

ai(x, t) =
∑
n

δ(t− tin),

where t is time and tin is the time at which the ith neuron spikes for the nth

time. Models of a neuron's spike-response function G(•) range from simple sigmoid
functions to conductance models with dozens of parameters. For models of large
networks, the leaky-integrate-and-�re (LIF) model [207] provides an appealing bal-
ance between �delity and complexity. This model is simple, but it emulates several
key features of spiking behaviour (e.g. all-or-nothing spikes; spike-rate saturation).
The �ring rate of an LIF neuron is

ai(x) =
1

τref − τRC ln(1− Jth/Ji(x))
,

where τref is the minimal refractory time between spikes, τRC is the membrane
time constant, and J th is the current threshold at which the �ring rate becomes
non-zero. With minor elaborations, the LIF model can predict the spike times of
individual recorded neurons very accurately (sometimes outperforming much more
complex conductance models [275]).

Completing the account of representation, decoding is described in terms of a
weighted sum of the activities of neurons in the population,

x̂ =
∑
i

ai(x)φi,

where φi are decoding vectors, and x̂ is the decoded estimate of the input x. Least-
squares optimal decoding vectors can be found by minimizing the following error:

E(Φ) =
1

2

∫
x

[x−
N∑
i

ai(x)φi]
2dx.

As discussed in the introduction, one advantage of population coding is the
possibility of explicitly representing the uncertainty of an estimate. Representation
of uncertainty, in the form of a probability distribution, is a special case of function
representation [39].
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Population A Population B

Figure 3.2: A communication channel between a population of neurons A and
another population B.

3.2.2 Transformation

If a population A represents the signal x, then it can convey the value of x to another
population B (Figure 3.2), provided the synaptic weights between populations are
tuned appropriately. To �nd the synaptic weights that support this communication,
we begin by assuming that population B does not have direct access to the value
of x, but that it has access to x̂, the estimate of x that can be decoded from the
activity of neurons in A. The activity bj of the j

th neuron in population B is then

bj(x) =Gj[Ji(x̂)]

=Gj[αjφ̃
T
j x̂ + J biasj ]

=Gj[αjφ̃
T
j

∑
i

ai(x)φi + J biasj ]

=Gj[
∑
i

wjiai(x) + J biasj ]

where wij = αjφ̃Tj φi is the weight of the ith presynaptic neuron's synapse onto

the jth post-synaptic neuron. In other words, the weight of the synapse from
the ith presynaptic neuron onto the jth postsynaptic neuron is the product of the
corresponding preferred-direction and decoding vectors, scaled by αj (which is a
scale factor common to all the synapses onto the jth neuron). Note that the term∑
wjiai(x) describes linear synaptic integration, i.e. the inputs to a neuron com-

bine linearly before passing through the output nonlinearity G. Thus the NEF
characterization of linear decoding and cosine tuning implies linear synaptic inte-
gration. As discussed in Chapter 8, the NEF characterization of cosine tuning is
also implied by linear synaptic integration.

With a di�erent choice of synaptic weights, population A can communicate a
function f(x) to population B, rather than x itself. For example, if all the weights
are doubled, the projection communicates f(x) = 2x. More generally, a linear

49



transformation de�ned by the matrix A is communicated by the synaptic weights

wij = αjφ̃
T
j Aφi.

Non-linear transformations can also be performed, via alternate decoding vec-
tors φ

f(x)
i , which optimally decode f(x) instead of x.

3.2.3 Dynamics

For neurons that �re at a constant rate with constant injected current, �ring rate
dynamics are dominated by the dynamics of post-synaptic current [111]. A spike
at a chemical synapse results in post-synaptic current that has a time course much
like a �rst-order exponential decay,

h(t > 0) =
w

τ
e−t/τ ,

where w is a synaptic weight (which describes the total charge entering the cell
with each spike), and the time constant τ describes the rate of current decay. This
model of post-synaptic current (PSC) dynamics ignores a small but �nite rise time,
but this simpli�cation does not substantially a�ect the present discussion. The net
current at each synapse is the convolution of presynaptic spike impulses with h(t).
Assuming linear synaptic integration, this implies that the total input to the cell
is the weighted sum of the presynaptic population output, all convolved with h(t)
(Figure 3.3).

Represented variables can be treated as the state variables of a dynamical sys-
tem. A linear time-invariant system with a �nite list of states x is described by the
following equations:

ẋ(t) = Ax(t) +Bu(t), (3.1)

y(t) = Cx(t) +Du(t),

where u(t) and y(t) are the system input and output, respectively, and A, B, C, and
D de�ne the system's dynamics, and its input, output, and feed-through scaling,
respectively. These equations can be re-written in terms of PSC dynamics, so that
the activity of a population with an input u(t) and a recurrent feedback connection
can be described in a form similar to the �rst state equation:

x(t) =
1

τ
e−t/τ ∗ [A′x(t) +B′u(t)], (3.2)

where A′ and B′ describe the recurrent and input projections, respectively. If
equations (3.1) and (3.2) are re-written in the Laplace domain, as follows:

sx(s) = Ax(s) +Bu(s),

x(s) =
1

τs+ 1
[A′x(s) +B′u(s)],
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Figure 3.3: Transformations and dynamics of represented variables vs. neuron ac-
tivities. A, Block diagram describing the relationship between two hypothetical
represented variables, x and y. The diagram includes a static block, which mul-
tiplies x by a constant α, and a dynamic block, which �lters αx to produce the
output y. B, Schematic of a neural network model that corresponds to this block
diagram. Each circle indicates a neuron. On the left is a population of neurons that
encodes the value of x (i.e. the �ring of these neurons is correlated with x, in such
a way that x can be estimated from their activity pattern). These neurons project
to another population of neurons on the right, which encodes the value of y. The
synaptic weights in this projection are chosen so that a decoded estimate of αx is
conveyed to the y neurons (as described in Section 3.2.2). The transfer function
of each synapse, which maps a spike input to a post-synaptic current response, is
the same as the transfer function of the block diagram in (A). As a result of these
similarities, the neural network behaves analogously to the abstract system shown
in (A).
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then they are the same when
A′ = τA+ I,

B′ = τB.

Therefore, 1) every linear time-invariant system has an equivalent family of neural
circuits (to within coding error), which di�er in terms of time constants, �ring
rates, etc., and 2) it is straightforward to �nd this family. Although the above
discussion is restricted to linear dynamics, the same mechanisms can also implement
nonlinear systems, through nonlinear function decoders φ

f(x)
i [110]. In principal, the

result applies to any dynamical system that can be described with a set of explicit
ordinary di�erential equations, although (as discussed in Section 3.3, below) not all
non-linear functions can be decoded with equal accuracy.

3.2.4 Summary

The NEF provides a broad and coherent account of how neurons work together
in large circuits to represent and transform information. When a circuit model is
developed with the NEF, the modeler speci�es low-level neuronal details such as
ranges of �ring rates and membrane time constants, as well as high-level details rel-
evant to the population code, such as the preferred direction vector of each neuron.
Probability distributions over these parameters can be estimated from results in the
experimental literature. The modeler also speci�es the high-level transformations
performed by each projection from one population to another. These transforma-
tions are hypothesized based on experimental evidence about the computational
and dynamic properties of the circuit, and its function.

Finally, the synaptic weights necessary to produce the speci�ed transformations
are derived as a function of everything else. This is a great advantage, because
synaptic weights are much more di�cult to measure than other circuit properties.
Furthermore, even if a few synaptic weights can be measured, providing a rough
estimate of their probability distribution, such a distribution indicates little about
the key property of the synaptic weights, which is their �ne structure in relation to
neuronal tuning curves.

In contrast with the NEF, most approaches to neural modeling require synaptic
weights to be learned. This is more time-consuming, and it can be di�cult to
�nd a learning rule that leads to the apparent function of a neural circuit. On
the other hand, synaptic weights are learned in the brain, so the requirement that
they be learned in a model can arguably provide an additional constraint. However,
theoretical learning rules are much less sophisticated than physiological mechanisms
of synaptic plasticity (which are a subject of very active research). So it is unclear
how well the constraints imposed by theoretical learning rules are aligned with the
constraints of biology. Recognizing that this alignment is likely to improve in the
future, Chapter 8 shows how learned weights can be interpreted within the NEF.
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In a population code, the codebook consists of neuronal tuning curves ai(x),
i.e. �ring rates as functions of represented variables. The shapes and distribution
of tuning curves de�ne both the redudancy inherent in the code, and the compu-
tations that it supports. Furthermore, as the NEF shows, these computations also
underlie network dynamics. So tuning curves are key features of a neural circuit.
At �rst glance, cosine tuning seems to imply that tuning curves belong to a fairly
restricted family, and one might suspect that this entails some sort of restriction
on computation. The following section explores this issue in more detail.

3.3 Cosine Tuning

Linear decoding, which corresponds to linear synaptic integration, constrains trans-
formations to be weighted sums of the tuning curves of the presynaptic population.
The shapes of the tuning curves therefore determine which transformations are
possible.

The tuning curves of a population are typically diverse. They are therefore
something like a vector-space basis, in that di�erent linear combinations of tuning
curves produce a variety of functions. However, the components of a basis are
linearly independent, by de�nition, whereas neuronal tuning curves are typically
not (it is this redundancy that mitigates the e�ects of noise and damage). So the
tuning curves of a neuronal population do not form a basis, but a frame [90].

A frame is a list of vectors Ψ = {ψk} in a vector space H, for which

α||v||2 ≤
∑
k

| < v, ψk > |2 ≤ β||v||2 (3.3)

for all v in H, where < •, • > denotes an inner product, and α > 0 and β < ∞
are called frame bounds. The lower bound means that Ψ spans H, and the upper
bound means that Ψ is �nite.

A vector v (e.g. a sampled function of an encoded variable x) can be encoded
on a frame Ψ by the frame operator F . The frame operator is de�ned by

ck = (Fv)k =< v, ψk > .

The representation of v on the frame is then c = Fv. In the context of a neuronal
population code, ψk corresponds to the kth tuning curve, and ck corresponds to
the inner product of the kth tuning curve and v. This inner product has no clear
physiological meaning, so encoding on a frame is quite di�erent from neural encod-
ing (although as discussed in Section 3.3.2, ck takes on meaning in the context of
Hebbian learning). The vector v can be decoded from its frame representation c as

v = F̃ Tc =
∑
k

ckψ̃k,
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where ψ̃k make up the �dual� frame of Ψ, and F̃ is the corresponding frame operator.
The dual is de�ned by

ψ̃k = (F TF )−1ψk.

Equation (3.3) can also be written as

αI ≤ F TF ≤ βI. (3.4)

The space of all possible functions of a represented variable is in�nite-dimensional,
so of course no �nite list of tuning curves can span it. Consequently, the transfor-
mations that can be realized by a projection from any given population are con-
strained, i.e. to the �nite-dimensional space that is spanned by its tuning curves.
The principal components of the tuning curves form a basis of this space. However,
the dimension of the space is not necessarily clear-cut. It is not uncommon for a
few principal components to account for most of the variance of the tuning curves,
and for many additional principal components account for the remaining variance.
Ideally, the space of possible transformations would include all of the principal com-
ponents that contribute to the tuning curve variance. However, neurons are noisy,
and principal components with variance comparable to or smaller than the noise
cannot be accurately decoded. So roughly speaking, the dimension of the space is
equal to the number of principal components that account for more of the variance
in neuronal activity than noise does.

As mentioned above, linear synaptic integration implies cosine tuning. There-
fore the principal components of cosine-tuned neurons are of particular interest. In-
terestingly, the principal components of cosine-tuned LIF neurons closely resemble
the Legendre polynomials [111] (see also Figure 3.4). This has led C. H. Anderson
(personal communication) to argue that it should be possible to understand neural
transformations largely in terms of low-order polynomial functions of represented
variables.

3.3.1 Cosine Tuning on a Manifold

While there are clear examples of cosine tuning in the brain (e.g. [130]), Gaus-
sian tuning is also frequently described. (�Gaussian� tuning curves are not liter-
ally Gaussian functions, but they are similar in that they are smooth, localized,
and symmetric.) Since linear synaptic integration implies cosine tuning, Gaussian
tuning appears at �rst to imply non-linear synaptic integration. However, one-
dimensional Gaussian tuning also describes two-dimensional cosine-tuned neurons,
if the experiment only includes stimuli that fall on a circle in the two-dimensional
space (as in e.g. [246]).

Similarly, Gaussian tuning can arise from cosine tuning on a manifold that arises
from transformations in the neural circuit. Such a manifold arises when an n-
dimensional population receives m-dimensional information, where m < n. Figure
3.5B shows an example of two-dimensional cosine tuning that appears Gaussian on
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Figure 3.4: Principal components of cosine-tuned LIF neurons resemble low-order
polynomials. A, Representative tuning curves from a population of LIF neurons
that are tuned to one dimension (left), and the �rst seven principal components of
the tuning curves of this population. B, A single example of the tuning curve of an
LIF neuron that is tuned to two dimensions (left), and three examples of principal
components of a population of such neurons (right).
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Figure 3.5: Cosine tuning on manifolds. Two example tuning curves are shown in
bold in each panel. A, Example tuning curves of one-dimensional LIF neurons. B,
Tuning curves of two-dimensional cosine-tuned LIF neurons on a one-dimensional
manifold that is made up of the second and third principal components of the
tuning curves in (A). Many of these resemble Gaussian functions. C, Tuning curves
of nine-dimensional cosine-tuned LIF neurons on a one-dimensional manifold that
is made up of principal components 2-10. These tuning curves are irregular and
often multi-modal.

a one-dimensional manifold. In this example, a one-dimensional population drives
a two-dimensional population with transform

f(x) =

[
p2(x)
p3(x)

]
,

where x is a scalar variable represented by the presynaptic population, and pi are
the second and third principal components of the presynaptic population's tuning
curves (the �rst is omitted because it is essentially constant). The neurons in
the post-synaptic population are driven by one-dimensional information, so their
activity is restricted to a one-dimensional manifold. The tuning curves of this
population can therefore be plotted in the one-dimensional space, as functions of
x, instead of along the one-dimensional manifold in the two-dimensional space. In
this space they appear roughly Gaussian.

Manifolds in higher-dimensional spaces can also be considered. Figure 3.5C
illustrates a projection from a one-dimensional population onto a manifold that fol-
lows the �rst ten principal components of its tuning curves. In this high-dimensional
space, if each neuron has a di�erent preferred direction, then it decodes a unique
function of the represented variable. When the preferred directions are drawn ran-
domly from the unit hypersphere, the resulting tuning curves are not generally
Gaussian, but have irregular shapes. Chapter 5 explores irregular tuning curves
like these in more detail, and illustrates how they can evade experimental detection
while seriously confounding the interpretation of electrophysiological data. Al-
though these tuning curves seem exotic, they are nothing more than the result of
cosine tuning on the principal components of a one-dimensional population.
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3.3.2 Tight Frames

If α = β in (3.3), then the frame is �tight�. Intuitively, a tight frame spans the
vector space evenly, i.e. it does not span any part of the space more densely than
other parts. An orthogonal basis is the smallest kind of tight frame; an orthonormal
basis has frame bounds α = β = 1.

Tight frames are of special interest in neuroscience, because a projection from
a population that forms a tight frame can be trained to calculate any function of
the represented variable, via localized Hebbian learning [92]. In Hebbian learning,
synaptic weights are modi�ed in proportion with the product of presynaptic and
post-synaptic activity. In Hebbian learning of a function on a tight frame, the
post-synaptic neurons must be driven in the correct patterns during learning, but
no error or reward signal is needed.

This works because for a tight frame, from (3.4), F TF = αI = βI, so that

ψ̃k = (βI)−1ψk =
1

β
ψk.

So a function v(x) can be produced from ψk as

v =
∑
k

ckψ̃k =
1

β

∑
k

< v, ψk > ψk.

These coe�cients scale with < v, ψk >, independently of ψi 6=k. If ψk are presynaptic
tuning curves, and v(x) is post-synaptic activity, then this inner product over the
coding space is approximately equal to the integral of the instantaneous product of
presynaptic and post-synaptic activity, as di�erent x are sampled over time. This
is the product that results from Hebbian learning.

Cosine-tuned LIF neurons do not form a tight frame. In fact, there are few
large principal components, and the variance associated with more minor compo-
nents decreases smoothly, so that the lower frame bound is very small. Gaussian
tuning curves have more and di�erent principal components than cosine tuning
curves [379]. However, although they form higher-dimensional frames, these frames
are also not tight. The same is true for cosine-tuned neurons on higher-dimensional
manifolds, when the encoding vectors are evenly distributed. However, interest-
ingly, it is possible to �nd sets of encoding vectors that form a relatively tight frame
on a manifold that is made up of several principal components of one-dimensional
LIF tuning curves (Figure 3.6).

3.4 Discussion

The Neural Engineering Framework provides a coherent view of the representation
of scalars, vectors, and functions, as either ratios between di�erent �ring rates, or
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Figure 3.6: Tightness of LIF neurons on a one-dimensional space (A&B) and on
a one-dimensional manifold in a ten-dimensional space (C&D). The left panels
(A&C) show 30 representative tuning curves drawn from 300-neuron populations,
with selected examples in bold. The right panels (B&D) show the variance of the
population tuning curves that is accounted for by each principal component. A
small number of dimensions account for most of the variance of the tuning curves
in the one-dimensional space (top), but there is no clear answer to the question of
how many dimensions are spanned by these neurons. Some are spanned much more
densely than others. In contrast, the tuning curves on the manifold clearly span a
ten-dimensional space, and they span this space relatively evenly.
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temporal patterns of action potentials. It also generalizes this view to explain how
information is communicated and transformed in projections between populations
of neurons. Finally, it explains how such transformations combine with synaptic
properties to determine large-scale network dynamics. The framework clearly de-
�nes the relationships between di�erent observable properties of a neural system,
e.g. response functions of individual neurons, and high-level network behaviour.
This allows the modeler to integrate diverse sources of experimental data.

Despite its considerable scope, the framework does not approach the sophisti-
cation of biological neural systems. For example, fundamental to the operation of
any neural system are the mechanisms of synaptic plasticity that determine synap-
tic strengths. From one perspective, the NEF avoids a great deal of complexity
by deriving synaptic weights that give rise to observed or hypothesized network
behavior. From another perspective, plasticity is itself an important aspect of net-
work behaviour that the NEF ignores. Eliasmith & Anderson [111] touch on the
question of plasticity by showing how a communication channel could be learned,
but this brief treatment leaves many questions unanswered.

There are also a number of subtleties of neuron behaviour that the NEF ignores,
for the sake of simplicity. For example, while the NEF assumes linear synaptic in-
tegration, there are many clear examples of nonlinear synaptic integration in the
brain, and there are some reasons to think that nonlinear synaptic integration may
be quite common. Spiking dynamics are another example. The NEF assumes that
neuron dynamics are dominated by the dynamics of post-synaptic current. This is
true for some neurons, e.g. fast-spiking interneurons, but it is not true for many
others. In many neurons, the spiking process itself has prominent dynamic prop-
erties, such as (in various di�erent neuron types) �ring-rate adaptation, intrinsic
bursting, and hysteresis.

One useful property of the NEF is that it uni�es spike-rate codes and spike-
timing codes. A great deal of attention has been focused in the literature on
whether, in various systems, the precise timing of spikes (on the scale of a few
milliseconds) contains additional information beyond that contained in �ring rates
(i.e. the number of spikes over longer time windows, e.g. 100 ms). In the NEF,
the neural code is a continuum between rate and timing codes. When �ring rates
are high, and represented variables change slowly, the neural code resembles a rate
code (i.e. most of the information is in the �ring rates). On the other hand, when
the represented variable changes quickly and spike rates are low, the neural code
resembles a timing code (i.e. most of the information is contained in spike timing).
In this view, a timing code is essentially the rate code of a precisely-timed signal.
However, the brain may contain more subtle forms of timing code, including timing
codes for slowly-changing signals.

All of the above caveats are relevant to the basal ganglia. Basal ganglia neu-
rons have non-linear dendritic integration properties, prominent non-linear spike
dynamics, plastic synapses, and irregular spike timing patterns that correlate with
behaviour. In a sense, most of the remaining chapters constitute a generalization of

59



the NEF in these directions, i.e. an account of how timing codes, nonlinear spiking
dynamics, and synaptic plasticity interact with the basic NEF theory. The set of
basic population-coding principles provided by the NEF, extended to account for
further details of basal ganglia physiology, should be very useful for understanding
basal ganglia function.

Furthermore, these properties are not unique to the basal ganglia, but are also
prominent in the cortex, and in other subcortical areas. So although the present
goal is to elaborate the NEF so that it can account more thoroughly for basal
ganglia physiology, many of the results apply very broadly to the diverse neural
systems that employ population codes.

60



Chapter 4

Non-Linear Synaptic Integration

The NEF assumes linear decoding. This corresponds to the conservative assump-
tion of linear synaptic integration, which is shared by the majority of network mod-
els. However, synaptic integration in real neurons involves a number of strongly
nonlinear processes, including saturation e�ects, dendritic spikes, and non-linear
inter-branch interactions. This chapter discusses three types of nonlinearity that
can have a large impact on synaptic integration: 1) nonlinear inter-branch interac-
tions, 2) shunting conductances, and 3) supralinear input-conductance relationships
within a dendritic branch. All of these nonlinearities are found to have an impact
on neural representation. The �rst type of nonlinearity in�uences the encoding
process, by shaping the neuron's response (tuning curve) to linearly decoded in-
formation. In contrast, the latter two nonlinearities support alternative decoding
mechanisms. Like linear decoding, these nonlinear mechanisms enable decoding of
both linear and nonlinear functions of represented variables. In addition, the non-
linear mechanisms have certain advantages. It is shown that shunting inhibition
allows Hebbian learning of a transform, even when presynaptic tuning curves do not
form a tight frame. Intra-branch nonlinearities do not require diverse presynaptic
tuning curves in order to decode a function of the input. Therefore, while challeng-
ing the NEF, the presence of such nonlinearities in real neurons also suggests ways
in which it can be usefully extended.

4.1 Introduction

The NEF emphasizes linear decoding. There are two reasons for doing this: 1) it
simpli�es the theory dramatically, and 2) linear decoding can be performed by neu-
rons, through linear synaptic integration. By restricting consideration to decoding
methods that a neuron can perform, rather than something more powerful (e.g.
Bayesian decoding [402]) the theory remains focused on the realistic information-
processing capacity of neural circuits, rather than the information that an ideal
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observer could extract from them.1

However, it is fair to question whether synaptic integration can reasonably be
approximated as linear. The thin branching structure of the dendritic tree, which
is unique to neurons across all cell types, increases the surface area available for
synaptic contacts. However, it also e�ectively isolates some portions of the cell
electronically from others, which raises the possibility that di�erent inputs are
integrated in more complex ways than summation. Furthermore, dendrites are
not passive conduits of synaptic inputs, but contain a variety of voltage-dependent
ion channels (reviewed by [235]). Interestingly, some of these channels appear to
compensate for passive cable properties, rather than mediating nonlinear synaptic
integration [236, 318]. For example, one common type of active dendritic current
can help to compensate for low-pass �ltering due to cable properties [235, 385].

In other cases, nonlinear dendritic processes result in nonlinear synaptic inte-
gration. This chapter studies three key types of nonlinear synaptic integration, and
shows how they interact with computations that are based on population codes.

4.2 Inter-Branch Non-Linearity

Inputs to di�erent branches of a dendritic tree combine nonlinearly in some neu-
rons. A striking example is found in the medial superior olivary nucleus (MSO) of
the brainstem. The majority of neurons in this nucleus have two major dendritic
branches: one receives input from the ipsilateral cochlear nucleus, and the other
from the contralateral cochlear nucleus [342]. The activity of neurons in the cochlear
nuclei are oscillatory, and tightly phase-locked with rarefaction at the corresponding
ear. The neurons of the medial superior olive �re only when inputs from each side
are received at the same time [398]. This coincidence-detection mechanism, in con-
junction with a network of delay lines, allows the animal to localize low-frequency
sounds [184, 66]. Synaptic integration in a coincidence-detecting MSO neuron can
be modeled as a product of the inputs to the two major branches. The �ring rate
b(x) of the model is then

b(x) = G[didc],

where the function G(•) maps net synaptic current onto the �ring rate, and di and
dc, the net inputs to the ipsilateral and contralateral branches, respectively, are

dj =
∑
k

wjkajk(xj(t)) ∗ δ(t−∆j).

Here xj are the rarefaction signals represented by the cochlear nuclei, ajk(xj) are
the activities of the neurons in these nuclei, w are synaptic weights, δ is the delta

1Note that this is separate from the issue of whether neural circuits can be designed which
decode inputs in a more sophisticated manner. Usually, the purpose of neural circuits is not to
decode inputs. Instead, decoding is an abstraction that describes part of the process of neural
computation.
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(impulse) function, and ∆j is the conductance delay of the projection from the jth

cochlear nucleus to the corresponding dendritic branch.

This model can be interpreted in two ways. One interpretation is that the
neuron decodes a non-linear function of its two-dimensional input x. From this
perspective the nonlinearity contributes to computation. However, an alternate
interpretation is that the neuron decodes x, and then encodes this information in
a non-linear tuning curve. From this perspective, the nonlinearity contributes to
representation.

The diversity of responses across a population determines which perspective is
more useful. The responses of di�erent MSO neurons have essentially the same
nonlinearity. This means that the product of the two inputs (i.e. x1x2) is well-
represented by a population of these neurons, but that the representation of the
input x is poor in general. So in this case, the �rst interpretation is more reasonable.
However, if the responses of di�erent neurons were more diverse, then it would be
di�cult to associate them with a single computation, but they would form a rich
code of their input. In that case the latter interpretation would be more reasonable.

An example of the latter case can be found in the medium spiny neurons of
the striatum. These neurons integrate inputs in a more subtle manner, such that
the neuron does not �re unless the membrane potential is elevated in several of the
roughly two dozen main branches [388]. This nonlinearity can be illustrated with a
simple phenomenological model. In this model, each medium spiny neuron (MSN)
has four main branches, two of which must have an elevated membrane potential
in order for the neuron to �re. Synaptic integration is linear within each branch,
and each of the four branches is tuned to a di�erent preferred direction in a two-
dimensional space (a two-dimensional space is used in order to allow visualization
of the tuning curves). The activity of the ith neuron is described by the tuning
function

ai(x) = G[mb(φ̃
T
b x)],

where the response function G is sigmoidal, φ̃b is the encoding vector of branch b,
and mb(•) is the minimum over the two most active branches (a fuzzy �and�). The
sigmoid function has a steep transition, modelling the tendency of these neurons to
self-stabilize in �up� and �down� states (although the well-known clear separation
of these states in vivo may have been an artefact of synchrony in cortical input, due
to surgical anaesthesia [239]). Figure 4.1 shows examples of the resulting tuning
curves. These tuning curves are diverse, and form a rich representation of the input.
The only di�erence between this representation and a representation arising from
linear synaptic integration is the shapes of the tuning curves.

The above examples involve relatively specialized neurons with prominent non-
linearities. However, cortical pyramidal cells (the most numerous cells in the cortex)
also appear to combine inputs from di�erent branches nonlinearly [254]. All such
nonlinearities can be modeled with a nonlinear function that operates on multiple
independent linear decodings, and can be understood in terms of their e�ects on
the neurons' tuning curves.
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Figure 4.1: Tuning curves of selected phenomenological models of medium spiny
neurons. Values outside the represented area (the unit circle in this case) are
plotted as zero. The shapes depend on the distribution of preferred directions of
di�erent branches, and on how strongly the input drives each branch. The tuning
curve on the bottom left is roughly sigmoidal, because the preferred directions of
multiple branches are closely aligned. The tuning curves of this model can also be
multimodal (top right), and can have concave (top left) or convex (bottom right)
�ring thresholds.
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In contrast, the nonlinearities discussed in the remaining sections a�ect decod-
ing, and have more profound implications.

4.3 Conductance-Current Non-Linearity

The trans-membrane current that results from the opening of a synaptic ion channel
is not a linear function of channel conductance, but the product of that conductance
with the di�erence between the membrane potential and the ion's reversal poten-
tial. For excitatory Na+ channels, the reversal potential (about 50mV) is far from
the range between rest and spike threshold (typically -65mV to -50mV ), so the
conductance-current relationship is only mildly sub-linear in this range. This is not
the case for the Cl− channels associated with inhibitory GABA synapses. These
have a reversal potential of about -70mV, which is close to the resting potential
of most cells. For this reason, the main e�ect of inhibition is to shunt excitatory
currents, by increasing membrane conductance.

Theoretical interest in shunting inhibition derives from its divisive e�ect on the
cell's membrane potential. This e�ect can be seen in the subthreshold regime of a
leaky-integrate-and-�re (LIF) model, with inhibitory synaptic conductance gi and
excitatory electrode-injected current Ie. The membrane potential V evolves as

V̇ =
1

Cm
[Ie − gi(V − Ei)− gL(V − EL)],

where gL is the leak conductance, EL is the reversal potential of the leak con-
ductance, and Ei ≈ EL is the reversal potential of the inhibitory channels. At
equilibrium, the membrane potential is

V = EL +
Ie

gi + gL
.

Thus for larger inhibitory conductances (gi > gL), the excursion of the membrane
potential above rest is approximately divided by the inhibitory conductance.

All else being equal, dividing the equilibrium membrane potential corresponds
roughly to dividing the cell's �ring rate, so it was initially thought that shunting
inhibition might provide a substrate by which neural circuits could divide one rep-
resented value by another. In a well-known example, Carandini & Heeger [65] used
a shunting model to account for several properties of V1 cells. In this model, the
�ring rate was modelled abstractly as a function of equilibrium potential.

Unfortunately for these models, all else is not equal. In addition to dividing the
equilibrium potential, shunting inhibition also divides the membrane time constant.
Thus excitatory input in the presence of shunting causes a faster climb to a lower
equilibrium. Using the LIF model, various authors [159, 92] have shown that one
e�ect cancels the other, so that the net e�ect of shunting on the �ring rate is
subtractive rather than divisive.

65



However, studies with more sophisticated compartmental models report mixed
e�ects (e.g. [63]). Division dominates subtraction in certain regimes that involve
synaptic noise and saturation of distal dendrites [104, 305]. Similarly, Chance et al.
[68] discovered a role of input noise in division, by applying noisy driving current
to neurons in slice preparations. In this experiment, the strength of simulated
excitatory and inhibitory drive were varied together in a balanced manner. Increases
in this balanced background input had little in�uence on mean driving current,
but increased both the variability of this current, and the membrane conductance.
Larger membrane-potential �uctuations increased �ring rates at the low end of the
range, due to noisy �uctuations above spike threshold. These �uctuations had less
e�ect under higher excitatory drive, when the potential rose to threshold more
quickly. In combination with the subtractive e�ect of increased conductance, this
graded ampli�cation resulted in reduced �ring rate gain, with little or no net change
in �ring threshold.

The Appendix of this chapter illustrates that spatial parameters (which do not
appear in the LIF point-neuron model) also in�uence the computational e�ect of
shunting, so that certain spatial distributions of excitation and inhibition lead to
division of the �ring rate, even in the absence of noise.

Taken together, these results indicate that inhibitory synaptic input can either
subtract from or divide a neuron's �ring rate, depending on subtleties of noise,
saturation, and spatial distribution of inputs. These two operations might even
co-exist on the same neuron, so that one source of inhibition divides while another
subtracts.

What are the functional roles of divisive shunting in neural circuits? For one,
division of excitatory drive enables divisive network computations, such as gain
control. Gain control plays a number of important roles in the brain (reviewed by
[325]). For example, selective attention modulates the gain of orientation-tuned
neurons in the visual cortex [247]. In this context, it should also be noted that
divisive network computations can be performed without shunting, e.g. via linear
decoding of a function of two variables, f(x) = x1/x2.

The roles of divisive and subtractive inhibition are of particular interest for
understanding computation in the basal ganglia, where most of the neurons are
inhibitory. In addition to gain control computations, the next section will show
that divisive shunting can also play a more general role in population coding.

4.3.1 Average-Based Decoding

This section postulates a more general role for divisive synaptic integration, in
which division leads to a di�erent way of decoding and transforming population
activity, through averages rather than sums. As shown below, this average-based
decoding performs similarly to linear decoding in general, but it would have cer-
tain advantages over linear decoding in some circumstances. (The present level of
analysis does not reveal any obvious disadvantages.)
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Figure 4.2: A network that communicates represented values by an averaging code.
A presynaptic population (left) drives a post-synaptic population both directly,
and also through a population of inhibitory interneurons, which perform divisive
shunting of the direct drive. Synaptic weights in the direct projection are tuned as
discussed in the text. Synapses onto the interneurons are weighted uniformly, and
synapses from interneurons onto post-synaptic neurons are weighted as a commu-
nication channel (see Chapter 3).

Figure 4.2 illustrates a network that communicates through average-based de-
coding. In this network the presynaptic population projects to the post-synaptic
population both directly, and also through a group of interneurons. This general
structure is very common in the cortex, as well as the thalamus and the cortico-
striatal projection, as discussed in more detail in Chapter 6. The synaptic weights
in the direct projection are varied, but those in the indirect projection are uniform.
The post-synaptic neurons in this network decode a function f(x) of their input
not as f̂(x) =

∑
i φ

f
i ai(x) (as in linear decoding), but as

f̂(x) =

∑
i φ̄

f
i ai(x)∑

i ai(x)
,

where φ̄fi are decoding weights for f(x) and ai(x) are presynaptic activities.

The mean-squared error of this approximation of f(x) is

E =
1

A

∫
x

[
f(x)−

∑
i φ̄

f
i ai(x)∑

i ai(x)

]2

dx,

where A is the size of the coded domain of x. This error is convex, so the global
minimum with respect to φ̄fi occurs when ∂E/∂φ̄

f
i = 0 for all φ̄fi . Similarly to linear

decoding error (discussed by [111]), this allows us to �nd the vector Φ̄f of optimal
φ̄fi , as

Φ̄f = Γ−1Υ,
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where

Γij =

∫
x

ai(x)aj(x)

[
∑

l al(x)]2
dx,

Υi =

∫
x

ai(x)f(x)∑
l al(x)

.

Here l is an index over all neurons in the population.

The optimal decoders are particularly interesting in the case of narrow, symmet-
ric tuning curves (e.g. narrow Gaussians). In the limit of narrowly-tuned neurons
with centres xci , the optimal decoders are simply φ̄fi = f(xci). This can be shown by
discretizing x into a �nite number of regions, so that within each region, both f(x)
and the activity of each neuron are constant. Additionally, it must be assumed for
the moment that each neuron is only active in one region (modelling narrow tuning),
but that many neurons can be active in a given region (modelling redundancy). In
this case, if neurons i and j are tuned to di�erent regions, then

∫
x
ai(x)aj(x) = 0.

The neurons can be re-ordered so that neurons tuned to each region have adjacent
indices, and the sub-matrices for each region can then be considered separately, as
the o�-block-diagonal entries of Γ are zero. Considering a region k, and letting i
and j index neurons that are active in this region, the equation for region k can be
re-written as [

aikfk∑
l alk

∆x

]
=

[
aik∑
l alk

ajk∑
l alk

∆x

]
Φk,

where ∆x is the volume of region k, fk is the uniform value of f(x) in the kth

region, and aik is the uniform activity of the ith neuron in the kth region, and Φk is
the vector of decoding weights for neurons active in region k. Removing common
factors from these matrices, each row becomes

fk =

∑
j ajkφ̄

f
j∑

l alk
.

One solution to this equation is to set φ̄fj = φ̄f constant for all j, so that it can be

removed from the sum, and φ̄f = fk.

This simple solution for optimal weights is particularly interesting, because the
weight for each synapse is independent of any information about other synapses.
This contrasts with linear decoding of narrow tuning curves, in which the optimal
weights for each neuron depend on how many other neurons are tuned to the same
region, and on their activity levels. Independence in the average-based decoding
case means that the optimal weights can be established by Hebbian plasticity.
As discussed in the last chapter, this is only possible with linear decoding if the
presynaptic tuning curves form a tight frame.

If tuning curves are broader (so that tuning curves with peaks in di�erent regions
overlap), but still symmetric, decoding of linear functions (i.e. f(x) = Ax) is not
greatly impaired (Figure 4.3). This is because while at any point x0, overlapping
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neurons that are centred at x0 + δx will distort the estimate, neurons centred at
x0 − δx will tend to compensate. However, decoding of nonlinear functions is
impaired, when the nonlinearities are strong over the width of the tuning curves.
Thus high-frequency functions cannot be accurately decoded by these independent
weights if the tuning curves are broad.

Some computations would require a more complex projection structure than
the one shown in Figure 4.2. This is because in general, the optimal synaptic
weights in the direct projection might include any combination of positive and
negative values, whereas a single biological neuron is most often either excitatory
or inhibitory. Mixed positive and negative synaptic weights can be approximated
in a realistic projection that has excitatory projection neurons and subtractive
inhibitory interneurons [295] (see also Chapter 6). In the averaging code, this
would lead to two groups of interneurons, one divisive and the other subtractive.
In both the cortex and striatum, there are distinct groups of inhibitory neurons with
preferences for di�erent parts of the cell, which might subserve this di�erence. This
more complex structure would not be necessary in the simple case of φ̄f = fk > 0.

Network models usually assume linear synaptic integration. It is interesting
that a ubiquitous form of nonlinearity, in conjunction with a very common network
architecture, can lead to an alternative decoding mechanism which has a distinct
advantage for learning. A further advantage is that the average-based code is truly
redundant. In a �redundant� linear-decoding network, damage to a single neuron
has a small e�ect, but it does distort the decoding. In contrast, at least in the ideal
case in which tuning curves belong to non-overlapping groups, damage to a single
neuron in an averaging network does not distort the decoding at all.

But how realistic is this code? One troubling issue is that it seems to require
very large synaptic weights. Individual post-synaptic potentials measured in slice
preparations, where synaptic activity and associated conductances are low, are typ-
ically much too small to trigger an action potential (e.g. [386]). This is at odds with
the idealized averaging scheme, in which the activity of a single presynaptic neuron
would be su�cient to cause �ring. However, it is not at odds with a physiological
model of the averaging scheme that includes leak conductance. Leak conductance
would vastly reduce the e�ect of any single presynaptic neuron acting alone. This
would modulate the code so that it resembled a sum for few inputs, and an average
for many inputs. Thus in principal, the averaging code is not inconsistent with
synapses that are individually ine�ective. Whether the averaging code is consistent
with more realistic compartmental neuron models remains to be determined. This
detailed investigation must be left for future work.

4.4 Intra-Branch Non-Linearity

An entirely di�erent mode of decoding is supported by expansive input-current
relationships within a dendritic branch.
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Figure 4.3: Average-based decoding. A, Narrow, �at tuning curves, which corre-
spond to the idealized case in which each neuron's optimal decoding weight is equal
to the value of the decoded function at the peak of the curve (i.e. φ̄f = fk; see
text). B, An estimate of sin(x) based on the tuning curves in (A), and the simple
decoding weights. The gray line indicates the target function and the black dashed
line indicates the decoded estimate, both at discrete values of x that correspond to
the centres of the idealized tuning curves in (A). C, A small population of broader
Gaussian tuning curves. D, An estimate of x, based on the tuning curves in (C),
and the simple decoding weights. Despite substantial overlap between di�erent
tuning curves, and the small number of neurons, there is only mild distortion in the
linear function. E, In contrast, a function in which nonlinearities are strong over
the width of a tuning curve is poorly estimated by these simple decoding weights.
F, The more general optimal weights (i.e. without the simplifying assumption of
narrow, symmetric tuning curves) compensate for these e�ects, and estimate the
high-frequency function well.
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This type of non-linearity has been explored extensively by Bartlett Mel and
colleagues. Mel [254] points out that there are several mechanisms by which the
current �owing into a dendritic branch could become a supra-linear function of
synaptic excitation. For example, both AMPA and NMDA receptors are gated by
the neurotransmitter glutamate, but NMDA-receptor channels do not open unless
the cell membrane is �rst depolarized from rest. Therefore in a dendritic branch
with both types of channels, small increases in glutamate will open AMPA channels,
while higher levels will open both types of channels, so that the glutamate-current
function becomes steeper.

By �tting the input-output behaviour of various point-neuron networks to a
scrupulously-detailed compartmental model, Mel and colleagues found that this
type of within-branch nonlinearity can cause a dendritic tree to behave much like
two layers of a sigmoidal feedforward network [302]. Each terminal branch outputs a
nonlinear function of its input, and therefore resembles a single neuron in the hidden
layer of the classic three-layer feedforward network. These nonlinear functions then
combine linearly in the soma and pass through a spiking nonlinearity. The role of
the soma is therefore analogous to that of a neuron in the output layer of the three-
layer network model. This dendritic-tree model di�ers from a typical feedforward
network model, in that a given presynaptic neuron does not synapse onto every
dendritic branch (in the tree), while an input neuron is potentially connected to
all hidden layer neurons (in the network). However, several factors mitigate the
e�ect of this di�erence: 1) a single neuron in the brain can make multiple contacts
with di�erent dendritic branches; 2) in a large population, several neurons may
have very similar tuning curves, so that they are essentially interchangeable (if
at least one neuron from an interchangeable group contacts each branch, then
little e�ective connectivity is lost); and 3) in feedforward network models, some
feedforward connections have small synaptic weights, and these connections can
often be pruned from the network with little e�ect.

It must be emphasized that this simpli�ed model of Mel et al. is necessarily
highly theoretical. It is very di�cult to test whether such nonlinearities play a role
in the behaviour of real neurons, because it is not possible to record intracellularly
from terminal dendritic branches. However, if such nonlinearities do in�uence neu-
ron function, they are in a position to do so profoundly. One possible e�ect would be
to increase the memory capacity of a network [253, 303]. Such nonlinearities could
also have a major impact on population coding, particularly on the functions that
can be decoded from population activity, and consequently on the transformations
that can be computed in a projection from one population to another.

A discussed in the previous chapter, linear synaptic integration supports trans-
formations that are within the space of principal components of the presynaptic
tuning curves. Recall that a feedforward network with a large enough hidden layer
can approximate any function of its input with arbitrary accuracy. Let a(x) be the
activity of a population as a function of the vector x that it represents. If a(•) is
invertible, then like a feedforward network, a su�ciently large nonlinear dendritic

71



-1 -0.5 0 0.5 1
0

0.5

1

1.5

x
0

0.5
1

1.5

0

0.5

1

1.5
-1

-0.5

0

0.5

1

f1
f2

x

A B

f1 f2

Figure 4.4: A list of functions may be invertible even of each function in the list is
not. A, Two functions, fi(x) = (x+ αi)

2, where αi are constants. Neither function
is invertible, as its square root yields two points (for x 6= −αi). However, the
function f(x) = [ f1(x) f2(x) ]T is invertible, because each two-dimensional point
to which it maps corresponds to one value of x. B, The inverse of the function in
(A), plotted for points to which this function maps.

tree can approximate any function f(x), as

f(x) = f(a−1(a(x))).

Here the dendritic tree approximates the function

g(a) = f(a−1(a))

of synaptic inputs a as

ĝ(a) =
∑
j

σj(
∑
i

wjiai),

where wji is the weight of the synapse from the ith input onto the jth dendritic
branch, and σj is the output nonlinearity of the jth branch.

Note that a(x) may be invertible even if each ai(x) is non-invertible, as illus-
trated in Figure 4.4.

The functions of x that can be approximated by a physical dendritic tree will
be limited by the number of compartments that are e�ectively electronically iso-
lated, which Mel [254] estimates to be �upwards of several dozen� in a large tree.
So this type of nonlinear synaptic integration has practical limitations, but these
limitations are di�erent in character from those of linear synaptic integration.

Figure 4.5 illustrates a case in which this form of nonlinear decoding is much
more versatile than linear decoding. In this example, presynaptic neurons have
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Figure 4.5: A case in which non-linear synaptic integration can closely approximate
diverse functions of the input, and linear synaptic integration can not. A, Tuning
curves of a group of very similar presynaptic neurons. These lack the diversity on
which linear function decoding depends. B, Decoding for a communication channel.
The linear target function (gray line) is closely approximated by a model of a
nonlinear dendritic tree with �fty sigmoidal branches (dashed). The optimal linear
decoding (solid black) does not resemble the target function. C,D The same linear
and nonlinear models of synaptic integration approximating the transformations
y = x2, and y = sin(πx), respectively.

highly correlated tuning curves. A very restricted set of functions can be decoded
linearly from this population. In contrast, a nonlinear dendritic tree with �fty
sigmoidal dendritic compartments can accurately decode a variety of functions,
including the represented variable x, and other examples x2 and sin(x). This is be-
cause the branches of the nonlinear dendritic tree function much like an additional
layer of neurons that is diversely tuned to the uniform output of the presynaptic
neurons. Rarely are population tuning curves so uniform as in this idealized exam-
ple. However, analogous situations can be encountered in population codes that are
based on non-linear neuron dynamics, due to limitations in the diversity of neurons'
dynamic responses (Chapter 7).
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4.4.1 Invertibility of Population Responses

In order for a nonlinear dendritic tree to approximate arbitrary functions of x,
the tuning curves of the presynaptic population must be (as a group) an invertible
function of x. If they are not invertible, it will only be possible to approximate
functions that have identical values, for any x over which the tuning curves have
identical �ring rates.

When are the tuning curves of a population invertible? A list of nonlinear
functions f(x) is locally invertible, in some region around a point, if its Jacobian
(i.e. [∂fi/∂xj]) is nonsingular at that point. If the functions are continuous, then
the boundaries of this region extend to wherever the Jacobian becomes singular.

For cosine-tuned neurons with monotonically non-decreasing response functions
(e.g. LIF; Hodgkin-Huxley), the Jacobian is

[∂fi/∂xj] = [γiφ̃
T
i ], (4.1)

where φ̃i is the preferred direction of the ith neuron, and γi ≥ 0 is the slope its
tuning curve along the preferred direction. If x is d-dimensional, the Jacobian is
nonsingular as long as there are d neurons which 1) have non-parallel preferred
directions, and 2) are in regions of their tuning curves for which γi > 0 (for most
neurons, γi > 0 if the neuron is active and not saturated).

4.5 Discussion

The assumption of linear synaptic integration is almost ubiquitous in neural net-
work models. A notable exception to this rule is O'Reilly's widely-used Leabra
framework [290], which incorporates nonlinear conductance-current relationships.
However, while this type of nonlinearity has its greatest impact in the shunting
e�ects of inhibition, Leabra varies inhibitory conductances in order to meet an im-
posed constraint on the number of active neurons, so these nonlinearities have a
minimal e�ect on the behaviour of these models.

This chapter has discussed three types of dendritic nonlinearity that are at odds
with this ubiquitous assumption. First, it was shown that when the outputs of
major dendritic branches interact non-linearly, each branch can be modelled using
NEF methods. The nonlinear interaction can then be interpreted as performing
a high-level, nonlinear computation on the results of multiple linear decodings. If
responses are diverse across a population, this type of non-linearity in�uences the
encoding process, by shaping the tuning of each neuron to its input.

Secondly, it was shown that division due to shunting inhibition can support a
variation on linear decoding, in which a post-synaptic neuron responds to weighted
averages of inputs, rather than linear combinations. This decoding mechanism
resembles linear decoding in some respects. However, it allows learning of transfor-
mations via Hebbian plasticity, in much more general circumstances.
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Finally, it was shown that the theory of nonlinear synaptic integration which
has been developed by Mel and colleagues supports decoding of transformations in
such a way that diversity of presynaptic tuning curves is not required.

This work begins to explore the relevance of more subtle neuron properties
to information processing at the population level. However, while the models in
this chapter span some of the major nonlinear processes in dendrites, they do not
approach the complexity of real neurons. Relating each of the intricacies of real
neurons to their computational roles within larger circuits is a very long-term goal.
Meanwhile, it is encouraging that the nonlinearities explored here do not require a
major reworking of the NEF, but that they instead suggest useful extensions to it.

It should also be emphasized that these extensions will not always be necessary.
Many successful models have assumed linear dendritic processing, suggesting that
some neural systems do not rely critically on dendritic nonlinearities. Furthermore,
linear models frequently lead to important insights, even when the underlying sys-
tem is highly nonlinear.

4.6 Appendix: Two-Compartment Models of Divi-

sion

This appendix presents two di�erent spatial patterns of synaptic input in which
inhibition has a divisive e�ect on �ring rate.

An important parameter in these models is the extent to which spike-related
shunting (i.e. a brief high-conductance phase during an action potential, which
resets the membrane potential to rest) backpropagates into the dendritic tree.
Hausser et al. [170] studied this parameter experimentally in pyramidal cells, and
found that spike-related shunting propagated only about 200µm along the apical
dendrite. This suggests that spike-shunting does not occur in the �ner, more distal
branches of the apical tuft. However, it is not clear how far this shunting e�ect
reaches along the basal dendrites. More importantly, spike-related shunting may
spread di�erently in other types of neurons. Hausser et al. also studied cerebellar
Purkinje cells, and found only mild shunting, even within the soma.

In general, for other cell types, it can only be recognized that spike-related
shunting may occur in the soma, and that it may spread some distance along the
dendritic tree. In the �rst divisive regime (below), both excitation and inhibition
are co-located beyond spike shunting range. In the second, both inhibition and
excitation are within spike-shunting range, but excitation is distal to inhibition.

4.6.1 Distal Shunting

Both the excitatory and inhibitory neurons in this regime synapse onto dendritic
regions that are too far from the soma to be in�uenced by spike-related shunt-
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ing. The model consists of two compartments: 1) a dendritic compartment, which
receives synapses, and 2) a somatic compartment, where the action potential is
generated. After a spike, the membrane potential resets to its resting value in the
somatic compartment, but not in the dendritic compartment.

The model is an extension of the single-compartment leaky-integrate-and-�re
neuron. In a single-compartment model, with synaptic input, the membrane po-
tential V evolves during the period between spikes as

V̇ =
1

Cm
[
∑
k

gk(Ek − V ) + gL(EL − V )],

where Cm is the membrane capacitance, gk are synaptic conductances, Ek are as-
sociated reversal potentials, gL is the leak conductance, and EL is the reversal
potential of the leak current, which equals the cell's resting potential (i.e. the po-
tential to which it decays without synaptic input). When the membrane potential
exceeds the spike threshold, it is reset to its resting value. Then, after a short
refractory period, integration of the input begins anew.

This model can be extended to multiple compartments by adding terms gab(Va−
Vb), to model the current �owing from compartment a into compartment b [92]. The
membrane capacitance and conductances in the equation above are per unit area
of membrane. Consequently, the current �owing between compartments must be
normalized by the relative membrane surface area of each compartment, so that
generally gab 6= gba.

In the model of the distal divisive regime, the membrane potential in each
compartment evolves as

V̇1 =
1

Cm
[gi(EL − V1) + ge(Ee − V1) + g21(V2 − V1) + gL(EL − V1)],

V̇2 =
1

Cm
[g12(V1 − V2) + gL(EL − V2)],

where V1 and V2 are the membrane potentials of the dendritic and somatic com-
partments, gi is inhibitory condutance, ge is excitatory conductance, and Ei and
Ee are the corresponding reversal potentials. Note that all the synaptic input is
onto compartment 1 (the dendritic compartment), and that the reversal potential
of inhibitory synapses is equal to the resting potential. The dendritic compartment
is taken to have a much larger surface area than the somatic compartment (e.g. in
pyramidal cells, dendritic surface area is one or two orders of magnitude greater),
so that g12 >> g21.

Figure 6A shows a simulation of this model with constant excitatory input.
Inhibition doubles half way through the simulation, causing the �ring rate to drop
by a factor of two. There is a startup transient, in that the time to �rst spike is
longer than the subsequent inter-spike intervals. This is because V1(0) = V2(0) =
EL, whereas only V2 is reset to the resting potential after each spike.
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Recall that in the single-compartment model, inhibition has a subtractive e�ect
on �ring rate, because its divisive e�ect on membrane potential is cancelled out by
its divisive e�ect on the membrane time constant. The situation is the same in the
distal compartment of this model. However, V1 is constant after the �rst spike, so
that the time constant of the membrane in this region is of no consequence. In
contrast, the equilibrium value of V1 is a�ected by inhibition. V1 determines the
rate of current �ow into the somatic compartment, which in turn determines the
spike rate.

4.6.2 Proximal Shunting

This model also has two compartments: 1) a dendritic compartment that receives
excitatory input, and 2) a somatic compartment that receives inhibitory input.
In contrast with the distal shunting model (above), the membrane potential in
this model resets in both compartments after each spike. This means that the
inhibitory conductance in compartment (2) a�ects the model's sub-threshold dy-
namics. However, the dynamics are dominated by a slower membrane time constant
in compartment (1).

Between spikes, the membrane potential in each compartment evolves as

V̇1 =
1

Cm
[ge(Ee − V1) + g21(V2 − V1) + gL(EL − V1)],

V̇2 =
1

Cm
[gi(EL − V2) + g12(V1 − V2) + gL(EL − V2)].

The membrane time constants τ of the two compartments are

τ1 =
Cm

gL + ge + g21

,

τ2 =
Cm

gL + gi + g12

.

The leak conductance gL is small compared to the synaptic conductances [102]. So,
since gi > ge and g12 >> g21, the time constant τ1 is much larger (slower) than
τ2. This means that when excitatory input arrives at compartment (1), most of
the delay in the build-up of somatic membrane potential is due to compartment
(1). Compartment 2 responds quickly and introduces little extra delay in the spike.
Since inhibition only a�ects this minor delay, it has little e�ect on the dynamics.
However, inhibition still has the same divisive e�ect on voltage that it had in the
single-compartment model, so that the net e�ect on the �ring rate is divisive.

Figure 4.6 shows example simulations and tuning curves both the distal and
proximal shunting models.
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Figure 4.6: Distal (A&C) and proximal (B&D) shunting models. The top panels
show example simulations in which excitation is held constant, and inhibition is
doubled at 0.1s. The gray line indicates the membrane potential in the dendritic
compartment, and the black line indicates the membrane potential in the somatic
compartment. This simulation includes the sub-threshold regime only. A spike (not
shown) is generated when membrane potential in the soma reaches -50mV. The
bottom panels show the tuning curve of a single neuron of each type, as a function
of excitatory conductance. The separate lines indicate three di�erent levels of
inhibition. In each case, inhibition has an e�ect similar to stretching the excitation
axis: the slope of the tuning curve is reduced, and �ring threshold is increased.
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Chapter 5

Temporal Coding

Fine temporal patterns of �ring in the basal ganglia, as in much of the brain,
are highly irregular. In some circuits, the precise pattern of irregularity contains
information beyond that contained in mean �ring rates. However, the capacity
of neural circuits to use this additional information for computational purposes is
not well understood. This chapter shows that an ensemble of neurons �ring at
a constant mean rate can induce arbitrarily-chosen temporal current patterns in
postsynaptic cells. If the presynaptic neurons �re with nearly uniform interspike
intervals, then current patterns are sensitive to variations in spike timing. But
irregular, Poisson-like �ring can drive current patterns robustly, even if spike timing
varies by tens of milliseconds from trial to trial. Notably, irregular �ring patterns
can drive useful patterns of current even if they are so variable that several hundred
repeated experimental trials would be needed to distinguish them from random
�ring. Together, these results describe an unrestrictive set of conditions in which
postsynaptic cells might exploit virtually any information contained in spike timing.

5.1 Introduction

Past theoretical and experimental work has shown how inter-neuronal communica-
tion through �ring rates supports a wide range of computational processes (Chapter
3). However, in some systems, additional information is contained in the precise
timing of action potentials (e.g. [288, 389]). Information-theoretical studies have
extensively characterized the amount of information carried by action potential
timing in sensory systems [314]. Although less widely studied, timing also appears
to be important in motor and frontal areas [6, 313]. There are also several reasons
to think that spike patterns are important in the basal ganglia. Spike patterns in
basal ganglia nuclei are abnormal in Parkinsonism, and these abnormalities seem as
prominent as abnormalities of mean �ring rate. Spike patterns change with symp-
tomatic improvement, on administration of anti-Parkinsonian medication, some-
times without accompanying changes in �ring rates [225]. If symptoms arise partly

79



from abnormal patterning, this might explain why both lesion and deep brain stim-
ulation of the GPi or STN have similar e�ects [352], and it would be easier to
account for the improvement of dyskinesias with GPi lesion. Also, while the Al-
bin/DeLong model predicts a decrease in GPi activity with Huntington's disease,
and an increase with PD, one recent study [356] (although the sample size was
small) reported that the mean rates in these diseases were very similar, but that
patterns of spiking were not.

The functional relevance of any information contained in spike timing depends
entirely on what postsynaptic neurons can do with this information. This motivates
the focus in this chapter on the e�ects that timing-based information can have
on postsynaptic cells. It is well-established that action potential timing plays a
role in synaptic plasticity (see reviews by [197, 87]), but spike timing can also
underlie computational processes. For example, activity in a neuron can depend
on the degree of synchrony between the presynaptic neurons that converge onto it
[5, 345, 340, 324]. This phenomenon underlies perception of the horizontal location
of low-frequency sound sources [398, 56] and has been suggested to play a signi�cant
role in high-level visual perception (although see [337, 86]) and the recognition of
odors [234, 58]. Notably, synchrony-based computations can also be performed with
asynchronously generated spikes, provided propagation times di�er so that spikes
arrive synchronously at their target [161, 274, 177].

Less is known about how the timing of action potentials can a�ect computational
processes in the absence of synchrony. But a number of cases demonstrate that the
e�ects can be substantial. For example, information about tactile stimuli that are
applied to human �ngertips is encoded in the relative timing of the �rst spikes
from di�erent sensory neurons [187]. This information can be extracted e�ectively
by a projection with unequal excitatory synaptic weights and parallel inhibition
[361]. Similarly, information contained in the timing of consecutive spikes (in one
neuron) can be extracted by certain types of synapses [273], neurons [334], or speci�c
circuits [7, 61, 205]. Also, some learning rules can lead simple neuron models to
support a wide variety of mappings between incoming spike patterns and output
[218, 142]. These examples illustrate that in a variety of situations, postsynaptic
neurons may read out information contained in spike timing without relying on
synchrony. However, the relevance of nonsynchronous spike timing to the operation
of neural circuits in general remains uncertain.

In particular, it is not yet clear whether nonspecialized neurons can use infor-
mation encoded in arbitrary spike patterns in a �exible manner, that is, to compute
arbitrary functions of the encoded signals. In this direction, Legenstein et al. [218]
have shown that spike-timing-dependent plasticity can lead to input/output map-
pings that correspond to arbitrarily chosen sets of synaptic weights, but this does
not clarify whether mappings to arbitrarily chosen output spike patterns are pos-
sible. As discussed below, the latter question has important implications for the
interpretation of electrophysiological data. Therefore, this chapter addresses the
question of whether there exist sets of synaptic weights that will transform arbi-
trarily selected patterns of spike timing into arbitrarily selected temporal patterns
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of current in a post-synaptic neuron model.

To answer this question, a conductance model is used to characterize synap-
tic currents, adjusting weights so that synaptically induced current at the soma
optimally approximates preselected target patterns. It is shown that commonly
observed types of �ring patterns can drive a wide variety of current patterns in
postsynaptic cells, regardless of whether their mean rates vary over time. This
remains true even if spike times vary randomly with a standard deviation (SD) of
more than 10 ms. In some cases, e�ective postsynaptic currents (PSCs) can be
driven by �ring patterns that are so variable that the probability of distinguishing
them from random �ring is remote. Thus, in very general circumstances, the infor-
mation contained in patterns of spike timing can be read out as arbitrary patterns
of current in a postsynaptic cell. The chapter concludes by suggesting how this
phenomenon may underlie a versatile population-temporal coding scheme.

5.2 Methods

5.2.1 Approximation of Current Patterns

The key procedure in this chapter is the assessment of how well given �ring patterns
can induce preselected patterns of current in a postsynaptic cell model. As discussed
below, the target current was never induced exactly, but for a given presynaptic
�ring pattern, approximations of varying quality could be obtained by adjusting
synaptic weights. The approximation of interest was the best one that could be
obtained for each �ring pattern/ target current pair.

Target currents were approximated by a linear combination of the PSCs that
were induced at each synapse in a model cell. The optimal synaptic weights for
approximating a given target current were found by adapting the NEF method
for decoding neural representations of scalars [111]. The following error function
was minimized (using the Moore-Penrose pseudoinverse) with respect to synaptic
weights w:

E =

∫ T

[I(t)−
∑

wiIi]
2dt,

where E is the error, I(t) is the current pattern to be approximated, wi is the
weight of the ith synapse, Ii is the unweighted PSC pattern at each synapse, and
t is time. In cases where �ring patterns varied from trial to trial due to noise, the
above integral was evaluated over 32 repeated trials to �nd optimal weights, and
performance was then evaluated as the average mean-squared error (MSE) over 5
additional trials. Accuracy improved with greater numbers of trials, but improved
little with 64 as opposed to 32 trials.

The model of current dynamics at each synapse was adapted from a model
of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors
[101]. This model determined the temporal shape of the current at each synapse,
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whereas the optimal synaptic weights determined the absolute scale. The results
were not sensitive to alternate PSC models, di�erent time constants of current
decay, or diverse time constants at di�erent synapses. The common simplifying
assumption was adopted that synaptic currents combine linearly at the soma (e.g.,
[142, 177]). As discussed in Chapter 4, this is a reasonable approximation of some,
but certainly not all, cases of synaptic integration. Linear combination was achieved
by holding membrane potential (at the synapse) at �65 mV, a constant far from
the reversal potential. By summing conductances instead of currents, the analysis
can be generalized to any case in which there is a monotonic relationship between
conductance and current, but this additional complexity is avoided here.

The study focused on target current patterns in the 0- to 5-Hz band, which
approximates the range of frequencies over which neural �ring rates change in many
circuits. For example, muscle activation patterns in humans (which are rate coded)
consist mainly of frequencies under 5 Hz. A selection of band-limited target currents
was generated by assigning random coe�cients to di�erent frequency components
and calculating the inverse fast Fourier transforms.

5.2.2 Presynaptic Firing Patterns

Presynaptic �ring patterns were obtained in 2 di�erent ways. First, an initial
study was performed with �ring patterns produced by a cortical network model.
Second, synthetic spike trains with desired statistical features were generated by
drawing interspike intervals (ISIs) from appropriate probability distributions. These
methods are described in detail below.

Network Simulation

The cortical network model [176] consisted of 200 fast-spiking inhibitory and 800
excitatory neurons, the latter mainly adapting with some bursting neurons. In some
simulations, the coe�cient of variation (CV; i.e., the SD divided by the mean) of
ISIs (within the spike train of each neuron) was increased. CV was increased by
shifting the excitatory neuron distribution to favor bursting neurons and decreasing
excitatory coupling by 40%.

Synthetic Spike Trains

Synthetic spike trains were used to explore in detail how the results obtained from
the cortical network model related to its patterns of �ring. ISIs for synthetic spike
trains were drawn from 3 types of probability distributions: Gaussian centered on
a mean �ring rate (repetitive spiking), a shifted exponential distribution with zero
probability between 0 and 2 ms (Poisson-like pattern with refractory period) and
a bimodal distribution consisting of the sum of 2 Gaussians, chosen so as to obtain
a speci�ed mean rate and CV = 2 (irregular bursting). To obtain spike trains with
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CV < 1, the Gaussian and exponential distributions were combined in a weighted
average. Spike trains with CV between 1 and 2 were obtained by averaging the
exponential and bimodal distributions.

Because each synthetic �ring pattern was generated from a single ISI distribu-
tion, these patterns are referred to for present purposes as having constant �ring
rates. Because the mean rates do not change over time, ISI ordering makes up all
the information content of these �ring patterns. This means that, for example, the
Poisson patterns in this chapter are not treated as Poisson noise, but as information
with Poisson statistics. Noise was introduced separately, either as spike time jitter
or in the form of additional spikes that were introduced at random from trial to
trial.

It was hypothesized that �ring time correlations across di�erent neurons might
also a�ect performance, separately from the e�ects of the temporal regularity of �r-
ing patterns. Spike trains with di�erent levels of pairwise correlation were produced
in 2 ways.

Method A: Spikes were distributed in a Gaussian pattern (SD = 3 ms) around
Poisson-distributed correlation times [49]. The degree of correlation was varied
by changing the rate of correlation times relative to the �ring rate. For example,
when the rates were similar, each spike train contained a spike at almost every
correlation time, and pairwise correlations were very high. Correlations were low
when the �ring rate was much lower than the rate of correlation times.

Method B: Poisson �ring rates R in each spike train were varied over time
according to the template function: R = A[sin(2πBt) − C]+, where []+ indicates
positive recti�cation, B =10, 22, or 55Hz, t is time, C is a threshold between �2.0
and 0.9, and A is a constant that normalizes the template to produce the desired
mean �ring rate. At higher thresholds, �ring only occurred at peaks of the sine
wave, resulting in high correlations.

The index of pairwise correlation reported here is the peak cross correlation

R = (RAB −NANB/N)/[(NA −N2
A/N)(NB −N2

B/N)]1/2,

where RAB is the number of coincidences in each 1-ms bin, NA and NB are the
numbers of times that cells A and B �re, and N is the number of bins (e.g. [364]).
These methods result in similar degrees of correlation between di�erent pairs in an
ensemble. This is a simpli�cation, in that there is typically substantial variation
between pairwise correlations in a real neural ensemble.

5.2.3 Statistical Power Analyses

Statistical power analyses were performed in order to determine the numbers of
experimental trials that would be needed to detect the subtlest �ring patterns
that could drive reproducible activity in postsynaptic targets (see details in the
chapter appendix). These analyses apply to experiments that consist of repeated
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recordings of a single cell from a population with Poisson �ring statistics. Cells that
are postsynaptic to this population may also receive inputs from other populations,
but the net e�ect of other inputs is assumed to be nearly constant.

5.3 Results

5.3.1 Cortical Network Simulation

A simulated network of 1000 irregularly �ring cortical neurons [176] was able to
generate PSCs that closely approximated a wide variety of target patterns. Figure
5.1 shows current patterns generated simultaneously by this network in 3 di�erent
postsynaptic cell models, which di�er only in terms of synaptic weights. The current
pattern in the �rst cell is a smoothed and scaled version of the network's mean
�ring rate. This is the type of current pattern that would emerge with uniform
or random synaptic weights, so it is not surprising that this target pattern can
be approximated very closely when synaptic weights are optimized speci�cally for
this purpose. The current pattern in the second cell is an arbitrarily chosen square
pulse. In contrast with the current pattern of the �rst cell, this current pattern
is not related to the network's �ring rate or to any other time-varying statistic
of the network's activity. However, with appropriately chosen synaptic weights,
this pattern is also approximated accurately. The current pattern in the third cell
consists of randomly selected frequency components in the 0- to 5-Hz band. Like
the square pulse, it bears no obvious relationship with the network's �ring pattern,
but it is also well approximated. Somatic current in each of these cells deviates
less than 1% from the target, in the mean-squared sense. These examples show
that a given pattern of �ring may drive an extremely wide variety of PSCs given
appropriately-chosen synaptic weights.

5.3.2 Firing Pattern Regularity

This basic result does not address how statistical features of a population �ring
pattern might constrain the current that it can induce in a postsynaptic cell. Syn-
thetic spike trains were used to explore this question in detail. Approximation
error was found to depend strongly on the regularity of spike trains over time.
Figure 5.2 (panels A-D) shows approximations of band-limited current patterns
by �ring patterns with di�ering temporal regularity. Notably, spike trains with
essentially-constant �ring rates (e.g., Fig. 5.2A,B) could approximate arbitrarily
chosen time-varying current patterns in the postsynaptic cell model. However, error
was markedly reduced as the CV of ISIs increased.

These results are not surprising when the currents at individual synapses are
considered in the frequency domain. The currents at individual synapses can be
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Figure 5.1: Pattern generation example. A model of 1000 cortical neurons [176]
can generate arbitrarily chosen current patterns in a postsynaptic cell. A, Spike
times (one neuron per row). B, Membrane potential of a typical excitatory neuron
in this network (scale bar 20 mV). C, Current induced in 3 di�erent postsynaptic
cells, to which the network projects with di�erent synaptic weights. Currents are
optimal approximations (gray) of target patterns (black dashed). Top: smoothed
and scaled re�ection of the network's mean �ring rate, middle: an arbitrarily chosen
square current pulse, bottom: an arbitrarily chosen band-limited target (scale bars:
1 nA and 100 ms). Timescale in (C) applies to all panels.
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viewed as temporal basis functions, which are weighted and summed to approxi-
mate the target pattern. The frequency content of these basis functions depends
on the �ring pattern of the corresponding presynaptic cell. For example, the cur-
rent that arises from regular �ring consists of harmonics of the �ring frequency,
whereas that arising from Poisson �ring has a broad spectrum. This can be seen
in the lower traces of Figure 5.2A-D, which show the power spectra of the �rst
several principal components of the PSCs that are induced by each ensemble. Ap-
proximation error decreases with increasing power in the frequency range of the
target current and increases with increasing power at other frequencies. As a
result, both Poisson-refractory and irregular-burst �ring patterns can accurately
generate target currents with a wide range of frequencies. Burst �ring is more
e�ective than Poisson-refractory �ring for driving low-frequency current patterns.
However, Poisson-refractory �ring is e�ective over a slightly wider frequency range
(Fig. 5.2E).

Firing patterns in most neural circuits tend to have high CV. These results
begin to suggest that information contained in such patterns can be extracted in
an accurate and �exible manner.

5.3.3 Spike Jitter and Noise Spikes

The results described so far are highly idealized in that they are based on noise-free
�ring patterns. In order to quantify the dependence of current generation accuracy
on precise spike timing, simulations with synthetic spike trains of di�erent CV were
repeated with random (Gaussian distributed) spike time jitter.

Spike jitter with a given variance had the e�ect of increasing MSE by a near-
constant multiple, regardless of CV. Thus at high CV, where error without spike
jitter was minimal, error remained relatively low even when substantial jitter was
applied. For example, with bursting spike trains (CV > 1), 8-ms jitter resulted in
error of at most 5% of root-mean-squared current (Figure 5.2F). Similar results were
obtained when �ring patterns were corrupted by inserting additional ``noise spikes,''
at random times (determined by a constant-rate Poisson-refractory process) that
were uncorrelated between repeated trials (Figure 5.2G).

Figure 5.3 shows an example in which half of the spikes are noise spikes and the
other half are subject to extreme Gaussian jitter (σ = 20 ms). The target pattern
is nevertheless approximated with reasonable accuracy, illustrating that meaningful
population output requires very little consistency in the �ne temporal �ring patterns
of individual neurons, even in the absence of coarse �ring rate variations.

5.3.4 Population Size and Firing Rate

For �ring patterns with a given CV, error decreased with increasing presynaptic
population size (Figure 5.4). However, unrealistically-large populations were not
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Figure 5.2: Decreasing error with decreasing spike pattern regularity. All data
are from simulations with 500 synthetic neurons, with mean �ring rate 30 Hz, but
di�erent ISI distributions. In panels A-D, dots indicate spike times of example neu-
rons, black dashed lines are target currents, and gray lines are actual net synaptic
currents �owing into the post-synaptic cell model. Traces below are power spectra
of the �rst 5 principal components of the PSCs (range 0-100 Hz; shaded area 0-5
Hz). A, Neurons that �re at near-constant rates (CV=0.08; MSE=0.117 nA). B,
Constant rates with wider rate distribution (across neurons) than in (A) (CV=0;
MSE=0.015 nA). C, Poisson-refractory neurons (CV=0.94; MSE=0.002 nA). D,
Irregular-bursting neurons (CV=1.7; MSE=0.0003 nA). E, MSE (as a proportion
of root-mean-squared target current amplitude) in approximating sinusoids of dif-
ferent frequencies (mean over 5 di�erent phases at each frequency) for a wide range
of CV. Error is generally high with low CV, except when sinusoid frequency is close
to the mean �ring frequency. F, MSE versus CV. Separate lines are degrees of
Gaussian jitter (SD as labeled). Error bars on top and bottom traces indicate SD
over 5 randomly selected band-limited signals. Symbols O and X indicate means
for a 500-neuron version of cortical network and for the same network adjusted for
higher CV (see Methods), respectively. G, As (F) but with noise in the form of
additional, randomly timed spikes instead of jitter. Number of noise spikes given as
percentage of number of non-noise spikes. Dashed lines of the same shade indicate
errors with the same proportion of noise spikes plus 4-ms jitter

87



A

B

C

D

Figure 5.3: Moderate error with highly variable spike trains. The presynaptic
population consists of 1500 synthetic Poisson-refractory spike trains. Each train
consists of 2 interlaced 20 spike/s components. One component is subject to large
spike jitter (SD=20 ms) that is uncorrelated between trials. The other component
is completely uncorrelated between trials (i.e., in each trial, this component consists
of a new set of spikes from a Poisson-refractory process, which is independent of
previous sets). A, Spike times of an example presynaptic neuron, over 32 trials used
to �nd synaptic weights (dots), and 2 separate trials shown in panel (C) (circles).
B, Spike time histogram of a single example neuron (scale bar: 10 spikes/s). C,
Approximations (gray) of target current (black) for the 2 trials shown as circles in
(A) (scale bar: 2 nA). D, Membrane potential of a Hodgkin-Huxley model [207]
driven by the 2 current approximations shown in (C) (scale bar: 100 ms applies to
all panels).
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Figure 5.4: Error decreases with increasing population size. Results from Poisson-
refractory neurons (40 spikes/s), with di�erent degrees of Gaussian spike time jitter
are shown (jitter SD as labeled). Error bars on top and bottom traces indicate
mean ± SD of MSE over 5 randomly selected band-limited target currents (as a
proportion of root-mean-squared target current amplitude). Error varies with spike
jitter as in Figure 5.2.

needed. For example, with 1-ms spike jitter, 1000 presynaptic Poisson-refractory
neurons were adequate to generate 500-ms signals with roughly 2% MSE.

In contrast with population size, �ring rate had little e�ect on the accuracy of
current generation. Errors arising from Poisson-refractory inputs were consistent
over a wide range of intermediate �ring rates, increasing slightly both below 5
spikes/s and above 100 spikes/s (Figure 5.5). Thus errors were low over a wide
physiological range. The increase in error with higher rates is related to the fact
that the refractory time causes a more pronounced deviation from Poisson statistics
(lower CV) at higher rates. This can be seen by comparing the solid and dashed
lines in Figure 5.5.

5.3.5 Correlated Firing

This chapter so far has essentially characterized the synaptic currents that arise
from irregular �ring as having low-frequency components that form an overcomplete
temporal basis of possible somatic currents, over some range of frequency and time.
Because such functions span a larger space if they are linearly independent, it was
hypothesized that spike timing correlations would impair performance. Synthetic
spike trains were used to test this prediction (this is separate from the question of
correlated noise, studied by e.g., [2, 327]). Error generally increased with correlated
spike timing. This is because when spikes were concentrated around correlation
times, there were fewer spikes in the intervening periods, which is analogous to
the population brie�y consisting of fewer neurons (see previous section). However,
the increase in error was minimal when correlation times were periodic at high
frequencies (Figure 5.6). This can be explained by noting that when correlation
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Figure 5.5: Error is nearly constant over a broad range of �ring rates. Separate lines
correspond to Gaussian jitter with SD as labeled. Solid black: Poisson-refractory
neurons. Dashed gray: Poisson neurons. Error bars on top and bottom traces
indicate mean ± SD of MSE over 5 randomly selected band-limited target currents
(as a proportion of root-mean-squared target current amplitude).

times are frequent, some of the PSCs that begin �owing around one correlation time
will continue to �ow until the next, so that the e�ective population size remains
large throughout. These results suggest that although correlated �ring may underlie
some forms of temporal coding, it may preclude other forms that rely on diverse
timing to support a wide range of temporal transformations.

5.3.6 Learning

The results presented above are based on synaptic weights that were obtained
using an arti�cial optimization method. The physiological relevance of these results
depends on whether each synaptic weight can be independently learned, using only
information that is available at the corresponding synapse. This section shows that
synaptic weights can indeed be learned in this manner, provided some explicit error
or target signal is available.

The derivative of the error function de�ned earlier (see Methods), with respect
to each synaptic weight, equals the inner product of the current and the error over
time. This suggests a supervised learning rule in which each synaptic weight is
updated at each instant, by ∆wi = −κIsyni E, where κ is a constant learning rate,
Isyni is the instantaneous current at the ith synapse, and E is the instantaneous
error in net current. This learning rule quickly converges on results similar to those
obtained with the optimization method (Figure 5.7). This remains true in the
presence of spike jitter.

Assuming an error signal were available, it is doubtful whether this signal would
propagate instantly to each synapse. The performance of the learning rule was
therefore investigated when ∆wi was based on low-pass �ltered error and current
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Figure 5.6: Increasing error with increasing spike time correlation. A, MSE versus
correlation (4-ms spike jitter) with 500 Poisson-refractory neurons (40 spikes/s).
Solid and dashed lines indicate Poisson and periodic correlation times, respectively
(see Methods; α =10Hz; β =22Hz; γ =55Hz). MSE reported as proportion of
root-mean-squared target current amplitude; bars indicate SD over �ve 300-ms
targets. B-D, Examples of approximations with Poisson, α, and γ correlations of
roughly equal strength. Dots indicate spike times of example neurons, black lines
are target currents, and gray lines are the actual synaptic currents �owing into the
postsynaptic cell model. Scale bars: 100 ms and 1 nA.
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signals. Filtering obscured high-frequency errors from the learning mechanism.
Consequently, learning was slowed, and the resulting approximations contained
more noise in the frequency range corresponding to the stop band of the �lter (Fig-
ure 5.7). However, these limitations were not severe. Reasonable approximations
were obtained even when the �lter time constant was greater than the duration
of the target signal. This demonstrates that learning can proceed on the basis of
error information that is substantially lagged and temporally smoothed, converging
nonetheless close to the limit imposed by spike jitter.

5.3.7 Experimental Detection of Subtle Repeated Patterns

As previously demonstrated, spike patterns with little trial-to-trial consistency can
drive highly consistent activity in a postsynaptic target (Figure 5.3). This raises
the question of whether spike patterns that have a stereotyped relationship with
behaviour might be driven by spike patterns that are so variable with respect to
behaviour that any underlying consistency evades experimental detection. Statisti-
cal power analyses were performed to address this question. The analyses estimate
the numbers of repeated trials that would be needed to �nd peri-event variations
in �ring rate, under the assumption that such variations are as small as possible
while still producing relatively reliable spiking in a postsynaptic cell.

Figure 5.8 shows the numbers of trials that would be needed to detect the sub-
tlest presynaptic �ring patterns that could drive post-synaptic �ring with various
levels of consistency. The number of trials needed (recording a single representa-
tive presynaptic neuron) depends strongly on how reliable post-synaptic spiking
is assumed to be. This is because the more pronounced variations in presynaptic
�ring that would be needed to cause more reliable post-synaptic �ring would also
require fewer trials to detect. However, even if post-synaptic spiking were highly
stereotyped (1% of spikes timed inconsistently from trial to trial), 50 or more re-
peated trials may be needed to distinguish the driving patterns from random �ring.
Throughout the range of error rates shown in Figure 5.8A, trial-to-trial consistency
is greater in postsynaptic than in presynaptic �ring patterns. So, presynaptic �ring
patterns that are so subtle as to require over 1000 trials to detect may nevertheless
drive much more stereotyped activity in postsynaptic cells. Although the speci�c
results of this analysis clearly depend on the assumptions made (e.g., degree of con-
vergence; Poisson �ring statistics), similar assumptions are reasonable with respect
to many cortical and subcortical areas. The key observation is that substantially
more trials may be needed to detect useful repeated �ring patterns (e.g., over 100
trials, if a 10% rate of postsynaptic spike mistiming is assumed) than are typically
collected in experimental studies (except in studies in which repeated trials consist
only of brief sensory stimuli, e.g., [33]).

In fact, these results may underestimate the capacity for highly variable spiking
to produce stereotyped behaviour, because the power analyses ignore potential
dynamic e�ects. Speci�cally, �ring at the output of a network will have greater
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Figure 5.7: Learning. A, Decrease in error over 1000 iterations of a Poisson-
refractory spike pattern (500 neurons; 30 spikes/s), under the learning rule de-
scribed in the text. All synaptic weights initially set to zero; target current as
shown in other panels. Thick black lines indicate learning trials with no spike
jitter. Three cases are shown, each with error data temporally �ltered using a
di�erent �rst-order low-pass �lter (time constants as labeled; τ = 0s indicates no
�lter). The thin gray lines that diverge from the black lines after about ten it-
erations indicate corresponding cases repeated with 4 ms (SD) jitter in the spike
trains (only the τ = 0s and τ = 0.05s cases are shown). Interestingly, there were
substantial di�erences in error after a single iteration (left extreme of each line),
depending on the �lter time constant. Substantial �ltering allowed the learning
mechanism to accurately approximate the mean magnitude of the target signal in a
single pass, although subsequent learning of the signal shape was slowed. Learning
continued after 1000 iterations (not shown). For example, with τ = 0.5, error was
further reduced by about half, after 10 000 as opposed to 1000 iterations. Panels
B-D show target current (black) and approximation (gray) in various cases, after
1000 iterations. B, Neither �lter nor spike jitter. C, Filter with τ = 0.05s. D, Spike
jitter with SD = 4 ms. Scale bars: 100 ms and 0.5 nA.
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Figure 5.8: Trials needed to detect subtle �ring patterns. Results of prospective
power analyses for (hypothetical) experiments to detect the smallest peri-event
�ring rate changes that could trigger reliably-timed spiking in a post-synaptic cell.
Assumptions are as described in the Methods. Details of the analysis are given in
the Appendix. A, Numbers of trials required for a type-II error rate of 0.2 with
1-way ANOVA. More trials are needed to detect smaller presynaptic �uctuations
in �ring rate. The expected size of presynaptic rate �uctuations depends on the
number of neurons contributing to each post-synaptic spike (black: 500; gray: 1000)
out of a total of 10 000, and on the reliability with which the post-synaptic cell
is assumed to spike. For example, larger presynaptic variations in �ring rate lead
to more reliable post-synaptic timing and also require fewer trials to detect. An
impractically large number of trials may be needed to detect subtle patterns, unless
it can be assumed that the patterns drive post-synaptic activity with a very low
error rate. B, 100-trial spike timing histogram for an example neuron drawn from a
population that drives post-synaptic �ring with a mistimed spike rate of about 60%.
C, 100-trial �ring histogram for a Hodgkin-Huxley neuron driven by the population
exempli�ed in (B) with PSC time constant of 5 ms. D, As (C) but with 20 ms PSC
time constant.

consistency if the network is more responsive to underlying �ring patterns than to
random �uctuations. Figure 5.8D shows the results of a simulation that illustrates
this point using a Hodgkin-Huxley model [207] of a post-synaptic neuron. In this
simulation, the receiving neuron is made less responsive to high-frequency random
�uctuations in excitation, simply by including PSC dynamics with a relatively long
time constant of 20 ms. Depending on the frequency content of signals in a given
circuit, this particular �ltering mechanism might not be useful. However, there are
other more sophisticated neural circuits that can perform, for example, band-pass
�ltering with any choice of corner frequencies [368]. This reinforces the conclusion
that precise, reproducible behaviour can in theory arise from highly variable neural
activity.
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5.3.8 A Continuum with Rate Coding

The sections above consider the computations that can be performed on the basis
of irregular �ring patterns. A separate but related question is how such irregular
�ring patterns might arise from input signals that do not contain �uctuations at the
same frequencies. Such a relationship would arise if a neuron's net driving current
were an irregular function in the space of represented information. In this case, its
�ring pattern would be a deterministic function of the input to the ensemble, but
it would appear irregular, even if the input changed smoothly over time.

This possibility is illustrated in Figure 5.9, in a model composed of leaky-
integrate-and-�re (LIF) neurons. In this model, irregular patterns of somatic
driving current are modelled abstractly. In a more detailed model, they might
arise from weighted synaptic input (Chapter 3), possibly in combination with cell-
intrinsic nonlinearities (Chapter 4). Analogously to previous sections, neurons that
are post-synaptic to an ensemble of such irregularly-�ring neurons can reliably ex-
tract represented signals, in the absence of both spike time coincidence and �ring
rate variations (Figure 5.9C).

Figure 5.9D shows a �ring-rate histogram for one presynaptic model neuron,
over thirty simulations in which the represented variable x had exactly the same
trajectory. Despite this consistency in the input, there was no systematic variation
in the �ring rate over time, because the other represented variable y changed from
trial to trial. This simulation illustrates that if it is not possible to control all of
the variables to which a neuron is sensitive, then even in the absence of noise, rela-
tionships between a neuron's �ring and the variables of interest can be completely
obscured.

The pattern of driving current in Figure 5.9A is dominated by high-frequency
�uctuations with respect to the represented variables (x and y). In contrast, the
driving current of a 2-dimensional cosine-tuned neuron would be an inclined plane.
Intermediate patterns are also possible. For example, a driving-current function
might be inclined along the y-axis, but dominated by high frequencies along the
x-axis. In general, a network could exhibit a continuum between timing and rate
codes, through irregular current functions that are variously inclined along preferred
directions, with variously-scaled high-frequency peaks.

5.4 Discussion

This chapter has shown that even in the absence of coarse rate variations, irregular
�ring patterns can drive nearly any given pattern of activity in a post-synaptic neu-
ron. Importantly, such transformations can be obtained through learning. These
results have two main implications for the interpretation of experimental data.
First, a neuron's pattern of �ring around an event may not have an obvious tem-
poral relationship with the neuron's role in the event. For example, although a
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Figure 5.9: Temporal coding and decoding with LIF neurons. A, Net somatic
current (arbitrary units) experienced by an example LIF neuron, as a function of
two inputs (x and y). B, Irregular �ring in 50 di�erent neurons (each with di�erent
current functions) as inputs x and y vary at low frequency. C, Estimate of x
decoded from activity of an ensemble of 1000 LIF neurons �ring as in B. Black line
indicates ideal decoding (post-synaptic current dynamics applied to input x). Gray
line indicates the estimate of x by a neuron post-synaptic to the ensemble. This
estimate is a weighted sum of post-synaptic currents generated by the �ring of the
ensemble. D, Firing-rate histogram showing a lack of mean �ring rate dependence
of an example neuron on input x, over 30 trials. In each trial x is identical, but y
varies randomly.
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group of neurons �res faster only at the end of a movement, subtle di�erences in
spike timing between neurons may drive some aspect of movement initiation. This
is particularly true with respect to irregular and highly stereotyped �ring patterns,
such as those arising in middle temporal responses to some visual stimuli [33] or
in songbird vocalization [147] (although the same cannot be said if responses lack
diversity across the population, e.g., see [311]). Furthermore, accuracy degrades
gracefully with �ring pattern variability, so that even patterns that are di�cult to
distinguish from random �ring can drive relatively stereotyped activity. Therefore,
the second main conclusion to be drawn from this chapter is that neither precise
spike timing nor observable rate �uctuations can be relied on to expose all the
signi�cance of a cell's activity.

Although the focus of this chapter has been on projections from a single neu-
ral ensemble to a single post-synaptic neuron, the results also have implications
for larger circuits. A single ensemble of neurons can drive di�erent post-synaptic
neurons in entirely di�erent patterns (e.g., Figure 5.1C). Several hundred neurons
driven in diverse patterns would form a rich basis from which to drive activity in
a subsequent layer. Therefore, although it remains to study how errors propagate
through multiple layers, the present results clearly apply to larger circuits as well
as to single projections.

These �ndings are in general agreement with the results of Gütig and Som-
polinsky [142] on the classi�cation of �ring patterns. If a neuron can be trained to
spike in response only to selected population-temporal input patterns, as they have
shown, then it would be expected that the same neuron could be made to exhibit
arbitrarily chosen �ring patterns by training it to respond only to selected short
segments of a longer presynaptic pattern.

Medina et al. [251] present a model of a speci�c neural circuit that they take to
function in similar manner to the abstract circuits in the present study. Theirs is a
classical conditioning model, in which cerebellar granular cells respond to a condi-
tioned stimulus with diverse temporal �ring patterns. An unconditioned stimulus
serves as a training signal, decreasing or increasing the strength of granular cell
synapses onto Purkinje cells, depending on whether granular cell activity is coinci-
dent with the unconditioned stimulus or not. After training, Purkinje cells in e�ect
decode a temporal prediction of the unconditioned stimulus from diverse granule
cell �ring patterns. Synaptic weights are modulated on the basis of a target output
rather than error, so learning ends when some physiological parameter is satu-
rated, rather than when error is minimized. Otherwise, this learning mechanism is
analogous to the one presented here.

The present study is also conceptually related to the liquid-state machine [232].
The liquid-state machine relies on a diversity of neural responses to input, within
a recurrent circuit, in order to approximate a broad class of temporal functions
of the input. In contrast to the liquid-state machine (the neurons of which �re
at �uctuating rates), the present study explores how computations are e�ected by
�ring statistics in the absence of large-scale rate �uctuations. This focus leads to
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new implications (as describe above) with respect to the interpretation of electro-
physiological data.

5.4.1 E�ects of Firing Statistics on Performance

The relationships between the statistics of presynaptic �ring patterns and the accu-
racy of PSC generation are remarkable in several respects. First, the irregularity of
experimentally observed spike trains can provide a substantial functional advantage
in terms of 1) the accuracy with which neurons can drive current in a postsynap-
tic cell and 2) the robustness of the current pattern to noise. For slowly varying
current patterns, this advantage is even more pronounced with bursting neurons,
highlighting a possible dimension in the functional relevance of burst �ring that has
received little attention (e.g., in [80, 94, 229, 310, 179, 196]).

Second, although greater numbers of neurons can drive current more accurately,
very large numbers of neurons are not needed, even in the absence of precise spike
timing or rate variations. As shown in Figure 5.3, 1500 irregularly and inconsis-
tently �ring neurons can drive useful PSC patterns. The degree of convergence onto
most neurons is far greater than this. For example, some α-motoneurons receive
about 50 000 synaptic inputs, and cerebellar Purkinje cells receive as many as 200
000. This indicates that multiple �ring rate-independent signals could converge on
a single neuron pool. Furthermore, because the same population �ring pattern can
induce vastly di�erent currents in di�erent cells (e.g., Figure 5.1C), the same small
group of neurons could drive a wide variety of activity elsewhere, limited only by
the number of di�erent cells to which it projects.

Third, under the conditions studied here, errors in PSC are greater when the
timing of presynaptic spikes is correlated. However, the increase in error is moder-
ate when spike times are correlated at high frequencies. It is interesting to consider
this result in relation to oscillations in local �eld potential (LFP), particularly in
the context of motor control. Lower-frequency alpha and beta oscillations in mo-
tor cortical LFP usually disappear during movement and are sometimes replaced,
around movement onset, by higher-frequency gamma oscillations [233]. Similar
changes in LFP oscillations during movement occur in the cerebellum [297] and
basal ganglia [67, 222, 79, 199]. Thus, patterns of LFP oscillation in motor areas
during movement and rest coincide with patterns of synchrony that allow and pre-
clude (respectively) the type of coding presented here, pointing to the possibility
of a role for this type of coding in motor control.

Fourth, and �nally, errors in pattern generation were dominated by high-frequency
�uctuations, a point that is also relevant to motor control. For example, 75% of
the error in Figure 5.2A was at frequencies above 100 Hz, much higher than the
frequency content of skeletal movement. The frequency spectrum of the error is rel-
evant in the context of motor control, because the relationship between myoelectric
activity and muscle forces resembles a low-pass �lter [285], and limb inertia has a
further damping e�ect. Thus, most of the error observed in this study (i.e., error at
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high frequencies) would not necessarily interfere with movement kinetics if it were
present in a motor circuit.

5.4.2 Timing versus Rate

Each of the synthetic �ring patterns used in this study was generated from a con-
stant ISI distribution and in this sense has a constant mean �ring rate. However,
instantaneous rates �uctuated because the patterns (with the exception of those
in Figure 5.2B) contained a range of ISIs. So, if these �ring patterns were re-
peated over multiple trials, rate �uctuations would appear in the multi-trial spike
histogram (although such �uctuations might be quite subtle, as in Figures 5.3 and
5.8). However, repeated task behavior does not guarantee that related neurons
exhibit repeated patterns. This was illustrated in Figure 5.9, in the context of neu-
rons with irregular tuning curves, but it is also true in other cases. For example,
a neuron's activity may re�ect something that varies from trial to trial, such as
an error signal. Also, a neuron's �ring pattern might contain information about a
repeated feature of an event only when considered in conjunction with the �ring
patterns of other neurons [327]. Because instantaneous rate does not uniquely de-
termine multi-trial rate, even if the neuron is noise free, and because it is otherwise
indistinguishable from timing, this chapter uses the term ``rate'' only to indicate
the inverse of the mean of the ISI distribution.

5.4.3 Limitations and Future Work

The most important limitation of this study is that the dendritic model used here
assumes linear combination of currents, as might occur, for example, with synapses
on separate distal dendrites [301]. Dendrites can also combine synaptic input in
much more complex and varied ways, although some complexities of dendritic pro-
cessing (including dendritic spiking) serve partly to compensate for passive cable
properties rather than to implement nonlinear computations, as discussed in Chap-
ter 3 [235, 236, 385, 318]. As noted in the Methods, the present results are relevant
to any case in which PSC is a monotonic function of total conductance. For any
target current, in such cases, there is a corresponding sum of conductances that will
produce it. In more complex cases, the present results may only apply under lim-
ited conditions, for example, to activity within a single dendritic branch or within
a certain voltage range. It is beyond the present scope to explore how these results
interact with more detailed models of speci�c cell types, but it would be reason-
able to expect that in many cases, sophisticated dendritic processing would enable
further computations on the results of the computations modeled here. For exam-
ple, several temporal current patterns that are generated by near-linear synaptic
integration might converge to be combined multiplicatively. The possibility of such
additional dendritic processing does not seem to a�ect the basic conclusion that
arbitrary timing-based information can be exploited in a �exible manner, under
very general circumstances.
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One aspect of dendritic processing that would be particularly interesting to
study, in relation to the present results, is variability in the dendritic membrane
time constant (e.g., through neuro-modulation). Changes in membrane time con-
stant would alter the temporal relationships between somatic currents arising from
di�erent parts of the dendritic tree. If weights were tuned in relation to one time
constant, such changes would be expected to result in additional noise in the so-
matic current, at frequencies of about 50 Hz and higher. However, it might be
possible to tune synaptic weights in order to exploit such changes functionally. For
example, modulation of the time constant might synchronize or desynchronize distal
excitatory inputs from more proximal inhibitory inputs, dramatically in�uencing
the spiking pattern.

This chapter has shown that in principle, timing patterns can be exploited by
the brain even if they are di�cult to detect experimentally. This result is in a sense
its own limitation, because it would be di�cult to con�rm that this was actually
happening in a given circuit. A prerequisite would be that some functionality of a
circuit could not be accounted for by �ring rates or precise timing. Speci�c results
of this chapter (e.g., relationships between error and �ring statistics) may also help
to resolve whether such a mechanism is feasible given other knowledge of the circuit.
However, the only obvious way to test for this phenomenon directly is to perform
large numbers of trials.

Another limitation of this study is that although a learning rule has been iden-
ti�ed, which makes use of information that could plausibly be available at each
synapse (i.e., each synapse does not need information from other synapses), this
rule is speculative rather than being based on a known biological mechanism. It
remains either to map this learning rule onto a demonstrated mechanism or to ex-
plore the viability of other rules, for example, rules based on rewards rather than
error signals.

While the focus here has been on how an ensemble of neurons can produce
a single pattern of PSC in a given cell, it is unlikely that a cell is dedicated to
producing a particular pattern. Further work is therefore needed to explore how
the present results generalize to the production of di�erent current patterns in the
same cell over short timescales, that is, without substantial changes in synaptic
weights. There are several possibilities. For example, an ensemble could produce
a family of pattern primitives, which could be separately gated to produce a wide
range of PSC patterns. A circuit of this form might function as a repository of
arbitrarily complex motor programs, with parameters varied through gating.

It may also be fruitful to further explore how the �ring patterns that arise from
varying input to a network could drive a useful set of outputs. Certainly, the �ring
patterns that are produced by two di�erent inputs could produce essentially any
two patterns of PSC. This is clear if one imagines that the spike pattern from 0
to 500 ms in Figure 5.1 is produced by one input, and the pattern from 500 to
1000 ms is produced by a second input. With a single set of synaptic weights,
these two inputs result in two di�erent current patterns. This remains true for
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more than two inputs, but error rises roughly linearly with the summed duration
of the input/output mappings. However, if �ring patterns re�ected only a few
milliseconds' input, then multi input-multi output mapping might result in good
piecewise approximations of a large family of desired outputs. This possibility
is related to the liquid-state machine [232], but di�ers in a signi�cant respect.
Speci�cally, although computations in a liquid-state machine require traces of long-
past inputs, the present suggestion is that a similar architecture without such traces
may enable population coding of time-varying inputs without time-varying �ring
rates.

5.4.4 Population-Temporal Coding

The present results make it clear that patterns of irregular spiking, perhaps gener-
ated by recurrent circuit dynamics, can drive a wide range of time-varying activity
in other cells. In this light, it may be reasonable to view any circuit that produces
a temporal �ring pattern, regardless of whether the pattern contains variations in
�ring rates, as being analogous to a central pattern generator. That is, such a
circuit is a versatile, intrinsic source of time-varying activity patterns (although
mechanisms of pattern modulation may be di�erent from those of classical central
pattern generators).

However, the ability of neurons to exploit timing-based information may have
much broader uses. One interesting possibility is that a given pattern of input
to a neuron might be analogous to the neuron's preferred direction, in a multi-
dimensional population code. For example, suppose a neuron were to receive input
from a number of syn�re chains [103, 172]. The phase relationships among n +
1 chains would span an n-dimensional vector space. Every vector in this space,
that is, every possible list of phases, would correspond to a certain pattern of
input to the receiving neuron. As the present results demonstrate, almost any such
input pattern could be transformed into almost any pattern of current. Moreover,
deviations from this input pattern, either in terms of phase relationships or spike-
timing precision, would result in noisier current, much like deviations from preferred
direction in a rate-based population code result in reduced current. An ensemble
of neurons with di�erent preferred phase relationships could support a population
code over the space of phase relationships. The present results also suggest that
a population code of this form could drive either a similar code in a receiving
ensemble of neurons, or a rate-based population code (the latter is evident from
the square-pulse example of Figure 5.1, in that a postsynaptic neuron would �re
faster during the excitatory pulse). Further work is needed to verify that such a
population code can be supported by realistic neuron models and to explore its
computational power.

In conclusion, the results of this study suggest that neurons can use information
contained in the timing of incoming spikes, under very general conditions. Syn-
chrony is not needed, and specialized synapses, neurons, and circuit structures are
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also unnecessary. Furthermore, incoming patterns can consist mostly of noise and
can therefore be very hard to detect experimentally, yet still produce behaviorally
useful patterns. Finally, timing-based information can be transformed into a wide
variety of outputs, in a manner that seems to accommodate a versatile population
code.

5.5 Appendix: Details of Power Analyses

The e�ect sizes for power analyses were derived from the smallest increases in the
�ring rates of a noisy excitatory population that could be expected to produce a
spike in a cell post-synaptic to this population. For simplicity, it was assumed that
PSCs would decay such that the post-synaptic cell would �re if it received more
than a �xed number of spikes from excitatory sources within a 5-ms time bin. The
rates of extra spikes and missing spikes in the postsynaptic cell were assumed to
be the same, so that noise could be expressed as a single index, corresponding to
the rate of mistimed spikes. For each spike in a postsynaptic cell, let n be the
number of excitatory neurons converging onto the postsynaptic cell that have a
slightly elevated, noisy rate increase that contributes probabilistically to the spike.
The mean number of spikes in each bin, across these neurons, will be di�erent
for each trial. For large n, these trial means cluster around grand means in a
Gaussian distribution with variance k/n (where k is the Poisson spike rate per
bin). Reliability of postsynaptic spiking in this scenario will increase with greater
di�erences between the grand means of the normal and elevated rates of presynaptic
spiking. The grand-mean elevated rate of presynaptic spiking was set such that trial
means for each bin crossed an intermediate threshold at a rate corresponding to a
predetermined rate of mis-timed post-synaptic spikes. Because rates were elevated
only in very short (5 ms) bins, this rate modulation can also be viewed as a noisy
manipulation of spike timing.

These analyses result in estimations of the numbers of trials in various condi-
tions, which provide a 0.8 probability of �nding minimal rate elevations (if they
exist), with a 1-way �xed-e�ects analysis of variance (ANOVA). The baseline and
elevated rates were similar, so (because variance equals mean in a Poisson process)
the ANOVA assumption of uniform variances was approximately satis�ed. How-
ever, because the ANOVA relies on the sampling distribution of variances, which is
sensitive to deviations from normality in the underlying distributions, results are
presented from numerical experiments rather than from theoretical distributions.
Each reported data point corresponds to the number of trials in each of a set of
1000 experiments, in which the null hypothesis (i.e., the hypothesis that there was
no di�erence in �ring rates across bins) was rejected between 799 and 801 times
(α = 0.05). The validity of the ANOVA with Poisson-distributed data in these
circumstances was also con�rmed, in that the null hypothesis was rejected at the
α = 0.05 level in roughly 50 of 1000 experiments in which there were no systematic
rate di�erences, regardless of the number of trials in each experiment.
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Chapter 6

Computation with Inhibitory

Projections

In contrast with the cortex, the projection neurons of most basal ganglia nuclei are
inhibitory. This property is central to conceptual models of basal ganglia function.
For example, the classic Albin/DeLong model describes basal ganglia function in
terms of a balance between inhibition and disinhibition of the output nuclei. In
more recent computational models, it is generally assumed that if a group of neurons
represents an item of information, the e�ect of inhibition is to reduce the represented
value. It was shown recently [295] that excitatory projection neurons can subserve
much more complex and varied computations (e.g. nonlinear and non-monotonic
functions of the input), closely approximating any computation that can be achieved
through a mix of excitatory and inhibitory synapses. This chapter shows that the
same is true of inhibitory projection neurons, given certain other conditions that
are also met in the basal ganglia. This observation suggests that the basal ganglia
may be capable of much richer computations than previously recognized.

6.1 Introduction

From a theoretical perspective, the computational power of a neuronal projection is
greatly enhanced if each of the presynaptic neurons can act of a source of both exci-
tatory and inhibitory synapses. In particular, for any map subserved by n synapses
with weights of uniform sign, there are 2n maps with synaptic weights of the same
absolute values but mixed signs. But weights of mixed sign are not physiologically
realistic. Normally, a single neuron contains a single primary neurotransmitter (i.e.
a single neurotransmitter that a�ects the trans-membrane currents of its targets),
which has either an excitatory or inhibitory e�ect.1 This appears to constrain the
computational power of biological neural networks.

1There are exceptions. These include excitatory/inhibitory cotransmission in the retina [399]
and possibly in the mammalian uterus [62]; the capacity for GABA to depolarize a cell, depending
on resting membrane potential and internal Cl− concentration [376, 69]; and receptor-dependent
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However, it was shown recently [295] that any idealized projection model that
contains synaptic weights of mixed sign can be transformed into a physiologically-
realistic projection that is functionally equivalent. This transformed projection is
consistent with typical cortical anatomy [346], in that 1) the primary projection
neurons are excitatory, 2) these neurons synapse onto both excitatory neurons and
inhibitory interneurons in the target area, 3) the inhibitory interneurons in turn
synapse onto local excitatory neurons, 4) there is substantial convergence and di-
vergence in the synapses between each group of neurons, and 5) about 20% of the
neurons are inhibitory.

Interestingly, descending projections onto thalamic nuclei have a similar form
[188].2 Projections from the cortex onto the striatum are also similar, in that excita-
tory projection neurons synapse onto the striatal projection neurons, which in turn
inhibit other projection neurons collaterally, and also onto fast-spiking inhibitory
interneurons that inhibit medium spiny neurons in a feedforward manner [357, 299].
The striatal projection neurons are inhibitory, but this does not a�ect the function
of the cortico-striatal projection.

In contrast with the typical cortical structure, the projection neurons in most
basal ganglia nuclei are inhibitory. However, this chapter shows that because in
most cases the target neurons are also inhibitory and tonically active [352], and
have local collaterals, this connectivity is also functionally consistent with mixed
excitatory and inhibitory synaptic weights. The projection from globus pallidus
externus to the subthalamic nucleus is an exception, in that the target neurons are
excitatory, but in this case parallel projections through additional globus pallidus
neurons could theoretically have a similar e�ect. In the projection from striatum to
SNc, the target neurons are dopaminergic. However, striatal neurons also synapse
onto a smaller population of inhibitory interneurons, which in turn synapse onto
the dopamine neurons [145].

These results imply that basal ganglia projections may underlie more sophisti-
cated computations than previously recognized, particularly by the Albin/DeLong
model and the more recent models that elaborate it.

6.2 Feedforward Excitatory Projections

This section reviews the transformation of a mixed-weight projection model to a
more realistic model with excitatory projection neurons. The material in this sec-
tion was introduced by Parisien et al. [295], elaborating on suggestions by Eliasmith
& Anderson [111].

mixed e�ects of glutamate [193]. Some synapses can also switch rapidly between excitatory and
inhibitory transmission, under control of brain-derived neurotrophic factor [391].

2Ascending projections usually have a di�erent structure, in which dendrite-to-dendrite in-
hibitory complexes associate with individual excitatory synapses.
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Figure 6.1: The excitatory Parisien transform. A, An idealized projection in which
each pre-synaptic neuron can act as a source of both excitation and inhibition can
is mapped to a physiologically realistic projection that performs the same com-
putation. In the transformed projection, excitatory presynaptic neurons synapse
both directly onto post-synaptic targets, and also indirectly through a small pop-
ulation of inhibitory interneurons. B, Shifting the synaptic weights in the main
projection (so that they are all excitatory) introduces an excitatory bias current
into the post-synaptic neurons. This bias current is a function of the variable x
that is represented by the presynaptic ensemble. This same bias function is pro-
jected to the interneurons, which then o�set the excitatory current by inducing an
approximately-equal inhibitory current in the post-synaptic neurons.

Beginning with an idealized projection, in which presynaptic neurons make both
excitatory and inhibitory synapses, Parisien et al. [295] de�ne a transform to a re-
alistic model in which each neuron is either excitatory or inhibitory. The transform
consists of two steps. The �rst is to o�set all of the original (mixed-sign) synap-
tic weights so that they become excitatory. This eliminates the mixed weights,
but introduces extraneous excitatory current into the post-synaptic neurons. The
second step is to cancel out this extraneous excitatory current by introducing in-
hibitory neurons. This could be done by introducing one inhibitory interneuron
for each (now-excitatory) projection neuron. However, this would require as many
inhibitory as excitatory neurons, contrary to cortical anatomy. In the method of
Parisien et al., the inhibitory neurons instead encode all of the necessary bias as a
population. This scheme is illustrated in Figure 6.1.

After the transformation, the synaptic weight between the ith presynaptic neu-
ron and the jth postsynaptic neuron is

wji = woji + wbji,

where woji is the original (mixed-sign) synaptic weight, and wbji is the positive bias
that is added to this weight in order to make it excitatory. The only trick in de�ning
the bias weight is that it must allow compensation by a correlated ensemble of
interneurons. This correlation is what decouples the number of interneurons from
the number of projection neurons. Parisien et al. achieve this by de�ning the bias
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weight in terms of scalar encoders and decoders, as

wbji = φ̃bjφ
b
i ,

where (using the notation of the NEF, introduced in Chapter 3) φ̃bj is the bias
encoder of the jth post-synaptic neuron, and φbi is the bias decoder of the i

th presy-
naptic neuron. The values of the bias decoders are not critical, although large
di�erences between their magnitudes turn out to cause problems, so they are cho-
sen to be uniform, i.e. φbi = φb. These φb can be viewed as decoding a �bias
function� f b(x) from the presynaptic neurons. With uniform φb, the form of this
bias function is determined by the presynaptic neurons' tuning curves. For example,
for cosine-tuned LIF neurons with diverse thresholds, this bias function resembles a
parabola that is lowest around zero and highest at the extremes of the represented
range (Figure 6.1B). The uniform φb are scaled so that this bias function has a
maximum of one.

The bias encoder φ̃bj of the jth post-synaptic neuron is then chosen to be as
small as possible, such that wij ≥ 0 for all i. This is achieved when

φ̃bj = maxi

(−woji
φb

)
.

Eliminating negative synaptic weights in this manner introduces an additional
excitatory bias current φ̃bjf

b(x) into each post-synaptic neuron. To recover the
transform f o(x) associated with the original mixed-sign weights woji, the presynap-
tic ensemble projects the bias function f b(x) to an ensemble of inhibitory interneu-
rons. The interneurons have uniform encoders φ̃k = 1, and decoders that optimally
approximate −f b(x), within the constraint that these decoders must all be negative.

The interneurons then project this approximation−f̂ b(x) to the post-synaptic neu-
rons, which scale it with the bias encoders φ̃bj. Each post-synaptic neuron therefore
receives the following map of the presynaptic represented variable:

f(x) = f o(x) + φ̃bjf
b(x)− φ̃bj f̂ b(x) ≈ f o(x).

In other words, the shift in the synaptic weights of the main projection adds excita-
tory bias current, and the interneurons add approximately equal inhibitory current,
so that the elaborated projection model has e�ectively the same synaptic weights
as the original idealized projection.

As discussed in the introduction, the general structure of the resulting projection
(e.g. excitatory neurons projecting onto both excitatory neurons and a smaller
number of locally-connected inhibitory neurons, etc.) is very common.

6.3 Feedforward Inhibitory Projections

This section shows that the method described above extends in a straightforward
manner to the case of inhibitory projection neurons. This case is less common
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Figure 6.2: Interneuron tuning in the excitatory and inhibitory transforms. The
shaded area indicates the normal operating range, and the lines show tuning curves
of example neurons from interneuron ensembles. A, In the excitatory transform,
the excitatory presynaptic neurons increase interneuron �ring from low intrinsic
rates (i.e. at f b = 0). B, In the inhibitory transform, the inhibitory presynaptic
neurons reduce �ring activity from high intrinsic rates.

generally, but it dominates the basal ganglia � projection neurons of the striatum,
globus pallidus, and substantia nigra compacta are all inhibitory.3

To transform an idealized (mixed-sign) projection into an inhibitory one, a
negative bias is added to each of the original synaptic weights. In this case the
bias decoders are uniform and negative, resulting in a bias function that is negative
for all x. The equation for the bias encoders actually remains the same, despite
the fact that the largest-amplitude positive weight must be corrected in this case
(rather than the largest-amplitude negative weight), because the bias decoders are
negative. So again,

φ̃bj = maxi

(−woji
φb

)
.

The weight bias in this case introduces extraneous inhibitory currents. The
bias function is also projected to tonically-active inhibitory interneurons, which �re
more slowly as a result, and inhibit the post-synaptic neurons less. This balances
the greater direct inhibition from the presynaptic neurons.

The tonic activity of the interneurons is critical, because reduction in this ac-
tivity is needed in order to disinhibit the post-synaptic neurons (see Figure 6.2).
The post-synaptic neurons must also be tonically active. Speci�cally, the tonic in-
put from the inhibitory interneurons must be o�set either by intrinsic currents or
separate excitation.

Figure 6.3 compares an idealized mixed-sign projection with its transformation
into both excitatory and inhibitory projections. In this example, the projection

3Incidentally, Purkinje cells, the projection neurons of the cerebellar cortex, are also inhibitory.
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calculates a nonlinear and non-monotonic function of the presynaptic represented
variable, illustrating that this type of computational �exibility is retained in both
the excitatory and inhibitory cases.

The fact that the Parisien transform can be extended to inhibitory projections
is not at all surprising. However, it is noteworthy, in that it calls into question
one of the most common assumptions about how the basal ganglia work, i.e. that
inhibitory projections correspond to a simple suppression of activity in the projec-
tion neurons of the target nuclei. This assumption is ubiquitous in action-selection
models. For example, in one of the more sophisticated recent models [59], the in�u-
ence of the striatum on the GPi (within the kth action channel) is −.54BSD

k , where
BSD
k is striatal activity. The present results suggest that essentially any f(BSD

k )
would be a potential alternative.

This is the main point of the chapter. The remainder of the chapter addresses
relatively subtle questions of stability limits and performance.

6.4 Recurrent Projections

In a Parisien projection, the interneuron currents are slightly lagged in time behind
the direct bias currents, because of the extra synapse in the pathway through the
interneurons. This lag introduces an error, the magnitude of which varies with
df b/dt. In a feedforward network this error tends to be small, in part because
excitatory synapses onto inhibitory neurons tend to have fast dynamics. However,
as Parisien et al. [295] pointed out, the associated delay raises the possibility
of instability in a recurrent network. They investigated this possibility using an
integrator network as an example, and did not discover a stability problem. The
integrator example is a reasonable choice, because by de�nition it operates on the
border of instability. However, it remains possible that instability might arise in
other types of recurrent networks.

This issue is particularly relevant to the inhibitory transform. In a recurrent
inhibitory network (for example composed of laterally-connected neurons in the
globus pallidus) it would be reasonable to expect that any threat to stability might
be more pronounced. This is because the interneurons in such a network are of
the same type as the post-synaptic neurons, so that all the synapses have the
same dynamics, and the lag through the dis-inhibitory channel is relatively greater
compared to that in the excitatory transform.

This section reconsiders the stability issue in light of this di�erence. It is shown
that 1) the Parisien transform can lead to instability, even if the corresponding
idealized circuit is stable, and 2) when the PSC time constant of the interneurons
is as large as the others, the stability limits are narrowed. The consequence is that
an all-inhibitory recurrent network with uniform PSC time constants can exhibit a
restricted range of dynamics.
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Figure 6.3: Example simulations illustrating that both the excitatory and inhibitory
transforms can calculate non-monotonic functions. In each of the left panels, the
black dashed line indicates the ideal value of a represented variable, and the gray line
indicates its estimate, decoded from spiking activity in the corresponding ensemble.
Each of these simulations was performed with ensembles of 600 presynaptic neurons,
600 post-synaptic neurons, and (in the transformed projections) 150 interneurons.
A, The presynaptic ensemble represents an input variable that increases linearly
with time. B, Diagram of the network structure, consisting of a single projection
from a one-dimensional ensemble to another, in which the synaptic weights approx-
imate the map y = sin(x). C, Optimal linear decoding of y from spiking neural
activity in the post-synaptic ensemble, with an idealized mixed-weight projection
(MSE=.00018). The right panel shows a histogram of the synaptic weights in this
projection. D, Optimal linear decoding of y from activity in the post-synaptic
ensemble, after the excitatory Parisien transform (MSE=.0011). The right panel
shows the shifted distribution of synaptic weights in the main projection (all above
zero). The inset shows the distribution of synaptic weights in the projection from
the inhibitory neurons to the post-synaptic neurons. E, As (D), but with the in-
hibitory Parisien transform (MSE=.0010).
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6.4.1 New Instability Modes

In a recurrent network, the pre-synaptic and post-synaptic ensembles are the same,
and will be referred to in this section as the primary ensemble (as opposed to the
interneuron ensemble).

Ideally, bias in the direct feedback projection is cancelled out by feedback
through the interneurons. However, the bias and interneuron feedback may be
imbalanced due to distortion error in the interneuron ensemble, and also (when the
represented value is changing) due to the additional lag in the path through the
interneurons. This di�erence ∆di between direct and indirect bias is the key to
understanding how the network can become unstable. Both the direct and indirect
bias a�ect the primary neurons through synapses. So the e�ect of this di�erence
on the primary neurons at any given instant in time is d = h(t) ∗∆di, where h(t)
is the post-synaptic current kernel, and ∗ denotes convolution. In other words, the
�ring of the primary neurons depends in part on the di�erence between direct and
indirect bias, �ltered by the post-synaptic current dynamics.

Recall that the bias encoders φ̃bj all have the same sign, so the �ring rates of
all neurons in the primary ensemble increase with increasing d. The bias function
f b was described above as a function of x. However, it is really just a sum of the
activities of neurons in the primary ensemble. So, because these neurons are also
a�ected by d, the bias is more accurately described as a function of both x and d.
Consequently, d can be viewed as a state variable that forms part of an additional
feedback loop through the network, as illustrated in Figure 6.4. Accounting for this
new state variable d, the system has dynamics

τ ẋ =A′x̂(x, d)− x,

τ ḋ =f b(x, d)− x̂2(x2)− d,
τ2ẋ2 =f b(x, d)− x2,

where x2 is the variable represented by the interneuron ensemble, x̂2(x2) is the de-
coded estimate of x2 from interneuron activity, and similarly x̂(x, d) is the decoded
estimate of x from primary ensemble activity.

The stability problems are not obscured if the above model is simpli�ed by
assuming that x̂(x, d) = x. This assumption is reasonable in that 1) there are many
primary neurons, with e�ectively-unconstrained synaptic weights, so the code for x
is expected to be relatively accurate, and 2) moderate changes in d have very little
e�ect on x. This is because for any change in d, neurons with opposite preferred
directions either increase or decrease their �ring rates together. Thus some neurons
code x + ∆ and others code x−∆, and the net decoded value remains close to x.
This simpli�ed system can be linearized around a nominal solution, as

(τs+ 1)δd =
∂f b

∂d
δd− ∂x̂2

∂d
δx2 +

∂f b

∂x
δx,

(τ2s+ 1)δx2 =
∂f b

δd
δd+

∂f b

∂x
δx,
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Figure 6.4: Sources of instability. A, A diagram showing the standard NEF feedback
network (using post-synaptic current dynamics as memory, as discussed in Chapter
3), and elaborated to include the additional factors introduced by the Parisien
transform. In particular, neuron activity in the primary ensemble gives rise to the
bias function f b, which feeds back both directly via the main projection, and also
indirectly through the interneurons. The indirect route introduces a lag, and an
additional decoding error. As in Chapter 3, PSCs are modeled with �rst-order
exponential dynamics (in the diagram, PSC dynamics correspond to blocks with
transfer functions that contain the Laplace variable s in the denominator). Note
that the two dynamic blocks 1/(τs + 1) both correspond to synapses onto the
primary neurons. These blocks are separated according to the logical distinction
between the x and d state variables. Physically, the direct feedback (which includes
both x̂ and f b) corresponds to both of the feedback paths in the diagram that do
not pass through x2. B, Decoding error in an example interneuron ensemble (150
neurons). The constraint on the sign of the decoders makes the decoding error
relatively large, particularly near zero.
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where δd = d−d0 and δx2 = x2−x20 are small deviations around the corresponding
states of the nominal system. To simplify the notation, let α = ∂f b/∂d, and let
β = ∂x̂2/∂x2 − 1 (note that β is the slope of the decoding error function shown in
Figure 6.4B). The linearized system has the feedback matrix

A =

[
(α−1)
τ

−(1+β)
τ

α
τ2

−1
τ2

]
.

The eigenvalues of the system are λ = [(α−1
τ
− 1

τ2
)±
√

(α−1
τ
− 1

τ2
)2 − 4(αβ+1

ττ2
)]/2. An

unstable eigenvalue (λ > 0) will exist if either 1
τ2
< α−1

τ
, or the square root is real

and β < −1/α. As anticipated, the former case corresponds to interneuron PSC
dynamics that are too slow, relative to PSC dynamics in the primary ensemble. To
return to the main issue at hand, i.e. the e�ect of uniform PSC dynamics among
the interneurons and post-synaptic neurons, the relatively larger τ2 relative to τ in
this case means that correspondingly smaller α can be tolerated. In the latter case,
a su�cient negative slope in the decoding error of the interneuron ensemble causes
a self-perpetuating divergence between the direct and indirect feedback. Ultimately
all the neurons in the network saturate at their maximum �ring rates.

The magnitude of α is a critical parameter. It varies with x0 and d0, but
unfortunately its range is hard to de�ne. This is because it is a function of the bias
encoders, which depend on the synaptic weights, which in turn depend in complex
ways on the tuning curves of the primary ensemble. However, α generally increases
(endangering stability) with increases in the absolute values of the entries in A′.
Thus, counter-intuitively, an idealized circuit with large negative eigenvalues will be
unstable in Parisien form. There is no simple expression for this stability boundary,
but all else being equal, it is inversely proportional to τ2/τ . Examples of systems
on either side of a stability boundary are given in Section 6.5.2, below.

6.5 Optimization

This section describes several modi�cations that improve the performance of the
Parisien projection. Performance optimizations may seem tedious beside the main
theoretical results, but they are important for understanding practical constraints
on circuit function, and for understanding whether a hypothesized function is vi-
able. While the changes described below lead to substantial improvements, further
improvements are undoubtledly possible, and suggestions are given for future inves-
tigations along these lines. For simplicity, the discussion is in terms of the excitatory
transform, which is more intuitive, but the same methods apply to the inhibitory
transform as well.4

4These optimizations have been implemented for both excitatory and inhibitory transforms
in the open-source simulation package Nengo (www.nengo.ca), the initial release of which was
developed in parallel with this thesis.
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6.5.1 Minimizing Interneuron Error

Ignoring dynamics for the moment, the main error introduced by the Parisien tran-
form is distortion in the interneuron representation. This error tends to be large
relative to that of the presynaptic ensemble, because 1) the interneuron ensemble
contains fewer neurons, and 2) its decoders are sign-constrained, so that decoding
is very probably less accurate than the unconstrained optimum.

A preliminary improvement can be made by parameterizing the interneuron
tuning curves so that decoding error is low over a broad range of input. When the
interneurons have fairly linear response functions above threshold, and thresholds
uniformly distributed from just below zero to just below one, the distortion error is
relatively low from about 0.2 to 1 (see Figure 6.4B). Probably a further improvement
could be achieved through gradient descent on the neuron parameters, but this
possibility is not explored here.

A second way to reduce the decoding error is to normalize the bias function,
to match the low-error region of the interneurons. Parisien et al. [295] set the
magnitude of the uniform bias decoders so that the bias function peaks at one.
With diverse cosine-tuned LIF neurons, the bias function then typically ranges
from about 0.5 to 1 (see Figure 6.1B). It is advantageous not only to avoid high-
error regions in the interneuron representation, but also to span the entire low-error
region. This is helpful because if the bias output must be multiplied by >1 to
achieve this, then the interneuron output must be divided by >1, along with the
associated error. If f bmin and f

b
max de�ne the range of the bias function, and imin and

imax de�ne the range of the well-coded region of the interneuron ensemble, then the
projection of the bias function to the interneuron ensemble must be multiplied by
a factor a, and biased by a factor b, so that af bmin + b = imin and af

b
max + b = imax.

If (f bmax − f bmin) < (imax − imin), as is typically the case, then a > 1. But in any
case a is as large as possible. To compensate for these changes, the post-synaptic
neurons then require intrinsic bias current −b/a, and the output of the interneuron
ensemble must be scaled by 1/a. Again, this means the distortion error introduced
by the interneurons is divided by as large a value as possible.

A �nal and more subtle improvement can be made by minimizing f bmax − f bmin.
This can be accomplished by replacing the uniform bias decoders with the non-
uniform decoders. The new decoders must be non-negative, and must minimize this
range without increasing the bias encoders of the post-synaptic ensemble. Figure
6.5 shows an optimized bias function that was found using constrained gradient
descent (f bmax−f bmin is reduced from 0.422 to 0.067). Figure 6.5 also reproduces the
Parisien-transformed sine function decoding of Figure 6.3, with and without these
optimizations. The optimizations decrease the mean-squared error from 1.1x10−3

to 2.4x10−4, which approaches the error of 1.8x10−4 in the idealized mixed-weight
projection.

The changes described above reduce the error that is introduced by the interneu-
rons. It is possible that further improvements could be achieved if the synaptic
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Figure 6.5: Optimization of the Parisien transform. A, Bias function with uni-
form decoders (solid) and with decoders optimized for �atness, as described in the
text (dashed). B, Decoding of post-synaptic activity in the excitatory transform
example from Figure 6.3 (non-optimized). MSE=1.1x10−3. C, As (B), but with
optimization of the bias function, and of the scaling in the indirect projection. Per-
formance in this case approaches that with the idealized mixed-weight projection
(MSE=2.4x10−4, as opposed to 1.8x10−4 in the idealized projection).

weights between the interneurons and the post-synaptic neurons were optimized to
compensate for error in the main projection. However, errors in the main projection
typically have high frequency, so this would probably require that the interneurons
have irregular tuning curves.

6.5.2 Balancing Feedback

There is another degree of freedom that can strongly in�uence the performance
of recurrent circuits. It is well known from linear systems theory that a given
transfer function (which de�nes dynamic input-output behavior) can be realized by
a variety of state-space models. The implication for neural networks is that if a
circuit is hypothesized to have certain input-output dynamics, there are a variety
of feedback structures that could lead to these dynamics. It turns out that some of
these structures may be unstable after a Parisien transform, while others perform
well.

The key point from linear systems theory is that if one begins with a state-space
model,

ẋ =Ax +Bu,

y =Cx +Du,

then a change of basis of the state variables does not a�ect the input-output behav-
ior. A change of basis can be e�ected by any invertible map P , so that the state
vector on the new basis is x = Px′. This results in the new state equations

ẋ′ =P−1APx′ + P−1Bu,

y =CPx′ +Du.
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Figure 6.6: The key stability parameter α (see text, section 6.4.1) is correlated with
both the maximum of the entries in |A′| and their sum. This plot is based on a
projection from one two-dimensional ensemble to another, which calculates a linear
map with the matrix A′. The plot shows means (across post-synaptic neurons)
of the minimum weights of all synapses onto a neuron in an idealized projection.
These values determine the bias encoders, which determine α (which is itself not
plotted because it varies over x and d). Each 'x' corresponds to a di�erent A′ with
random entries.

The NEF realization of this state model will be farthest from the feedback instability
described in Section 6.4 when the feedback matrix A′ = τP−1AP + I minimizes
α, which is correlated with both the sum and the maximum of the entries in |A′|
(Figure 6.6).

As an example, Figure 6.7 shows simulations of two di�erent Parisien-transformed
NEF implementations of a band-pass Butterworth �lter, with transfer function
H(s) = ω2s/(s2 +

√
2ωs + ω2), where ω is the corner frequency. These two imple-

mentations correspond to di�erent canonical realizations of the transfer function,
speci�cally the controller-canonical realization and the modal-canonical realization
(see [70]). The modal-canonical realization is stable. However, despite the fact that
the eigenvalues are identical in the controller-canonical realization, both the sum
and the maximum of |A′| are higher, and the Parisien transform of this network
is unstable. Considering only the second realization in this case would have led to
the incorrect conclusion that the neurons could not realize this transfer function.

Perhaps one could de�ne a neural-canonical realization that minimizes error
within stability constraints. The e�ects of errors from other sources within the
network, particularly the distortion and noise arising from the main projections,
are also in�uenced by the choice of state-variable basis. In order to �nd the optimal
realization given a certain number of neurons, the sum and maximum of |A′| would
have to be considered simultaneously with the numbers of neurons coding each state
variable, and the matching of state variable ranges with accurately-represented
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Figure 6.7: Instability in one of two Parisien-transformed feedback networks that
have the same nominal eigenvalues. In their idealized form, both of the networks
implement the same band-pass Butterworth �lter, and both are stable. A, Diagram
illustrating the modal-canonical realization of the �lter, as a recurrently-connected

ensemble that represents the state vector
[
x1 x2

]T
(ω is the corner frequency, and

p is a parameter that scales the state variables so that they remain within the repre-
sented ranges). The controller-canonical realization is analogous, but with di�erent
feedback terms. B, A noisy ramp signal used as input to each network. C, De-
coded output of the modal realization. The dashed line indicates ideal output, the
light gray line indicates decoded output of the idealized mixed-weight model, and
the overlapping dark-gray line indicates decoded output of the Parisien-transformed
model. D, As (C) but with the controller-canonical realization. The performance of
the idealized controller-canonical network is superior to that of the modal-canonical
realization. However, the Parisien-transformed network is unstable. The inset illus-
trates the mode of instability, which is due to the slope of the interneuron decoding
error. The indirect bias output by the interneurons (dashed) is smaller than that
of the direct bias (solid), and this di�erence feeds back on itself until all of the
neurons in the network saturate at high rates.
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ranges of the ensembles. This is an interesting but non-trivial problem that must
be deferred for future work.

6.6 Discussion

The main point of this chapter is that the inhibitory projections of the basal ganglia
can, in theory, support a great variety of computations. One consequence is that
relatively-accurate decoding of represented variables is possible, compared with the
more constrained decoding implied by simple inhibition. Another consequence is
that these projections can support a broad range of nonlinear and even nonmono-
tonic functions of represented variables.

As one example, suppose a part of the striatum were to contain two compet-
ing channels that represent the selection of di�erent actions. A nonlinear map
in the two-dimensional space of these actions could trivially implement a winner-
take-all mechanism in a feedforward manner. Speci�cally, the striato-pallidal pro-
jection could achieve this through a Parisien transform, by decoding the function
[ x1 > x2 x2 > x1 ]T , where x1 and x2 correspond to the degree of selection of
the two actions within the striatum. In contrast, speci�c striatal tuning would
be required in order to approximate this type of function with sign-constrained
decoders.

It was noted above that the Parisien transform is not a�ected by the synaptic
action of the post-synaptic neurons, i.e. whether they are excitatory, inhibitory,
or modulatory. This means that the excitatory transform describes the cortico-
striatal projection, despite the fact that the post-synaptic neurons (the medium
spiny neurons) are inhibitory. For the same reason, the inhibitory transform de-
scribes the pallido-thalamic projection � in which most pallidal neurons terminate
both directly onto thalamic projections neurons and indirectly through local circuit
interneurons [174] � despite the fact that the projection neurons of the thalamus
are excitatory.

The inhibitory Parisien transform results in a network in which all neurons are
inhibitory. This raises the possibility that a recurrently-connected inhibitory popu-
lation (e.g. within the globus pallidus) might project arbitrary functions onto itself,
and thereby form a dynamical system that approximates any set of ordinary di�er-
ential equations (as described by the NEF; see Chapter 3). This is an interesting
possibility, but the results of Section 4 suggest that such a network would have a
relatively narrow region of stability, limited by the strong feedback that is needed
to achieve network dynamics that are faster than PSC dynamics.

Finally, even in static conditions, the performance of a Parisien-transformed
network is somewhat impaired relative to an idealized mixed-weight model, due
to distortion error introduced by the interneurons. The degree of impairment is
an important theoretical consideration with the potential to constrain hypotheses
about network function. However, it varies with several factors that can be seen as
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degrees of freedom in the transform. Section 6.5 introduced several modi�cations
that minimize impairment relative to the ideal case.

6.6.1 Challenges for Experimental Validation

If we observe anatomy of essentially the right form, how can we tell whether a
Parisien projection is present? Are there any experimental observations that would
rule it out? This type of validation presents a di�cult problem, because the trans-
form is robust to a variety of changes that result in di�erent predictions about
connectivity and �ring patterns.

In a speci�c Parisien-transformed model (e.g. Figure 6.7), the �ring patterns
of the interneurons and post-synaptic neurons are di�erent. This seems to suggest
that one could develop a Parisien-transformed model of a speci�c system, and then
check experimentally whether a minority of neurons exhibit �ring patterns that
look like the interneuron �ring patterns. The �rst problem arises in de�ning the
size of this minority. Parisien et al. [295] assume 20% interneurons (to match the
proportion of inhibitory neurons in the cortex), but the proportion is less critical for
performance than the absolute number. Several projections might share the same
interneuron ensemble. With more projections sharing the same interneurons, the
performance would degrade gradually, because �ner di�erences in the value of the
bias function would become signi�cant. Eventually the physical limit of convergence
onto the interneurons would be reached, but this limit could be surpassed if the
bias function were coded by only a subset of the correlated presynaptic neurons.
In summary, the proportion of interneurons required for the Parisien transform is
not well de�ned.

A second issue is that the distinct �ring pattern of the interneurons is not well
de�ned. Parisien et al. [295] assume for convenience that the bias decoders are
uniform, but this assumption is not critical. Di�erent bias decoders would result
in a di�erent bias function, and consequently a di�erent pattern of interneuron
activity.

Finally, in the inhibitory case, there is no reason the interneurons and post-
synaptic neurons have to be distinct groups. A single recurrently-connected, multi-
dimensional ensemble could operate in the same manner. This further confounds
expectations about classes of �ring patterns in the network.

6.6.2 Conclusion

This chapter has argued on theoretical grounds that the inhibitory projections of
the basal ganglia may be capable of sophisticated computations, much like the
excitatory projections of the cortex. Ironically, in terms of information process-
ing, this makes one of the most striking physiological features of the basal ganglia
appear almost inconsequential. These theoretical results hint at a vast array of
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unexplored possibilities in basal ganglia function. Further exploration of these pos-
sibilities should be grounded in experimental validation of the basic theoretical
results. However, as outlined above, experimental validation will not be straight-
forward.
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Chapter 7

Cell-Intrinsic Firing Dynamics

Large network models usually treat neural activity as a static function of synaptic
input. However, the majority of real neurons exhibit dynamic responses to input,
such as adaptation or bursting. These �ring-rate dynamics are di�cult to recon-
cile with a straightforward view of population coding, in which neurons encode the
information they receive as a list of �ring rates. This chapter discusses four di�er-
ent ways in which spiking dynamics can be reconciled with population coding, in
various circumstances. First, in some cases spike-rate adaptation can interact with
recurrent connections, to approximate any network dynamics that can be described
by a set of explicit ordinary di�erential equations. Secondly, diverse �ring dynamics
across an ensemble can span a space of transfer functions, any of which can be real-
ized by a di�erent set of synaptic weights. Thirdly, it is shown that simple neuron
models can decode not only the instantaneous input from a dynamic population
response, but also the input history, and functions of the input history. Finally, in
contrast with the other cases, spike dynamics are essentially irrelevant for neurons
that use an averaging code. Rather than a�ecting the represented value in this
case, they modulate the degree of noise in the representation over time. Together,
these results point toward a richer and more realistic view of population coding,
which embraces the prominent dynamic properties exhibited by many neurons.

7.1 Introduction

The majority of neurons respond dynamically to constant input. For example,
pyramidal neurons (the main neurons of the cortex) respond to a step increase in
driving current with initially-rapid �ring, which then adapts gradually to a lower
steady state [248]. A large minority of thalamic relay neurons operate in two modes,
one of which is to produce a high-frequency burst in response to a stimulus [380].
In the cerebellum, both Purkinje cells and granule cells burst rhythmically with
prolonged depolarization [230, 88]. Medium spiny neurons, the projection neurons
of the striatum, exhibit hystersis [276], in that they self-stabilize through intrinsic
currents into low and high membrane-potential states.
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There are single-cell models that reproduce these dynamics well (e.g. [176, 275]),
and some of them have been incorporated into larger network models, resulting
in complex and apparently-realistic network activity (e.g. [177, 180]). However,
a limitation of these network models is that they do not perform any obvious
computation.

Conversely, network models that do perform explicit computations usually ig-
nore cell dynamics. This is true of models in the arti�cial neural network tradition
(e.g. [157]), and of physiologically-inspired population-coding models (e.g. [286]).
More surprisingly, models that focus speci�cally on the role of network dynam-
ics in computation also usually ignore dynamics at the cell level. For example,
many such models, following Abbott [1], approximate a neuron as a single-time-
constant dynamic process (which approximates post-synaptic current dynamics),
in series with a static spiking nonlinearity. Models of this form have been used to
study plasticity, winner-take-all competition, and more recently the role of chaos
in computation. Attractor dynamics constitute another computational mechanism
in recurrent networks (e.g. as the substrate of content-addressable memory), and
have been studied extensively [160, 110, 20], but again with little attention to the
cell dynamics that undoubtedly in�uence them (but see [365]).

This is not to say that the role of spiking dynamics has been ignored. Thala-
mic bursting has been proposed to underlie rapid direction of attention [221], and
intrinsic bursting in pyramidal neurons may contribute to large-scale oscillations
[77]. In pyramidal cell models that can produce both spikes and bursts, bursts sig-
nal slightly di�erent input events than single spikes, and have more reliable timing
[196]. Furthermore, some forms of adaptation optimize information transmission
in the face of changing input statistics [113].

In summary, cell-intrinsic spiking dynamics have well-understood causes [178],
and a variety of implications for computation, but there is room for strengthening
the links with population coding and computation in general. Furthermore, the fact
that such a prominent feature of neuron behaviour is ignored in so many computa-
tional models casts some doubt on the validity of these models, and suggests that
e�orts to more thoroughly reconcile cell dynamics with other network properties
might lead to new insights.

The Neural Engineering Framework (NEF; [111]) uniquely integrates network
dynamics with population coding. As discussed in Chapter 3, this is achieved by
treating represented variables as the state variables of linear systems theory, and
replacing the integral in the standard state equations with a low-pass �lter that
models post-synaptic currents. As originally described, this approach shares with
the work of Abbott [1] and others the assumption that neuron dynamics are domi-
nated by post-synaptic current dynamics, i.e. that neurons will spike at a constant
rate when they are driven by constant current. Notably, this assumption was sub-
sequently relaxed in the working memory model of Singh & Eliasmith [341], which
incorporates neurons with spike-rate adaptation. They found that adaptation, in
conjunction with two-dimensional tuning curves, reproduced several types of dy-
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namic responses observed in the prefrontal cortex during a working-memory task.
However, while adaptation was important in this study for matching the model
neurons' responses to electrophysiological data, memory traces were maintained by
the model only after its neurons had adapted quite strongly, so that adaptation
itself did not play an integral role in the network's computation.

This chapter considers the relationship between cell and network dynamics from
a series of di�erent perspectives. Adaptation dynamics are similar to post-synaptic
current (PSC) dynamics, in that they have a low-pass component. So a sensible
starting point for the present work is to adapt the NEF approach in such a way that
network dynamics rely on adaptation as a form of memory. Section 7.2 shows that
this substitution is possible in some cases, and furthermore that adaptation and
PSC dynamics can also interact cooperatively. These results begin to systematically
reconcile cell dynamics and computation. However, this approach is limited, in
that it applies only to adaptation. Furthermore, it requires linear adaptation, at a
uniform rate across an ensemble.

As a �rst step in moving beyond these limitations, Section 7.3 shows that a
population with non-uniform linear �ring-rate dynamics spans a space of transfer
functions, any of which can be realized by a di�erent set of feedforward synaptic
weights. It is then shown that diverse ensemble dynamics allow decoding not only
of the instantaneous input to an ensemble, but also of past inputs, and functions of
past and present inputs. Several examples are discussed, including two that may
play an important role in basal ganglia dynamics: the rebound burst of subthalamic
nucleus neurons, and the hysteresis of medium spiny neurons of the striatum.

Finally, it is shown that in the averaging code (introduced in Chapter 4), vari-
ations in �ring rate over time have little e�ect on the represented value, instead
modulating the amplitude of the decoding error. In this context, an adapting neu-
ron initially contributes to a very accurate code, which is then relaxed over time,
sacri�cing accuracy for energy e�ciency.

7.2 Firing Dynamics can Provide Dynamical Sys-

tem Memory

This section considers �ring-rate adaptation as a substrate of dynamical system
memory. Recall from Chapter 3 that for any set of explicit ordinary di�erential
equations, there is a family of neural circuits that has approximately the same
dynamics, over some range of the state variables. The NEF shows how to substitute
post-synaptic current dynamics in place of integration, in order to �nd this family
of circuits. This section shows that a similar substitution can be made with �ring-
rate adaptation dynamics, provided 1) adaptation dynamics are linear, and 2) all
neurons in the ensemble adapt with the same time constant.

The �rst step is to introduce a standard model of adaptation, and show that
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it can meet these conditions, while retaining the tuning-curve diversity needed for
linear decoding.

7.2.1 Uniform Linear Adaptation

The adapting leaky-integrate-and-�re (ALIF) model provides a good approximation
of the adaptation e�ects observed in more detailed compartmental models [207,
275]. There are several variations of this model, but the following discussion is
based on a version in which adaptation is driven by an unspeci�ed chemical species
N [64], the concentration of which varies as

d[N]/dt = −[N]/τN + AN
∑
k

δ(t− tk).

Here [N] is the concentration of the chemical species responsible for adaptation, τN
is a time constant of decay of [N], and AN > 0 is an increment in [N] with each
spike. This model can also be expressed in terms of �ring rates (rather than spikes)
as

d[N]/dt = −[N]/τN + ANr(u)

where r(u) is the �ring rate.

If these neurons are parameterized so that their unadapted (onset) �ring rates
vary nearly linearly with driving current, then each neuron behaves like a linear
band-pass �lter with a non-zero pole, i.e. output consists of low-pass plus band-
pass components. If α is the derivative of the unadapted �ring rate with respect
to driving current, then as long as the neuron's �ring rate does not drop to zero, it
will have linear �rst-order dynamics with time constant

τA = (1/τN + αgNAN)−1,

where the product gN [N] is the conductance underlying adaptation (gN is a coe�-
cient that scales this conductance).

The diverse tuning curves that are required for linear function decoding result in
diverse α across the ensemble. However, the other parameters (τN , gN , and AN) can
co-vary with α, to yield uniform τA.

1 In this case the neurons have uniform, linear
dynamics, and the ensemble as a whole has the same dynamics as each neuron.

These parameters also in�uence the steady-state adapted �ring rate for a given
input. Computations that exploit adaptation will be more accurate if the �ring
rate adapts more strongly (conversely, weak adaptation will be obscured by �ring-
rate noise). On the other hand, if adaptation is too strong, then a sudden drop in
drive will cause the �ring rate to drop to zero, which will change the time constant.
For a given τA, the degree of adaptation is maximized within this constraint if 1)
τN = τA(b/c + 1)/2, where b is the neuron's intrinsic bias current, and c is the net

1Non-uniform dynamics are discussed later, in Section 7.3.
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synaptic current �owing into the neuron per unit of encoded scalar variable (over
the range -1 to 1), and 2) AN = (1/τA − 1/τN)/α.

It will be shown shortly that the band-pass dynamics of adaptation can play a
role that is analogous to that of PSC dynamics in a recurrent network. In the mean
time, it is worth noting that short-term synaptic depression has similar band-pass
dynamics, and could potentially play a similar role. However, in contrast with
adaptation, the feedforward dynamics caused by synaptic depression are inherently
nonlinear.

7.2.2 Synaptic Depression is Non-Linear

Synaptic depression is usually a pre-synaptic phenomenon that arises from depletion
of the readily-releasable pool of synaptic vesicles. In simple models, the readily-
releasable pool is depleted sharply with each spike, and replenished with exponential
dynamics [405]. The dynamics of the readily-releasable pool are therefore closely
analogous to those of [N] (above). If the synaptic weight with a full readily-releasible
pool is w, then the e�ective synaptic weight at any instant is wS(t), where S(t) is
the remaining proportion of the pool at time t. The state equations that relate the
net input current u to weighted output y are then

Ṡ = (1− S)/τS − FSr(u),

y = wSr(u),

where τS is the time constant with which the readily-releasable pool is replenished,
F is the proportion (between 0 and 1) of the pool that is depleted with each spike,
and r(u) is the �ring rate as a function of net input u.

Importantly, despite many similarities with adaptation dynamics, both the dy-
namic and output equations are non-linear functions of the �ring rate. The dynamic
nonlinearity is weak when F is low (although this also results in weaker depression).
However, the output nonlinearity is unavoidable, and it implies that synaptic de-
pression can only produce linear, band-pass behavior when the derivative of the
�ring rate is zero. Thus the intuitive notion that synaptic depression produces
derivative-like output [4] is only very roughly accurate.

7.2.3 Adaptation Supports Integration

This section examines the viability of �ring-rate adaptation as a general memory
for network dynamics, using the example of integration. Integrator networks play
important roles in working memory [261, 136] and oculomotor control [336]. More
generally, integrators are of interest because they can serve as the foundation for
other types of dynamics (see Chapter 3).
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Figure 7.1: Integrator based on �ring-rate adaptation. A, Sketch of the network
structure, with each circle indicating an ensemble of neurons. An input ensemble
(u) projects to the integrator ensemble (x). The integrator ensemble consists of both
adapting and non-adapting neurons. B, Block diagram highlighting the dynamic
elements of the network. The two parallel feedforward paths correspond to the
adapting and non-adapting neurons. The transfer function 1/(τCs+ 1) models the
dynamics of the post-synaptic currents in synapses onto the integrator neurons.
The transfer function 1 + β/(τAs+ 1) models adaptation. C, Simulation with slow
sinusoidal input. The simulated networks consists of 1500 adapting and 500 non-
adapting neurons, with τA = 0.5s and τC = 0.005s. The smooth line is the input,
and the noisy line is decoded spiking activity of the output ensemble (y).

Figure 7.1 shows a network that integrates its inputs over time using �ring-rate
adaptation as memory. With uniform, linear adaptation dynamics (as described
above), an adapting ensmble has the feedforward transfer function

HA(s) = 1− β

τAs+ 1
,

where β parameterizes the degree of adaptation of the represented variable. This
band-pass response must be converted to a low-pass response in order to apply the
NEF methods. A net low-pass response can be obtained if additional, non-adapting
neurons lie in parallel with the adapting neurons (see Figure 7.1B). The full feed-
forward transfer function H(s) also includes the PSC dynamics (which are assumed
to be much faster than adaptation dynamics), i.e.

H(s) =
1

(τCs+ 1)(τAs+ 1)
,

where τC is the time constant of the post-synaptic current.

The feedforward dynamics are now second-order, but this does not greatly e�ect
the behavior of the integrator. If the neural input and feedback matrices are chosen
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Figure 7.2: Error in PSC-based (A) vs. adaptation-based (B) integrators. The
dynamic blocks correspond to PSC dynamics and adaptation dynamics (as in Figure
7.1), and εi are additive errors in the decoding of ensemble activity.

(using the methods in Chapter 3) as A′ = 1 and B′ = τA, the dynamics can be
described using two state variables, as

ẋ1 =
x2 + τAu

τCs+ 1
,

ẋ2 =
x1

τAs+ 1
.

The eigenvalues of these linear equations are λ =
{

0,−(τ−1
A + τ−1

C )
}
. Thus one

mode decays rapidly, and the other integrates. Figure 7.1C shows a simulation of
this network, constructed from spiking ALIF neurons.

A question that immediately comes to mind is how well this integrator performs,
compared to the PSC-based integrator. In the PSC-based integrator, the major
source of error is distortion in the representation of the integrated value. This
representational distortion can be modeled as additive error that is a function of the
represented value, as shown in Figure 7.2A. The transfer function of this integrator,
including distortion errors, is

y =
u+ ε1 + ε2/τC

s
,

where ε1 is the error in the decoding of input-ensemble activity, and ε2 is the error
in the decoding of integrator ensemble activity. The time constant of post-synaptic
current decay is typically between 0.005s and 0.1s, much less than 1. Thus if ε1 and
ε2 have similar magnitude, the error at the output is dominated by ε2. Furthermore,
if ε2/τ has a magnitude greater than u, then the network ceases to integrate, and
drifts toward an attractor in the error function [111].

The adaptation-based integrator has one potential advantage, in that adapta-
tion dynamics can be much slower than post-synaptic current dynamics (on the
order of seconds). In this case, ε2 is divided by a much larger value. However, the
adaptation-based circuit also has a number of disadvantages. Distortion error mag-
nitude decreases with increasing population size n, as approximately 1/

√
n [111].
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Given n neurons, an adaptation-based integrator must divide them between adapt-
ing and compensating cohorts, so that the distortion of each signal is higher. Fur-
thermore, the outputs of the adapting and compensating populations are summed,
and ampli�ed by at least a factor of 3 (because �ring rates cannot adapt by much
more than one third, without the risk that they will drop to zero with a rapid drop
in input; this means β ≤ 1

3
in the adaptation transfer function). Finally, the adap-

tation process itself might introduce further sources of error that are not present in
non-adapting neurons.

Another di�culty is that the adapting and compensating populations must actu-
ally encode larger values than the population in the PSC integrator. The population
in the PSC integrator must be able to represent the range of values corresponding
to the integral (i.e. values of y). In the adaptation circuit, the populations must
represent the value τu+ y. Unfortunately, distortion error scales linearly with the
range of values that an ensemble must encode. For large enough τ , this means that
ε2 will scale linearly with τ , exactly cancelling out the advantage of the longer time
constant.

Despite these disadvantages, an adapting integrator might out-perform a PSC
integrator in a circuit in which the integrals are large compared to the inputs,
i.e. when the term τu + y is dominated by y. Interestingly, this scenario does not
correspond to the two most clearly-established examples of integrators in the brain,
i.e. the oculomotor integrator (which integrates large saccade signals), and working
memory, in which the integrals have the same magnitudes as the inputs.

In summary, �ring-rate adaptation can serve as a substrate of integration. How-
ever, it probably does not confer a performance advantage over PSC-based integra-
tion, except in limited special cases.

7.2.4 Limitations of Adaptation-Based Memory

An ideal integrator can serve as the foundation for a variety of dynamical systems,
through additional feedback. This is analogous to the realization of dynamical sys-
tems using low-pass synaptic dynamics (discussed in Chapter 3), only in this case
there is no need to compensate for the �lter (so A′ = A and B′ = B). Unfortu-
nately, the additional pole in the non-ideal adaptation-based integrator can cause
instablility if the eigenvalues of the ideal system are large and negative. This phe-
nomenon is analogous to the instability discussed previously (Chapter 6) in relation
to feedback projections through interneurons, so it will not be discussed in detail.

The picture that emerges from the above analysis is that it is possible for adap-
tation dyamics to serve as the memory of a dynamic circuit, but quite speci�c
circumstances are required. In particular, the analysis assumed linear adaptation
dynamics that were uniform across an ensemble, and required that non-adapting
neurons operate in parallel with the adapting neurons. Even under these strict
conditions, the dynamics are at best slightly distorted compared with those of the
PSC-based memory, and adaptation-based memory does not work at all for fast
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Figure 7.3: Stable integrator based on matched adaptation and PSC dynamics.
A pole and zero cancel when α = 1/(1 − β), leaving net �rst-order feedforward
dynamics.

dynamics, due to additional stability limits. So while adaptation is a possible
mechanism for memory in dynamic networks, it is not a particularly good one.

Still, many neurons adapt. If adaptation is not a good substrate for more general
circuit dynamics, can it at least co-exist with them? Interestingly, there is network
structure in which adaptation and PSC dynamics combine in such a way that the
system as a whole does not have any extraneous modes, and therefore does not
su�er stability problems.

This structure is shown in Figure 7.3. Here, ensemble adaptation dynamics
are again modelled as HA(s) = 1 − β/(τAs + 1) (where β is the degree to which
the represented variable adapts), and the PSC dynamics are modelled as HC(s) =
1/(τCs + 1), where the PSC time constant is expressed as a proportion of the
adaptation time constant, i.e. τC = ατA. This network depends on a speci�c
relationship between the degree of adaptation, and the ratio between the two time
constants. Speci�cally, it is necessary that τC = τA/(1 − β). (There is no trouble
obtaining this relationship with realistic neuron parameters, because both τA and β
depend on the neuron's unadapted tuning curve, which in turn depends on synaptic
weights.) When this is the case, a pole and zero cancel, and the feedforward transfer
function simpli�es to H(s) = 1/(τAs + 1). The ensemble then has feedforward
dynamics of the same form as the the PSC dynamics that served as memory in
Chapter 3. So as in that case, the network can approximate any set of explicit
ODEs, and (provided the pole and zero cancel exactly) there is no hidden unstable
mode.

To summarize, this section has shown that adaptation can variously serve as
a substrate for dynamical system memory, or contribute to this memory without
corrupting the dynamics. However, in order to reach these conclusions, it was
necessary to assume that the adapting neurons have linear unadapted response
functions, and dynamics that are uniform across an ensemble. This does not rule
out the possibility that nonlinear neurons could play similar roles, but it is not
obvious how they could. The remaining sections propose alternative roles for cell-
intrinsic dynamics that do not share these requirements.
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7.3 Firing Dynamics can Span Transfer Functions

In the models of the previous section, all of the neurons adapted with the same
time constant τA, so the represented variables also decayed with this time constant.
However, there are often substantial di�erences between the dynamic responses of
di�erent neurons in a group. For example, neurons in the globus pallidus exhibit
diverse dynamics, including both bursting and adaptation [203, 271], with varying
parameters that may relate to variations in ion-channel density [135]. Subthalamic
nucleus neurons also have diverse intrinsic dynamics, which are modulated di�er-
ently in di�erent cells by perfusion of dopamine-receptor agonists [44].

Gerstner & Kistler [132] point out that the transfer function of an ensemble of
neurons with non-uniform linear dynamics can be estimated using system identi�-
cation methods. This requires assumptions about synaptic weights and the distri-
butions of dynamic properties. Of course, if the dynamics are diverse, then di�erent
assumptions about synaptic weights could result in identi�cation of a di�erent sys-
tem. This is not a limitation of the method � it just means that an ensemble of
neurons with diverse dynamics spans a space of transfer functions. A Monte Carlo
estimate of this space could be obtained by performing system identi�cation repeat-
edly, using randomized weights within plausible ranges. But in using this method
with realistic numbers of neurons (hundreds or thousands), some interesting trans-
fer functions might emerge very rarely, because of the large number of degrees of
freedom.

Another approach is to hypothesize a transfer function, on the basis of the
large-scale behaviour of the circuit, and test whether the neuronal population can
realize it. This is analogous to the method for �nding the optimal weights for
approximating a static representation, except that the time dimension must also be
considered. If the neurons were truly linear, this could be done using the neurons'
impulse responses. However, even nominally-linear neurons saturate with large
enough inputs, so step responses within the represented domain are more useful.
The synaptic weights by which an ensemble optimally approximates hypothesized
responses to steps (from 0 to various values of x) can be found by simulating the
ensemble with step inputs, and minimizing the error,

E =
1

AT

∫
x

∫
t

[xf(t)−
∑
i

ai(x, t)φi]
2dtdx,

where f(t) is the hypothesized unit step response, ai(x, t) are the neurons' responses,
φi are the decoders, and A and T are the size of the represented domain, and the
time span over which integration is performed, respectively.

Analogously to the static case discussed in Chapter 3, a concise description of
the space of possible transfer functions can be obtained by principal components
analysis. As an illustration, Figure 7.4 shows the �rst few principal components of
an ensemble of adapting LIF neurons with diverse τA. The principal components
span variations in both static computations and dynamics.
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Figure 7.4: The �rst three principal components of the step response of an ensem-
ble of near-linear adapting LIF neurons. In this ensemble there is variation in both
adaptation dynamics and in the slopes of the onset response functions. Conse-
quently, the principal components span both di�erent dynamics (compare left and
centre panels) and di�erent static functions (compare centre and right panels).

If these neurons instead had uniform τA, and diverse degrees of adaptation, one
of the principal components would be a pure low-pass response. If such an ensemble
appeared in the adaptation-based integrator of the previous section, then decoding
this response would eliminate the need for the parallel non-adapting neurons. In
other words, varying degrees of adaptation are needed in order to decode a low-pass
response, but these need not include zero.

7.3.1 Interaction between Forward Transfer Functions and
Recurrence

If such an ensemble were to project recurrently onto itself, then the dynamics of
the resulting network would depend on both the decoded transfer function and the
feedback strength. For example, with feedback scaling a, and decoded ensemble
transfer function H(s), the transfer function of the recurrent network would be

x

u
=

1

H−1(s)− a
.

Importantly, higher-order dynamics in H(s) do not confer the same level of gen-
erality to the feedback network as single-time-constant dynamics. For example, if
H(s) = 1/(s2 +

√
2ωs+ω2), i.e. a Butterworth �lter with corner frequency ω, then

x

u
=

1

s2 +
√

2ωs+ ω2 − a
.

The feedback strength a in�uences the system poles, but the mean of the poles
is −ω/

√
2, regardless of a. So while diverse cell dynamics confer �exibility on

the feedforward ensemble dynamics, exploiting this �exibility may constrain the
ensemble's recurrent dynamics.
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7.3.2 Non-Linear Firing Dynamics

The above approach only makes sense if the �ring dynamics are linear, so that
a response to any input within saturation limits also de�nes the cell's responses
to other inputs. Linear dynamics just add one dimension to the neurons' tuning
curves, i.e. the dynamic kernel. In contrast, if a cell has nonlinear dynamics, then
its response to one input signal may indicate very little about its response to other
input signals. So there is no simple kernel dimension that can be considered in
order to account for the dynamics.

If the dynamics are only mildly non-linear (e.g. ALIF dynamics with saturating
response functions), it is still possible to approximate a linear transfer function for
some limited range of inputs (not shown). However, the approximation will be
poor for novel inputs, i.e. for inputs outside the range of those for which optimal
weights are obtained. Describing a nonlinear ensemble response with a linear trans-
fer function may or may not be useful, but in any case optimal weights found using
mathematically convenient inputs (e.g. steps) are not likely to perform well with
natural inputs. Conversely, if optimal weights are found for realistic inputs, the
resulting code will probably break down for step input, although this might be less
of a modelling limitation than a limitation of real neural systems, many of which
perform poorly when driven with un-natural stimuli [314].

If the �ring dynamics are highly non-linear, this approach can still tell us about
the range of ensemble responses that can arise over a very restricted range of inputs.
This information may be useful if the neurons tend to receive stereotyped input
signals (e.g. saccade-related bursts).

Example: Non-Linear Rebound Bursting in STN

Neurons in the subthalamic nucleus �re at a low intrinsic rate without synaptic
drive. If these neurons are hyperpolarized from rest, they stop �ring, and then �re
a burst of action potentials after hyperpolarization is relieved. This burst is due
to calcium channels that open when the membrane potential is low, and then close
slowly (over a fraction of a second) when membrane potential rises again into the
spiking range. These bursts endow the the �ring response with a brief memory.

Figure 7.5 shows the principal components of responses of a population of sub-
thalamic nucleus neurons to a speci�c input (a pulse), based on a single-compartment
conductance model from Terman et al. [358]. Depending on synaptic weights, the
in�uence of these responses on a post-synaptic neuron could be any linear combi-
nation of these principal components.

Limitations

If the neurons' dyamics are linear then the above approach, i.e. approximating hy-
pothesized ensemble dynamics as a linear combination of neuron dynamics, provides
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Figure 7.5: Rebound bursts of a population of subthalamic nucleus neurons fol-
lowing a pulse input (top). Di�erent neurons in the population scale the input
di�erently, leading to a variety of responses. The middle traces show membrane
potential of three example cells. The bottom traces show the �rst �ve principal
components of the population response, which include a variety of rebound re-
sponses on various time scales. This variety arises entirely from di�erences in input
scaling, which determines the peak of the rebound-related calcium conductance in
each neuron, and consequently the duration of the rebound burst.
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very general information about the range of possible ensemble responses to input.
However, if the neurons' dynamics are non-linear, this approach can only indicate
the range of ensemble responses to a restricted set of inputs (e.g. saccade-related
bursts, or other stereotyped signals).

7.4 Firing Dynamics can Encode History

Nonlinear cell dynamics are fairly common, so it would be surprising if their only
e�ect was to corrupt ensemble dynamics. Furthermore, the previous sections have
only considered linear ensemble dynamics, but nonlinear ensemble dynamics may
also be important. Is there a better way of looking at nonlinearities?

In general, in order to account completely for nonlinear dynamics, it would
be necessary to drive the neurons with all possible patterns of input. However, a
speci�c given ensemble may have similar responses to many distinct input patterns.
If a neuron's dynamics have a short memory, so that its activity only depends on
input in the recent past, then the �ring rate can be viewed as a function of input
over some recent interval. Furthermore, if the neuron is not too sensitive to rapid
�uctuations, then it will be possible to approximate its activity as a function of
the input at a �nite number of previous time steps. The neuron's tuning curve can
then be reconceptualized as a function in this higher-dimensional space of past and
present inputs. The tuning curve in this space accounts for the neuron's dynamics.
Furthermore, as with static tuning curves, synaptic integration in post-synaptic
neurons can be viewed as combining these tuning curves to approximate varied
functions of the input history.

Of course, there is no guarantee in advance that this new way of looking at
neuron responses will reveal a redundant population code. The input-history space
may be higher-dimensional than the number of neurons in the ensemble, so that the
neurons are largely independent. On the other hand the neurons' responses may
be too highly correlated, so that di�erent input histories can not be distinguished.

However, this new approach is appealing because 1) it is analogous to static
computation via static tuning curves, and 2) it involves explicit consideration of the
space of input features that determine nonlinear cell responses. These input features
may be important determinants of network function, so it is worth exploring an
approach that emphasizes them.

7.4.1 Example: Rebound Bursting Revisited

The rebound bursts of neurons in the subthalamic nucleus are considered again here,
in order to introduce this approach. The low-threshold calcium channels responsible
for bursting open and close with a time constant of about 50ms, so a neuron's
response depends mainly on input within the last few hundred milliseconds.
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Figure 7.6: First three principal components of STN population response to 2Hz
sinusoidal input. The population consists of twenty neurons, which di�er only in
terms of input scaling and bias. To obtain the principal components, responses of
each neuron over three cycles were tiled, and spike outputs were �ltered (τPSC =
10ms). Each output was then further �ltered with a Gaussian kernel (SD = 0.05
cycles), as an approximation of spike jitter in a larger ensemble of similar neurons.
The �rst PC resembles a recti�ed version of the input. The higher peak in the
second PC leads the input peak, due to rebound bursting. The peak in the third
PC coincides with the strongest part of the rebound burst. The same ensemble was
also simulated with rebound-burst conductances turned o�. The �rst PC of this
non-dynamic ensemble (not shown) was similar. However, the peak in the second
PC did not lead the input, and there was no PC comparable to the third PC of the
dynamic responses.

Intuitively, one might expect that the response could be well-approximated
as a function of perhaps 5-10 historical dimensions. However, a restricted, two-
dimensional input history will be considered, to allow visualization. Figure 7.6
shows the �rst three principal components of an ensemble response to 2Hz sinu-
soidal input. The history dimensions correspond to amplitude and phase of the
input.

What dimension do these dynamics really have? This can be discovered by
driving the neurons with higher-dimensional random input, and �nding out how
well tuning curves of various dimensions can �t the responses. This procedure
(Figure 7.7) reveals that a neuron's response to sixty seconds of 0-5Hz band-limited
input is well approximated by a four-dimensional response function.

7.4.2 Non-Linear Decoding of History

The principal components shown above indicate the functions of input history that
can be decoded by linear synaptic integration. If physiological constraints on de-
coding are ignored, it is clear that nonlinear dynamics might convey very rich
information about the input to an ideal observer. Non-linear synaptic integration
allows a neuron to use this information in a more �exible manner, to extract an
approximation of any function of input history, provided the ensemble response to
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Figure 7.7: The response of a subthalamic nucleus neuron model [358] to band-
limited drive (0-5Hz) is four-dimensional. Recent (250ms) input history during
a long simulation was divided into 1-5 bins. The average input within each bin
was taken as a di�erent dimension of input history. In separate analyses, the
bins had either equal time (dashed line), or time over which an exponential decay
with τ = 50ms had an equal integral (solid line). The slow burst-related gat-
ing variable (the model's main dynamic element) at each instant was �t with a
piecewise-constant function with eight steps in each history dimension. This func-
tion approximated the neurons' response function in the history space. The plot
shows the standard deviation of the actual value of the gating variable around this
n-dimensional function, as a proportion of its range over the whole simulation.

history is invertible (Chapter 4). If the ensemble response is not invertible, i.e. if
two di�erent patterns of input result in the same ensemble �ring rates, then this
approximation is restricted to functions that have the same value for these two
input patterns.

Determining whether the ensemble response is invertible is not as straightfor-
ward as might be hoped. One complication is that the neuron responses are noisy,
and since the tuning curve over �nite-dimensional history is only an approximation,
which may break down for novel input patterns, �uctuations around this curve may
well be non-Gaussian, may have non-uniform variance, etc. If the distributions of
possible ensemble responses at two nearby points in the history space overlap, this
raises the possibility of a small error in the estimate of these points. On the other
hand, if the distributions of two distant points overlap, a large error is possible.
(Although low-pass post-synaptic current dynamics would tend to mitigate brief
excursions in the estimate.) One way to avoid this type of problem (at least in a
model) is to decode not a function of individual presynaptic activities, but of their
principal components. Each of the large principal components is a sum of activities
that is relatively robust to noise. If the principal components can be inverted, a
function decoded from them should be similarly robust.

Figure 7.8 illustrates non-linear decoding of the history of input to a population
of adapting leaky-integrate-and �re neurons with diverse adaptation time constants.
The averages of input history in separate time bins (relative to the simulation time
t) are decoded, as a systematic way of exploring decoding accuracy as a function
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Figure 7.8: Non-linear decoding of input history from ALIF population response to
band-limited white noise. The ensemble consists of 500 ALIF neurons with adap-
tation time constants that range from 0.02s to 0.2s. A sigmoidal backpropagation
network with 50 hidden units was used as a model of a nonlinear dendritic tree
(as described in Chapter 4). The �rst seven principal components of the ALIF re-
sponses were used as input to the network (rather than individual ALIF responses),
in order to make the estimate more robust to noise. Forty seconds of simulation
results were used as training data (sampled at 100Hz). The results presented are
from ten seconds of separate testing data. A, Nonlinear decoding of the average
input in a bin from t− 150ms to t− 100ms. The solid black line shows a segment
of input from the testing data set. The solid gray line shows the correct average
over the history bin, and the black dashed line shows the decoded estimate of this
history from the ALIF responses. B, Mean-squared error in decoding of 50ms bins,
from t − 500ms to t, with an input signal of mean-squared amplitude 1. Three
separate models were trained for each bin, and the error of each estimate over the
testing data is shown as an �x�. The decoding is accurate over 200ms of history,
which corresponds to the time constants of the slowest-adapting neurons.

of the lag time. The fact that history can be accurately decoded over a wide range
of time lags suggests a great deal of �exibility in decoding functions of this history.

7.4.3 In�nite-Dimensional History

A neuron's dynamics can only be treated as a function of �nite-dimensional input
history if the neuron has a short memory, and a band-limited response to input �uc-
tuations. While this is true for most neurons (e.g. adapting and bursting neurons),
the medium spiny neurons of the striatum can exhibit hysteresis, depending on the
concentration of extracellular dopamine. Over a wide range of net synaptic input,
their �ring rates may be higher or lower, depending on whether the level of input
has crossed a high or low threshold more recently. Consequently, the activity of
these neurons may depend on inputs as far back in time as dopamine concentration
has been elevated (perhaps farther, due to residual decaying hysteresis with low
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dopamine). So the dynamic response can not be well-described by a function in a
�nite-dimensional space. This leaves us without an obvious way to systematically
discover which functions of input history can be decoded, but individual hypotheses
can be examined case-by-case.

As an example, Figures 7.9 and 7.10 illustrate how an ensemble of hysteretic
medium spiny neurons can code whether a sequence of events has occurred. Neurons
in the model represent values in a two-dimensional space, which allows visualization
of the tuning curves. Each neuron's synaptic drive is modelled abstractly as a two-
dimensional Gaussian function in this space, and the neuron's activity is a nonlinear
and dynamic function G of the synaptic drive,

ai(x) = G[e−
1
2

(x−x̄i)
T Σ−1(x−x̄i)],

where x̄i is the centre of the ith neuron's tuning curve, and Σ is the covariance
matrix. G (identical for each neuron) is taken from the model of Gruber et al.
[141]. This is a hybrid model in which slow ion channels are modelled in detail,
and the �ring rate is modelled abstractly as a function of the resulting membrane
potential. Figure 7.9B shows the tuning of an example neuron. A single neuron
has both �low� and �high� tuning curves, depending on the states of the hysteresis-
related channels. The low curve is the narrower one that the neuron exhibits when
hysteresis-related channels oppose �ring. The high curve is the broader one that
the neuron exhibits when these channels promote �ring.

A population of these neurons can code progress though a sequence of events,
where each event corresponds to a location in the space in which the neurons are
tuned. This happens when 1) each neuron's low curve is aligned with an event
region, and 2) each neuron's high curve spans all the event regions later in the
sequence. This situation is illustrated schematically in Figure 7.10, for a three-
event sequence. As the sequence occurs, the neurons that code each event switch
to the up state and begin to �re. The sequence is aborted if the state variable
leaves the neurons' high curves. Figure 7.10 shows simulations of a network that
codes for the sequence A → B → C. A post-synaptic neuron is inhibited when
these events occur in order. This example is quite speci�c, but it illustrates that
in�nite-dimensional memory does not preclude the possibility of decoding complex
functions of input history.

7.5 Firing Dynamics can be Ignored

The averaging code (Chapter 4) essentially ignores variations in the density of
tuning curves across the represented space. One consequence is that individual
synaptic weights can be learned using only local information, if the post-synaptic
neuron is clamped to have the correct activity pattern during learning.

A further consequence is that the code is insensitive to the precise �ring rates of
the presynaptic neurons. The �ring rates determine how much di�erent synapses
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Figure 7.9: Hysteretic tuning curves of medium spiny neurons. A, Hysteresis in
membrane potential as a function of excitatory conductance in the model of Gruber
et al. [141], with high dopamine concentration. The solid line shows the mean
membrane potential as conductance rises from zero, and the dashed line shows
the potential as conductance falls from a high value. The neuron's �ring rate is
a function of this slowly-varying component of the membrane potential. B, An
example neuron's low and high tuning curves in a two-dimensional space. The high
curve encompasses the narrower low curve. The neuron will only begin �ring if x
enters the smaller central region, but it will then keep �ring as long as x remains
within the larger region of the high curve. C, With driving current as a Gaussian
function of the represented variable, the height of the Gaussian function determines
the relative areas of the high and low curves. This provides a convenient way to
construct neuron models with predetermined tuning. The horizontal dashed lines
correspond to the onset and o�set thresholds, which can be seen in (A). The higher
the peak of the Gaussian function, the larger the low curve will be relative to the
high curve. D, The peak conductance that corresponds to a range of ratios of low
and high radii. Given this ratio, the width of the Gaussian function then determines
the absolute radii.
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Figure 7.10: Sequence representation by hysteretic neurons. A, Schematic repre-
sentation of the tuning of three neurons. The solid ellipses show the extents of the
neurons' low curves, and the dashed ellipses that encompass them show the extents
of the corresponding high curves. The low curves of the neurons are aligned with
three regions of interest (labelled A, B, and C). The dotted line shows a trajec-
tory through the state space that passes through these three regions in sequence,
without ever leaving the high curves of neurons earlier in the sequence. B, As (A),
except that the trajectory leaves the high curves of the A and B neurons before
completing the sequence. C, Firing rate of a neuron that receives inhibitory pro-
jections from the neurons in (A), as x progresses through its trajectory. The �ring
rate drops sharply when the sequence is completed. D, The �ring rate does not
drop when the sequence is interrupted, i.e. when x leaves the high curves in (B).
The output neuron in this model is tuned only to the sequence A → B → C; it
does not respond for example to the same events in a di�erent order.
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Figure 7.11: E�ect of spike-frequency adaptation on the averaging code. A, Tuning
curves drawn from a population of 100 adapting LIF neurons. Grey regions indicate
the shrinking of some tuning curves due to adaptation, after the population has
represented x0 = 0.5 for one second. B, E�ect of adaptation on decoding accuracy
with independent decoders φi = f(xci). The gray line indicates the ideal decoding
of x, the dashed line indicates the estimate x̂on, with onset �ring rates. Finally the
dotted line indicates the estimate x̂0.5, after the population has fully adapted to
the represented value 0.5. The error of this estimate is increased around x = 0.5.

contribute to a decoded estimate, but if they contribute a little more or less, the
estimate is not greatly a�ected.

Figure 7.11 illustrates this phenomenon with adapting neurons. This �gure
shows representative tuning curves of an ensemble both before adaptation, and
after a value x0 has been represented for one second, so that neurons tuned near
x0 have adapted to equilibrium. Neurons that are centred closer to x0 adapt more
strongly. The adapted code (with independent decoders φi = f(xci), i.e. equal
to the value of the estimated function at the centre of the neuron's tuning curve)
is less accurate around x0 after adaptation. In particular, it is more sensitive to
asymmetry in the tuning curves to the left and right of x0. Roughly, the error has
increased in proportion with the decrease in the �ring rate of the neurons tuned
to x0. This is very di�erent from the linear code, in which the estimate changes in
proportion with changes in �ring rate.

Other dynamics have similar e�ects on this code, modulating only the error of
the estimate rather than the mean. Figure 7.12 shows an example simulation with
intrinsically-bursting neurons. In this network, individual neurons that code the
represented value can be completely silent between bursts. However, the neurons
burst asynchronously, so that some of the neurons that code each value are active
at any given time. Thus the representation carries on fairly smoothly despite the
strong underlying oscillations.
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Figure 7.12: E�ect of intrinsic bursting on the averaging code. The neurons in
this model are bursting pyramidal neurons [198], with driving current that is a
Gaussian function of a represented variable x. Each row of hash marks in the
top panel indicates the spikes times of a di�erent representative neuron, from a
population of 500. Each neuron �res in repeated short bursts when x is near a
certain value. The bottom panel shows the ideal value of x (thick solid line) and
the linear decoding (thin solid line) and average-based decoding (dashed line) of
the bursting activity.
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7.6 Discussion

The majority of neurons have intrinsic dynamic processes that a�ect the time course
of the �ring rate. This chapter has explored the ways in which the intrinsic dynamics
of many cells can combine to in�uence the dynamics of the population code, and
has shown that this relationship is complex.

The NEF takes the important step of integrating population coding and net-
work dynamics, but in doing so, it makes the simplifying assumption that the
post-synaptic currents are the dominant source of feedforward ensemble dynam-
ics. Because �ring-rate adaptation is common, and because it shares some low-pass
properties with PSC dynamics, the �rst part of this chapter explored whether adap-
tation might play an analogous role, as dynamical system memory. This is possible,
at least in speci�c circumstances, i.e. when 1) all neurons in the ensemble adapt
with the same time constant; 2) the onset responses are linear; and 3) either a) some
of the neurons adapt to lesser extents (or not at all), and the high-level network
dynamics are not much faster than adaptation, or b) there is a speci�c relation-
ship between the time constants of PSC and adaptation dynamics. These results
begin to incorporate cell-intrinsic dynamics into the coherent view of population
coding that the NEF provides. But they do not account for cell-intrinsic nonlinear,
oscillatory, or heterogeneous dynamics.

Two di�erent perspectives on the e�ects of heterogeneous cell dynamics were
discussed. First, Section 7.3 showed that heterogeneous linear dynamics can span
a set of ensemble transfer functions, with the actual transfer function depending
on the synaptic weights with which the ensemble drives post-synaptic neurons. If
such an ensemble projects recurrently onto its own neurons, then the resulting
network can have a wide range of dynamics, depending on the feedback strength.
However, the family of possible dynamics in this case does not necessarily have the
same generality as those that can arise from single-time-constant PSC dynamics.
From another perspective (Section 7.4), diverse cell dynamics can be interpreted
as diverse tuning curves in the space of input history. These tuning curves allow
post-synaptic neurons to decode functions of the input history.

Finally, it was shown that cell dynamics have little relevance in the context of
the averaging code that was introduced in Chapter 4. This raises the possibility
that in some circumstances, instead of contributing strongly to computation, cell
dynamics might have comparatively subtle e�ects on the accuracy of the population
code.

7.6.1 Future Work

Computations on input history are probably also enabled by diverse synaptic dy-
namics, such as short-term synaptic depression and facilitation. It was pointed out
in Section 7.2 that synaptic depression (which is present in the striatum [119, 9]
and globus pallidus [149]) has an inherently nonlinear e�ect on network dynamics.
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However, this is not at odds with potential roles in the approximation of transfer
functions for limited sets of inputs, or in history encoding. There is substantial
diversity in synaptic dynamics, both across synapses onto a single neuron, and
across synapses from a single neuron � a feature that is conserved from the inver-
tebrate neuromuscular junction [30] to the mammalian cortex [243]. As suggested
previously [243, 4], this diversity should provide a rich substrate for dynamic com-
putations.

Dynamics that arise from recurrent micro-circuits might also play roles that are
similar to the cell dynamics studied in this chapter. An ensemble of microcircuits
could be considered in the same light as an ensemble of neurons, adding considerably
to types of unit dynamics that could potentially underlie a dynamic population
code.

Finally, while this chapter has focused on the dynamics of spike rates, it would
also make sense to explore dynamics from the perspective of individual spikes.
The commonly-reported spike-triggered average stimulus is the mean pattern of
input that causes a spike. It is possible to model a neuron's response as a spike
probability, which is a function of the covariance between the input history and
the spike-triggered average [113]. This approach could be generalized to multiple
dimensions, perhaps using principal components of the inputs leading up to spikes.
This should produce dynamic tuning curves in which the spiking probabilities take
on more extreme values (i.e. closer to zero or one) as more dimensions are considered
(see [57] for a similar approach). Spike-centric dynamic tuning curves should be
examined further as substrates of population codes. While the rate-centric tuning
curves of this chapter provide high-level descriptions of spiking activity, they treat
the high-frequency components of the resulting synaptic currents as noise. Spike-
centric tuning curves would not confound spiking activity and noise in this manner.

7.6.2 Relationships with Liquid Computing

There is both a parallel and a potential interaction between history decoding from
diverse cell dynamics (Section 7.4) and history decoding from a liquid-state machine
[232] (or echo-state network [183]).

A liquid-state machine consists of two parts: 1) a �reservoir�, which consists of
a recurrent network, and 2) linear read-out neurons. As mentioned in Chapter 5,
high-dimensional recurrence in the reservoir leads to diverse dynamic responses to
input among the reservoir neurons. The read-out neurons can then decode functions
of the input history from the reservoir. This is analogous to the decoding of history
from diverse cell dynamics (Section 7.4).

However, reservoir neurons in a liquid-state machine might have intrinsic dy-
namic properties themselves, which would interact with recurrence to shape the
overall dynamics. In this case, the key property of the reservoir, i.e. that it has
diverse dynamic responses, would be maintained. Therefore cell dynamics might
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have relatively subtle e�ects on the machine's computational power. This is an-
other case (in addition to the averaging code) in which cell dynamics might have
much less impact on computation than their strong in�uence on cell �ring would
suggest.

7.6.3 Conclusion

The NEF describes a simple and powerful relationship between cell and network
dynamics. In trying to extend this account beyond the dynamics of post-synaptic
currents, the original elegance has unfortunately evolved into a patchwork of alter-
natives and special cases. Given the variety and complexity of �ring-rate dynamics,
this is not surprising. However, it is interesting that one of these cases (adaptation-
based memory) is a generalization of NEF dynamics, and that two other cases (the
spanning of transfer functions, and representation of input history) are closely re-
lated to the NEF account of static transformation. For this reason, these cases
represent an additional link between dynamics and population coding.
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Chapter 8

Plasticity and Population Coding

Synaptic plasticity and population coding are two of the key topics in the theory
of large neuronal circuits, but the relationships between these topics are not well
characterized. This chapter explores the e�ects of Hebbian synaptic plasticity on
population codes. It is shown that Hebbian plasticity can change both the neu-
rons' preferred direction vectors, and the dimension of the coded space. Lateral
connections within a population modulate these e�ects. Speci�cally, in diverse
networks (including principal component analyzers, winner-take-all networks, and
self-organizing maps), lateral inhibition consistently increases the dimension of the
code, and lateral excitation generally decreases the dimension. Finally, it is shown
that cell-instrinsic properties can lead to tuning diversity among neurons with the
same preferred direction. These results illustrate how Hebbian plasticity can shape
some of the key properties of population codes, such as the dimension and redun-
dancy of tuning curves.

8.1 Introduction

As discussed in previous chapters, computation in neural networks arises from a
combination of tuning curves and synaptic weights. In population-coding models,
tuning curves are abstract functions of the variables with which the corresponding
neural activity varies most clearly (e.g. arm-movement direction). But in reality,
this tuning is actually a complex function of upstream synaptic weights. For ex-
ample, a certain neuron in the visual cortex might be compactly described as an
edge detector, but its responses are ultimately a function of the activity of reti-
nal photoreceptors. The main thing that distinguishes this neuron from another
neuron with di�erent orientation tuning is the synaptic weights along the path to
these neurons, from the photoreceptors. Consequently, although it is convenient
to analyse population codes in terms of synaptic weights and tuning curves, the
tuning curves are themselves determined by other synaptic weights.

A rough sca�old of synaptic connections is encoded genetically [349]. This ge-
netic sca�old determines the major �bre tracts along which neurons project, as well
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as the types of neurons with which a neuron will synapse, and other high-level statis-
tics of these connections. However, the genome, which in humans consists of about
3 billion base pairs, is not nearly rich enough to de�ne the locations and strengths of
all the roughly 100 trillion synaptic connections in the human brain. Although the
�ne structure of the synaptic connections has a major impact on computation, most
of the details are established long after conception, through experience-dependent
synaptic plasticity. The �ne structure that arises from synaptic plasticity is the
main factor that distinguishes the brain of an infant from that of an adult.

This chapter considers the population-coding variables of the NEF, such as
preferred-direction and decoding vectors, in terms of the e�ects of plasticity on the
synaptic weights. As discussed in previous chapters, the NEF provides a way to
model synaptic weights without addressing the question of how they might arise
from synaptic plasticity. When a model is developed, the modeler speci�es mea-
surable parameters, such as distributions of �ring rates, membrane time constants,
and preferred directions, as well as the mappings performed within each projection,
which can be hypothesized on the basis of electrophysiological or behavioural data.
The �ne structure of the synaptic weights, which cannot be measured, is then de-
rived as a function of everything else. This approach does not require learning,
which is advantageous in that 1) learning can be computationally intensive, and 2)
the learning rule that leads to the necessary synaptic weights is not always clear.
Thus the NEF approach allows the theorist to focus on instantaneous information-
processing properties of a network, without being forced to consider simultaneously
the question of how the network might have formed.

On the other hand, the fact that the strength of synapses in the brain is deter-
mined by plasticity may constrain the network structure, so models that skip this
step are open to criticism. The mechanisms of plasticity are complex and not well
understood, either in terms of the underlying molecular mechanisms or in terms of
quantitative theory (reviewed by [76, 3]). Given the current state of knowledge, it
would be surprising if existing models that learn to perform computations through
plasticity did not contain considerable inaccuracies and simpli�cations. So, a model
constrained by learning rules is not necessarily more realistic than one that is in-
stead well-grounded in available experimental data. However, inability to identify
a learning rule for a model that is at least plausible (i.e. in which the information
used by the rule is probably available at the site of plasticity) is a considerable
limitation. Rather than identifying plausible learning rules for speci�c population-
coding models, the goal of this chapter is to describe the role of plasticity in shaping
population codes in general.

Current network models of plasticity are highly idealized, and focus on quan-
tifying the consequences of the most basic principles of physiological plasticity.
Perhaps the most basic principal is that plasticity at a given synapse is typically a
function of activity in both the presynaptic and post-synaptic neurons. This type
of plasticity is called Hebbian, due to the early proposal by Hebb [152] that an
excitatory synapse should strengthen whenever the presynaptic neuron causes the
post-synaptic neuron to �re. Hebbian network models perform unsupervised learn-
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ing, which results in some form of implicit representation of the statistics of the
input. Despite a great deal of theoretical work on Hebbian plasticity, the role that
Hebbian plasticity must play in establishing key characteristics of population codes,
such as the distribution of preferred direction vectors, has received little attention.
In particular, network models of synaptic plasticity usually assume small numbers
of independent, high-�delity neurons. In contrast, physiological networks contain
large numbers of correlated, and apparently noisy neurons (this distinction has been
emphasized by C.H. Anderson; personal communication). This chapter considers
Hebbian plasticity in the latter context, as the basis of correlated population codes.

8.2 Decomposing Synaptic Weights

Recall from Chapter 3 that the NEF [111] allows one to analytically determine the
synaptic weights that calculate a map f(x), in a low-dimensional population code.
Speci�cally, the weights can be found from the preferred direction vectors φ̃j of the

post-synaptic neurons, and the vectors φ
f(x)
i that optimally decode f(x) from the

presynaptic neurons, as
wji = αjφ̃

T
j φ

f(x)
i ,

where αj is a scale factor that is common to all the synapses onto the jth post-
synaptic neuron.

If the post-synaptic population has dimension d, and the numbers of presynaptic
and post-synaptic neurons are m and n, respectively, then the weight matrix W
has d(m+n) degrees of freedom. Usually d is much less than both m and n, so that
there are many fewer degrees of freedom than synaptic weights. For example, if
d = 3 and m = n = 1000, there are 6x103 degrees of freedom among 1x106 synaptic
weights.

In contrast, plasticity can operate independently on each synaptic weight. Bar-
ber [38] pointed out that to relate the potentially high-dimensional weights that
arise from plasticity to a low-dimensional population code, singular value decom-
position can be performed on the synaptic weight matrix. Singular value decom-
position factors a matrix A into a product of three new matrices, A = USV T . S
is diagonal, and contains the eigenvalues of

√
ATA, which are called the singular

values of A. These are ordered from largest to smallest. The columns of U and V
are orthonormal vectors. The matrix of rank r that is most similar to A (so that
the mean-squared di�erence between matrix elements is minimal) is USrV

T , where
Sr is obtained by setting all but the �rst r diagonal elements of S to zero. If A does
not have full rank, then some of these diagonal elements are zero to begin with.

The rows of U can be interpreted as preferred directions of the neurons in the
post-synaptic population. Similarly, the rows of V can be interpreted as decoding
vectors of the neurons in the presynaptic population, where each dimension decodes
a one-dimensional function of presynaptic activity, over the space that is represented
by the presynaptic population. Importantly, an arbitrarily accurate approximation
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of synaptic weights can be obtained with lower-dimensional encoders and decoders,
by ignoring some of the singular values that are close to zero. For example, if there
are only two singular values much larger than zero, the product U2S2V

T
2 , where U2

and V2 contain only the �rst two columns of U and V , will provide a very good
approximation of W .

Note that regardless of the size n of the presynaptic population, the dimension
d of the post-synaptic population is equal to the number of non-zero singular values
of W . This is because 1) if rank(W ) < n, then W projects pre-synaptic signals
into a lower-dimensional space, and 2) rank(W ) cannot exceed n. If some of the
singular values are very small (but not zero), then the corresponding dimensions
have correspondingly little in�uence on the activity of the post-synaptic neurons,
and they are probably not relevant to the function of the network.

Figure 8.1 illustrates these correspondences by decomposing a weight matrix
that is derived from a product of NEF encoding vectors (preferred direction vec-
tors) and decoding vectors. Note that as described in Chapter 3, it is sometimes
convenient to break down a neural computation into two parts: 1) a decoded func-
tion f(x), and 2) a linear transform A. In this case wji = αjφ̃jAφ

f
i . The decom-

posed decoding vectors in this case will correspond to the product Aφf
i . So clearly,

a given V matrix will correspond to any combination of A and f(x) that give the
same product. The fact that this product cannot be uniquely decomposed is not
a limitation � in the NEF, the decomposition of a map into A and f(x) is for
analytical convenience, and has no physical meaning.

Barber [38] applied this decomposition to sigmoidal backpropagation networks,
and argued that the technique was useful for understanding the computations per-
formed by such networks. Backpropagation networks are valuable engineering tools,
in that they can learn complex input/output mappings by generalizing from exam-
ples. However, even if they perform correctly, it is often di�cult to understand
how they make decisions, and they are often criticized as �black-box� models for
this reason. Understanding is further frustrated because two backpropagation net-
works that perform identically may have quite di�erent patterns of synaptic weights.
This is because error-driven learning ceases when performance is good, regardless
of whether a more elegant or principled solution is possible. This variation can
be reduced by constraining the network to have the minimum degrees of freedom
needed to perform the task, however this number may not be known in advance,
and in any case convergence to a solution that performs well is less likely in a
tightly constrained network. Barber essentially argued that it is more practical to
extract the low-dimensional structure of the solution afterwards, independently of
the learning process.

This study established a new connection between population-coding models and
arti�cial neural networks. However, its physiological relevance was limited by 1) the
physiological implausibility of backpropagation, and 2) the questionable relevance
of the independent, high-�delity neurons that make up a feedforward sigmoidal
model for understanding the brain. In contrast, the remainder of this chapter
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Figure 8.1: Decomposition of NEF synaptic weights into preferred direction vectors
and decoding vectors. Optimal synaptic weights for a 2D communication channel
between LIF populations were found using NEF methods (Chapter 3), as the prod-
uct of the preferred direction vectors of the post-synaptic neurons, and optimal
decoding vectors of the presynaptic neurons. Singular value decomposition was
then performed on the resulting synaptic weight matrix W , to give W = USV T .
A, The resulting weight matrix has two large singular values, re�ecting the fact
that the post-synaptic code is two-dimensional. B, The two-dimensional preferred
direction vectors of neurons in the post-synaptic population correspond to rows of
a sub-matrix of U that consists of the �rst two columns. Analogously, the decoding
vectors correspond to columns of a submatrix of V T that consists of the �rst two
rows. C, The preferred-direction and decoding vectors found by decomposing the
synaptic weight matrix are the same as the original vectors, except that in general
they may be rotated, �ipped, and/or rescaled. These changes do not a�ect the
meaning of the code (just arbitrary features of the axis labels). In this example,
the original and decomposed vectors are mirror images of each other.
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uses the same decomposition method to explore how Hebbian plasticity (which
is ubiquitous in neural systems) can establish and shape a biologically-realistic,
redundant population code.

However, before turning to Hebbian plasticity in particular, some preliminary
observations can be made about the e�ects that synaptic plasticity can have on
a population code, and on the functions calculated using the code. As illustrated
in Figure 8.2 (with a supervised-learning network), synaptic plasticity can poten-
tially change: 1) the function that is calculated by a projection; 2) the preferred
directions of the post-synaptic neurons; and perhaps most importantly, 3) the di-
mension of the transform. The dimension of the transform bounds the dimension
of the post-synaptic neurons' tuning curves. For example, if the presynaptic pop-
ulation is ten-dimensional, synaptic weights that are two-dimensional will project
the presynaptic activity into a two-dimensional space. On the other hand, if the
presynaptic population is two-dimensional, ten-dimensional weights will result in a
ten-dimensional post-synaptic code, and di�erent represented values will belong to
a two-dimensional manifold.

The following sections show that Hebbian plasticity can in�uence the dimension
of a synaptic weight matrix, and also the distibution of the preferred directions of
the post-synaptic neurons. It is later argued that either supervised learning or
reinforcement learning is needed for �exible modulation of the decoding vectors.

8.3 Hebbian Plasticity

Hebb [152] proposed that if a neuron A causes a neuron B to �re, the synapse from
A onto B will strengthen. In the broadest sense, the term �Hebbian plasticity� is
now taken to mean any form of plasticity in which changes in synaptic strength
depend on presynaptic activity, post-synaptic activity, and other information that
is available locally at the synapse (e.g. the synaptic weight itself).

There is now a great deal of experimental evidence for Hebbian plasticity in this
broad sense [3], and for more speci�c variations. One variation that has received
a great deal of attention recently is spike-timing-dependent plasticity (STDP), in
which the synapse is strengthened when the presynaptic neuron �res a few millisec-
onds before the post-synaptic neuron, but weakened when post-synaptic neuron
�res �rst. This variation is closer to Hebb's original proposal than temporally-
symmetric variations. STDP has been observed in the cortex [242] and recently in
the striatum [296]. The theoretical BCM rule (after Bienenstock, Cooper & Munro)
encapsulates another variation for which there is recent experimental support (see
[78]). In this rule, the change in synaptic weight is a product of the presynaptic
�ring rate and a nonlinear function of the post-synaptic �ring rate. This nonlin-
earity causes the synaptic weight to decrease when post-synaptic activity is lower
than some threshold, and to increase when it is higher. The threshold evolves as
a super-linear function of the mean post-synaptic �ring rate. This stabilizes the
neuron's activity so that it does not grow without bound.
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Figure 8.2: Synaptic plasticity can a�ect the calculation performed by a neuronal
projection, the post-synaptic neurons' preferred directions, and the dimension of
the post-synaptic population. These e�ects are illustrated here in a model of a pro-
jection from one LIF population to another. The synaptic weights in this model are
modi�ed by the supervised learning rule ∆wji = κaiej, where κ is a learning rate, ai
is the �ring rate of the ith presynaptic neuron, and ej is the di�erence between the
actual �ring rate of the jth post-synaptic neuron, and the ideal �ring rate (i.e. what
the �ring rate would be if the projection calculated the target function, etc.) The
model is trained by presenting it with randomly-selected values of the presynaptic
variable x. A, Modulation of decoded function from f(x) = x to f(x) = x2. The
thick solid line indicates the least-squares optimal decoding of x2 from presynaptic
activity. The thin solid lines indicate the actual decoding at the start and end of
training, and the dashed lines indicate intermediate functions during training. B,
Modulation of preferred directions, from uniformly-distributed to clustered around
the axes. The circles indicate the preferred directions at the start of training, and
the plus-marks indicate preferred directions at the end of training. C, Modula-
tion of the dimension of the post-synaptic code, from two to three-dimensional.
The magnitudes of the �rst three singular values are shown. Initially (thin solid
line) there are two large singular values, corresponding to a two-dimensional post-
synaptic code. The dashed lines indicate singular value magnitudes at di�erent
times during training. Eventually they converge on those of the target mapping
(thick solid line). Note that as each feature of the projection is modi�ed by synaptic
plasticity, the other features remain constant, e.g. the encoders and the dimension
remain constant in (A).
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Hebbian networks self-organize to represent their input in a di�erent manner,
which is determined by the statistics of the input. In the most basic form of
Hebbian plasticity, the synaptic weight wi from the ith presynaptic neuron onto a
post-synaptic neuron varies as

∆wi = κaib,

where ∆wi is the change in the synaptic weight after presentation of a single input,
1

ai is the �ring rate of the ith presynaptic neuron, b is the �ring rate of the post-
synaptic neuron, and κ is a learning-rate constant that scales the rate of change of
the weights. Slower plasticity can prevent a network from over-specializing on the
basis of a small sample of inputs.

Because stronger correlation between pre- and post-synaptic activity leads to
stronger weights, and vice versa, this simple scheme causes synaptic weights to grow
without bound. However, di�erent weights do not grow equally. Instead, the weight
vector grows most quickly along the �rst principal component of the variation in
the presynaptic activity a [92].

Oja [281] proposed a variation on this rule in which di�erent synapses compete
for resources, so that the norm of the synaptic weight vector remains constant over
time. More recent experimental evidence indicates that receptors di�use rapidly in
and out of post-synaptic membrane specializations, so that receptor concentration
at a synapse (a key determinant of its strength) is in dynamic equilibium [367].
If synapses dynamically attract receptors, rather than �xing them in a molecular
sca�old (the classic view), this would be consistent with the competition between
synapses that Oja suggested for theoretical reasons.

In Oja's model, if the post-synaptic neuron has a linear response function, and
the learning rate is low, then synaptic plasticity can be expressed as

∆wi = κb(ai − wib). (8.1)

The weight vector does not lengthen over time, but it gradually aligns with the �rst
principal component of the presynaptic activity. The activity of the post-synaptic
neuron then re�ects the projection of presynaptic activity onto this principal com-
ponent. This simple Hebbian network therefore models key statistical information
about its inputs.

A key point of divergence between Oja's model and biological neurons is Oja's
assumption that neuron response functions are linear, in contrast with the recti-
�cation of physiological �ring rates at zero, and their saturation at high values.
However, Oja's derivation is easily adapted to the nonlinear case (see Appendix),
yielding

∆wi = κb(ai − wi
∑
i

wiai). (8.2)

1For computational e�ciency, models of synaptic plasticity usually ignore changes in neuron
activity over short time scales, and assume discrete trials during which the activity of each neuron
is constant.
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Figure 8.3: Nonlinear Oja neurons do not necessarily extract the �rst principal
component of the input. This is illustrated in a network with two inputs, and mul-
tiple independent output neurons. Synaptic weights have random initial values, and
are plastic according to the Oja rule. A, Linear output neurons. The inputs are
drawn from a bimodal distribution, which is the average of two Gaussian functions.
Random input samples from this distribution are marked as x's. The lower-right
peak has higher density, so that the �rst principal component points along the x1

axis. The circles indicate random initial weight vectors of di�erent post-synaptic
neurons, and the lines that begin at each circle show the trajectories of these weight
vectors over the course of training. All of the weight vectors align with the �rst
principal component of the input. B, Nonlinear output neurons. The inputs in this
simulation are drawn from the same distribution as in (A), but in this case, a neu-
ron's weight vector may align with either the �rst or second principal component,
depending on its initial value.

A nonlinear Oja neuron can also extract the �rst principal of the input. However,
depending on the structure of the input, it may extract something di�erent. Figure
8.3 shows an example in which di�erent nonlinear Oja neurons that are driven with
the same input extract the principal components of two di�erent regions of an input
with a bimodal probability distribution.

Bounds on the magnitudes of the synaptic weights can have a similar e�ect [92],
so that two di�erent post-synaptic neurons extract di�erent features of the same
input.

8.4 Dimension Control by Lateral Connections

As discussed above, if synaptic strength in a feedforward network is established
by the Oja rule, then the post-synaptic neurons will all become tuned to the �rst
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principal component of the input (or due to nonlinearities, perhaps to one of a
few other statistical features of the input). In this case, the rows of the synaptic
weight matrix will be parallel, and the matrix will have rank one. The post-synaptic
population will be one-dimensional, and will represent the �rst principal component
of the input.

Lateral connections among neurons in the post-synaptic population can change
this behaviour dramatically. This section discusses the e�ects of lateral connections
on the dimension of the feedforward weight matrix, in several well-known network
types.

There are many variations on the theme of Hebbian learning with lateral con-
nections, and it is not possible to address all of them here. However, two network
types are of particular interest. The �rst is principal component analyser networks,
which extend the Oja model to include lateral inhibition. Section 8.4.1 makes the
obvious but important point that the sparseness of lateral connectivity in principal
component analysers impacts the dimension of the population code. The second
important type of laterally-connected Hebbian network is the self-organizing map
(SOM). Self-organizing maps are of interest because they model the topological
organization of neural tuning that is observed in many brain areas. Section 8.4.3
shows how spatial patterns of lateral connectivity in these networks (which may
be genetically-determined, in the physiological circuits they model) in�uence the
dimension of the code, suggesting a link between population coding and spatial net-
work properties. Additionally, section 8.4.2 discusses Hebbian learning in winner-
take-all networks. These networks have similarities with both principal component
analysers and SOMs, making it clear that all of these networks types belong to
a larger family. Notably, principal component analysers [37], self-organizing maps
[300], and winner-take-all networks [351] have all been proposed as models of the
striatum.

In general, it will be shown that inhibitory lateral connections in these networks
increase the dimension of the code, and excitatory lateral connections reduce the
dimension.

8.4.1 Principal Component Analysers

Oja's original model has been extended to extract multiple principal components,
by introducing lateral inhibitory connections between the post-synaptic neurons. In
one well-known variation on this theme, by Kung & Diamantaras [212], the matrix
of inhibitory lateral weights is lower-triangular. The �rst post-synaptic neuron
receives no lateral inhibition, so it behaves like an Oja neuron, and converges on
the �rst principal component of the input. The second post-synaptic neuron is
inhibited by the �rst. This inhibition strengthens when the �ring rates of the �rst
and second neurons are correlated. The result is that the second neuron does not
align with the �rst principal component, but rather the second (the largest source
of variance that is orthogonal to the �rst). The third neuron is inhibited by the
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�rst two, and aligns with the third principal component, and so on. In another
variation [121], the post-synaptic neurons are connected symmetrically. In this
case, correlated neurons are also driven apart by mutual inhibition, but there is
no hierarchy. Consequently, m post-synaptic neurons do not align precisely with
the �rst m principal components. But they still span the m-dimensional principal
subspace.

Contrasting these networks with a post-synaptic population of independent Oja
neurons makes it clear that the e�ect of lateral inhibition is to increase the di-
mension of the feedforward weights. As shown in Figure 8.4, the dimension of
the feedforward weights in these networks is the minimum of 1) the dimension of
the variance in the input pattern (which may be less than the number of input
neurons), and 2) the number of post-synaptic neurons.

To return to population coding, redundancy can easily be introduced in these
networks through alternative pattens of lateral connectivity. For example, in an
asymmetric Kung & Diamantaras [212] network, if some of the neurons do not
receive lateral inhibition from the �rst, their weight vectors will align with those of
the �rst neuron. In general, sparser lateral connection matrices will allow greater
redundancy. Figure 8.4C illustrates a case in which eight post-synaptic neurons
form two completely independent groups, so that the resulting code is at most
four-dimensional.

8.4.2 Winner-Take-All Networks

In a winner-take-all (WTA) network, only the post-synaptic neuron that is driven
most strongly is active at any given time. This behaviour is often modelled phe-
nomenologically. But in a more detailed model, it can arise as a result of strong
mutual inhibition among the post-synaptic neurons. WTA networks (even the phe-
nomenological ones) therefore behave like networks with strong lateral inhibition.
Accordingly, Hebbian learning in the feedforward weights of such a network leads
to a high-dimensional code, as shown below.

Simple Winner-Take-All Model

Before turning to Hebbian learning in WTA networks, this section introduces a
simple WTA model based on lateral inhibition, which has many similarities with
the principal component analysers of the previous section. In this model, the �ring
rate bj of the j

th post-synaptic neuron is

bj = G[
∑
i

wjiai +
∑
k

qjkbk + J bias], (8.3)

where ai is the �ring rate of the ith presynaptic neuron, wji is the weight of the
feedforward synapse from the ith presynaptic neuron onto the jth post-synaptic
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Figure 8.4: Dimension of feedforward weight matrices in principal component anal-
ysers with di�erent patterns of lateral connectivity. Forward weights in these net-
works obey the Oja rule, and lateral weights obey a modi�ed Oja rule, in which
mutual inhibition strengthens when the activity of two neurons is correlated (this
is sometimes called �anti-Hebbian� plasticity, because the numerical value of the
weight becomes lower rather than higher with correlated activity). Each line in-
dicates the magnitude of singular values in a network with 12 input and 8 output
neurons. Inputs are drawn randomly from a Gaussian distribution with varying
dimension. The labels beside each line indicate the dimension of this variance,
within the 12-dimensional space of presynaptic activity. A, Asymmetric lateral
connections [212] lead to a code with the same dimension as the variance in the
input, up to the number of post-synaptic neurons. The number of large singular
values of the feedforward weight matrix corresponds to the dimension of the input
variance, up to a maximum of 8 (the number of output neurons). B, Symmetric
lateral connections have essentially the same e�ects on the dimension of the code
as asymmetric lateral connections. C, Sparse lateral connections can lead to codes
of reduced dimension. In this example, lateral connections are symmetric, but the
neurons form two mutually-independent groups of four neurons each. Each group
of neurons �nds (independently) the four-dimensional principal subspace. Conse-
quently, the resulting code has at most four dimensions, regardless of the pattern
of input.
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neuron, qjk is the weight of the lateral synapse from the kth onto the jth post-
synaptic neuron, J bias is a constant intrinsic bias current, and G[•] is the leaky-
integrate-and-�re (LIF) response function (Chapter 3).

The lateral weight matrix Q is static. The o�-diagonal entries are negative,
modelling lateral inhibition. The diagonal entries are positive, modelling recurrent
excitation of each neuron.2 Figure 8.5 illustrates how a neuron's �ring rate decays
to zero when the net input is low, and to a high value when the net input increases
beyond a threshold.

The forward weight matrix W = [wji] is established by the Oja rule. In a
given trial, di�erences between the rows of this matrix result in di�erences in the
total forward input to each neuron. The neuron with the weight vector that is
most closely aligned with the input vector wins the WTA competition. This model
is closely related to the principal component analyzers discussed in the previous
section. The main di�erences are that the WTA model has strong, static lateral
weights, self-excitation, and nonlinear response functions.

Additionally, a homeostatic mechanism is added, so that the weights of non-
active (non-winning) neurons grow uniformly. A non-winning neuron's weights
continue to grow until it wins enough competitions that the normalizing e�ect of
the Oja rule balances continued weight growth. This mechanism forces all neurons
to participate in the code (Figure 8.6).

Dimension of Feedforward Weights

The dimension of the WTA network is similar to that of a principal component
analyzer with the same structure (Figure 8.7). One interesting di�erence is that
while the dimension of the synaptic weights in the principal component analysers
is at most m, the number of output neurons, the dimension of the WTA network
is at most m − 1. This is because each WTA unit eventually points close to the
centre of its winning territory. This forces the preferred directions of di�erent WTA
units apart. So for example, with Gaussian input, two units will point in opposite
directions in a two-dimensional space, three units will point in directions that are
close to co-planar with (0,0), etc. In contrast, lateral interactions in the principal
component analyzers tend to make the preferred directions of di�erent neurons
roughly orthogonal.

Preferred Directions

In the WTA network with Hebbian feedforward weights, preferred direction vectors
point in useful directions.

2Di�erences in forward input can be ampli�ed by lateral inhibition alone, but all-or-nothing
competition requires positive feedback.
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Figure 8.5: Winner-take-all model. A, Stable �ring rates with self-excitation. The
dashed line f(x) = x indicates the degree of self-excitation necessary to balance
exponential post-synaptic current decay, in order to exactly maintain the �ring
rate at a constant value. The lower solid line shows a scaled LIF tuning curve that
corresponds to the degree of self-excitation with zero input. This self-excitation
is always below the dashed line, so the �ring rate decays to zero from any initial
value. The upper solid line indicates self-excitation plus input that is just su�cient
to activate the neuron. The total input to the neuron is above the dashed line
for low �ring rates, so that the neuron's �ring rate increases over time until the
total input crosses below the dashed line at a higher represented value x = 1. B,
Bifurcation of the �ring rate as a function of net input u. The winning neuron
must inhibit the others strongly enough that their net input does not cross the
bifurcation point (0.25 in this model). C, A competition between two neurons with
forward input 0.5 and 0.6 is quickly resolved. The bar indicates the time during
which the input is presented. D, A competition between the same neurons with
forward inputs 0.5 and 0.501. In this closer competition, it takes longer to clearly
establish the winner.
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Figure 8.6: Homeostatic weight growth in a WTA network forces all neurons to par-
ticipate. This is illustrated in a network with two-dimensional Gaussian-distributed
input, and 20 output units. A&B, When feedforward weights are modi�ed accord-
ing to Oja rule alone, some of the neurons never win a trial. A, Histogram of wins
by di�erent neurons in the last half a training simulation. B, Trajectories of the
weight vectors, which converge on �nal locations that are marked with dots. The
weights of the non-winning neurons are not modi�ed during training. C&D, Here
the weight vectors lengthen slightly with each non-winning trial. Neurons that
never win are therefore driven more and more strongly until they are competitive,
at which point Oja normalization counterbalances weight growth in non-winning
trials.
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Figure 8.7: Dimension of feedforward weight matrices in a WTA network is similar
to that in principal component analysers (see Figure 8.4). The main di�erence in
this case is that the maximum dimension of the code is one less than the number
of post-synaptic neurons, as discussed in the text.

The distribution of preferred direction vectors in a population code in�uences
both the accuracy with which di�erent values are represented, and the computa-
tions that can be performed on the represented values. In the absence of noise,
represented values are unambiguous, as long as the preferred directions span the
space. But if the preferred directions are clustered together, then independent
noise in the �ring of di�erent neurons will introduce relatively less ambiguity in
the directions of the clusters, and more ambiguity in other directions. In terms of
computation, if neurons are clustered around a small number of preferred directions
φ̃1..l, then functions of the form f(x) = f1(φ̃1) + ...+ fn(φ̃l) can be linearly decoded
from the neurons' activities, assuming tuning curves along each direction are di-
verse. Greater diversity of preferred directions leads to more terms in this sum, and
simultaneously (assuming a constant total number of neurons) less accuracy in the
decoding of each term.

The Hebbian WTA network described above tends to align weight vectors with
patterns of neural activity that are encountered frequently. From a population-
coding perspective, this is equivalent to aligning the preferred direction vectors with
values that are frequently represented (Figure 8.8). This means that frequently-
encountered inputs will be represented by a greater density of neurons. Thus the
code is biased both to minimize the e�ects of noise and to maximize computational
�exibility for values that are represented most frequently. In contrast, the principal
component analysers discussed in the previous section do not cluster inputs along
important directions in the coded space. For example, in the model of Kung &
Diamantaras, di�erent neurons are always aligned orthogonally, regardless of the
distribution of the inputs.
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Figure 8.8: Preferred-direction vectors cluster around represented values in a WTA
network. The model simulated here consists of �fty two-dimensional presynap-
tic LIF neurons, and twenty post-synaptic WTA neurons. The left panels show
samples from di�erent distributions of values represented by the presynaptic popu-
lation. The right panels show the preferred directions of the post-synaptic neurons
(circles) after training of the network. The preferred directions of these neurons
are essentially three-dimensional, and are plotted in their second and third dimen-
sions (they are roughly uniform in the �rst dimension, re�ecting the constant �rst
principal component of the input due to �ring rate recti�cation). Presynaptic rep-
resented values are drawn uniformly from the interior of the unit circle (A), drawn
uniformly from the edge of the unit circle (B), and drawn non-uniformly from the
edge of the unit circle (C; here angles have a Gaussian distribution around π/2). In
each case, the density of the preferred directions re�ects the density of the input.

161



8.4.3 Self-Organizing Maps

A self-organizing map [208] is a type of unsupervised-learning network in which
neurons are arranged in a (usually) two-dimensional sheet. Nearby neurons are
mutually excitatory, and neurons that are farther apart are mutually inhibitory.
After learning, the network forms a topological representation of its inputs, i.e.
neurons that are close to each other are similarly tuned. Self-organizing maps
(SOMs) have practical applications in the visualization of high-dimensional data.
They are also of interest as neural circuit models, because their topological rep-
resentation of input resembles the topological organization that is common in the
neocortex (which is also essentially a thin sheet of neurons) and in other subcortical
structures.

A SOM is initialized either with random forward weights, or with forward
weights that are distributed to re�ect basic statistical properties of the input. A
learning trial consists of several stages, in which lateral excitatory and inhibitory
interactions are modelled abstractly. First, the post-synaptic neurons participate
in a phenomenological winner-take-all competition, so that

bj =

{
1 if dj =

∑
iwjiai > dk∀k 6= j

0 otherwise
(8.4)

where bj is the activity of the jth post-synaptic neuron, dj is its total forward
synaptic drive, ai is the �ring rate of the i

th presynaptic neuron, and wji are the feed-
forward weights. Next, the winning neuron excites nearby neurons, so that their
activity levels vary with the physical distance from the winning neuron, according
to a kernel function. The kernel is typically unimodal (e.g. Gaussian) with zero
mean. These two steps (i.e. WTA and lateral excitation) model lateral inhibition
and excitation in a highly idealized but computationally e�cient manner. Finally,
the forward weights wji are updated so that the weight vectors of each active neuron
approach the input pattern, i.e.

∆wj = κbj(a−wj), (8.5)

where κ is a learning rate. This is a form of Hebbian learning.

Kernel Width and Dimension

As in the WTA networks of the previous section, preferred direction vectors in
a SOM cluster around frequently-coded values. However, excitatory lateral in-
teractions correlate the activities of nearby neurons. One result of these lateral
interactions is that if inputs belong to clusters, some post-synaptic neurons can
become tuned to directions between clusters (i.e. if they are close to neurons in
each cluster). These lateral interactions can also act like a spatial �lter, so that
outliers in the input are ignored (Figure 8.9).
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Figure 8.9: Excitatory lateral interactions �lter outliers. This is illustrated in a
network with two presynaptic neurons and a 5x5 hexagonal sheet of self-organizing
output neurons. Sample inputs are shown as x's. Weight vectors of the post-
synaptic units are shown as dots, with gray lines connecting units that are adjacent
in the sheet (i.e. mutual distance=1). The Gaussian excitatory kernel widths are
0.35 units (A) and 1.5 units (B). With the wider kernel, none of the output neurons
align with the outlying inputs near (0,1).

This �ltering process can also lower the dimension of the learned feedforward
weights (Figure 8.10). This happens when there are dimensions along which the
inputs �uctuate weakly, in a manner that is uncorrelated with �uctuations in di-
mensions of higher variance. In this case, neighbouring neurons are drawn along
the direction of high variance, and the low-pass e�ect of the kernel prevents the
preferred directions from diverging along the low-variance direction. However, this
smoothing has little e�ect on the dimension of the forward weights if the low-
variance features of the input have a smooth relationship with the high-variance
features.

In summary, the winner-take-all character of the self-organizing map can pro-
duce a high-dimensional code if there is high-dimensional structure in the inputs.
However, the smoothing e�ect of a broad excitatory kernel can supress features of
the input that are 1) weak, and 2) lacking a smooth structure with respect to other
features.

8.4.4 Tuning Curves in Laterally-Connected Populations

The previous sections illustrate that lateral connections within a population in-
�uence both the direction and the dimension of the neurons' preferred-direction
vectors. In the models of previous chapters, a neuron's preferred direction and its
intrinsic response function uniquely de�ned the neuron's tuning curve. However, in
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Figure 8.10: A broader excitatory kernel can decrease the dimension of the forward
weights. The network shown here consists of three presynaptic neurons, and an
11x14 hexagonal sheet of output neurons. In the top panels, the input consists of
a 2D circle with high-frequency noise in the third dimension. A, Looking at the
circle from the side, the x's indicate sample inputs, and the dots indicate the three-
dimensional weight vectors of the output neurons, after training with a narrow
excitatory kernel (1 unit). Weight vectors of adjacent neurons in the sheet are
connected by gray lines. B, With a broader kernel (3 units), the high-frequency
variations in the third dimension are ignored, and the weight vectors become two-
dimensional. C, Mean +/- standard deviation of the magnitude of the third singular
value of the weight matrix, divided by the mean magnitude of the �rst two singular
values, as a function of kernel width (5 randomly-initialized networks per kernel
width). When the kernel width exceeds 2 neurons, the post-synaptic neurons do
not encode the third dimension of the input. D-F, As A-C except that values in
the third dimension are a smooth function of values in the other two dimensions.
In this case, the post-synaptic neurons represent all three dimensions of the input,
even with broader excitatory kernels.
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a laterally-connected population, the lateral connections also exert a direct in�u-
ence on the tuning curves. Of course, the tuning curves still exist within the space
that is de�ned by the dimension of the feedforward weights. That is, regardless of
the rank of the lateral weight matrix, the tuning curves have the dimension of the
forward weight matrix. However, the shape of each tuning curve is modulated by
other neurons in the population.

Figure 8.11 illustrates the e�ects of mutual excitation and inhibition on the
tuning curves of LIF neurons. Lateral interactions incline the tuning curves toward
or away from those of other neurons.

These tuning curves also vividly illustrate why lateral excitation and inhibition
generally decrease and increase the dimension of the code, respectively. Mutual
excitation forces neurons to respond strongly to the same input, so that Hebbian
plasticity draws the weight vectors together. Mutual inhibition prevents neurons
from responding strongly to the same input, so that Hebbian plasticity draws the
weight vectors apart.

8.5 Diverse Tuning

As shown above, sparse lateral inhibition (or lateral excitation) allows multiple
neurons to have similar preferred directions. This leads to redundancy in the neural
code, which can potentially reduce the e�ects of noise. However, redundancy alone
does little to aid computation. Recall from Chapter 3 that diversity of tuning curves
along the same preferred direction enables linear decoding of diverse functions. How
can redundant neurons with shared input and Hebbian plasticity exhibit diverse
but correlated responses? One might expect that such di�erences could arise from
intrinsic di�erences between neurons. This section introduces an extension to the
Oja rule that allows for such di�erences, and leads to diverse tuning.

The extention to the Oja rule consists of including a homeostatic mechanism
that regulates the neuron's mean level of activity, through changes in bias current.
Physiologically, the intracellular calcium concentration (which increases with �ring
rate) has been proposed to drive homeostatic regulation of ion channel density (see
reviews by [241, 89]). The present extension to the Oja rule is a highly simpli-
�ed model of homeostasis, which acts on parameters of the leaky-integrate-and-�re
(LIF) model, rather than on models of speci�c conductances.

In the extended model, the �ring rate bj of the j
th post-synaptic neuron is

bj = G[
∑
i

wjiai + J biasj ], (8.6)

where ai is the �ring rate of the ith presynaptic neuron, wji is the corresponding
synaptic weight, and G[•] is the LIF response function. J biasj is an intrinsic bias
current. The magnitude of this current varies in such a way that the mean �ring
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Figure 8.11: Lateral connections modulate feedforward neuronal tuning curves. A,
LIF neuron tuning curves with preferred directions x2 (left) and x1 (right), and no
lateral connections. The remaining panels show how the tuning curves of the same
neurons change if they are mutually excitatory (B), mutually inhibitory (C), or if
they compete in a winner-take-all manner (D).
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rate is maintained close to an equilibrium rate bj0. Speci�cally,

J biasj (t+ 1) = J biasj (t) + κb(bj0 − bj), (8.7)

where κb is a learning rate that determines how quickly the bias changes. (It should
only change fast enough to maintain the long-term mean �ring rate; not so fast that
it follows rapid �uctuations in the rate.) The forward weights wji evolve according
to the non-linear Oja rule (see Appendix). However, while in Oja's model the
length of each neuron's weight vector is maintained at 1, in the extended model
the length is instead maintained at a value γj that is di�erent in di�erent neurons.
The resulting learning rule for the feedforward weights is

wji(t+ 1) = wji(t) + κwbj(ai −
1

γ2
j

wji(t)
∑
i

wjiai), (8.8)

where κw is a learning rate. For di�erent neurons with parallel weight vectors, γj
determines the slope of the tuning curve. For a given slope and distribution of
inputs, bj0 determines the zero-intercept of the tuning curve.

Figure 8.12 shows two neuronal tuning curves at di�erent stages, as they con-
verge on the slopes and intercepts that arise from these intrinsic learning parame-
ters. Notably, this simple learning rule also allows the code to adapt to long-term
changes in input statistics, as shown in Figure 8.12B.

This is a very abstract model of homeostasis, but it serves to illustrate the point
that diverse neural tuning across a population is compatible with the establishment
of neural tuning by synaptic plasticity.

8.6 Discussion

This chapter has shown how Hebbian plasticity can change the preferred directions
of neurons within the space they encode. Because synaptic plasticity operates con-
stantly in the brain, one would expect given this result that the tuning of recorded
neurons might change during a long experiment, and such changes are indeed ob-
served (e.g. [315]).

Importantly, plasticity can also change the dimension of the coded space. Some
of the tasks that the brain performs (e.g. control of movement through space) have
a static dimension over an animal's lifetime. However, the ability to re-organize
neurons around codes of varying dimensions may be important in networks that
develop skilled performance of novel tasks.

This chapter has shown that high-dimensional lateral interactions exert a strong
in�uence on the dimension of the feedforward transform (and consequently the
dimension of the post-synaptic code). Many models of Hebbian plasticity employ
high-�delity neurons, and employ lateral inhibition to decorrelate their responses.
In population-coding terms, the dimension of the information represented by such
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Figure 8.12: Diversity in plasticity parameters leads to diversity in tuning curves.
A, The thick line indicates identical tuning of two di�erent LIF neurons before
training. Intrinsic parameters in these neurons (discussed in the text) are set so
that one converges to a �ring threshold of x = 0.2, and a maximum �ring rate of
200Hz, and the other converges to a �ring threshold of x = -0.2 and a maximum
�ring rate of 100Hz. Dashed lines show progression toward the target tuning over
the course of a simulation with uniformly-distributed inputs from x = -1 to 1. B,
The homeostatic mechanism allows the tuning curves to adapt to changes in the
input statistics. As in (A), the thick solid line indicates the initial tuning curve
of both neurons. The dashed lines show progression toward equilibrium tuning
with Gaussian-distributed input of x = −0.5 ± 0.5 (SD). Half way through the
simulation, the mean changes to 0.5. The thin solid lines show adaptation of the
tuning curves to new equilibrium values for this new input distribution.
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idealized models is equal to the number of neurons. In contrast, in the absence of
lateral interactions, the dimension of the code may be as low as one, or slightly
higher, depending on neuronal nonlinearities and input statistics. Sparse lateral
inhibition yields codes of intermediate dimension. Self-organizing maps combine
lateral inhibition with lateral excitation, and selectively supress coding of noise-like
dimensions of the input.

Another key feature of a population code is the diversity of tuning curves among
neurons with the same preferred direction. In the context of linear synaptic inte-
gration, this diversity determines the computations that can be performed on the
encoded information. Section 8.5 introduced a physiologically plausible extension
of the Oja rule, in which the values of two learning-rule parameters can be chosen
so that a neuron's tuning curve converges to any selected parameterization of the
LIF model.

8.6.1 Sparse Coding

An additional parameter of population codes, which was not addressed here, is
sparseness of neural activity. In a sparse code, there is little overlap between the
tuning curves of di�erent neurons, and few neurons are strongly active at any given
time. Olshausen & Field [286] showed that if a network is trained to represent
natural images in a sparse manner, the tuning of neurons in the network becomes
spatially localized and band-pass. In this sense, the tuning resembles the receptive
�elds of neurons in the primary visual cortex, suggesting that V1 is optimized for
sparse coding of natural scenes. Similar sparse coding is evident in other sensory
cortical areas (reviewed by [287]). Decomposing the synaptic weights of the Ol-
shausen & Field [286] model reveals a code with a broad range of singular values,
evenly-distributed preferred directions, and decoders that resemble the principal
components of natural images (not shown). So it appears that this model narrows
the neurons' tuning curves, but essentially retains the dimension of the input sig-
nals. Exploration of the relationship between plasticity, sparse coding, and other
characteristics of population codes is deferred for future work.

8.6.2 High-Fidelity Neurons as Population Models

In the presence of noise, populations of redundant neurons can represent infor-
mation with much higher �delity than individual neurons. One way to model a
population of noisy neurons is as a single high-�delity neuron. This approach is
widely used in the relatively complex and long-timescale networks of connection-
ist cognitive models, in which the inherent computational e�ciency is particularly
appealing.

However, in such a model, the dimension of represented information is con-
strained by the number of high-�delity neurons, and this constraint may in�uence
learning. In other words, it is possible that if the few high-�delity units in such a
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model were replaced with many low-�delity units, the model would behave di�er-
ently. The techniques of this chapter could be used to �nd and correct this type of
problem, using the following procedure:

1. Create and train an idealized network of high-�delity neurons.

2. Convert to a larger network of low-�delity, spiking neurons using synaptic
weights from the idealized network as decoders, and uniformly-distributed
encoders.

3. Simulate plasticity in the new network, starting with NEF weights, and de-
termine whether the network remains viable and whether there are any im-
portant structural changes.

4. If there are changes, decompose the new weight matrices to discover new
decoders, and create a new network using one high-�delity neuron for each
dimension of the synaptic weights.

This would provide a means of testing whether a network of high-�delity neurons
does in fact capture the essential behaviour of a more realistic network of redundant,
noisy neurons, and whether the structure of the network changes when arti�cial
constraints on dimensionality are lifted. Furthermore, if di�erent behaviour emerges
from the large model, it would then be possible to extract a revised high-�delity
model that captures as much of this behaviour as is desired.

8.6.3 Future Work

It would be interesting to study generalizations of the winner-take-all networks in
this chapter. A winner-take-all network is a type of attractor network. The attrac-
tors are at certain corners of a hypercube, in which the axes correspond to the �ring
rates of di�erent neurons � speci�cally they are along one axis from zero. Networks
with attractors at additional (or di�erent) corners can also be constructed. For
example, if one post-synaptic neuron excites another one asymmetrically, then the
second will always be active if the �rst one is active, but not vice versa. As another
example, weaker lateral inhibition would allow multiple units to become active (this
is called kWTA, where k is the maximum number of active units). Exploration of
e�ects of Hebbian plasticity on population codes in these more general networks is
deferred for future work.

Notably, the Leabra framework [290] combines kWTA activation with both
Hebbian and contrastive-Hebbian plasticity. An initial investigation suggests that
Leabra networks tend to have high-dimensional weights, even given a task that
can be solved with a low-dimensional backpropagation network of the same form
(results not shown).
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This chapter has focused on unsupervised Hebbian plasticity, which is ubiqui-
tous in the brain. However, supervised learning and reinforcement learning are
also important. Clearly, if a su�ciently detailed supervisory signal were available
to a network, then the supervisor could shape the code with great �exibility, as
illustrated in Figure 8.2. Unlike the Hebbian mechanisms explored here, a supervi-
sory signal could also exert �exible control over the function that is computed by a
projection. Similarly, reinforcement signals (which are probably much more com-
mon than error signals) provide an alternative basis for modifying synaptic weights
based on network performance, and should allow for greater �exibility in shaping
decoding vectors.

The lessons learned from the present study of simple plasticity models may help
to guide future exploration of more physiologically-detailed models.

8.6.4 Conclusion

Synaptic plasticity is shaped by interactions between cell-intrinsic molecular and
spatial factors, and the network properties that shape spiking activity. Much re-
mains to be learned about these mechanisms, and tractable quantitative models
are simplistic even in terms of the current state of knowledge. The implications
of Hebbian plasticity for population coding will be have to be revisited as these
models improve.

Nonetheless, it is encouraging that the simple models of Hebbian plasticity
explored here have clear e�ects on key features of population codes, including their
dimension, the distribution of preferred direction vectors, and diversity of the tuning
curves.

8.7 Appendix

In Oja's [281] model of Hebbian synaptic plasticity, competition between synapses
prevents unbounded growth of the synaptic weights. Weight changes at each time
step are normalized as follows:

wi(t+ 1) =
w̃i(t+ 1)

β[w̃(t+ 1)]
, (8.9)

w̃i(t+ 1) = wi(t) + κbai, (8.10)

where ai is the �ring rate of the ith presynaptic neuron, b is the �ring rate of the
post-synaptic neuron under consideration, κ is a learning rate, and wi is the weight
of the synapse from the ith presynaptic neuron. The function w̃i(t+1) is the synaptic
weight that would exist at time t+ 1 in the absence of normalization. Finally, β[•]
is a function of synaptic weights, which the normalization process keeps constant.
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In the commonly-cited form of the Oja rule, β[w̃] = ||w̃||2 is the Euclidian length
of the non-normalized weight vector.

Oja showed that for small κ, this weight normalization leads to the update rule,

wi(t+ 1) = wi(t) + κ

[
aib− wi(t)

∂β[w̃(t+ 1)]

∂κ

∣∣∣∣
κ=0

]
. (8.11)

With β de�ned as above,

∂β

∂κ
=
∂

∂κ

√∑
i

[wi(t) + κaib]2

=

∑
i[wi(t) + κaib]aib√∑
i[wi(t) + κaib]2

∂β

∂κ

∣∣∣∣
κ=0

=
b
∑

iwi(t)ai√∑
iw

2
i (t)

.

In the common form of the rule, since the denominator always equals one, and the
neurons are linear, this expression simpli�es to b2, yielding

wi(t+ 1) = wi(t) + κb(ai − wi(t)b). (8.12)

In the general case discussed in Section 8.5, with nonlinear neurons and β[w̃] =
1
γ
||w̃||2 (so that ||w̃||2 = γ at equilibium),

wi(t+ 1) = wi(t) + κb(ai −
1

γ2
wi(t)

∑
i

wi(t)ai). (8.13)

With γ = 1 (as in Section 8.3) this simpli�es to

wi(t+ 1) = wi(t) + κb(ai − wi(t)
∑
i

wi(t)ai). (8.14)
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Chapter 9

Conclusions

9.1 Theoretical Principles

This thesis has brought into focus a number of theoretical principles that can po-
tentially improve our understanding of how the basal ganglia work. While models
synthesize many concepts into a coherent system, theoretical principles are ideally
well-isolated and simple. The principles introduced in the previous chapters are
rephrased below as simply as possible.

1. Compression facilitates selection. Chapter 2 addressed the important but un-
resolved question of the role the basal ganglia play in normal brain function.
The dominant hypothesis of action-selection was contrasted with reinforcement-
driven dimensionality reduction. It was argued that each hypothesis �ts more
closely with di�erent sets of experimental data, and that the two hypotheses
are not mutually exclusive. In particular, a dimensionality reduction network
would serve as an e�ective input stage for a selection network. The dimen-
sionality reduction network would emphasize key contextual information while
�ltering out information that is likely to be irrelevant, and it would facilitate
generalization to novel selection contexts. Whether the basal ganglia actually
work in this way is another question that is best addressed experimentally. A
means of doing so was proposed.

2. Computation requires diversity or nonlinear integration. After Chapter 2, the
remainder of the thesis is concerned with the details of computation in basal
ganglia networks. The Neural Engineering Framework (NEF) is an appro-
priate foundation for this work, because it provides a basic set of principles
for understanding computation in large networks. However, central to one of
these principles is the assertion that computation can be understood in terms
of linear decoding. Applying this principal to the basal ganglia is potentially
problematic, because many basal ganglia neurons integrate their inputs in
a nonlinear manner. One form of nonlinearity, i.e. nonlinear combination of
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the input to di�erent major dendritic branches, is strong in the medium spiny
neurons of the striatum. Chapter 4 showed that this type of nonlinearity can
be understood, in the context of the NEF, as a�ecting the neuron's tuning
curve. Another form of nonlinearity, shunting inhibition, has been considered
to play a role in divisive computations. However, Chapter 4 showed that
it also supports a �exible form of population coding, which was called the
�averaging code�. This code is similar to the population codes of the NEF,
but it has some advantages. For example, it supports Hebbian learning of
computations in very general circumstances, without requiring the inputs to
form a tight frame. As shown later (Chapter 7), it can also insulate di�erent
network layers from the intrinsic dynamics of other layers. However, the key
point of this chapter is that nonlinearities within dendritic branches, which
apparently present the strongest challenge to the NEF assumption of linear
decoding, can actually remove a constraint on linear decoding. Speci�cally,
these nonlinearities allow computation to proceed independently of the diver-
sity of presynaptic tuning curves.

3. Any diversity will do. The prevalence of nonlinear input-output relation-
ships within dendritic branches in basal ganglia neurons is not clear (although
NMDA receptors, one of the putative mechanisms, are plentiful [202]). Given
this uncertainty, the linear-decoding assumption provides a conservative esti-
mate of a network's computational power. Computation via linear decoding
relies on diversity in the responses of di�erent neurons. However, Chapter
5 shows that this diversity can take on subtle forms. In particular, diverse
computations are supported by a population of neurons that �re irregularly
at a constant rate, as long as spike-timing correlations between neurons are
not too high. In the basal ganglia, these correlations are normally very low,
although they increase substantially in Parkinson's disease. The mechanism
that produces irregular �ring is not critical to this result, but one possible
mechanism would be irregularly-shaped tuning curves. This mechanism pro-
vides a clear bridge between the results of this chapter and the main body of
NEF theory.

4. Excitation is optional. The computational power of a neuronal projection
is much greater if each presynaptic neuron can e�ectively excite some of its
targets and inhibit others. Previously, Parisien et al. [295] showed that this
can be achieved through a combination of excitatory projection neurons and
inhibitory interneurons. Chapter 6 shows that the same is true if both the in-
terneurons and the projection neurons are inhibitory. Thus inhibition appears
to be essential for maximizing computational �exibility, but excitation does
not. The unusual dominance of inhibitory projection neurons in basal ganglia
networks may have very minor implications in terms of the computations they
support.

5. Firing dynamics encode history. Nervous systems are adapted to dynamic
environments, and it would be surprising if their computational properties
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could be understood in isolation from their dynamic properties. The NEF
takes a large step toward integrating these domains. But in doing so, it
makes an assumption that does not hold for many basal ganglia neurons, i.e.
that neurons' input-output dynamics are dominated by the dynamics of their
post-synaptic currents. Contrary to this assumption, the medium spiny neu-
rons of the striatum exhibit dopamine-dependent hysteresis, neurons in the
subthalamic nucleus �re in bursts when inhibition is relieved, and neurons in
the globus pallidus exhibit varying degrees of adaptation and rebound burst-
ing. Extending the NEF to account for �ring dynamics is not straightforward.
Chapter 7 shows that the NEF methods apply fairly directly in the simple
case of uniform, linear �ring-rate adaptation, but that other cases require
di�erent approaches. Notably, diverse and nonlinear �ring dynamics can be
understood as extending the neurons' tuning curves to multiple points in
time. This perspective makes it possible to analyse interactions between pop-
ulations of dynamic neurons much as if they were higher-dimensional static
neurons.

6. Plasticity shapes the code. The preceding principles apply to the behaviour of
mature basal ganglia networks over short time scales. But it is also important
to understand how these results relate to changes over longer time scales,
as a result of synaptic plasticity. Chapter 8 shows that population-coding
concepts, including preferred direction vectors and decoding vectors, have
a simple relationship with learned synaptic weights. It is also shown that
Hebbian learning rules, in conjunction with lateral connections, can determine
both the orientation and the dimension of neurons' preferred direction vectors.
These results are particularly relevant for understanding population coding in
the striatum, because synaptic weights in the cortico-striatal projection are
established by dopamine-gated Hebbian plasticity.

9.2 Future Work

A number of suggestions for future work were outlined in the related chapters. One
key suggestion was an experiment for testing whether the striatum represents ac-
tions or associated contexts (Chapter 2). Another was the suggestion of expressing
dynamic tuning curves in terms of spikes rather than �ring rates (Chapter 7). This
could be done using spike-triggered principal components of the input (generalizing
the widely-used spike-triggered average). Neurons' response functions would then
consist of �ring probabilities in the input-history space.

In addition to the suggestions made in previous chapters, several further po-
tential avenues of exploration have come to light during this work. These are not
directly related to the above principles, but they may help to clarify basal ganglia
function in complementary ways. Three of these directions are discussed below.

175



9.2.1 Compilation of Simultaneous Actions

Motor actions have a hierarchical structure. For example, opening a door is an
action, one that might be performed frequently and automatically. However, this
action is itself a coordinated collection of movements that could also be considered
actions, including termination of gait, reaching, grasping, turning the knob, adjust-
ing balance (in anticipation of force on the hand), and pulling. Coordinating the
components of door opening does not require conscious attention. But neither does
executing these components individually, or in other well-practiced combinations.
Each of these components can also be decomposed further. For example, reach-
ing for the door knob involves �exion of the shoulder, extension of the elbow, and
extension of the �ngers, each of which can be performed individually.

Interestingly, if an action is decomposed �nely enough, the individual elements
become more di�cult. For example, shoulder �exion involves the coordinated action
of several muscles, which are more di�cult to activate alone. Speci�c training is
needed [42] to individually activate a single motor unit (i.e. a motor neuron and
the associated muscle �bres), despite the fact that skilled coordination of thousands
of motor units is e�ortless.

Common patterns of coordination are automated through experience, beginning
prenatally. However, the brain is probably quite limited in its ability to control novel
combinations of actions. For example, suppose it were possible to describe a good
golf swing as a list of ten key components. Even if every one of these components
were easy to perform on its own, memorizing the list would be an ine�ective way
for a novice to prepare for golf.

If the basal ganglia play a role in automating individual actions, they may also
automate simultaneous combinations of actions. This role would be consistent with
the observation that people with Parkinson's disease are particularly impaired at
performing novel, simultaneous combinations of actions [47]. This form of automa-
tion is apparently fundamental to complex motor behaviour. If there is a limit to
the number of actions that the brain can coordinate in a novel combination, then
in order to control a complex movement (e.g. playing a guitar chord), the brain
must �rst automate simpler groups of components. If similar selection processes
operate in the prefrontal cortex, this type of automation may also be important for
sophisticated cognition.

Limits on the Complexity of Selection

One of the basic unanswered questions in this area is how many actions the brain
can execute at once, in a novel combination.1 An informal pilot experiment was per-
formed as a preliminary investigation of this question. A single subject attempted

1Most studies of novel movement coordination have involved only two simultaneous movements.
One exception was a study of novel (yet repetitive) simultaneous movements in four limbs [252],
which found that these were more successful when the mode of coordination (in-phase or anti-
phase) was the same in the upper and lower limbs (see also [227]).
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Figure 9.1: Success in simultaneously executing novel combinations of single-joint
movements (data from a single subject). The success rate is below 40% for combi-
nations of three or more movements.

to perform simultaneous combinations of up to six low-precision, single-joint move-
ments. The movement combinations were selected in order to be very probably
novel to the subject, and so that they did not interfere with each other physically.
This subject was unable to reliably execute novel combinations of more than two
movements (Figure 9.1). There was occasional success with much larger combi-
nations, up to six movements. In these cases, the subject appeared to mentally
rehearse the combination for some time before attempting it, but success was still
infrequent.

These preliminary results highlight a sharp limitation on motor selection, or
possibly on selection in general. Automaticity, presumably subserved in part by
the basal ganglia, clearly mitigates the e�ect of this limitation on well-practiced
movements, which often involve many separable components.

9.2.2 Migration of Procedural Memories

An experiment was suggested in Chapter 2 to determine where the mapping occurs
between representations of context and actions. A closely related question is how
this mapping is established. A compressed context signal would presumably contain
all the information needed to drive automated actions, but the action mapping could
not emerge from statistical properties of the context signal alone. The mapping
would have to be guided, either by reinforcement or supervision.

Interestingly, during the performance of actions that have yet to be automated,
the motor areas of the cortex contain ideal supervisory signals, i.e. commands that
drive actions which are adapted to the animal's context. One possibility is that the
mapping from context to automated action is established in the thalamo-cortical
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projection, and is (at least some of the time) guided by volitional motor commands.
Similarly, there are reciprocal connections from the cortex to the thalamic nuclei
to which the basal ganglia project. These projections could mediate supervision
within the thalamus. Regardless of the site, this type of supervisory mechanism
would gradually automate actions that were initially closely attended. This would
be consistent with observed migration of activity away from prefrontal areas over
the course of learning [322], and re-appearance of prefrontal activity when subjects
attend to well-learned movements [189].

This is almost the opposite of another possibility that has been discussed by
several authors (e.g. [167, 186]), which is that the output of basal ganglia (as-
sumed to represent actions) supervises connections within the motor cortex, so
that selection behaviour that is initially learned in the basal ganglia is ultimately
transferred to the cortex. This concept is appealing because the size of the motor
cortex (109 neurons in humans) probably makes it a better long-term repository
of motor memories than the basal ganglia output nuclei (105 neurons). The con-
cept is broadly consistent with evidence that motor cortical plasticity is disordered
[32], and that cortical motor maps are altered [190] in Parkinson's disease. Primate
electrophysiology provides mixed support [138]. Perhaps contrary to the idea, some
human imaging studies show increased striatal activity with extended practice of
various motor tasks, although further changes can occur after training, so that ac-
tivity during retention testing is mainly cortical [106]. In adult songbirds, lesions of
the basal ganglia do not disrupt song performance, but prevent performance from
deteriorating if the bird becomes deaf [105].

Counter-intuitively, these nearly-opposite processes could conceivably operate
in parallel. The motor cortex could operate as a constraint satisfaction network,
with di�erent inputs conveying commands under cognitive control, contextual in-
formation from the basal ganglia, and contextual information from intra-cortical
connections [377]. As the cortical network learned, it might reduce its reliance
�rst on cognitive control, and then on basal ganglia output. Alternatively, there
might be a more direct chain of supervisory in�uences, such that prefrontal inputs
shape the mapping from compressed context signal to appropriate action, and basal
ganglia output shapes a similar mapping from intra-cortical context signals.

These two hypothesized patterns of transfer, and their mechanisms and inter-
actions, constitute another promising subject for future work.

9.2.3 Multi-Scale Modelling

A �nal direction, in which preliminary progress has been made, relates to modelling
across multiple spatial scales.

The NEF uni�es a number of domains in systems neuroscience, notably popu-
lation coding, temporal coding, dynamics, and synaptic plasticity. Some of these
relationships were strengthened in previous chapters. But despite its broad scope,
the NEF ignores many details at the cellular and molecular levels, while at the same
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time it is too complicated for whole-brain modeling. The ideal framework would
unify not only systems neuroscience, but all levels of neuroscience, from molecular
processes to psychology.

This broader uni�cation would in turn shed further light on systems neuro-
science. The behaviour of most neural systems (except perhaps primary sensory
and motor areas) is determined largely by interactions with surrounding systems.
Similarly, a system's behavior can change dramatically as a consequence of molec-
ular events, which are in turn a�ected by network activity.

A coherent theory that uni�es these multiple scales is a tall order, but computa-
tional integration should be straightforward. For example, a simpli�ed whole-brain
model could act as a test harness for more detailed models of individual systems,
providing realistic inputs, and demanding realistic outputs. Probably the main
reason this is not done routinely is because it is inconvenient.

A software system (www.nengo.ca) is being developed (in collaboration with
Shu Wu, Terry Stewart, and Chris Eliasmith) to facilitate this process. It provides
an implementation of the NEF that can be easily integrated with both higher and
lower-level models. The system has recently run a simple hybrid ACT-R/NEF
model. The next step is to integrate the NEURON simulation environment, which
focuses on single-cell models.

These two points of computational integration should be particularly useful
for basal ganglia modelling. As discussed in the introduction, the basal ganglia
are central to the ACT-R framework. Furthermore, the NEURON simulator has
been used to develop sophisticated models of individual basal ganglia cells (e.g.
[256, 388]). The imminent combination of the NEF, a software implementation
merged with ACT-R and NEURON, and the new theoretical principles described
above, will set the stage for further advances in basal ganglia modelling in the near
future.

179



References

[1] L. F. Abbott. Decoding neural �ring and modelling neural networks. Quart
Rev Biophys, 27:291�331, 1994. 47, 121

[2] L. F. Abbott and P. Dayan. The e�ect of correlated variability on the accuracy
of a population code. Neural Computation, 11(1):91�101, 1999. 89

[3] L. F. Abbott and S. B. Nelson. Synaptic plasticity: taming the beast. Nat
Neurosci, 3:1178�1183, 2000. 146, 150

[4] L. F. Abbott and W. G. Regehr. Synaptic computation. Nature, 431:796�803,
2004. 124, 143

[5] M. Abeles. Role of the cortical neuron: integrator or coincidence detector?
Isr J Med Sci, 18:83�92, 1982. 80

[6] M. Abeles, H. Bergman, E. Margalit, and E. Vaadia. Spatiotemporal �r-
ing patterns in the frontal cortex of behaving monkeys. J Neurophysiol,
70(4):1629�1638, 1993. 79

[7] E. Ahissar. Temporal-code to rate-code conversion by neuronal phase-locked
loops. Neural Comp, 10:597�650, 1998. 80

[8] O. Aizman, H. Brismar, P. Uhlén, E. Zettergren, A. I. Levey, H. Forssberg,
P. Greengard, and A. Aperia. Anatomical and physiological evidence for
D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nature
Neuroscience, 3:226�230, 2000. 7

[9] G. Akopian and J. P. Walsh. Reliable long-lasting depression interacts with
variable short-term facilitation to determine corticostriatal paired-pulse plas-
ticity in young rats. J Physiol, 580:225�40, 2007. 142

[10] J. L. Alberts, M. Saling, C. H. Adler, and G. E. Stelmach. Disruptions in
the reach-to-grasp actions of Parkinson's Disease patients. Exp Brain Res,
134:353�362, 2000. 4

[11] Roger L. Albin, Anne B. Young, and John B. Penney. The functional anatomy
of basal ganglia disorders. TINS, 12:366�375, 1989. 5, 6

180



[12] J. W. Aldridge, R.J. Anderson, and J. T. Murphy. Sensory-motor processing
in the caudate nucleus and globus pallidus: a single-unit study in behaving
primates. Can J Physiol Pharmacol, 58:1192�1201, 1980. 28, 30, 41

[13] G. E. Alexander and M. D. Crutcher. Functional architecture of basal ganglia
circuits: neural substrates of parallel processing. TINS, 13:266�71, 1990. 19

[14] G. E. Alexander and M. D. Crutcher. Neural representations of the target
(goal) of visually guided arm movements in three motor areas of the monkey.
J Neurophysiol, 64(1):164�178, 1990. 28

[15] G. E. Alexander and M. D. Crutcher. Preparation for movement: Neural
representations of intended direction in three motor areas of the monkey. J
Neurophysiol, 64(1):133�150, 1990. 28

[16] G. E. Alexander, M. D. Crutcher, and M. R. DeLong. Basal ganglia-
thalamocortical circuits: Parallel substrates for motor, oculomotor, "pre-
frontal", and "limbic" functions. volume 85 of Progress in Brain Research,
pages 119�146. Elsevier Science Publishers, Amsterdam, 1990. 14, 20

[17] G. E. Alexander and M. R. DeLong. Microstimulation of the primate neos-
triatum. I. physiological properties of striatal microexcitable zones. J Neuro-
physiol, 53(6):1401�1416, 1985. 31

[18] G. E. Alexander and M. R. DeLong. Microstimulation of the primate neostria-
tum. II. somatotopic organization of striatal microexcitable zones and their
relation to neuronal response properties. J Neurophysiol, 53(6):1417�1430,
1985. 28, 31

[19] C. Allen and C.F. Stevens. An evaluation of causes for unreliability of synaptic
transmission. PNAS, 91:10380�83, 1994. 43

[20] D. J. Amit. Modeling Brain Function: The World of Attractor Neural Net-
works. Cambridge, 1989. 121

[21] C. H. Anderson. Basic elements of biological computational systems. Int J
Modern Physics C, 5:313�15, 1994. 46

[22] C. H. Anderson and D. C. Van Essen. Neurobiological computational systems.
In IEEE World Congress on Computational Intelligence, 1994. 46

[23] J. R. Anderson. How can the human mind occur in the physical universe?
Oxford University Press, 2007. 14, 16

[24] J. R. Anderson, Y. Qin, K.-J. Jung, and C. S. Carter. Information-processing
modules and their relative modality speci�city. Cognitive Psychology, 54:185�
217, 2007. 14

181



[25] John R. Anderson, Daniel Bothell, Michael D. Byrne, Scott Douglass, Chris-
tian Lebiere, and Yulin Qin. An integrated theory of the mind. Psych Review,
111:1036�60, 2004. 14

[26] M. E. Anderson and F. B. Horak. In�uence of the globus pallidus on arm
movements in monkeys. III. timing of movement-related information. J Neu-
rophysiol, 54:433�48, 1985. 28

[27] D. Arkadir, G. Morris, E. Vaadia, and H. Bergman. Independent coding
of movement direction and reward prediction by single pallidal neurons. J
Neurosci, 24:10047�56, 2004. 41

[28] N. Aronin, K. Chase, and M. Di�glia. Glutamic acid decarboxylase and
enkephalin immunoreactive axon terminals in the rat neostriatum synapse
with striatonigral neurons. Brain Research, 365:151�8, 1986. 27

[29] H. E. Atallah, D. Lopez-Paniagua, J. W. Rudy, and R. C. O'Reilly. Separate
neural substrates for skill learning and performance in the ventral and dorsal
striatum. Nat Neurosci, 10:126�131, 2007. 38

[30] H. L. Atwood and S. Karunanithi. Diversi�cation of synaptic strength: presy-
naptic elements. Nature Reviews Neurosci, 3:497�516, 2002. 143

[31] B. B. Averbeck, P. E. Latham, and A. Pouget. Neural correlations, population
coding and computation. Nature Reviews Neurosci, 7:358�66, 2006. 43

[32] S. Bagnato, R. Agostino, N. Modugno, A. Quartarone, and A. Berardelli.
Plasticity of the motor cortex in parkinson's disease patients on and o� ther-
apy. Mov Disord, 21:639�45, 2006. 178

[33] W. Bair and C. Koch. Temporal precision of spike trains in extrastriate cortex
of the behaving macaque monkey. Neural Comput, 8:1185�1202, 1996. 92, 97

[34] B. W. Balleine, M. R. Delgado, and O. Hikosaka. The role of the dorsal
striatum in reward and decision-making. J Neurosci, 27:8161�65, 2007. 14

[35] I. Bar-Gad and H. Bergman. Stepping out of the box: information processing
in the neural networks of the basal ganglia. Curr Opin Neurobiol, 11:689�695,
2001. 18

[36] I. Bar-Gad, G. Havazelet-Heimer, J. A. Goldberg, E. Ruppin, and
H. Bergman. Reinforcement-driven dimensionality reduction - a model for
information processing in the basal ganglia. J Basic Clin Physiol Pharm,
11:305�320, 2000. 18

[37] I. Bar-Gad, G. Morris, and H. Bergman. Information processing, dimensional-
ity reduction and reinforcement learning in the basal ganglia. Prog Neurobiol,
71:439�473, 2003. 13, 15, 18, 19, 21, 27, 154

182



[38] M. J. Barber. Information representation in the multi-layer perceptron. In
R. F. Bishop, K. A. Gernoth, and N. R. Walet, editors, 150 Years of Quantum
Many-Body Theory: A Festschrift in Honour of the 65th Birthdays of John
W. Clark, Alpo J. Kallio, Manfred L. Ristig, Sergio Rosati, pages 319�326.
World Scienti�c, 2001. 147, 148

[39] M. J. Barber, J. W. Clark, and C. H. Anderson. Neural representation of
probabilistic information. Neural Comp, 15:1843�64, 2003. 46, 48

[40] T. D. Barnes, Y. Kubota, D. Hu, D. Z. Jin, and A. M. Graybiel. Activ-
ity of striatal neurons re�ects dynamic encoding and recoding of procedural
memories. Nature, 437:1158�1161, 2005. 34

[41] A. G. Barto. Adaptive critics and the basal ganglia. In J. C. Houk, J. L.
Davis, and D. G. Beiser, editors, Models of Information Processing in the
Basal Ganglia, chapter 11, pages 215�32. MIT Press, 1995. 25

[42] J. V. Basmajian. Control and training of individual motor units. Science,
141:440�41, 1963. 176

[43] P.P. Battaglini, S. Squatrito, C. Galletti, M.G. Maioli, and E. R. Sanseverino.
Bilateral projections from the visual cortex to the striatum in the cat. Exp
Brain Res, 47:28�32, 1982. 23

[44] J. Baufreton, M. Garret, A. Rivera, A. de la Calle, F. Gonon, B. Dufy, B. Bi-
oulac, and A. Taupignon. D5 (not D1) dopamine receptors potentiate burst-
�ring in neurons of the subthalamic nucleus by modulating an L-type calcium
conductance. J Neurosci, 23:816�25, 2003. 129

[45] D. G. Beiser, S. E. Hua, and J. C. Houk. Network models of the basal ganglia.
Curr Opin Neurobiol, 7:185�190, 1997. 14

[46] A. L. Benabid, Z. Ni, S. Chabardes, A. Benazzouz, and P. Pollack. How are we
inhibiting functional targets with high frequency stimulation? In K. Kultas-
Ilinsky and I. Ilinsky, editors, Basal Ganglia and Thalamus in Health and
Movement Disorders, pages 309�315. Kluwer Academic/Plenum, New York,
2001. 7

[47] R. Benecke, J. C. Rothwell, J. P. R. Dick, B. L. Day, and C. D. Marsden.
Performance of simultaneous movements in patients with Parkinson's disease.
Brain, 109:739�757, 1986. 4, 176

[48] R. Benecke, J. C. Rothwell, J. P. R. Dick, B. L. Day, and C. D. Marsden.
Disturbance of sequential movements in patients with Parkinson's disease.
Brain, 110:361�379, 1987. 4

[49] A. Benucci, P. F. M. J. Verschure, and P. König. Two-state membrane poten-
tial �uctuations driven by weak pairwise correlations. Neural Computation,
16:2351�2378, 2004. 83

183



[50] A. Berardelli, J. Noth, P. D. Thompson, E. L. E. M. Bollen, A. Currà,
G. Deuschl, G. van Dijk, R. Töpper, M. Schwarz, and R. A. C. Roos. Patho-
physiology of chorea and bradykinesia in Huntington's disease. Mov Disord,
14(3):398�403, 1999. 5

[51] H. Bergman, A. Feingold, A. Nini, A. Raz, H. Slovin, M. Abeles, and E. Vaa-
dia. Physiological aspects of information processing in the basal ganglia of
normal and parkinsonian primates. Trends Neurosci, 21:32�38, 1998. 18, 21

[52] G. S. Berns and T. J. Sejnowski. How the basal ganglia make decisions.
In A. R. Damasio et al., editor, Neurobiology of decision making. Springer-
Verlag, 1996. 14, 20

[53] K. Blatter and W. Schultz. Rewarding properties of visual stimuli. Exp Brain
Res, 168:541�6, 2006. 30

[54] T. Boraud, E. Bezard, B. Bioulac, and C. E. Gross. Ratio of inhibited-to-
activated pallidal neurons decreases dramatically during passive limb move-
ment in the mptp-treated monkey. J Neurophysiol, 83:1760�1763, 2000. 21

[55] H. Braak and E. Braak. Pathoanatomy of Parkinson's disease. J Neurol, 247
(Supl 2):II/3�II/10, 2000. 32

[56] A. Brand, O. Behrend, T. Marquardt, D. McAlpine, and B. Grothe. Pre-
cise inhibition is essential for microsecond interaural time di�erence coding.
Nature, 417:543�547, 2002. 80

[57] N. Brenner, W. Bialek, and R. de Ruyter van Steveninck. Adaptive rescaling
maximizes information transmission. Neuron, 26:695�702, 2000. 143

[58] C. D. Brody and J. J. Hop�eld. Simple networks for spike-timing-based
computation, with application to olfactory processing. Neuron, 37:843�852,
2003. 80

[59] J. W. Brown, D. Bullock, and S. Grossberg. How laminar frontal cortex
and basal ganglia circuits interact to control planned and reactive saccades.
Neural Networks, 17:471�510, 2004. 23, 108

[60] L. L. Brown, J. S. Schneider, and T. I. Lidsky. Sensory and cognitive functions
of the basal ganglia. Curr Opin Neurobiol, 7:157�63, 1997. 30

[61] D. V. Buonomano. Decoding temporal information: a model based on short-
term synaptic plasticity. J Neurosci, 20(3):1129�1141, 2000. 80

[62] G. Burnstock. Cotransmission. Curr Opin Pharmacology, 4:47�52, 2004. 103

[63] P. C. Bush and T. J. Sejnowski. E�ects of inhibition and dendritic saturation
in simulated neocortical pyramidal cells. J Neurophysiol, 71:2183, 1994. 66

184



[64] G. La Camera, A. Rauch, H. R. Lüscher, W. Senn, and S. Fusi. Minimal
models of adapted neuronal response in in vivo-like input currents. Neural
Computation, 16:2101�2124, 2004. 123

[65] M. Carandini and D. J. Heeger. Summation and division by neurons in
primate visual cortex. Science, 264:1333�6, 1994. 65

[66] C. E. Carr and M. Konishi. A circuit for detection of interaural time dif-
ferences in the brain stem of the barn owl. J Neurosci, 10:3227�46, 1990.
62

[67] M. Cassidy, P. Mazzone, A. Oliviero, A. Insola, P. Tonali, V. Di Lazzaro, and
P. Brown. Movement-related changes in synchronization in the human basal
ganglia. Brain, 125:1235�1246, 2002. 98

[68] F. S. Chance, L.F. Abbott, and A. D. Reyes. Gain modulation from back-
ground synaptic input. Neuron, 35:773�82, 2002. 66

[69] J. Chavas and A. Marty. Coexistence of excitatory and inhibitory GABA
synapses in the cerebellar interneuron network. J Neurosci, 23:2019�31, 2003.
103

[70] C. T. Chen. Linear System Theory and Design. Oxford University Press,
New York, 1999. 115

[71] C. Chuang, S. Fahn, and S. J. Frucht. The natural history and treatment
of acquired hemidystonia: report of 33 cases and review of the literature. J
Neurol Neurosurg Psychiatry, 72:59�67, 2002. 5

[72] N. Chuhma, H. Zhang, J. Masson, X. Zhuang, D. Sulzer, R. Hen, and S. Ray-
port. Dopamine neurons mediate a fast excitatory signal via their glutamater-
gic synapses. J Neurosci, 24:972�81, 2004. 23

[73] M. M. Churchland and K. V. Shenoy. Temporal complexity and heterogene-
ity of single-neuron activity in premotor and motor cortex. J Neurophysiol,
97:4235�57, 2007. 14

[74] M. X. Cohen. Neurocomputational mechanisms of reinforcement-guided
learning in humans: A review. Cognitive, A�ective, & Behavioral Neuro-
science, 8:113�25, 2008. 29

[75] M. X. Cohen and C. Ranganath. Reinforcement learning signals predict future
decisions. J Neurosci, 27:371�8, 2007. 37

[76] G. L. Collingridge, J. T. R. Isaac, and Y. T. Wang. Receptor tra�cking and
synaptic plasticity. Nat Rev Neurosci, 5:952�62, 2004. 146

[77] B. W. Connors and M. J. Gutnick. Intrinsic �ring patterns of diverse neocor-
tical neurons. TINS, 13:99�104, 1990. 121

185



[78] L. N. Cooper, N. Intrator, B. S. Blais, and H. Z. Shouval. Theory of Cortical
Plasticity. World Scienti�c, 2004. 150

[79] R. Courtemanche, N. Fujii, and A. M. Graybiel. Synchronous, focally mod-
ulated β-band oscillations characterize local �eld potential activity in the
striatum of awake behaving monkeys. J Neurosci, 23(37):11741�11752, 2003.
98

[80] F. Crick. Function of the thalamic reticular complex: the searchlight hypoth-
esis. PNAS, 81:4586�4590, 1984. 98

[81] F. Crick. The recent excitement about neural networks. Nature, 337:129�132,
1989. 44

[82] M. D. Crutcher and G. E. Alexander. Movement-related neuronal activity
selectively coding either direction or muscle pattern in three motor areas of
the monkey. J Neurophysiol, 64(1):151�163, 1990. 28

[83] M.D. Crutcher and M.R. DeLong. Single cell studies of the primate putamen
II. relations to direction of movement and pattern of muscular activity. Exp
Brain Res, 53:244�58, 1984. 30, 41

[84] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math
Control Signals Systems, 2:303�14, 1989. 43, 44

[85] U. Czubayko and D. Plenz. Fast synaptic transmission between striatal spiny
projection neurons. PNAS, 99:15764�69, 2002. 25

[86] S. C. Dakin and P. J. Bex. Role of synchrony in contour binding: some
transient doubts sustained. J Opt Soc Am, 19(4):678�686, 2002. 80

[87] Y. Dan and M. M. Poo. Spike timing-dependent plasticity of neural circuits.
Neuron, 44:23�30, 2004. 80

[88] E. D'Angelo, T. Nieus, A. Ma�ei, S. Armano, P. Rossi, V. Taglietti,
A. Fontana, and G. Naldi. Theta-frequency bursting and resonance in cerebel-
lar granule cells: Experimental evidence and modeling of a slow k1-dependent
mechanism. J Neurosci, 21:759�770, 2001. 120

[89] G. Daoudal and D. Debanne. Long-term plasticity of intrinsic excitability:
Learning rules and mechanisms. Learn Mem, 10:456�65, 2003. 165

[90] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992. 53

[91] N.D. Daw, Y. Niv, and P. Dayan. Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control. Nature
Neurosci, 8:1704�11, 2005. 16

[92] P. Dayan and L. Abbott. Theoretical Neuroscience. MIT Press, 2001. 57, 65,
76, 152, 153

186



[93] P. Dayan and B. W. Balleine. Reward, motivation, and reinforcement learn-
ing. Neuron, 36:285�98, 2002. 29

[94] B. C. DeBusk, E. J. DeBruyn, R. K. Snider, J. F. Kabara, and A. B. Bonds.
Stimulus-dependent modulation of spike burst length in cat striate cortical
cells. J Neurophysiol, 78:199�213, 1997. 98

[95] M. R. DeLong. Activity of pallidal neurons during movement. J Neurophysiol,
34:414�427, 1971. 28

[96] M. R. DeLong. Primate models of movement disorders of basal ganglia origin.
TINS, 13(7):281�285, 1990. 5, 6

[97] M. R. DeLong, M. D. Crutcher, and A. P. Georgopoulos. Primate globus
pallidus and subthalamic nucleus: Functional organization. J Neurophys,
53(2):530�543, 1985. 28

[98] M. R. DeLong and A. P. Georgopoulos. Motor functions of the basal ganglia.
Handbook of Physiology Section 1: The Nervous System Volume II: Motor
Control, Part 2, chapter 21, pages 1017�1061. 1981. 27, 28

[99] Mahlon R. DeLong and Thomas Wichmann. Circuits and circuit disorders of
the basal ganglia. Arch Neurol, 64:20�24, 2007. 15

[100] M. Desmurget and R. S. Turner. Testing basal ganglia motor functions
through reversible inactivations in the posterior internal globus pallidus. J
Neurophysiol, 99:1057�76l, 2008. 15, 32

[101] A. Destexhe, Z. F. Mainen, and T. J. Sejnowski. Kinetic models of synaptic
transmission. In C. Koch and I. Segev, editors,Methods in Neuronal Modeling,
pages 1�25. MIT Press, Cambridge, 2 edition, 1998. 81

[102] A. Destexhe and D. Paré. Impact of network activity on the integrative
properties of neocortical pyramidal neurons in vivo. J Neurophysiol, 81:1531�
47, 1999. 77

[103] M. Diesmann, M. O. Gewaltig, and A. Aertsen. Stable propagation of syn-
chronous spiking in cortical neural networks. Nature, 402:529�533, 1999. 101

[104] B. Doiron, A. Longtin, N. Berman, and L. Maler. Subtractive and divisive
inhibition: E�ect of voltage-dependent inhibitory conductances and noise.
Neural Comp, 13:227�48, 2000. 66

[105] A. J. Doupe, D. J. Perkel, A. Reiner, and E. A. Stern. Birdbrains could teach
basal ganglia research a new song. TINS, 28(7):353�363, 2005. 3, 178

[106] J. Doyon, V. Penhune, and L. G. Ungerleider. Distinct contribution of the
cortico-striatal and cortico-cerebellar systems to motor skill learning. Neu-
ropsychologia, 41:252�62, 2003. 178

187



[107] B. Draganski, F. Kherif, S. Kloppel, P. A. Cook, D. C. Alexander, G. J. M.
Parker, R. Deichmann, J. Ashburner, and R. S. J. Frackowiak. Evidence for
segregated and integrative connectivity patterns in the human basal ganglia.
J Neurosci, 28:7143�52, 2008. 23

[108] B. Dubois and B. Pillon. Cognitive de�cits in Parkinson's disease. J Neurol,
244:2�8, 1997. 14

[109] R. P. Dum and P. L. Strick. Motor areas in the frontal lobe: the anatomical
substrate for the central control of movement. In A. Riehle and E. Vaadia,
editors, Motor Cortex in Voluntary Movements, chapter 1, pages 3�48. CRC
Press, 2005. 14, 31

[110] C. Eliasmith. A uni�ed approach to building and controlling spiking attractor
networks. Neural Comput, 17:1276�1314, 2005. 52, 121

[111] C. Eliasmith and C. H. Anderson. Neural Engineering: Computation, Repre-
sentation, and Dynamics in Neurobiological Systems. MIT Press, Cambridge,
2003. 9, 19, 46, 50, 54, 59, 67, 81, 104, 121, 126, 147

[112] S. Fahn. The spectrum of levodopa-induced dyskinesias. Ann Neurol, 4(Suppl
1):S2�S11, 2000. 4

[113] A. L. Fairhall, G. D. Lewen, W. Bialek, and R. R. de Ruyter van Steveninck.
E�ciency and ambiguity in an adaptive neural code. Nature, 412:787�92,
2001. 121, 143

[114] A. Faure, U. Haberland, Françoise Condé, and N. El Massioui. Lesion to the
nigrostriatal dopamine system disrupts stimulus-response habit formation. J
Neurosci, 25:2771�80, 2005. 37

[115] A. P. Fawcett, J. O. Dostrovsky, A. M. Lozano, and W. D. Hutchison. Eye
movement-related responses of neurons in human subthalamic nucleus. Exp
Brain Res, 162:357�365, 2005. 3, 28

[116] M. B. Feany and W. W. Bender. A Drosophila model of Parkinson's disease.
Nature, 404:394�398, 2000. 4

[117] G. Fenelon, F. Mahieux, R. Huon, and M. Ziegler. Hallucinations in parkin-
son's disease: prevalence, phenomenology, and risk factors. Brain, 123:733�45,
2000. 31

[118] M. Filion, L. Tremblay, and P. Bédard. Abnormal in�uences of passive limb
movement on the activity of globus pallidus neurons in Parkinsonian monkeys.
Brain Res, 444:165�176, 1988. 21

[119] J. S. Fitzpatrick, G. Akopian, and J. P. Walsh. Short-term plasticity at
inhibitory synapses in rat striatum and its e�ects on striatal output. J Neu-
rophysiol, 85:2088�99, 2001. 142

188



[120] A. W. Flaherty and A. M. Graybiel. Corticostriatal transformations in the pri-
mate somatosensory system. projections from physiologically mapped body-
part representations. J Neurophysiol, 66:1249�63, 1991. 22

[121] P. Földiák. Adaptive network for optimal linear feature extraction. In Proceed-
ings of the IEEE/INNS International Joint Conference on Neural Networks,
1989. 25, 155

[122] P. Földiák. Forming sparse representations by local anti-hebbian learning.
Biol Cybern, 64:165�70, 1990. 25

[123] C. A. Fox and J. A. Rafols. The striatal e�erents in the globus pallidus and in
the substantia nigra. In M. D. Yahr, editor, The Basal Ganglia, pages 37�55.
Raven Press, New York, 1976. 20

[124] M. J. Frank, B. Loughry, and R. C. O'Reilly. Interactions between frontal cor-
tex and basal ganglia in working memory: A computational model. Cognitive,
A�ective, & Behavioral Neuroscience, 1:137�60, 2001. 16

[125] M. J. Frank, A. A. Moustafa, H. M. Haughey, T. Curran, and K. E. Hutchi-
son. Genetic triple dissociation reveals multiple roles for dopamine in rein-
forcement learning. PNAS, 104:16311�16, 2007. 26, 33

[126] M. J. Frank, J. Samanta, A. A. Moustafa, and S. J. Sherman. Hold your
horses: Impulsivity, deep brain stimulation, and medication in Parkinsonism.
Science, 318:1309�12, 2007. 27, 36

[127] M. J. Frank, L. C. Seeberger, and R. C. O'Reilly. By carrot or by stick: Cog-
nitive reinforcement learning in parkinsonism. Science, 306:1940�43, 2004.
33

[128] N. Fuji and A. M. Graybiel. Time-varying covariance of neural activi-
ties recorded in striatum and frontal cortex as monkeys perform sequential-
saccade tasks. PNAS, 102:9032�37, 2005. 28

[129] A. P. Georgopoulos, J. F. Kalaska, R. Caminiti, and J. T. Massey. On the
relations between the direction of two-dimensional arm movements and cell
discharge in primate motor cortex. J Neurosci, 2:1527�37, 1982. 14, 42

[130] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner. Neuronal population
coding of movement direction. Science, 233:1416�1419, 1986. 42, 46, 54

[131] E. Gerardin, S. Lehéricy, J. B. Pochon, S. Tézenas du Montce, J. F. Mangin,
F. Poupon, Y. Agid, D. Le Bihan, and C. Marsault. Foot, hand, face and eye
representationin the human striatum. Cereb Cortex, 13:162�169, 2003. 20

[132] W. Gerstner and W. Kistler. Spiking Neuron Models. Single Neurons, Popu-
lations, Plasticity. Cambridge University Press, Cambridge, 2002. 129

189



[133] A. Gillies and G. Arbuthnott. Computational models of the basal ganglia.
Movement Disorders, 15(5):762�770, 2000. 20

[134] A. J. Gillies and D. J. Willshaw. A massively connected subthalamic nucleus
leads to the generation of widespread pulses. Proc R Soc Lond B, 265:2101�
2109, 1998. 20

[135] C. Günay, J. R. Edgerton, and D. Jaeger. Channel density distributions
explain spiking variability in the globus pallidus: A combined physiology and
computer simulation database approach. J Neurosci, 28:7476�91, 2008. 129

[136] M. S. Goldman, J. H. Levine, G. Major, D. W. Tank, and H. S. Seung. Ro-
bust persistent neural activity in a model integrator with multiple hysteretic
dendrites per neuron. Cereb Cortex, 13(11):1185�1195, 2003. 124

[137] J. Goodall. Through a window: my thirty years with the chimpanzees of
Gombe. Mariner Books, 1990. 44

[138] A. M. Graybiel. The basal ganglia: learning new tricks and loving it. Curr
Opin Neurobiol, 15:638�44, 2005. 178

[139] A. M. Graybiel, J. J. Canales, and C. Capper-Loup. Levodopa-induced dysk-
inesias and dopamine-dependent stereotypies: a new hypothesis. TINS, 23(10
Suppl):S71�S77, 2000. 4

[140] A.M. Graybiel. The basal ganglia and chunking of action repertoires. Neu-
robiol Learn Mem, 70:119�36, 1998. 19

[141] A. J. Gruber, S. A. Solla, D. J. Surmeier, and J. C. Houk. Modulation of
striatal single units by expected reward: A spiny neuron model displaying
dopamine-induced bistability. J Neurophysiol, 90:1095�1114, 2003. 137, 138

[142] R. Gütig and H. Sompolinsky. The tempotron: a neuron that learns spike
timing-based decisions. Nat Neurosci, 9(3):420�428, 2006. 80, 82, 97

[143] K. Gurney, T. J. Prescott, and P. Redgrave. A computational model of action
selection in the basal ganglia. I. a new functional anatomy. Biol Cybern,
84:401�410, 2001. 16, 17

[144] J. N. Guzmán, A. Hernández, E. Galarraga, D. Tapia, A. Laville, R. Vergara,
J. Aceves, and J. Bargas. Dopaminergic modulation of axon collaterals inter-
connecting spiny neurons of the rat striatum. J Neurosci, 23(26):8931�8940,
2003. 21, 25

[145] S. N. Haber, J. L. Fudge, and N. R. McFarland. Striatonigrostriatal path-
ways in primates form an ascending spiral from the shell to the dorsolateral
striatum. J Neurosci, 20:2369�82, 2000. 23, 104

190



[146] F. Hadj-Bouziane and D. Boussaoud. Neuronal activity in the monkey stria-
tum during conditional visuomotor learning. Exp Brain Res, 153:190�96,
2003. 41

[147] R. H. R. Hahnloser, A. A. Kozhevnikov, and M. S. Fee. An ultra-sparse code
underlies the generation of neural sequences in a songbird. Nature, 419:65�70,
2002. 97

[148] I. Hamada, M. R. DeLong, and N. I. Mano. Activity of identi�ed wrist-related
pallidal neurons during step and ramp wrist movements in the monkey. J
Neurophys, 64(6):1892�1906, 1990. 21, 28

[149] J. E. Hanson and D. Jaeger. Short-term plasticity shapes the response to
simulated normal and Parkinsonian input patterns in the globus pallidus. J
Neurosci, 22:5164�72, 2002. 142

[150] M. Haruno, T. Kuroda, K. Doya, K. Toyama, M. Kimura, K. Samejima,
H. Imamizu, and M. Kawato. A neural correlate of reward-based behavioral
learning in caudate nucleus: A functional magnetic resonance imaging study
of a stochastic decision task. J Neurosci, 24:1660�65, 2004. 33

[151] T. Hazy, M. J. Frank, and R. C. O'Reilly. Towards an executive without
a homunculus: computational models of the prefrontal cortex/basal ganglia
system. Phil Trans R Soc B, 362:1601�13, 2007. 14

[152] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory.
Wiley, 1949. 146, 150

[153] J. C. Hedreen and M. R. DeLong. Organization of striatopallidal and striaton-
igral and nigrostriatal projections in the macaque. J Comp Neurol, 304:569�
595, 1991. 20

[154] S. Hernández-López, J. Bargas, D. J. Surmeier, A. Reyes, and E. Galarraga.
D1 receptor activation enhances evoked discharge in neostriatal medium spiny
neurons by modulating an L-type Ca2+ conductance. J Neurosci, 17(9):3334�
3342, 1997. 21

[155] O. Hikosaka, M. Sakamoto, and S. Usui. Functional properties of monkey
caudate neurons II. visual and auditory responses. J Neurophysiol, 61:799�
813, 1989. 30

[156] O. Hikosaka, Y. Takikawa, and R. Kawagoe. Role of the basal ganglia in the
control of purposive saccadic eye movements. Physiol Rev, 80(3):953�978,
2000. 3

[157] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep
belief nets. Neural Comp, 18:1527�54, 2006. 46, 121

191



[158] J. R. Hollerman and W. Schultz. Dopamine neurons report an error in the
temporal prediction of reward during learning. Nature Neurosci, 1(4):304�
309, 1998. 17

[159] G. R. Holt and C. Koch. Shunting inhibition does not have a divisive e�ect
on �ring rates. Neural Comp, 9:1001�13, 1997. 65

[160] J. J. Hop�eld. Neural networks and physical systems with emergent collective
computational abilities. PNAS, 79:2554�8, 1982. 121

[161] J. J. Hop�eld. Pattern recognition computation using action potential timing
for stimulus representation. Nature, 376:33�36, 1995. 80

[162] F. B. Horak and M. E. Anderson. In�uence of globus pallidus on arm move-
ments in monkeys. I. e�ects of kainic acid-induced lesions. J Neurophysiol,
52:290�304, 1984. 32

[163] J. Hore, J. Meyer-Lohmann, and V. B. Brooks. Basal ganglia cooling disables
learned arm movements of monkeys in the absence of visual guidance. Science,
195:584�6, 1977. 32

[164] J. Hore and T. Vilis. Arm movement performance during reversible basal
ganglia lesions in the monkey. Exp Brain Res, 39(2):217�228, 1980. 15

[165] J. C. Houk, J. L. Adams, and A. G. Barto. A model of how the basal ganglia
generate and use neural signals that predict reinforcement. In J. C. Houk,
J. L. Davis, and D. G. Beiser, editors, Models of Information Processing in
the Basal Ganglia, pages 249�270. MIT Press, Cambridge, 1995. 14, 23, 24,
25, 29

[166] J. C. Houk, C. Bastianen, D. Fansler, A. Fishbach, D. Fraser, P. J. Reber,
S. A. Roy, and L. S. Simo. Action selection and re�nement in subcortical
loops through basal ganglia and cerebellum. Phil Trans R Soc B, 2007. 32

[167] J. C. Houk and S. P. Wise. Distributed modular architectures linking basal
ganglia, cerebellum, and cerebral cortex: Their role in planning and control-
ling action. Cerebral Cortex, 2:95�110, 1995. 14, 178

[168] D. H. Hubel and T. N. Wiesel. Receptive �elds, binocular interaction and
functional architecture in the cat's visual cortex. J Physiol, 160:106�54, 1962.
42

[169] M. D. Humphries, R. D. Stewart, and K. N. Gurney. A physiologically plau-
sible model of action selection and oscillatory activity in the basal ganglia. J
Neurosci, 26:12921�42, 2006. 16, 20

[170] M. Häusser, G. Major, and G. J. Stuart. Di�erential shunting of EPSPs by
action potentials. Science, 291:138�41, 2001. 75

192



[171] W. D. Hutchison, A. E. Lang, J. O. Dostrovsky, and A. M. Lozano. Pallidal
neuronal activity: Implications for models of dystonia. Ann Neurol, 53:480�
488, 2003. 5

[172] Y. Ikegaya, G. Aaron, R. Cossart, D. Aronov, I. Lampl, D. Ferster, and
R. Yuste. Syn�re chains and cortical songs: temporal modules of cortical
activity. Science, 304:559�564, 2004. 101

[173] I. A. Ilinsky and K. Kultas-Ilinsky. Neuroanatomical organization and con-
nections of the motor thalamus in primates. In K. Kultas-Ilinsky and I. A.
Ilinsky, editors, Basal Ganglia and Thalamus in Health and Movement Dis-
orders, pages 77�91. Kluwer Academic/Plenum, New York, 2001. 2, 24

[174] I.A. Ilinsky, H. Yi, and K. Kultas-Ilinsky. Mode of termination of pallidal
a�erents to the thalamus: A light and electron microscopic study with an-
terograde tracers and immunocytochemistry in macaca mulatta. J Comp
Neurol, 386:601�12, 1997. 117

[175] M. Inase, J. A. Buford, and M. E. Anderson. Changes in the control of arm
position, movement, and thalamic discharge during local inactivation in the
globus pallidus of the monkey. J Neurophysiol, 75:1087�1104, 1996. 32

[176] E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans Neural
Networks, 14:1569�1572, 2003. 82, 84, 85, 121

[177] E. M. Izhikevich. Polychronization: computation with spikes. Neural Comput,
18(2):245�282, 2006. 80, 82, 121

[178] E. M. Izhikevich. Dynamical systems in neuroscience: the geometry of ex-
citability and bursting. MIT Press, 2007. 121

[179] E. M. Izhikevich, N. S. Desai, E. C. Walcott, and F. C. Hoppensteadt.
Bursts as a unit of neural information: selective communication via reso-
nance. Trends Neurosci, 26(3):161�167, 2003. 98

[180] E. M. Izhikevich and G. M. Edelman. Large-scale model of mammalian tha-
lamocortical systems. PNAS, 105:3593�8, 2008. 121

[181] D. Jaeger, S. Gilman, and J.W. Aldridge. Neuronal activity in the striatum
and pallidum of primates related to the execution of externally cued reaching
movements. Brain Research, 694:111�27, 1995. 19, 28

[182] D. Jaeger, H. Kita, and C. J. Wilson. Surround inhibition among projec-
tion neurons is weak or nonexistent in the rat neostriatum. J Neurophysiol,
72:2555�8, 1994. 25

[183] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science, 304:78�80, 2004. 143

193



[184] L. A. Je�ress. A place theory of sound localization. J Comp Physiol Psychol,
41:35�39, 1948. 62

[185] D. Joel, Y. Niv, and E. Ruppin. Actor-critic models of the basal ganglia:
new anatomical and computational perspectives. Neural Networks, 15:535�
547, 2002. 17, 29

[186] M. S. Jog and Q. Almeida. Basal ganglia: Structure and function. JayPee
Brothers Medical Publishers, 2006. 178

[187] R. S. Johansson and I. Birznieks. First spikes in ensembles of human tactile
a�erents code complex spatial �ngertip events. Nat Neurosci, 7:170�177, 2004.
80

[188] E. G. Jones. The Thalamus. Cambridge, 2007. 24, 104

[189] M. Jueptner and C. Weiller. A review of di�erences between basal ganglia
and cerebellar control of movements as revealed by functional imaging studies.
Brain, 121:1437�49, 1998. 37, 178

[190] F. A. Kagerer, J. J. Summers, W. D. Byblow, and B. Taylor. Altered corti-
comotor representation in patients with Parkinson's disease. Movement Dis-
orders, 18:919�27, 2003. 178

[191] E. R. Kandel, W. T. Frazier, R. Wazir, and R. E. Coggeshall. Direct and
common connection among identi�ed neurons in Aplysia. J Neurophysiol,
30:1353�76, 1967. 41

[192] C. Karachi, C. Franc, K. Parain, E. Bardinet, D. Tande, E. Hirsch, and
J. Yelnik. Three-dimensional cartography of functional territories in the hu-
man striatopallidal complex by using calbindin immunoreactivity. J Comp
Neurol, 450:122�34, 2002. 22

[193] J. Katayama, N. Akaike, and J. Nabekura. Characterization of pre- and post-
synaptic metabotropic glutamate receptor-mediated inhibitory responses in
substantia nigra dopamine neurons. Neuroscience Research, 45:101�15, 2003.
104

[194] M. Kato and M. Kimura. E�ects of reversible blockade of basal ganglia on a
voluntary arm movement. J Neurophysiol, 68:1516�34, 1992. 32

[195] R. M. Kelly and P. L. Strick. Macro-architecture of the basal ganglia loops
with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits.
volume 143 of Progress in Brain Research, chapter 42, pages 449�60. Elsevier,
2004. 20, 22

[196] A. Kepecs and J. Lisman. Information encoding and computation with spikes
and bursts. Network: Comput Neural Syst, 14:103�118, 2003. 98, 121

194



[197] A. Kepecs, M. C. W. van Rossum, S. Song, and J. Tegner. Spike-timing-
dependent plasticity: common themes and divergent vistas. Biol Cybern,
87:446�458, 2002. 80

[198] A. Kepecs and X.-J. Wang. Analysis of complex bursting in cortical pyramidal
neuron models. Neurocomputing, 32-33:181�7, 2000. 141

[199] A. A. Kühn, D. Williams, A. Kupsch, P. Limousin, M. Hariz, G. H. Schneider,
K. Yarrow, and P. Brown. Event-related beta desynchronization in human
subthalamic nucleus correlates with motor performance. Brain, 127:735�746,
2004. 98

[200] T. E. Kimber, C. S. Tsai, J. Semmler, B. P. Brophy, and P. D. Thompson.
Voluntary movement after pallidotomy in severe Parkinson's disease. Brain,
122:895�906, 1999. 15

[201] M. Kimura. Behaviorally contingent property of movement-related activity
of the primate putamen. J Neurophysiol, 63(6):1277�1296, 1990. 28, 31

[202] H. Kita. Glutamatergic and GABAergic postsynaptic responses of striatal
spiny neurons to intrastriatal and cortical stimulation recorded in slice prepa-
rations. Neuroscience, 70:925�40, 1996. 174

[203] H. Kita and S. T. Kitai. Intracellular study of rat globus pallidus neurons:
membrane properties and responses to neostriatal, subthalamic and nigral
stimulation. Brain Res, 564:296�305, 1991. 129

[204] B. J. Knowlton, J. A. Mangels, and L. R. Squire. A neostriatal habit learning
system in humans. Science, 273:1399�1402, 1996. 32, 33

[205] P. Knüsel, R. Wyss, P. König, and P. F. M. J. Verschure. Decoding a temporal
population code. Neural Comput, 16:2079�2100, 2004. 80

[206] S. Kobayashi, R. Kawagoe, Y. Takikawa, M. Koizumi, M. Sakagami, and
O. Hikosaka. Functional di�erences between macaque prefrontal cortex and
caudate nucleus during eye movements with and without reward. Exp Brain
Res, 176:341�55, 2007. 29

[207] C. Koch. Biophysics of Computation. Oxford University Press, Oxford, 1999.
48, 88, 94, 123

[208] T. Kohonen. Self-organizing Maps. Springer, 2001. 162

[209] B. P. Kolomiets, J. M. Deniau, P. Mailly, A. Ménétrey, J. Glowinski, and
A. M. Thierry. Segregation and convergence of information �ow through the
cortico-subthalamic pathways. J Neurosci, 21(15):5764�5772, 2001. 20

[210] T. Koos, J. M. Tepper, and C. J. Wilson. Comparison of IPSCs evoked by
spiny and fast-spiking neurons in the neostriatum. J Neurosci, 24:7916�22,
2004. 25

195



[211] M. Krause, W. Fogel, A. Heck, W. Hacke, M. Bonsanto, C. Trenkwalder, and
V. Tronnier. Deep brain stimulation for the treatment of Parkinson's disease:
subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psy-
chiatry, 70:464�470, 2001. 4

[212] S. Y. Kung and K. I. Diamantaras. A neural network learning algorithm for
adaptive principal component extraction (APEX). In International Confer-
ence on Acoustics, Speech, and Signal Processing, 1990. 25, 154, 155, 156

[213] M.-F. Kuo, W. Paulus, and M. A. Nitsche. Boosting focally-induced brain
plasticity by dopamine. Cerebral Cortex, 2007. 37, 39

[214] C. J. Lacey, J. Boyes, O. Gerlach, L. Chen, P. J. Magill, and J. P. Bolam.
GABA-B receptors at glutamatergic synapses in the rat striatum. Neuro-
science, 136:1083�1095, 2005. 26

[215] B. Lau and P. W. Glimcher. Action and outcome encoding in the primate
caudate nucleus. J Neurosci, 27:14502�14, 2007. 23, 28

[216] A. D. Lawrence, B. J. Sahakian, and T. W. Robbins. Cognitive functions and
corticostriatal circuits: insights from Huntington's disease. Trends Cog Sci,
2:379�88, 1998. 14

[217] M. S. Lee, J. O. Rinne, A. Ceballos-Baumann, P. D. Thompson, and C. D.
Marsden. Dystonia after head trauma. Neurology, 44(8):1374�1378, 1994. 5

[218] R. Legenstein, C. Naeger, and W. Maass. What can a neuron learn with
spike-timing-dependent plasticity? Neural Comp, 17:2337�2382, 2005. 80

[219] W. Lei, Y. Jiao, N. Del Mar, and A. Reiner. Evidence for di�erential cortical
input to direct pathway versus indirect pathway striatal projection neurons
in rats. J Neurosci, 24:8289�99, 2004. 26

[220] M. Lengyel and P. Dayan. Hippocampal contributions to control: The third
way. In NIPS, 2007. 16

[221] N. A. Lesica, C. Weng, J. Jin, C.-I. Yeh, J.-M. Alonso, and G. B. Stanley.
Dynamic encoding of natural luminance sequences by LGN bursts. PLoS
Biology, 4:1201�12, 2006. 121

[222] R. Levy, P. Ashby, W. D. Hutchison, A. E. Lang, A. M. Lozano, and J. O.
Dostrovsky. Dependence of subthalamic nucleus oscillations on movement
and dopamine in Parkinson's disease. Brain, 125:1196�1209, 2002. 98

[223] R. Levy and B. Dubois. Apathy and the functional anatomy of the prefrontal
cortex-basal ganglia circuits. Cereb Cortex, 16:916�28, 2006. 15

196



[224] R. Levy, L.-N. Hazrati, M.-T. Herrero, M. Vila, O.-K. Hassani, M. Mouroux,
M. Ruberg, H. Asensi, Y. Agid, J. Féger, J. A. Obeso, A. Parent, and E. C.
Hirsch. Re-evaluation of the functional anatomy of the basal ganglia in normal
and Parkinsonian states. Neurosci, 76(2):335�343, 1997. 7

[225] R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky. High-
frequency synchronization of neuronal activity in the subthalamic nucleus of
Parkinsonian patients with limb tremor. J Neurosci, 20(20):7766�7775, 2000.
79

[226] R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky. Synchronized
neuronal discharge in the basal ganglia of Parkinsonian patients is limited to
oscillatory activity. J Neurosci, 22:2855�61, 2002. 21

[227] Y. Li, O. Levin, A. Forner-Cordero, and S. P. Swinnen. Interactions between
interlimb and intralimb coordination during the performance of bimanual
multijoint movements. Exp Brain Res, 163:515�26, 2005. 176

[228] O. Lindvall and A. Björklund. Cell therapy in Parkinson's disease. NeuroRx,
1:382�393, 2004. 4

[229] J. E. Lisman. Bursts as units of neural information: making unreliable
synapses reliable. TINS, 20:38�43, 1997. 98

[230] R. Llinás and M. Sugimori. Electrophysiological properties of in vitro Purkinje
cell somata in mammalian cerebellar slices. J Physiol, 305:171�95, 1980. 120

[231] M. Lévesque and A. Parent. The striatofugal �ber system in primates: A
reevaluation of its organization based on single-axon tracing studies. Proc
Nat Acad Sci, 102(33):11888�11893, 2005. 7

[232] W. Maass, T. Natshläger, and H. Markram. Real-time computing without
stable states: a new framework for neural computation based on perturba-
tions. Neural Comput, 14:2531�2560, 2002. 97, 101, 143

[233] W. A. MacKay. Synchronized neuronal oscillations and their role in motor
processes. Trends Cog Sci, 1(5):176�183, 1997. 98

[234] K. MacLeod, A. Bäcker, and G. Laurent. Who reads temporal information
contained across synchronized and oscillatory spike trains? Nature, 395:693�
698, 1998. 80

[235] J. C. Magee. Dendritic Ih normalizes temporal summation in hippocampal
CA1 neurons. Nature Neurosci, 2(6):508�514, 1999. 62, 99

[236] J. C. Magee and E. P. Cook. Somatic EPSP amplitude is independent
of synapse location in hippocampal pyramidal neurons. Nature Neurosci,
3(9):895�903, 2000. 62, 99

197



[237] S. Mahon, J.-M. Deniau, and S. Charpier. Relationship between EEG poten-
tials and intracellular activity of striatal and cortico-striatal neurons: an in
vivo study under di�erent anesthetics. Cereb Cortex, 11:360�73, 2001. 28

[238] S. Mahon, J.-M. Deniau, and S. Charpier. Corticostriatal plasticity: life after
the depression. TINS, 27:460�67, 2004. 38

[239] S. Mahon, N. Vautrelle, L. Pezard, S. J. Slaght, J.-M. Deniau, G. Chouvet,
and S. Charpier. Distinct patterns of striatal medium spiny neuron activity
during the natural sleep-wake cycle. J Neurosci, 26:12587�95, 2006. 63

[240] L. Maillard, K. Ishii, K. Bushara, D. Waldvogel, A. E. Schulman, and M. Hal-
lett. Mapping the basal ganglia. fMRI evidence for somatotopic representation
of face, hand, and foot. Neurology, 55:377�383, 2000. 20

[241] E. Marder and A. A. Prinz. Modeling stability in neuron and network func-
tion: the role of activity in homeostasis. BioEssays, 24:1145�54, 2002. 165

[242] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann. Regulation of synaptic
e�cacy by coincidence of postsynaptic APs and EPSPs. Science, 275:213�15,
1997. 150

[243] H. Markram, Y. Wang, and M. Tsodyks. Di�erential signaling via the same
axon of neocortical pyramidal neurons. PNAS, 95:5323�8, 1998. 143

[244] E. Masliah, E. Rockenstein, A. Adame, M. Alford, L. Crews, M. Hashimoto,
P. Seubert, M. Lee, J. Goldstein, T. Chilcote, D. Games, and D. Schenk.
E�ects of α-synuclein immunization in a mouse model of Parkinson's disease.
Neuron, 46:857�868, 2005. 4

[245] P. B. C. Matthews. The human stretch re�ex and the motor cortex. TINS,
14:87�91, 1991. 30

[246] J. H. R. Maunsell and D. C. Van Essen. Functional properties of neurons in
middle temporal visual area of the macaque monkey. I. selectivity for stimulus
direction, speed, and orientation. J Neurophysiol, 49:1127�47, 1983. 42, 54

[247] C. J. McAdams and J. H. R. Maunsell. E�ects of attention on orientation-
tuning functions of single neurons in macaque cortical area V4. J Neurosci,
19:431�41, 1999. 66

[248] D. A. McCormick, B. W. Connors, J. W. Lighthall, and D. A. Prince. Com-
parative electrophysiology of pyramidal and sparsely spiny stellate neurons
of the neocortex. J Neurophysiol, 54:782�806, 1985. 120

[249] N. R. McFarland and S. N. Haber. Convergent inputs from thalamic motor
nuclei and frontal cortical areas to the dorsal striatum in the primate. J
Neurosci, 20:3798�3813, 2000. 24

198



[250] N. R. McFarland and S. N. Haber. Thalamic relay nuclei of the basal ganglia
form both reciprocal and nonreciprocal cortical connections, linking multiple
frontal cortical areas. J Neurosci, 22:8117�32, 2002. 24

[251] J. F. Medina, K. S. Garcia, W. L. Nores, N. M. Taylor, and M. D. Mauk.
Timing mechanisms in the cerebellum: testing predictions of a large-scale
computer simulation. J Neurosci, 20(14):5516�5525, 2000. 97

[252] R.L.J. Meesen, N. Wenderoth, and S.P. Swinnen. The role of directional
compatibility in assembling coordination patterns involving the upper and
lower limb girdles and the head. Behavioral Brain Research, 165:262�70,
2005. 176

[253] B. W. Mel. NMDA-based pattern discrimination in a modeled cortical neuron.
Neural Comp, 4:502�17, 1992. 71

[254] B. W. Mel. Why have dendrites? a computational perspective. In G. Stuart,
N. Spruston, and M. Häusser, editors, Dendrites, chapter 11, pages 271�89.
Oxford University Press, 1999. 63, 71, 72

[255] B. W. Mel. In the brain, the model is the goal. Nature Neuroscience, 3:1183,
2000. 9

[256] J. N. Mercer, C. S. Chan, T. Tkatch, J. Held, and D. J. Surmeier. Nav1.6
sodium channels are critical to pacemaking and fast spiking in globus pallidus
neurons. J Neurosci, 27:13552�13566, 2007. 179

[257] E. Mercuri, J. Atkinson, O. Braddick, S. Anker, F. Cowan, M. Rutherford,
J. Pennock, and L. Dubowitz. Basal ganglia damage and impaired visual
function in the newborn infant. Archives of Disease in Childhood, 77:F111�
14, 1997. 31

[258] F. A. Middleton and P. L. Strick. Anatomical evidence for cerebellar and
basal ganglia involvement in higher cognitive function. Science, 266:458�461,
1994. 14

[259] F. A. Middleton and P. L. Strick. The temporal lobe is a target of output
from the basal ganglia. PNAS, 93:8683�87, 1996. 31

[260] F. A. Middleton and P. L. Strick. Basal ganglia and cerebellar loops: motor
and cognitive circuits. Brain Research Reviews, 31:236�50, 2000. 22

[261] P. Miller, C. D. Brody, R. Romo, and X. J Wang. A recurrent network
model of somatosensory parametric working memory in the prefrontal cortex.
Cerebral Cortex, 13:1208�1218, 2003. 124

[262] J. W. Mink. The basal ganglia: focused selection and inhibition of competing
motor programs. Prog Neurobiol, 50:381�425, 1996. 3, 15, 17, 23, 26

199



[263] J. W. Mink. Basal ganglia dysfunction in Tourette's syndrome: A new hy-
pothesis. Pediatr Neurol, 25:190�198, 2001. 5

[264] J. W. Mink. The basal ganglia and involuntary movements. Impaired inhibi-
tion of competing motor patterns. Arch Neurol, 60:1365�1368, 2003. 15

[265] J. W. Mink and W. T. Thach. Basal ganglia motor control. II. Late pal-
lidal timing relative to movement onset and inconsistent pallidal coding of
movement parameters. J Neurophysiol, 65:301�29, 1991. 28

[266] J. W. Mink and W. T. Thach. Basal ganglia motor control. III. Pallidal
ablation: Normal reaction time, muscle cocontraction, and slow movement.
J Neurophysiol, 65(2):330�351, 1991. 15, 32

[267] S. J. Mitchell, R. T. Richardson, F. H. Baker, and M. R. DeLong. The
primate globus pallidus: neuronal activity related to direction of movement.
Exp Brain Res, 68:491�505, 1987. 21, 28

[268] A. Münchau and K. P. Bhatia. Pharmacological treatment of Parkinson's
disease. Postgrad Med J, 76:602�610, 2000. 4

[269] E. Moro, R. J. A. Esselink, J. Xie, M. Hommel, A. L. Benabid, and P. Pollak.
The impact on Parksinson's disease of electrical parameter settings in STN
stimulation. Neurology, 59:706�713, 2002. 4

[270] M. E. Morris, R. Iansek, T. A. Matyas, and J. J. Summers. Stride length
regulation in Parkinson's disease: Normalization strategies and underlying
mechanisms. Brain, 119:551�68, 1996. 32

[271] A. Nambu and R. Llinás. Morphology of globus pallidus neurons: Its cor-
relation with electrophysiology in guinea pig brain slices. J Comp Neurol,
377:85�94, 1997. 129

[272] A. Nambu, H. Tokuno, I. Hamada, H. Kita, M. Imanishi, Y. Akazawa,
T. Ikeuchi, and N. Hasegawa. Excitatory cortical inputs to pallidal neurons
through the cortico-subthalamo-pallidal hyperdirect pathway in the monkey.
In A. M. Graybiel, M. R. DeLong, and S. T. Kitai, editors, The Basal Ganglia
VI, pages 217�223. Kluwer Academic/Plenum, New York, 2002. 3, 27

[273] T. Natschläger and W. Maass. Computing the optimally �tted spike train for
a synapse. Neural Comput, 13:2477�2494, 2001. 80

[274] T. Natschläger and B. Ruf. Spatial and temporal pattern analysis via spiking
neurons. Network Comput Neural Syst, 9:319�332, 1998. 80

[275] R. Naud, T. Berger, L. Badel, A. Roth, and W. Gerstner. Quantitative
single-neuron modeling: competition 2008. In COSYNE 2008, 2008. 48, 121,
123

200



[276] S. M. Nicola, D. J. Surmeier, and R. C. Malenka. Dopaminergic modulation
of neuronal excitability in the striatum and nucleus accumbens. Annu Rev
Neurosci, 23:185�215, 2000. 120

[277] A. Nini, A. Feingold, H. Slovin, and H. Bergman. Neurons in the globus pal-
lidus do not show correlated activity in the normal monkey, but phase-locked
oscillations appear in the MPTP model of Parkinsonism. J Neurphysiol,
74(4):1800�1805, 1995. 21

[278] E. S. Nisenbaum and T. W. Berger. Functionally distinct subpopulations of
striatal neurons are di�erentially regulated by GABAergic and dopaminergic
inputs - I. In vivo analysis. Neuroscience, 48:561�78, 1992. 25, 26

[279] E.S. Nisenbaum, T. W. Berger, and A. A. Grace. Presynaptic modulation by
GABA-A receptors of glutamatergic excitation and GABAergic inhibition of
neostriatal neurons. J Neurophysiol, 67:477�81, 1992. 26

[280] E.S. Nisenbaum and C.J. Wilson. Potassium currents responsible for inward
and outward recti�cation in rat neostriatal spiny projection neurons. J Neu-
rosci, 15:4449�63, 1995. 19

[281] E. Oja. A simpli�ed neuron model as a principal component analyzer. J Math
Biology, 15:267�73, 1982. 25, 152, 171

[282] J. O'Keefe and J. Dostrovsky. The hippocampus as a spatial map. Preliminary
evidence from unit activity in the freely-moving rat. Brain Research, 34:171�
175, 1971. 42

[283] M. S. Okun and J. L. Vitek. Lesion therapy for Parkinson's disease and other
movement disorders: Update and controversies. Mov Disord, 19(4):375�389,
2004. 7, 15

[284] R. M. Oliveira, J. M. Gurd, P. Nixon, J. C. Marshall, and R. E. Passingham.
Micrographia in Parkinson's disease: the e�ect of providing external cues. J
Neurol Neurosurg Psychiatry, 63:429�433, 1997. 32

[285] S. J. Olney and D. A. Winter. Predictions of knee and ankle moments of force
in walking from EMG and kinematic data. J Biomech, 18(1):9�20, 1985. 98

[286] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive �eld
properties by learning a sparse code for natural images. Nature, 381:607�9,
1996. 121, 169

[287] B. A. Olshausen and D. J. Field. Sparse coding of sensory inputs. Curr Opin
Neurobiol, 14:481�7, 2004. 169

[288] L. M. Optican and B. J. Richmond. Temporal encoding of two-dimensional
patterns by single units in primate inferior temporal cortex. III. information
theoretic analysis. J Neurophysiol, 57(1):162�178, 1987. 79

201



[289] R. C. O'Reilly, M. J. Frank, T. E. Hazy, and B. Watz. PVLV: The primary
value and learned value Pavlovian learning algorithm. Behavioral Neuro-
science, 121:31�49, 2007. 29

[290] R. C. O'Reilly and Y. Munakata. Computational explorations in cognitive
neuroscience. MIT Press, 2000. 74, 170

[291] A. Parent and F. Cicchetti. The current model of basal ganglia organization
under scrutiny. Mov Disord, 13:199�202, 1998. 7

[292] A. Parent and L.-N. Hazrati. Anatomical aspects of information processing
in primate basal ganglia. TINS, 16:111�116, 1993. 16

[293] A. Parent and L. N. Hazrati. Functional anatomy of the basal ganglia. I. The
cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev, 20:91�127, 1995.
2, 20

[294] A. Parent and L. N. Hazrati. Functional anatomy of the basal ganglia. II.
The place of the subthalamic nucleus and external pallidum in basal ganglia
circuitry. Brain Res Rev, 20:128�154, 1995. 2, 3, 7, 26

[295] C. M. Parisien, C. H. Anderson, and C. Eliasmith. Solving the problem of
negative synaptic weights in cortical models. Neural Comp, 20:1473�1494,
2008. 69, 103, 104, 105, 108, 113, 118, 174

[296] V. Pawlak and J. N. D. Kerr. Dopamine receptor activation is required for cor-
ticostriatal spike-timing-dependent plasticity. J Neurosci, 28:2435�46, 2008.
150

[297] J. P. Pellerin and Y. Lamarre. Local �eld potential oscillations in primate
cerebellar cortex during voluntary movement. J Neurophysiol, 78:3502�3507,
1997. 98

[298] G. Percheron and M. Filion. Parallel processing in the basal ganglia: up to a
point. Trends Neurosci, 14(2):55�56, 1991. 20

[299] D. Plenz. When inhibition goes incognito: feedback interaction between spiny
projection neurons in striatal function. TINS, 26:436�43, 2003. 104

[300] D. Plenz and S. T. Kitai. Adaptive classi�cation of cortical input to the
striatum by competitive learning. In R. Miller and J. R. Wickens, editors,
Brain dynamics and the striatal complex, chapter 9, pages 165�78. Harwood,
2000. 18, 154

[301] P. Poirazi, T. Brannon, and B. W. Mel. Arithmetic of subthreshold synaptic
summation in a model CA1 pyramidal cell. Neuron, 37:977�987, 2003. 99

[302] P. Poirazi, T. Brannon, and B. W. Mel. Pyramidal neuron as two-layer neural
network. Neuron, 37:989�99, 2003. 71

202



[303] P. Poirazi and B. W. Mel. Impact of active dendrites and structural plasticity
on the memory capacity of neural tissue. Neuron, 29:779�96, 2001. 71

[304] R. A. Poldrack, J. Clark, E. J. Paré-Blagoev, D. Shohamy, J. Creso Moyano,
C. Myers, and M. A. Gluck. Interactive memory systems in the human brain.
Science, 414:546�50, 2001. 33

[305] S. A. Prescott and Y. De Koninck. Gain control of �ring rate by shunting
inhibition: Roles of synaptic noise and dendritic saturation. PNAS, 100:2076�
81, 2003. 66

[306] A. Raz, E. Vaadia, and H. Bergman. Firing patterns and correlations of
spontaneous discharge of pallidal neurons in the normal and the tremulous
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of Parkinsonism.
J Neurosci, 20(22):8559�8571, 2000. 21

[307] A. Recchia, P. Debetto, A. Negro, D. Guidolin, S. D. Skaper, and P. Giusti.
α-synuclein and Parkinson's disease. FASEB J, 18:617�626, 2004. 4

[308] P. Redgrave and K. Gurney. The short-latency dopamine signal: a role in
discovering novel actions? Nature Reviews Neurosci, 7:967�75, 2006. 30

[309] P. Redgrave, T.J. Prescott, and K. Gurney. The basal ganglia: a vertebrate
solution to the selection problem? Neuroscience, 89:1009�1023, 1999. 14, 16

[310] P. Reinagel, D. Godwin, S. M. Sherman, and C. Koch. Encoding of visual
information by LGN bursts. J Neurophysiol, 81:2558�2569, 1999. 98

[311] P. Reinagel and R. C. Reid. Precise �ring events are conserved across neurons.
J Neurosci, 22(16):6837�6841, 2002. 97

[312] J. N. J. Reynolds and J. R. Wickens. Dopamine-dependent plasticity of
corticostriatal synapses. Neural Networks, 15:507�21, 2002. 17, 33

[313] A. Riehle, S. Grün, M. Diesmann, and A. Aertsen. Spike synchronization and
rate modulation di�erentially involved in motor cortical function. Science,
278:1950�1953, 1997. 79

[314] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek. Spikes:
exploring the neural code. MIT Press, Cambridge, 1997. 47, 79, 131

[315] U. Rokni, A. G. Richardson, E. Bizzi, and H. S. Seung. Motor learning with
unstable neural representations. Neuron, 54:653�66, 2007. 167

[316] R. Romo and W. Schultz. Dopamine neurons of the monkey midbrain: Con-
tingencies of responses to active touch during self-initiated arm movements.
J Neurophysiol, 63(3):592�606, 1990. 17

203



[317] R. Romo and W. Schultz. Role of primate basal ganglia and frontal cortex
in the internal generation of movements. III. neuronal activity in the supple-
mentary motor area. Exp Brian Res, 91:396�407, 1992. 28

[318] M. Rudolph and A. Destexhe. A fast-conducting, stochastic integrative mode
for neocortical neurons in vivo. J Neurosci, 23(6):2466�2476, 2003. 62, 99

[319] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by backpropagating errors. Nature, 323:533�6, 1986. 44

[320] M. Sahani. A biologically plausible algorithm for reinforcement-shaped repre-
sentational learning. In Advances in Neural Information Processing Systems
16, 2004. 35

[321] M. Sahani and P. Dayan. Doubly distributional population codes: Simultane-
ous representation of uncertainty and multiplicity. Neural Comp, 15:2255�79,
2003. 46

[322] K. Sakai, O. Hikosaka, S. Miyauchi, R. Takino, Y. Sasaki, and B. Pütz.
Transition of brain activation from frontal to parietal areas in visuomotor
sequence learning. J Neurosci, 18:1827�40, 1998. 178

[323] E. Salinas and L. F. Abbott. Vector reconstruction from �ring rates. J Comp
Neuro, 1:89�107, 1994. 47

[324] E. Salinas and T. J. Sejnowski. Impact of correlated synaptic input on output
�ring rate and variability in simple neuronal models. J Neurosci, 20(16):6193�
6209, 2000. 80

[325] E. Salinas and P. Thier. Gain modulation: A major computational principle
of the central nervous system. Neuron, 27:15�21, 2000. 66

[326] F. Sato, M. Parent, M. Levesque, and A. Parent. Axonal branching pattern of
neurons of the subthalamic nucleus in primates. J Comp Neurology, 424:142�
152, 2000. 7, 26

[327] E. Schneidman, W. Bialek, and M. J. Berry. Synergy, redundancy, and in-
dependence in population codes. J Neurosci, 23(37):11539�11553, 2003. 89,
99

[328] W. Schultz. Dopamine neurons and their role in reward mechanisms. Curr
Opin Neurobiol, 7:191�7, 1997. 23

[329] W. Schultz. Predictive reward signal of dopamine neurons. J Neurophysiol,
80:1�27, 1998. 29

[330] W. Schultz. Multiple dopamine functions at di�erent time courses. Annu Rev
Neurosci, 30:259�88, 2007. 29, 30, 33

204



[331] W. Schultz, P. Apicella, R. Romo, and E. Scarnati. Context-dependent ac-
tivity in primate striatum re�ecting past and future behavioural events. In
J. C. Houk, J. L. Davis, and D. G. Beiser, editors, Models of Information
Processing in the Basal Ganglia, chapter 2, pages 11�27. MIT Press, 1995. 28

[332] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction
and reward. Science, 275:1593�99, 1997. 14

[333] R. S. Schwab, M. E. Chafetz, and S. Walker. Control of two simultaneous
voluntary motor acts in normals and in Parkinsonism. AMA Arch Neurol
Phychiatry, 72(5):591�598, 1954. 4

[334] J. P. Segundo, G. P. Moore, L. J. Stensaas, and T. H. Bullock. Sensitivity
of neurones in Aplysia to temporal pattern of arriving impulses. J Exp Biol,
40:643�667, 1963. 80

[335] L. D. Selemon and P. S. Goldman-Rakic. Longitudinal topography and in-
terdigitation of corticostriatal projections in the rhesus monkey. J Neurosci,
5:776�94, 1985. 22

[336] H. S. Seung. How the brain keeps the eyes still. Proc Nat Acad Sci, 93:13339�
13344, 1996. 124

[337] M. N. Shadlen and J. A. Movshon. Synchrony unbound: a critical evaluation
of the temporal binding hypothesis. Neuron, 24:67�77, 1999. 80

[338] D. Shohamy, C. E. Myers, S. Grossman, J. Sage, M. A. Gluck, and R. A. Pol-
drack. Cortico-striatal contributions to feedback-based learning: converging
data from neuroimaging and neuropsychology. Brain, 127:851�9, 2004. 33

[339] A. Sidhu, C. Wersinger, and P. Vernier. Does alpha-synuclein modulate
dopaminergic content and tone at the synapse? FASEB J, 18:637�647, 2004.
4

[340] W. Singer. Time as coding space? Curr Opin Neurobiol, 9:189�194, 1999. 80

[341] R. Singh and C. Eliasmith. Higher-dimensional neurons explain the tuning
and dynamics of working memory cells. J Neurosci, 26:3667�78, 2006. 121

[342] P. H. Smith. Structural and functional di�erences distinguish principal from
nonprincipal cells in the guinea pig MSO slice. J Neurophysiol, 73:1653�67,
1995. 62

[343] Y. Smith, D. Rajua, B. Nandaa, J.-F. Parea A. Galvan, and T. Wichmann.
The thalamostriatal systems: Anatomical and functional organization in nor-
mal and Parkinsonian states. Brain Research Bulletin, 2008. 24

[344] M. A. Sánchez-González, M. A. García-Cabezas, B. Rico, and C. Cavada. The
primate thalamus is a key target for brain dopamine. J Neurosci, 25:6076�
6083, 2005. 37

205



[345] W. R. Softky and C. Koch. The highly irregular �ring of cortical cells is incon-
sistent with temporal integration of random EPSPs. J Neurosci, 13(1):334�
350, 1993. 80

[346] P. Somogyi, G. Tamás, R. Lujan, and E. H. Buhl. Salient features of synaptic
organisation in the cerebral cortex. Brain Research Reviews, 26:113�35, 1998.
104

[347] A. Starr, A. Kang, A. Heath, S. Shimamoto, and S. Turner. Pallidal neuronal
discharge in Huntington's disease. In IBAGS IX, 2007. 7

[348] P. L. Strick, R. P. Dum, and N. Picard. Macro-organization of the circuits
connecting the basal ganglia with the cortical motor areas. In J. C. Houk,
J. L. Davis, and D. G. Beiser, editors, Models of Information Processing in
the Basal Ganglia, pages 117�130. MIT Press, Cambridge, 1995. 20, 22

[349] M. Sur and J. L. R. Rubenstein. Patterning and plasticity of the cerebral
cortex. Science, 310:805�810, 2005. 145

[350] R. Suri. TD models of reward predictive responses in dopamine neurons.
Neural Networks, 15:523�33, 2002. 23, 24

[351] R. E. Suri and W. Schultz. Learning of sequential movements by neural net-
work model with dopamine-like reinforcement signal. Exp Brain Res, 121:350�
54, 1998. 154

[352] D. J. Surmeier, J. N. Mercer, and C. S. Chan. Autonomous pacemakers in the
basal ganglia: who needs excitatory synapses anyway? Curr Opin Neurobiol,
15:312�318, 2005. 80, 104

[353] R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. MIT
Press, 1998. 17, 35

[354] C. D. Swinehart and L. F. Abbott. Dimensional reduction for reward-based
learning. Network: Computation in Neural Systems, 17:235�52, 2006. 36

[355] C. Tang, A. P. Pawlak, V. Prokopenko, and M. O. Wes. Changes in activity of
the striatum during formation of a motor habit. Eur J Neurosci, 25:1212�27,
2007. 34

[356] J. K. H. Tang, E. Moro, A. M. Lozano, A. E. Lang, W. D. Hutchison, N. Ma-
hant, and J. O. Dostrovsky. Firing rates of pallidal neurons are similar in
Huntington's and Parkinson's disease patients. Exp Brain Res, 166:230�236,
2005. 7, 80

[357] J. M. Tepper, T. Koós, and C. J. Wilson. GABAergic microcircuits in the
neostriatum. TINS, 27:662�69, 2004. 25, 104

206



[358] D. Terman, J. E. Rubin, A. C. Yew, and C. J. Wilson. Activity patterns in
a model for the subthalamopallidal network of the basal ganglia. J Neurosci,
22(7):2963�2976, 2002. 131, 135

[359] F. Theunissen, J. C. Roddey, S. Stu�ebeam, H. Clague, and J. P. Miller. In-
formation theoretic analysis of dynamical encoding by four identi�ed primary
sensory interneurons in the cricket cercal system. J Neurophysiol, 75:1345�64,
1996. 41

[360] E.L. Thorndike. A proof of the law of e�ect. Science, 77:173�5, 1933. 17

[361] S. Thorpe, A. Delorme, and R. van Rullen. Spike-based strategies for rapid
processing. Neural Networks, 14:715�725, 2001. 80

[362] E. Todorov. On the role of the primary motor cortex in arm movement
control. In M. L. Latash and M. F. Levin, editors, Progress in motor control.
Volume Three. E�ects of age, disorder, and rehabilitation, chapter 6, pages
125�166. Human Kinetics, 2004. 14

[363] V. Tomassini, S. Jbabdi, J. C. Klein, T. E. J. Behrens, C. Pozzilli, P. M.
Matthews, M. F. S. Rushworth, and H. Johansen-Berg. Di�usion-weighted
imaging tractography-based parcellation of the human lateral premotor cor-
tex identi�es dorsal and ventral subregions with anatomical and functional
specializations. J Neurosci, 27:10259�69, 2007. 16, 24

[364] M. Tomita and J. J. Eggermont. Cross-correlation and joint spectro-temporal
receptive �eld properties in auditory cortex. J Neurophysiol, 93:378�392,
2005. 83

[365] J. J. Torres, J.M. Cortes, J. Marro, and H.J. Kappen. Competition be-
tween synaptic depression and facilitation in attractor neural networks. Neu-
ral Comp, 19:2739�55, 2007. 121

[366] L. Tremblay, M. Filion, and P. J. Bédard. Responses of pallidal neurons to
striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain
Res, 498:17�33, 1989. 21

[367] A. Triller and D. Choquet. Surface tra�cking of receptors between synaptic
and extrasynaptic membranes: and yet they do move! TINS, 28:133�39,
2005. 152

[368] B. P. Tripp and C. Eliasmith. Comparison of neural circuits that estimate
temporal derivatives. In Computational and Systems Neuroscience, 2006. 94

[369] M. J. Tunstall, D. E. Oorschot, A. Kean, and J. R. Wickens. Inhibitory inter-
actions between spiny projection neurons in the rat striatum. J Neurophysiol,
88:1263�69, 2002. 25

207



[370] M. A. Ungless, P. J. Magill, and J. P. Bolam. Uniform inhibition of dopamine
neurons in the ventral tegmental area by aversive stimuli. Science, 303:2040�
42, 2004. 30

[371] N. Urbain, D. Gervasoni, F. Soulière, L. Lobo, N. Rentéro, F. Windels,
B. Astier, M. Savasta, P. Fort, B. Renaud, P. H Luppi, and G. Chouvet.
Unrelated course of subthalamic nucleus and globus pallidus neuronal activ-
ities across vigilance states in the rat. Eur J Neurosci, 12:3361�3374, 2000.
7

[372] E. Vaadia, I. Haalman, M. Abeles, H. Bergman, Y. Prut, H. Slovin, and
A. Aertsen. Dynamics of neuronal interactions in monkey cortex in relation
to behavioural events. Nature, 373:515�18, 1995. 18

[373] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz.
Cortical control of a prosthetic arm for self-feeding. Nature, 453:1098�1101,
2008. 42

[374] L. Vercueil, P. Pollak, V. Fraix, E. Caputo, E. Moro, A. Benazzouz, J. Xie,
A. Koudsie, and A. L Benabid. Deep brain stimulation in the treatment of
severe dystonia. J Neurol, 248:695�700, 2001. 5

[375] J. L. Vitek, V. Chockkan, J. Y Zhang, Y. Kaneoke, M. Evatt, M. R. DeLong,
S. Triche, K. Mewes, T. Hashimoto, and R. A. E. Bakay. Neuronal activity
in the basal ganglia in patients with generalized dystonia and hemiballismus.
Ann Neurol, 46:22�35, 1999. 5

[376] S. Wagner, M. Castel, H. Gainer, and Y. Yarom. GABA in the mammalian
suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature, 387:598�
603, 1997. 103

[377] C. Weber, S. Wermter, and M. Elshaw. A hybrid generative and predictive
model of the motor cortex. Neural Networks, 19:339�53, 2006. 178

[378] K. K. Wenger, K. L. Musch, and J. W. Mink. Impaired reaching and grasp-
ing after focal inactivation of globus pallidus pars interna in the monkey. J
Neurophysiol, 82:2049�60, 1999. 32

[379] M. B. Westover, C. Eliasmith, and C. H. Anderson. Linearly decodable func-
tions from neural population codes. Neurocomputing, 44-46:691�6, 2002. 57

[380] T. G. Weyand, M. Boudreaux, and W. Guido. Burst and tonic response
modes in thalamic neurons during sleep and wakefulness. J Neurophysiol,
85:1107�18, 2001. 120

[381] A. L. Whone, R. Y. Moore, P. P. Piccini, and D. J. Brooks. Plasticity of the
nigropallidal pathway in Parkinson's disease. Ann Neurol, 53:206�13, 2003.
36

208



[382] T. Wichmann, H. Bergman, and M. R. DeLong. The primate subthalamic
nucleus. I. Functional properties in intact animals. J Neurophysiol, 72(2):494�
506, 1994. 28

[383] T. Wichmann and M. R. DeLong. Physiology of the basal ganglia and patho-
physiology of movement disorders of basal ganglia origin. In R. L. Watts and
W. C. Koller, editors, Movement Disorders. Neurologic Principles & Practice,
pages 101�112. McGraw-Hill, New York, 2 edition, 2004. 5, 21

[384] J. R. Wickens and D. E. Oorschot. Neural dynamics and surround inhibition
in the neostriatum: a possible connection. In R. Miller and J. R. Wickens,
editors, Brain dynamics and the striatal complex, chapter 7, pages 141�50.
Harwood, 2000. 25

[385] S. R. Williams and G. J. Stuart. Site independence of EPSP time course is
mediated by dendritic Ih in neocortical pyramidal neurons. J Neurophysiol,
83:3177�3182, 2000. 62, 99

[386] S. R. Williams and G. J. Stuart. Dependence of EPSP e�cacy on synapse
location in neocortical pyramidal neurons. Science, 295:1907�10, 2002. 69

[387] C. J. Wilson. Basal ganglia. In G. M. Shepherd, editor, The Synaptic Or-
ganization of the Brain, pages 361�414. Oxford University Press, Oxford, 5
edition, 2004. 2, 18, 24

[388] J. A. Wolf, J. T. Moyer, and L. H. Finkel. Dopaminergic modulation and
a�erent input integration in a computational model of the nucleus accumbens
medium spiny neuron. In IBAGS IX, 2007. 63, 179

[389] B. D. Wright, K. Sen, W. Bialek, and A. J. Doupe. Spike timing and
the coding of naturalistic sounds in a central auditory area of songbirds.
arXiv:physics, page 0201027, 2002. 79

[390] X. Xie and H. S. Seung. Equivalence of backpropagation and contrastive
hebbian learning in a layered network. Neural Comp, 15:441�454, 2003. 44

[391] B. Yang, J. D. Slonimsky, and S. J. Birren. A rapid switch in sympathetic
neurotransmitter release properties mediated by the p75 receptor. Nat Neu-
rosci, 5:539�45, 2002. 104

[392] J. Yelnik, C. François, G. Percheron, and D. Tandé. A spatial and quantitative
study of the striatopallidal connection in the monkey. Neuroreport, 7:985�8,
1996. 20

[393] H. H. Yin, M. I. Davis, J. A. Ronesi, and D. M. Lovinger. The role of protein
synthesis in striatal long-term depression. J Neurosci, 26:11811�20, 2006. 38

[394] H. H. Yin and B. J. Knowlton. The role of the basal ganglia in habit forma-
tion. Nature Reviews Neuroscience, 7:464�76, 2006. 38

209



[395] H. H. Yin, B. J. Knowlton, and B. W. Balleine. Lesions of dorsolateral stria-
tum preserve outcome expectancy but disrupt habit formation in instrumental
learning. Eur J Neurosci, 19:181�9, 2004. 16, 34, 37

[396] H. H. Yin, B. J. Knowlton, and B. W. Balleine. Inactivation of dorsolateral
striatum enhances sensitivity to changes in the action-outcome contingency
in instrumental conditioning. Behavioral Brain Research, 166:189�96, 2006.
34

[397] H. H. Yin, S. B. Ostlund, B. J. Knowlton, and B. W. Balleine. The role of
the dorsomedial striatum in instrumental conditioning. European Journal of
Neuroscience, 22:513�23, 2005. 16

[398] T. C. T. Yin and J. C. M. Chan. Interaural time sensitivity in medial superior
olive of cat. J Neurophysiol, 64(2):465�488, 1990. 62, 80

[399] K. Yoshida, D. Watanabe, H. Ishikane, M. Tachibana, I. Pastan, and
S. Nakanishi. A key role of starburst amacrine cells in originating retinal di-
rection selectivity and optokinetic eye movement. Neuron, 30:771�780, 2001.
103

[400] K. K. L. Yung, A. D. Smith, A. I. Levey, and J. P. Bolam. Synaptic con-
nections between spiny neurons of the direct and indirect pathways in the
neostriatum of the rat: Evidence from dopamine receptor and neuropeptide
immunostaining. Eur J Neurosci, 8:861�9, 1996. 27

[401] R. S. Zemel, P. Dayan, and A. Pouget. Probabilistic interpretation of popu-
lation codes. Neural Comp, 10:403�430, 1998. 46

[402] K. Zhang, I. Ginzburg, B. L. McNaughton, and T. J. Sejnowski. Interpret-
ing neuronal population activity by reconstruction: Uni�ed framework with
application to hippocampal place cells. J Neurophysiol, 79:1017�44, 1998. 61

[403] T. Zheng and C. J. Wilson. Corticostriatal combinatorics: The implications
of corticostriatal axonal arborizations. J Neurophysiol, 87:1007�17, 2002. 18,
22

[404] E. Zohary, M. N. Shadlen, and W.T. Newsome. Correlated neuronal discharge
rate and its implications for psychophysical performance. Nature, 370:140�43,
1994. 43

[405] R. S. Zucker and W. G. Regehr. Short-term synaptic plasticity. Annu Rev
Physiol, 64:355�405, 2002. 124

210


	Introduction
	Basal Ganglia
	Basal Ganglia Function
	Basal Ganglia Dysfunction 

	Albin/DeLong Model
	Limitations of the Albin/DeLong Model

	Principles, Models, and Principled Models 
	Principles 
	Models
	Principled Models

	Principles of Basal Ganglia Function

	Action Selection vs. Dimensionality Reduction
	Introduction
	Competing Theories
	Action Selection
	Reinforcement-Driven Dimensionality Reduction

	Experimental Evidence 
	Anatomical Evidence 
	Electrophysiological Evidence
	Behavioural Evidence
	Summary 

	Compatible Theories
	Series Hypothesis 
	Site of Context-Action Mapping
	Experimental Tests

	Conclusion
	Reinforcement Learning
	Next Steps


	Population Coding
	Introduction
	Noise Reduction via Redundancy 
	Computation via Diversity
	Representation of Uncertainty

	Neural Engineering Framework 
	Representation 
	Transformation 
	Dynamics 
	Summary

	Cosine Tuning 
	Cosine Tuning on a Manifold
	Tight Frames

	Discussion

	Non-Linear Synaptic Integration
	Introduction
	Inter-Branch Non-Linearity
	Conductance-Current Non-Linearity
	Average-Based Decoding

	Intra-Branch Non-Linearity 
	Invertibility of Population Responses

	Discussion
	Appendix: Two-Compartment Models of Division
	Distal Shunting 
	Proximal Shunting


	Temporal Coding
	Introduction 
	Methods
	Approximation of Current Patterns 
	Presynaptic Firing Patterns 
	Statistical Power Analyses 

	Results
	Cortical Network Simulation
	Firing Pattern Regularity
	Spike Jitter and Noise Spikes
	Population Size and Firing Rate
	Correlated Firing
	Learning
	Experimental Detection of Subtle Repeated Patterns
	A Continuum with Rate Coding

	Discussion
	Effects of Firing Statistics on Performance
	Timing versus Rate
	Limitations and Future Work
	Population-Temporal Coding

	Appendix: Details of Power Analyses

	Computation with Inhibitory Projections
	Introduction
	Feedforward Excitatory Projections
	Feedforward Inhibitory Projections
	Recurrent Projections
	New Instability Modes

	Optimization
	Minimizing Interneuron Error
	Balancing Feedback 

	Discussion
	Challenges for Experimental Validation
	Conclusion


	Cell-Intrinsic Firing Dynamics
	Introduction
	Firing Dynamics can Provide Dynamical System Memory
	Uniform Linear Adaptation
	Synaptic Depression is Non-Linear
	Adaptation Supports Integration
	Limitations of Adaptation-Based Memory 

	Firing Dynamics can Span Transfer Functions
	Interaction between Forward Transfer Functions and Recurrence
	Non-Linear Firing Dynamics

	Firing Dynamics can Encode History
	Example: Rebound Bursting Revisited 
	Non-Linear Decoding of History
	Infinite-Dimensional History

	Firing Dynamics can be Ignored
	Discussion
	Future Work
	Relationships with Liquid Computing
	Conclusion


	Plasticity and Population Coding
	Introduction 
	Decomposing Synaptic Weights 
	Hebbian Plasticity
	Dimension Control by Lateral Connections
	Principal Component Analysers
	Winner-Take-All Networks
	Self-Organizing Maps
	Tuning Curves in Laterally-Connected Populations

	Diverse Tuning
	Discussion
	Sparse Coding
	High-Fidelity Neurons as Population Models
	Future Work
	Conclusion

	Appendix

	Conclusions
	Theoretical Principles 
	Future Work
	Compilation of Simultaneous Actions
	Migration of Procedural Memories 
	Multi-Scale Modelling


	References

